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Braided Convolutional Codes with Sliding Window
Decoding

Min Zhu, Member, IEEE, David G. M. Mitchell, Senior Member, IEEE, Michael Lentmaier, Senior Member,
IEEE, Daniel J. Costello, Jr., Life Fellow, IEEE, and Baoming Bai, Member, IEEE

Abstract—In this paper, we present a novel sliding window
decoding scheme based on iterative BCJR decoding for braided
convolutional codes, a class of turbo-like codes with short
constraint length component convolutional codes. The tradeoff
between performance and decoding latency is examined and,
to reduce decoding complexity, both uniform and nonuniform
message passing schedules within the decoding window, along
with early stopping rules, are proposed. We also perform a
density evolution analysis of sliding window decoding to guide
the selection of the window size and message passing schedule.
Periodic puncturing is employed to obtain rate-compatible code
rates of 1/2 and 2/3 starting from a rate 1/3 mother code
and a code rate of 3/4 starting from a rate 1/2 mother code.
Simulation results show that, with nonuniform message passing
and periodic puncturing, near capacity performance can be
maintained throughout a wide range of rates with reasonable
decoding complexity and no visible error floors.

Index Terms—Braided convolutional codes, sliding window
decoding, iterative decoding, turbo-like codes, decoding latency.

I. INTRODUCTION

Braided block codes (BBCs) [1] can be regarded as a
diagonalized version of product codes [2] or expander codes
[3], [4]. A BBC is constructed by interconnecting two block
component codes such that information symbols are checked
by both component encoders, and the parity symbols of one
component encoder are used as inputs to the other component
encoder. Recently, BBCs with Bose-Chaudhuri-Hocqenghem
(BCH) component codes [5] and the closely related stair-
case codes [6] have been investigated for high-speed optical
communication and have been found to achieve excellent
performance with iterative hard decision decoding.

As a counterpart of BBCs, braided convolutional codes
(BCCs) [7], a class of turbo-like codes that can be decoded
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with iterative decoding based on the Bahl-Cocke-Jelinek-
Raviv (BCJR) algorithm, were first introduced in [8]; how-
ever, in contrast to BBCs, BCCs use short constraint length
convolutional codes as component codes. BBCs and BCCs
are similar in terms of the encoding process. The encoding
of BCCs can be described by a two-dimensional sliding
array, where each information symbol is protected by two
component convolutional codes. The connections between the
two component encoders are defined by the positions where
information symbols and parity symbols are stored in the
two-dimensional array. Analogous to BBCs, a tightly braided
convolutional (TBC) code results when a dense array is used
to store the information and parity symbols. Alternatively,
sparsely braided convolutional (SBC) codes have low density,
resulting in improved iterative decoding performance [7]. It
was also shown (numerically) in [7] that the minimum distance
of SBC codes grows linearly with the overall constraint length,
leading to the conjecture that SBC codes are asymptotically
good. In [9]–[11], the threshold (with belief propagation (BP)
decoding) of SBC codes was analyzed on the binary erasure
channel, and it was demonstrated that threshold saturation
occurs, i.e., SBC codes behave in a manner similar to LDPC
convolutional (spatially coupled) codes.

In this paper, we build on our work in [12] and introduce a
new decoding scheme for SBC codes. Instead of the pipeline
decoder used in [7] and [8], a sliding window decoder is pro-
posed for SBC codes operating over the binary-input additive
white Gaussian noise (AWGN) channel.1 Window decoding,
which has been extensively studied for LDPC convolutional
codes [13]–[15], provides a simple and efficient way to trade
off decoding performance for reduced latency and memory re-
quirements. Unlike window decoding of LDPC convolutional
codes, which typically uses an iterative BP message passing
algorithm based on belief propagation, window decoding of
SBC codes is based on the BCJR algorithm. In addition, the
tradeoff between performance and decoding latency is ex-
plored, and we discuss how to choose the code parameters and
the decoder window size to achieve the best performance when
the decoding latency is fixed. The computational complexity
of window decoding for BCCs is then analysed. In order to
reduce the decoding complexity, different message passing
schedules (both uniform and nonuniform [16]) between the
component BCJR decoders are investigated. Also, to further
reduce the computational complexity, we propose two stopping

