Right ventricular volume load and function in congenital heart defects

Stephensen, Sigurdur Sverrir

2017

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Sverrir Stephensen, S. (2017). Right ventricular volume load and function in congenital heart defects Lund: Lund University, Faculty of Medicine

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The relationship between longitudinal, lateral, and septal contribution to stroke volume in patients with pulmonary regurgitation and healthy volunteers

Sigurður Stephensen,1,2 Katarina Steding-Ehrenborg,1 Peter Munkhammar,2 Einar Heiberg,1,3 Hakan Arheden,1 and Marcus Carlsson1

1Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund University Hospital, Lund, Sweden; 2Department of Pediatric Cardiology, Lund University, Lund University Hospital, Lund, Sweden; and 3Center for Mathematical Sciences, Lund University, Lund, Sweden

Submitted 14 June 2013; accepted in final form 16 January 2014

Stephensen S, Steding-Ehrenborg K, Munkhammar P, Heiberg E, Arheden H, Carlsson M. The relationship between longitudinal, lateral, and septal contribution to stroke volume in patients with pulmonary regurgitation and healthy volunteers. Am J Physiol Heart Circ Physiol 306: H895–H903, 2014. First published January 17, 2014; doi:10.1152/ajpheart.00483.2013.—Septal systolic motion is towards the left ventricle (LV) in healthy hearts. Patients with pulmonary regurgitation (PR) and right ventricular (RV) volume overload have systolic septal motion toward the RV. This may affect the longitudinal contribution from atrioventricular plane displacement (AVPD) and septal and lateral contribution to stroke volume (SV). The study aimed to quantify these contributions to SV in patients with PR. Cardiac magnetic resonance imaging was used for assessment of cardiac volumes. Patients (n = 30; age 9–59 yr) with PR due to surgically corrected tetralogy of Fallot and 54 healthy controls (age 10–66 yr) were studied. Longitudinal contribution to RVSV was 47 ± 2% (means ± SE) in patients with PR and 79 ± 1% in controls (P < 0.001). Lateral contribution to RVSV and LVSV was 40 ± 1 and 62 ± 2% in patients and 31 ± 1 and 36 ± 1% in controls (P < 0.001 for both). Septal motion contributed to RVSV by 8 ± 1% in patients and by 7 ± 1% to LVSV in controls (P < 0.001). PR patients have decreased longitudinal contribution to RVSV and increased lateral pumping, resulting in larger outer volume changes and septal motion towards the RV. The changes in RV pumping physiology may be explained by RV remodeling resulting in lower systolic inflow of blood into the right atrium in relation to SV. This avoids the development of pendulum volume between the caval veins and right atrium, which would occur in PR patients if longitudinal contribution to SV was preserved. Decreased AVPD suggests that tricuspid annular excursion, a marker of RV function, is less valid in these patients. Reduced AVPD provides evidence of the altered pumping mechanisms in a heart with volume-overloaded RV.

MATERIALS AND METHODS

Study population. The local ethics committee approved the study, and written informed consent was obtained from all patients before examination. Two groups of patients were studied: 15 children (8 females) and 15 adults (6 females) who had undergone corrective surgery for TOF (n = 28) or pulmonary stenosis (n = 2). The patients had varying degree of PR from 0 to 61%. RV systolic pressure was calculated from the maximum velocity of the tricuspid regurgitation (TR) jet on echocardiography (Table 1). The TR was mild in all but four patients, who had moderate TR. Two patients had moderate pulmonary valve stenosis, and three patients had moderate branch pulmonary artery stenosis. Effective RVSV was calculated by subtracting the PR volume, obtained from the flow analysis, from the RVSV obtained from the short-axis cine images (RVEDV-RVESV). Nine healthy children (3 females) and 45 healthy adult volunteers (25 females) with varying degrees of exercise level, to obtain a wide range of heart volumes, were used as controls.

CMR imaging. All subjects underwent CMR in the supine position, and images were acquired during end-expiratory breath hold covering the entire heart, including both ventricles and atria of the heart. A 1.5-Tesla CMR scanner with a five-element cardiac synergy coil was used for all studies (Philips Achieva, Best, The Netherlands). Steady-state free precession cine CMR images were acquired in the short-axis plane. Imaging parameters were typically: ECG triggering with acquired temporal resolution of 47 ms reconstructed to 30 time phases per cardiac cycle, repetition time 3 ms, echo time 1.4 ms, flip angle 60°, and slice thickness 5–8 mm with no slice gap. Breath-hold times were typically 15 s. The long axis images were acquired in the LV two chamber view, LV outflow tract view, and four-chamber view.

Flow analysis of the main pulmonary artery using phase velocity mapping was used to evaluate the regurgitant volume in the patients of the ventricular septum moves towards the left in systole, contributing to LVSV and to the right in diastole (16, 17). Patients with tetralogy of Fallot (TOF) often develop pulmonary regurgitation (PR) after surgical correction leading to a volume-loaded RV. This affects the septum, which moves towards the RV in systole (22) (Fig. 1) and through ventricular interdependence may even alter the longitudinal and lateral function of both ventricles. Cardiac magnetic resonance (CMR) has been validated and used to quantify the longitudinal and radial contribution to ventricular SV (7, 8). CMR can even quantify the lateral and septal aspects of the radial displacement in three dimensions, thereby quantifying their contribution to SV. The aim of this study was to quantify the contribution of longitudinal, lateral, and septal pumping to SV in pediatric and adult patients with RV volume overload, secondary to PR, and compare the results to healthy controls to explain the altered pumping mechanisms in a heart with volume-overloaded RV.

Address for reprint requests and other correspondence: M. Carlsson, Dept. of Clinical Physiology and Nuclear Medicine, Lund Univ. Hospital, Lund Univ., SE-221 85 Lund, Sweden (e-mail: marcus.carlsson@med.lu.se).
The flow images were acquired during free breathing using a fast field echo velocity encoded sequence with retrospective ECG triggering with repetition time 10 ms, echo time 5 ms, flip angle 15°, and slice thickness 8 mm, acquired in-plane resolution 2.4 mm reconstructed to 1.3 mm, with a 128 matrix, number of acquisitions 1, no parallel imaging, and a velocity encoding gradient (VENC) of 200 cm/s. The flow sequence was nonsegmented without echo sharing and had an acquired temporal resolution of 20 ms during the cardiac cycle with a scan time of 2 min and has been previously validated in vivo and in vitro (4).

Image analysis. All image analysis was performed using the segmentation software Segment, v1.9 R3025 (http://segment.heiberg.se) (14). LV and RVSV were obtained by delineating the endocardial borders of both ventricles in all slices in end-diastole (ED) and end-systole (ES).

Longitudinal contribution to SV for each ventricle was calculated as previously validated (7, 8). In short, the position of the AVP was determined by using eight location points in the three long axis images. The AVPD was calculated for each ventricle by subtracting the AVP position in ES from that in ED (Fig. 2) (7, 8). The mean of the two to three largest epicardial short-axis areas of the LV and the RV encompassed by the AVPD was multiplied by the AVPD to calculate the volume contributed to SV by the AVPD. The reason for using the epicardial area has been described by Carlsson et al. (8) by comparing the LV to a telescope, which shortens and lengthens along its long axis. On shortening, the telescope retains its outer diameter but the inner diameter decreases. The volume of the telescope as well as the ventricle decreases when the tube shortens, and this volume equals the SV. Given that the volume of the wall of the telescope, i.e., the myocardium is constant during the cardiac cycle, the only difference in volume between ED and ES must be that of what was inside the tube (ventricle), i.e., the blood.

Septal contribution to SV was quantified in the short axis images as shown in Fig. 1. The ventricular septum was defined by the LV epicardial contour in the young and right ventricular insertion point in the adult patients. The AVPD was calculated for each ventricle by subtracting the AVP position in ES from that in ED (Fig. 2) (7, 8). The mean of the two to three largest epicardial short-axis areas of the LV and the RV encompassed by the AVPD was multiplied by the AVPD to calculate the volume contributed to SV by the AVPD. The reason for using the epicardial area has been described by Carlsson et al. (8) by comparing the LV to a telescope, which shortens and lengthens along its long axis. On shortening, the telescope retains its outer diameter but the inner diameter decreases. The volume of the telescope as well as the ventricle decreases when the tube shortens, and this volume equals the SV. Given that the volume of the wall of the telescope, i.e., the myocardium is constant during the cardiac cycle, the only difference in volume between ED and ES must be that of what was inside the tube (ventricle), i.e., the blood.