1Although we focus on the binary-input AWGN channel in this paper, the
proposed sliding window decoder for SBC codes is not limited to this case.
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Fig. 1. Encoder for a rate R = 1/3 blockwise SBC code.

rules: one based on a cross entropy [17] measure which was
originally designed as a stopping rule for turbo codes; the other
based on the magnitude of the reliability measure produced by
the BCJR algorithm. Finally, we consider periodic puncturing
of SBC codes to achieve rate-compatible SBC codes.

II. SPARSELY BRAIDED CONVOLUTIONAL CODES

Sparsely braided convolutional (SBC) codes are construct-
ed using an infinite two-dimensional array and consist of
two recursive systematic convolutional (RSC) encoders linked
through parity feedback. In this manner, the information and
parity symbols are “braided” together. There are two types of
SBC codes: bitwise and blockwise. Bitwise uses convolutional
interleavers and transmission is continuous, while blockwise
uses block interleavers and transmission occurs in finite-length
blocks. In this paper we use rate R = 1/3 blockwise SBC
codes for illustration, although extensions to other rates are
straightforward. An example of a rate R = 1/3 blockwise
SBC encoder is shown in Fig. 1. It consists of two RSC
component encoders each of rate Rcc = 2/3. The infor-
mation sequence is divided into blocks of T symbols, i.e.,
u = (u0,u1, . . . ,ut, . . .), where ut = (ut,1, ut,2, . . . , ut,T ),
and P(0), P(1), and P(2) are each block permutors of length
T .

At time unit t = 0, information block u0 and its permuted
version ũ0 = u0P(0) enter the first inputs of Encoder 1
and Encoder 2, respectively, one bit at a time. Meanwhile,
blocks ṽ(2)

−1 and ṽ(1)
−1, consisting of T zeros each (the initial

condition), enter the second inputs of Encoder 1 and Encoder
2, respectively, also one bit at a time. Encoders 1 and 2 then
generate length T parity blocks v̂(i)

0 =
(
v̂(i)0,1, v̂

(i)
0,2, · · · , v̂

(i)
0,T

)
,

i = 1, 2, and blocks v(0)
0 =

(
v(0)0,1, v

(0)
0,2, · · · , v

(0)
0,T

)
∆
= u0,

v(1)
0

∆
= v̂(1)

0 , and v(2)
0

∆
= v̂(2)

0 are multiplexed and sent
over the channel. In general, at time unit t, parity block
v(1)
t is calculated by Encoder 1 as a function of ut and

ṽ(2)
t = v(2)

t−1P
(2). Similarly, parity block v(2)

t is calculated by
Encoder 2 as a function of ũt = utP(0) and ṽ(1)

t = v(1)
t−1P

(1).
Note that there is a one time unit delay prior to permutors P(1)

and P(2). The blocks v(0)
t =

(
v(0)t,1 , v

(0)
t,2 , · · · , v

(0)
t,T

)
∆
= ut ,

v(1)
t = v̂(1)

t , and v(2)
t = v̂(2)

t are then multiplexed into the
code sequence v = (v0,v1, . . . ,vt, . . .), where

vt =
(
v(0)t,1 , v

(1)
t,1 , v

(2)
t,1 , v

(0)
t,2 , v

(1)
t,2 , v

(2)
t,2 , . . . , v

(0)
t,T , v

(1)
t,T , v

(2)
t,T

)
,

(1)
is a 3T -bit vector, and sent over the channel.