Table 1. **Subject characteristics**

<table>
<thead>
<tr>
<th></th>
<th>Healthy Children</th>
<th>Children with PR</th>
<th>Healthy Adults</th>
<th>Adults with PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>9</td>
<td>15</td>
<td>45</td>
<td>15</td>
</tr>
<tr>
<td>Mean age and range (yr)</td>
<td>14 ± 1 (10–17)</td>
<td>12 ± 1 (3–16)</td>
<td>32 ± 2 (21–66)</td>
<td>32 ± 8 (20–59)</td>
</tr>
<tr>
<td>Females, n (%)</td>
<td>3 (33)</td>
<td>8 (53)</td>
<td>19 (44)</td>
<td>6 (40)</td>
</tr>
<tr>
<td>BSA, m²</td>
<td>1.5 ± 0.1</td>
<td>1.3 ± 0.1</td>
<td>1.9 ± 0.0</td>
<td>1.9 ± 0.1</td>
</tr>
<tr>
<td>Heart rate, beats/min</td>
<td>70 ± 3</td>
<td>75 ± 3</td>
<td>61 ± 1</td>
<td>68 ± 3*</td>
</tr>
<tr>
<td>RV pressure, mmHg</td>
<td>28 ± 2</td>
<td>28 ± 2</td>
<td>34 ± 9</td>
<td>34 ± 9</td>
</tr>
<tr>
<td>Indexed PR, ml/m²</td>
<td>30 ± 4</td>
<td>30 ± 4</td>
<td>25 ± 3</td>
<td>25 ± 3</td>
</tr>
<tr>
<td>PR, %</td>
<td>41 ± 4</td>
<td>41 ± 4</td>
<td>39 ± 3</td>
<td>39 ± 3</td>
</tr>
</tbody>
</table>

Continuous variables are presented as means ± SE. PR, pulmonary regurgitation; BSA, body surface area; RV, right ventricle. *P < 0.05, when comparing patients with PR to healthy subjects.
epicardial border and the RV insertion points that mark the junction between the LV epicardium and RV epicardium; anteriorly at the junction of the anterior and anteroseptal segments and inferiorly at the junction of the inferior and inferoseptal segments of the LV. The epicardial contours of the LV in ED were copied to the corresponding images in ES in all slices from the base to the apex. This generated an area (diagonal lines in Fig. 1) that represents the volume contributed to SV by the septal movement. Septal motion towards the LV was denoted a positive contribution to the LVSV. Septal motion towards the RV was denoted a negative contribution to the LVSV or conversely a positive contribution to RVSV.

Lateral contribution to SV was calculated by copying the epicardial contours of the LV in ED to the ES images in all slices from the apex to the base as described above. The area demarcated by the lateral LV epicardial contours in ED and ES and the RV insertion points represents the volume contributed by the lateral displacement of the LV to LVSV. The same was done for the RV using the two RV insertion points and epicardial contours of the RV in ED and ES to calculate the volume contributed by the lateral displacement of the RV to RVSV (Fig. 1). At the base we only included the slices where both ventricles and the ventricular septum could be detected in both ED and ES to avoid including longitudinal displacement in the septal and lateral contribution to SV.

Wall thickness was measured in ED and ES and divided into septal and lateral walls of the LV. Wall thickening was calculated as (ES wall thickness − ED wall thickness)/ED wall thickness.

The center of volume (COV) of the heart was calculated using the delineation of total heart volume variation. This was performed by delineation of the pericardial border in short-axis images covering the whole heart (5, 6). All structures within the pericardium were included, ventricles, atrias, and the intrapericardial parts of the aorta and the pulmonary artery. The total heart volume was obtained in ED and ES by summation of all slices. The movement of the center of volume in three anatomical directions, septal-lateral, anterior-inferior, and apical-basal, between ED and ES was calculated to obtain center of volume variation (COVV) (6). A positive septal-lateral value denotes movement toward septum in systole, a positive anterior-inferior value denotes movement anteriorly in systole, and a positive apical-basal value denotes movement apically in systole.

Two observers delineated 24 subjects for interobserver variability. Statistical analysis. All statistical analysis was performed using Graphpad Prism v 5.02. Continuous variables were presented as means ± SE. Pearson’s correlation was used to examine the relationship between PR and longitudinal, lateral, and septal contribution to SV. A Mann-Whitney test was used to test if variables differed among the groups (longitudinal, lateral, and septal contribution to SV, wall thickening, and COVV). Results with a $P < 0.05$ were considered statistically significant.

RESULTS

Subject characteristics. Age, body surface area, heart rate, and RV pressure measured echocardiographically through TR and regurgitation fraction of the patients with PR are presented in Table 1. Interobserver variability was $2 ± 2$ ml or $1 ± 1\%$ for LVSV, $7 ± 2$ ml or $5 ± 1\%$ for RVSV, 10 ± 1% for LVAVPD, and 2 ± 2% for RVAVPD. LV volumes and function are presented in Table 2. RV volumes and function are presented in Table 3.
The effective RVSV was significantly larger both in children (P < 0.01) and adults (P < 0.001) with PR compared with controls (Table 3).

Longitudinal pumping—contribution of AVPD to SV. Indexed atrioventricular plane displacement (AVPDi) was lower in adult patients with PR compared with healthy adults in both LV and RV (P < 0.001 for both). AVPDi in children with PR was smaller in the RV (P < 0.01) but not the LV (P = 0.15) compared with healthy children (Tables 2 and 3).

The contribution of AVPD to LVSV was slightly lower in adult patients with PR compared with healthy adults (P < 0.05), but there was no difference between pediatric patients and healthy children (P = 0.36; Tables 2 and 3 and Fig. 3A). Longitudinal contribution to LVSV in healthy children was lower than in healthy adults (P < 0.01).

In contrast to the LV, the contribution of AVPD to RVSV was considerably lower in patients with PR compared with healthy subjects (P < 0.001; Fig. 3B).

The contribution of longitudinal function to SV was not related to RV size (RVEDVi) in patients (P = 0.62 for LVAVPD and P = 0.90 for RVAVPD) or healthy subjects (P = 0.25 for LVAVPD and P = 0.21 for RVAVPD).

Lateral pumping. Lateral contribution to LVSV was significantly larger in patients with PR (67 ± 3% in children and 58 ± 3% in adults) compared with healthy subjects (40 ± 3% in children and 36 ± 1% in adults; P < 0.001 for both; Table 2 and Fig. 4A).

Lateral contribution to RVSV was significantly larger in adult patients with PR than healthy subjects (P < 0.001), but there was no significant difference between children with PR and healthy children (P = 0.07; Table 3 and Fig. 4B).

The contribution of LV lateral function correlated with RV size (RVEDVi) in patients (r = 0.38; R² = 0.14; P < 0.05) but not in healthy subjects (P = 0.06). There was no correlation between RV lateral function and RV size (RVEDVi) in patients or healthy subjects (P = 0.86 and P = 0.20, respectively).

Contribution of septal motion to SV. Ventricular septal displacement contributed to LVSV in all healthy controls (Table 2). In all but one patient with PR, the ventricular septum contributed to RVSV. Septal motion contributed by 7 ± 1% to LVSV in healthy controls of all ages. In patients with PR, however, septal motion contributed by 8 ± 1% to the RVSV (P < 0.001 compared with healthy controls; Fig. 5).

The contribution of the septal movement to SV was not related to RV size in patients (P = 0.80 for RVEDVi) or healthy controls (P = 0.34 for RVEDVi). In patients with PR there was no correlation between septal contribution to RVSV and other components of RV size or function such as RVESVi (P = 0.98) or RV ejection fraction (EF; P = 0.62).