At the end of transmission, termination of the overal-
l code is used to protect the final information blocks. In
this case, after the LT -bit information sequence u[0,L−1] =
(u0,u1, . . . ,uL−1) enters the blockwise SBC encoder, Λ
additional all-zero blocks uL, . . . ,uL+Λ−1 enter the encoder.
These Λ all-zero blocks are not sent over the channel but the
resulting parity blocks are transmitted. The actual rate of the
SBC code, including the tail, is thus given by

R̃ =
LT

3LT + 2ΛT
=

1

3

L

L+ (2Λ/3)
, (2)

and we see that, for fixed Λ, the actual rate R̃ of the SBC code
approaches R = 1/3 as L → ∞. A terminated sequence of
L+Λ blocks will be referred to as a frame. In this paper, we
consider the rate Rcc = 2/3 RSC component encoders to be
unterminated, i.e., the initial encoder states at time unit t+ 1
are the same as the final encoder states at time unit t.2

III. SLIDING WINDOW DECODING

A parallel pipeline decoding architecture was proposed for
BCCs in [7] in order to achieve high throughput continuous de-
coding; however, the decoding latency required in this case is
large. Significantly reduced decoding latency can be obtained
with little or no loss in performance by using sliding window
decoding, as has been proposed for LDPC convolutional codes
[13]–[15]. In this section, we present a novel low-latency
sliding window decoding scheme for blockwise SBC codes.

A. Window Decoding
We again use the rate R = 1/3 blockwise SBC encoder

described in Section II for illustration. The code sequence
is v = (v0,v1, . . . ,vt, . . .), where vt is given by (1). After
transmission over an AWGN channel, the received sequence
is r = (r0, r1, . . . , rt, . . .), where

rt =
(
r(0)t,1 , r

(1)
t,1 , r

(2)
t,1 , r

(0)
t,2 , r

(1)
t,2 , r

(2)
t,2 , . . . , r

(0)
t,T , r

(1)
t,T , r

(2)
t,T

)
.

Let lc = (lc0, l
c
1, . . . , l

c
t , . . .) denote the corresponding

sequence of received channel log-likelihood ratios (LLRs),
where

lct =
(
lc,(0)t,1 , lc,(1)t,1 , lc,(2)t,1 , lc,(0)t,2 , lc,(1)t,2 , lc,(2)t,2 , . . . , lc,(0)t,T , lc,(1)t,T , lc,(2)t,T

)
,

which can be decomposed into
(
lc,(0)t , lc,(1)t , lc,(2)t

)
, where

lc,(j)t , j = 0, 1, 2, represents the T channel LLRs correspond-
ing to the information symbols, the parity output symbols from
Encoder 1, and the parity output symbols from Encoder 2,
respectively, at time unit t.

2This is in contrast to [7], where tail-biting termination was employed at
the end of each block.
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At the receiver, the channel LLR sequence lc is demulti-
plexed into three streams, lc,(0), lc,(1), and lc,(2), where

lc,(j) =
(
lc,(j)0 , lc,(j)1 , . . . , lc,(j)t , . . .

)
, j = 0, 1, 2.

The channel LLR inputs to Decoder 1 at time unit t are given
by lc,(0)t , lc,(1)t , and the permuted parity outputs l̃c,(2)t−1 from
Decoder 2 at time unit t−1. Similarly, the channel LLR inputs
to Decoder 2 at time unit t are the permuted information inputs
l̃c,(0)t , the permuted parity outputs l̃c,(1)t−1 from Decoder 1 at time
unit t− 1, and lc,(2)t .

Fig. 2 shows a schematic representation of a sliding window
decoder. As the transmitted blocks of symbols are received, the
first w blocks of channel LLRs are stored in the window, with
the initial block on the left, where w is the window size in
blocks. Among these blocks, the initial block on the left is
referred to as the set of target symbols, i.e., the first block of
symbols to be decoded. Generally, for a window covering the
information blocks from time unit t to time unit t + w − 1,
the T symbols at time unit t are the target symbols, as shown
in Fig. 2(a).

There are two types of iterations in the sliding window
decoder: vertical iterations and horizontal iterations. A vertical
iteration is a conventional turbo iteration in which extrinsic
information on the information bits of a given block is
exchanged between component decoders at the same time unit.
A horizontal iteration is a forward/backward round trip of
information exchanges within the window in which extrinsic
information on the parity bits of two successive blocks is
exchanged between component decoders at different time
units. I1 and I2 represent the numbers of vertical (turbo) it-
erations and horizontal (forward/backward) iterations, respec-
tively. After completing a certain number of vertical iterations
and horizontal iterations according to some chosen decoding
schedule, the decoding of T target symbols is completed, and
then the window shifts one position to the right, as shown in
Fig. 2(b).