Table 2. Left ventricular size and function

<table>
<thead>
<tr>
<th></th>
<th>Healthy Children</th>
<th>Children with PR</th>
<th>Healthy Adults</th>
<th>Adults with PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEDVi, ml/m²</td>
<td>106 ± 5</td>
<td>91 ± 4*</td>
<td>106 ± 3</td>
<td>94 ± 4*</td>
</tr>
<tr>
<td>LVESVi, ml/m²</td>
<td>47 ± 3</td>
<td>41 ± 2</td>
<td>44 ± 1</td>
<td>45 ± 2</td>
</tr>
<tr>
<td>LVSVi, ml/m²</td>
<td>59 ± 3</td>
<td>50 ± 2*</td>
<td>62 ± 2</td>
<td>48 ± 2†</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>56 ± 1</td>
<td>55 ± 2</td>
<td>59 ± 1</td>
<td>51 ± 1†</td>
</tr>
<tr>
<td>Cardiac index, l·min⁻¹·m⁻²</td>
<td>4.1 ± 0.2</td>
<td>3.7 ± 0.2</td>
<td>3.7 ± 0.1</td>
<td>3.3 ± 0.2*</td>
</tr>
<tr>
<td>Indexed longitudinal contribution to LVSV (LVAVPD), ml/m²</td>
<td>30 ± 2</td>
<td>26 ± 2</td>
<td>38 ± 1</td>
<td>26 ± 2†</td>
</tr>
<tr>
<td>Longitudinal contribution to LVSV, %</td>
<td>50 ± 2</td>
<td>54 ± 4</td>
<td>61 ± 1</td>
<td>55 ± 2*</td>
</tr>
<tr>
<td>Indexed radial contribution to total SV (THVVi), ml/m²</td>
<td>40 ± 2</td>
<td>73 ± 4†</td>
<td>33 ± 2</td>
<td>68 ± 5†</td>
</tr>
<tr>
<td>Radial contribution to total SV, %</td>
<td>36 ± 3</td>
<td>58 ± 2</td>
<td>26 ± 1</td>
<td>50 ± 2†</td>
</tr>
<tr>
<td>Indexed lateral contribution to LVSV, ml/m²</td>
<td>23 ± 1</td>
<td>34 ± 2†</td>
<td>22 ± 1</td>
<td>28 ± 2*</td>
</tr>
<tr>
<td>Lateral contribution to LVSV, %</td>
<td>40 ± 3</td>
<td>67 ± 3†</td>
<td>36 ± 1</td>
<td>58 ± 3*</td>
</tr>
<tr>
<td>Indexed septal contribution to SV, ml/m²</td>
<td>3 ± 1</td>
<td>-6 ± 1†</td>
<td>5 ± 0</td>
<td>-6 ± 1†</td>
</tr>
<tr>
<td>Septal contribution to SV, %</td>
<td>5 ± 1</td>
<td>-8 ± 1†</td>
<td>8 ± 0</td>
<td>-8 ± 1†</td>
</tr>
</tbody>
</table>

Continuous variables are presented as means ± SE. LVEDVi, left ventricular end diastolic volume indexed to BSA; LVESVi, left ventricular end systolic volume indexed to BSA; LVSVi, left ventricular stroke volume indexed to BSA; LVEF, left ventricular ejection fraction; LVAVPD, left ventricular atrioventricular plane displacement; THVVi, total heart volume variation. Septal contribution to LVSV is denoted a positive number and septal contribution to RVSV is denoted a negative number. *P < 0.05, †P < 0.01, ‡P < 0.001, when comparing patients with PR to healthy subjects.

Table 3. Right ventricular size and function

<table>
<thead>
<tr>
<th></th>
<th>Healthy Children</th>
<th>Children with PR</th>
<th>Healthy Adults</th>
<th>Adults with PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVEDVi, ml/m²</td>
<td>112 ± 7</td>
<td>169 ± 10†</td>
<td>117 ± 3</td>
<td>157 ± 10‡</td>
</tr>
<tr>
<td>RVESVi, ml/m²</td>
<td>55 ± 4</td>
<td>94 ± 8†</td>
<td>53 ± 2</td>
<td>91 ± 8‡</td>
</tr>
<tr>
<td>RVSVi, ml/m²</td>
<td>57 ± 3</td>
<td>75 ± 4†</td>
<td>64 ± 2</td>
<td>65 ± 5</td>
</tr>
<tr>
<td>RVEF, %</td>
<td>51 ± 1</td>
<td>45 ± 2</td>
<td>55 ± 1</td>
<td>42 ± 3§</td>
</tr>
<tr>
<td>Indexed longitudinal contribution to RVSV (RVAVPD), ml/m²</td>
<td>45 ± 3</td>
<td>33 ± 2†</td>
<td>51 ± 2</td>
<td>32 ± 3§</td>
</tr>
<tr>
<td>Longitudinal contribution to RVSV, %</td>
<td>79 ± 3</td>
<td>45 ± 2†</td>
<td>79 ± 1</td>
<td>49 ± 3§</td>
</tr>
<tr>
<td>Indexed lateral contribution to RVSV, ml/m²</td>
<td>19 ± 2</td>
<td>30 ± 2†</td>
<td>19 ± 1</td>
<td>26 ± 2†</td>
</tr>
<tr>
<td>Lateral contribution to RVSV, %</td>
<td>33 ± 3</td>
<td>40 ± 2</td>
<td>30 ± 1</td>
<td>40 ± 2†</td>
</tr>
<tr>
<td>Indexed effective RVSV, ml/m²</td>
<td>57 ± 3</td>
<td>45 ± 3†</td>
<td>64 ± 2</td>
<td>40 ± 3§</td>
</tr>
<tr>
<td>RVEF corr, %</td>
<td>28 ± 2</td>
<td>27 ± 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continuous variables are presented as means ± SE. RVEDVi, right ventricular end diastolic volume indexed to BSA; RVESVi, right ventricular end systolic volume indexed to BSA; RVSVi, right ventricular stroke volume indexed to BSA; RVEF, right ventricular ejection fraction; RVAVPD, right ventricular atrioventricular plane displacement; Indexed effective RVSV = (RVSV-PR)/BSA; RVEF corr, RVEF corrected for pulmonary regurgitation. †P < 0.01, ‡P < 0.001, when comparing patients with PR to healthy subjects.
Longitudinal, Radial, and Septal Contribution to Stroke Volume

Sum of components of SV. When adding the longitudinal, lateral, and septal contributions to SV the sums were 103 ± 1% for LVSV and 103 ± 1% for RVSV in healthy subjects and 105 ± 2% for LVSV and 95 ± 2% for RVSV in patients.

Pulmonary regurgitation. The volume of the PR correlated with: the volume contributed to SV by RVAVPD (r = 0.52; R² = 0.27; P < 0.01; Fig. 6A), the volume contributed by lateral displacement to LVSV (r = 0.58; R² = 0.34; P < 0.001; Fig. 6B) and RVSV (r = 0.69; R² = 0.47; P < 0.001; Fig. 6C), and the volume contributed to SV by septal displacement (r = 0.42; R² = 0.18; P < 0.05; Fig. 6D).

Wall thickening and center of volume variation. Wall thickening between ED and ES was lower in patients with PR than healthy subjects (P < 0.01). There was no difference between septal (53 ± 4%) and lateral (52 ± 3%; P = 0.8) wall thickening in patients. A small but significant difference was found between septal (67 ± 2%) and lateral (62 ± 2%; P < 0.05) wall thickening in healthy subjects.

COVV in patients did not differ from healthy subjects in the septal direction (1.8 ± 0.2 vs. 1.5 ± 0.1 mm; P = 0.31) or in the anterior direction (0.1 ± 0.3 vs. 0.6 ± 0.1 mm; P = 0.53), but there was a larger movement in the basal direction in patients compared with healthy subjects (4.6 ± 0.3 vs. 2.6 ± 0.2 mm; P < 0.001).

Discussion

This study has shown that the RVSV in adult and pediatric patients with PR is generated to a larger extent by radial pumping compared with healthy subjects. This manifests in-

*Fig. 3. Contribution of the AVPD to LVSV (A) and RVSV (B) in healthy adults and children and adults and children with PR. *p < 0.05, **p < 0.01, ***p < 0.001.*

*Fig. 4. Lateral contribution to LVSV (A) and RVSV (B) in healthy adults and children and adults and children with PR. *p < 0.05, ***p < 0.001.*
ternally as septal motion towards the RV and externally as outer volume changes because of inward motion of the lateral walls of the RV and LV. The AVPD, or longitudinal pumping, in patients with PR contributes to a lesser degree to RVSV compared with healthy subjects. The volume overload caused by PR thus causes changes in pumping physiology that may be explained by RV remodeling. The lower contribution of AVPD to RVSV implies that the echocardiographic assessment of tricuspid annular plane systolic excursion, as the marker of RV function, is less valid in patients with volume overload due to PR. The contribution of AVPD to LV pumping, however, is unchanged in patients with PR. Moreover, this study has quantified the contribution of septal motion to SV in healthy subjects and patients with PR. Interestingly, the study also found differences in the contribution of longitudinal and lateral displacement to LVSV between healthy adults and healthy children.