The decoding procedure within a window is further detailed
in Fig. 3, where we use the following notation. For time unit
t, t ∈ [0, L+ Λ− 1], lcInf (t), laInf (t), and leInf (t) represent
the channel LLRs, the a priori LLRs, and the a posteriori
probability (APP) extrinsic LLRs of the information symbols
corresponding to Decoder 1, respectively; lcPin1 (t), l

a
Pin1 (t),

and lePin1 (t) denote the channel LLRs, the a priori LLRs, and
the extrinsic LLRs of the input parity symbols corresponding
to Decoder 1 (the permuted parity outputs from Decoder 2 at
time unit t − 1), respectively; and lcPout1 (t), laPout1 (t), and
lePout1 (t) denote the channel LLRs, the a priori LLRs, and
the extrinsic LLRs of the output parity symbols corresponding
to Decoder 1, respectively. Similarly, l̃cInf (t), l̃aInf (t), and
l̃eInf (t) are the channel LLRs, the a priori LLRs, and the
extrinsic LLRs of the information symbols corresponding to
Decoder 2, respectively; and the Decoder 2 LLRs lcPin2 (t),
laPin2 (t), lePin2 (t), lcPout2 (t), laPout2 (t), and lePout2 (t) are
defined analogously to the corresponding LLRs of Decoder
1. Finally, since the window size is w, there are w received
blocks, each of length 3T , in the decoding window at any
particular time.

When decoding the set of target symbols at time unit t,
the decoding window covers the w blocks at time units s ∈
[t, t+ w − 1]. We initialize the window decoder as follows.
For Decoder 1, we set

lcInf (s) = lc,(0)s ,

lcPout1 (s) = lc,(1)s ,

lcPin1 (s) =

{
φ, s = 0;

lc,(2)s−1 P
(2), s ∈ {t, t+ 1, . . . , t+ w − 1} \0,

(3)
and for Decoder 2, we set

l̃cInf (s)=lc,(0)s P(0),

lcPout2 (s) = lc,(2)s ,

lcPin2 (s) =

{
φ, s = 0;

lc,(1)s−1 P
(1), s ∈ {t, t+ 1, . . . , t+ w − 1} \0,

(4)
where φ is a large negative constant, since we assume that
the second inputs of Encoders 1 and 2 consist of T zeros
at initialization (time unit t = 0). Also, the a priori inputs
laInf (0), laPin1 (0), and laPout1 (0) to Decoder 1 and laPin2 (0)
and laPout2 (0) to Decoder 2 are set to zero at initialization,
while the initial a priori input l̃aInf (0) to Decoder 2 equals
leInf (0)P

(0). For all following time units t = 1, 2, . . . , L +
Λ − 1, the channel and a priori input LLRs are obtained as
indicated in Fig. 3. Throughout decoding, the a priori parity
input LLRs are initialized with the extrinsic parity output
LLRs from the previous time unit as follows:

laPin1 (s) = lePout2 (s− 1)P(2),
laPin2 (s) = lePout1 (s− 1)P(1),

(5)

for s = t, t+ 1, . . . , t+ w − 1, where we assume that, in the
case t = 0, lePout2 (−1)= lePout1 (−1) = 0. Also the a priori
parity output LLRs are initialized with the extrinsic parity
input LLRs from the subsequent time unit as follows:

laPout1 (s) =

⎧
⎨

⎩

lePin2 (s+ 1)
[
P(1)

]T
, if block s+ 1 has been

previously updated;
0, otherwise,

laPout2 (s) =

⎧
⎨

⎩

lePin1 (s+ 1)
[
P(2)

]T
, if block s+ 1 has been

previously updated;
0, otherwise,

(6)
for s = t, t+ 1, . . . , t+ w − 1.