Physiological mechanisms. Figure 7 shows schematic drawings of RV pumping in a normal subject and in a patient with PR to explain the differences in radial and longitudinal pumping. In a healthy subject, where RVSV is equal to LVSV, the longitudinal contribution to RVSV is 80%. In systole, the longitudinal displacement of the AV plane towards the apex causes subsequent atrial filling of equal volume, i.e., 80% of the RVSV (28). In a patient with moderate PR, where systolic RVSV is significantly larger than LVSV (Tables 2 and 3), preserved longitudinal contribution, of 80% of RVSV, would result in a systolic inflow to the right atrium larger than the effective SV (RVSV-PR). This theoretical example would in turn result in a volume expanded right atrium and a pendulum volume of blood between the right atrium and the caval veins. The decreased longitudinal contribution to RVSV prohibits these effects.

Fig. 5. Contribution of the ventricular septal movement to LVSV in healthy adults and children and to right RV systolic SV in adults and children with PR. *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 6. Correlation between PR and contribution of RVAVPD to SV (A), contribution of lateral displacement to LVSV (B), contribution of lateral displacement to RVSV (C), and contribution of septal movement to RVSV.

Fig. 7.
Previous studies have described the physiological relationship between radial and longitudinal function in the normal heart (1, 2, 5, 6, 7, 31) as well as in the dysfunctional LV (8, 25). Coghlan and Hoffman (11) described the helical structure of the myofibers with a 56–60° angle between them as the optimal structure in the LV to endure the internal pressure of the blood and at the same time shorten adequately to eject the blood. This architectural pattern is altered in the diseased heart, which takes on a more dilated, spherical form and loses pumping efficiency. It is uncertain if those results can be transferred directly to the RV, which has different structure, different embryonic origin (32), and different adaptation to stress (15). However, a similar shift in RV contraction pattern as we have observed in the study is seen in patients with RV pressure overload, the shortening pattern changes toward that of a LV with predominant circumferential contraction and less longitudinal shortening. A possible explanation for the changes we have observed is that the volume overload, caused by the regurgitation volume from the pulmonary artery, leads to stretching of myofibers with subsequent distorted meshwork, more spherical architecture, and overexpansion of the RV similar to a pressure-loaded LV. These structural changes might alter the contraction pattern to a greater radial contribution, limit the movement of the AV plane in diastole, and conversely decrease the systolic inflow of blood (Fig. 7). These adaptive changes would thereby cause a better matching of the inflow to the heart with the net outflow from the RV, i.e., the RVSV minus the regurgitant volume from the pulmonary artery.

Increased RVED volume index in patients after repair for TOF is associated with elevated LVED pressure (26). The volume-loaded RV in these patients leads to distortion of the RV endocardial portion of the ventricular septum, which moves to the left in diastole, limiting the filling of the LV during atrial contraction (18). In systole the ventricular septum moves paradoxically towards the RV (22), thereby contributing to the RVSV but subtracting the same volume from the LVSV. This means that to preserve the LVSV either the AV plane or the RV lateral wall must compensate for the lack of septal contribution to LVSV. Even though there was no correlation between RV size and septal contribution to RVSV, we found a correlation between RV size and the contribution of the LV lateral wall to LVSV in the patient group.

Adult patients with PR had lower LVAVPD than healthy subjects, but the percent contribution of AVPD to the LVSV was the same in both groups, explained by the lower effective SV in patients compared with healthy subjects. The lower...
LVSV is probably explained by a lower RVSV compensated with a higher heart rate compared with controls. The loss of septal contribution to LVSV in adult patients with PR was not compensated by increased longitudinal contribution to LVSV but rather by the increased displacement of the LV lateral wall as explained above. Although the adult patients had LVEF within the normal range (50–65%), it was significantly lower than in the group of healthy adults. The cardiac index in the adult patient group was also significantly lower than in the group of healthy adults (P < 0.05; Table 2). Impaired regional LV function in Fallot patients as demonstrated by the decreased radial thickening in both the septum and lateral wall in the presence of normal LVEF is in line with previous findings by Ordovas et al. (23). This is the first study to quantify the contribution of the ventricular septal movement to SV. In healthy subjects the ventricular septum contributes to 7% of the LVSV, whereas in patients with PR and paradoxical septal motion, the septum contributes to 8% of the RVSV. It is likely that a large number of TOF patients have some degree of paradoxical septal motion that is unrelated to RV size and PR volume but rather related to factors such as fibrosis of the RV insertion points leading to increased mechanical stress in these places as suggested by Muzzarelli et al. (22). A recent study by Chalard et al. (9) found decreased septal motion towards the RV after pulmonary valve replacement.

A possible mechanism behind the septal movement could be translational bulk motion of the LV from left to right. This would be more likely in patients with a large RV and also be related to adhesions of the RV pericardium to the sternum after cardiac surgery. In that scenario septal movement would be passive instead of contributing to RVSV by active contraction. To determine if this was the case we measured systolic wall thickening but found no differences between the septum and lateral wall in patients with PR. Furthermore, measurement of the center of volume variation between diastole and systole showed that COVV in the septal and anterior direction was similar in patients compared with healthy subjects. The lateral inward movement of the RV anterior, lateral, and diaphragmal walls was preserved in children and even increased in adult patients with PR compared with healthy subjects, making pericardial adhesions unlikely.

The sum of the longitudinal, lateral, and septal components of SV for both LV and RV should be 100% serving as an internal validation. In our results the sums of these three components were 103% in controls and 105% for LVSV and 95% for RVSV in patients with PR, which furthermore supports the notion that septal movement is an active process contributing to RVSV in patients with PR and not a passive effect of a bulk motion.

Measurements of regional strain with velocity-encoded MRI and echocardiography speckle tracking are used to assess myocardial function. LV global longitudinal strain in healthy subjects measured with MR was 18% in a recent article by Heiberg et al. (13), and in a study on patients with TOF by Lu et al. (19) longitudinal strain in the LV was 15% and in the RV free wall 18%. Of note, this should not be thought of as the percent longitudinal contribution to SV. Rather, the complex arrangement of myocardial fibers in different directions will combine in a net result of a longitudinal shortening that causes 60% of the SV in a healthy LV and 80% in a healthy RV. This can be compared with how a 15% shortening of myofiber will cause an EF of 60% (10). Therefore, regional measurements of, e.g., longitudinal strain cannot be used directly to explain the longitudinal contribution to SV, which is the net global result of said regional myocardial shortening.

Previous studies of ventricular interaction, mediated through the ventricular septum (18, 12) and the abnormal excursion of the septum in patients operated for TOF (22), did not quantify the volume generated by the septal displacement. This study has described a method that can be used to study ventricular interaction in different patient categories using conventional short axis images. The septal movement is a part of the radial shortening and, as such, has an important role in the contraction of the volume loaded RV.

A novel and unexpected finding in this study is the difference in pumping physiology between healthy children and healthy adults. The children had smaller longitudinal and septal contribution to LVSV than adults, but the lateral contribution to LVSV did not differ. A possible mechanism may be the lower LV mass found in children compared with adults (3), but further studies are needed to explain this finding.

Further studies. We included patients with RV volume overload due to a PR secondary to operated TOF or pulmonary stenosis. Further studies will show if the RV adapts to volume overload by decreased longitudinal function and increased septal and lateral contribution to RVSV in other conditions with a dilated RV, for example, patients with significant atrial septal defects. If present in those patients, one could exclude the PR as a contributing factor to the decreased AVPD as well as the influence of prior surgery and cardiopulmonary bypass on the heart function.

Limitations. When calculating longitudinal and radial contribution to SV we have measured these variables independently of each other. We have thus not taken into account that in the most basal part there is a simultaneous longitudinal and radial displacement of the ventricle. The radial contribution of the SV in the most basal part is not included in our analysis, and therefore, the radial contribution may be slightly underestimated. However, since the sum of the longitudinal, lateral, and septal components of SV was close to 100%, this limitation is probably of negligible magnitude.

When assessing the regional function of the septum and the lateral wall, we used wall thickening between diastole and systole. Future studies could include more advanced wall function methods such as tagging or tissue velocity mapping.

Conclusion. Patients with PR and RV volume overload have increased radial and decreased longitudinal contribution to RVSV compared with healthy subjects. The PR and the volume overload likely lead to remodeling of the RV with altered pumping mechanism. The longitudinal contribution to RVSV in patients with PR is lower, which limits the systolic inflow of blood to the heart and subsequently avoids the development of a pendulum volume between the caval veins and the right atrium. Instead, the increased lateral displacement of the free wall as well as septal motion toward the RV contributes to a larger extent to the RVSV. The LVAVPD in patients is unchanged even though the paradoxical septal movement subtracts volume from the LVSV. Increased LV lateral wall motion compensates for the “loss” of LVSV due to septal motion in patients with PR. This study also showed an unexpected lower longitudinal and septal contribution to SV in