The window decoder initializes the first block according
to (3)-(6) and starts with vertical decoding of the first block
in the window (time unit t in Fig. 3) for I1 iterations. This
vertical decoding phase is identical to decoding a turbo code,
except that the APP extrinsic LLRs are calculated for all the
code symbols, instead of only for the information symbols.
However, during vertical decoding, the extrinsic LLRs leInf (t)
and l̃eInf (t) of the information symbols are active, whereas
the extrinsic LLRs lePout1 (t), l

e
Pout2 (t), l

e
Pin1 (t), and lePin2 (t)

of the parity symbols are inactive. After I1 vertical iterations,
the extrinsic LLRs lePout1 (t) and lePout2 (t) of the parity output
symbols are then permuted and passed forward to the decoders
at time unit t+1. After receiving these as a priori LLRs, the
decoders at time unit t + 1 are initialized according to (3)-
(6), perform I1 iterations of vertical decoding, and pass the
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Fig. 2. Illustration of a sliding window decoder for a rate R = 1/3 blockwise SBC code.

extrinsic LLRs lePout1 (t+ 1) and lePout2 (t+ 1) of their parity
output symbols forward to the decoders at time unit t+2. This
forward process continues until the block at time unit t+w−1
finishes vertical decoding.

Following this, the backward exchange process begins and
the decoders at time unit t + w − 1 transmit the permuted
extrinsic LLRs lePin1 (t+ w − 1) and lePin2 (t+ w − 1) of their
parity input symbols back to the decoders at time unit t+w−2.
After receiving these as a priori LLRs, the decoders at time
unit t+w− 2 are initialized according to (3)-(6), perform I1
iterations of vertical decoding, and pass the extrinsic LLRs
lePin1 (t+ w − 2) and lePin2 (t+ w − 2) of their parity input
symbols back to the decoders at time unit t + w − 3. This
backward process continues until the block at time t (the
first block in the window) finishes vertical decoding. This
completes the first horizontal iteration; after this, a new round
of horizontal decoding begins and decoding continues in this
fashion until I2 horizontal iterations have been performed, or
a stopping rule is met (see Section VI-B).

In the vertical decoding process, the component codes are
decoded I1 times each using the BCJR algorithm [18], where
the decoding extends over one block of T information bits.

Since the encoders are unterminated after each block, the
initial encoder states for the block at time unit t are the same
as the final encoder states for the block at time unit t − 1.
The horizontal decoding process (forward and backward) is
performed I2 times. Then hard decisions are made on the target
symbols (the first block in the window). After that, the window
shifts by one time unit, a new block enters the window, and
the decoding process starts again in the new window position.
After L information blocks, Λ all-zero termination blocks are
used to protect the final information blocks in the sequence,
where we typically choose Λ ≤ w − 1.

B. Window Decoding Schedules
From the above description, it is clear that the number

of vertical iterations I1 and horizontal iterations I2 plays
an important role in the tradeoff between performance and
computational complexity. In this section, we present several
window decoding message passing schedules as a means
to investigate this tradeoff. A window decoding schedule is
an algorithm for alternating vertical and horizontal iterations
within the window. More specifically, we consider schedules
that perform I2 horizontal iterations within the window and
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Fig. 3. Decoding within a window for a rate R = 1/3 blockwise SBC code.

I1 vertical iterations on each block visited during a horizontal
iteration. Assume that the window size is w.

1) Uniform Schedule: A diagram of the uniform schedule
is shown in Fig. 4(a), where the rectangular boxes represent
the blocks at every time unit s ∈ [t, t+ w − 1] and I1 is the
number of vertical iterations performed on each block visited.
In the forward exchange process, each block in the window
successively performs I1 vertical iterations, beginning with the
first block. After I1 vertical iterations have been performed on
the last block in the window, the backward exchange process
begins by again performing I1 vertical iterations on the last
block. I1 vertical iterations are then performed successively
on each block from the the last block to the first block. From
the diagram we see that, for every horizontal iteration, each
block in the window is updated exactly twice. Hence the total
number of iterations δ in this case is given by δ = 2wI1I2.

2) Nonuniform Schedules: In a nonuniform schedule, for
every horizontal iteration, the number of times each block is
updated varies. Three nonuniform schedules are presented be-
low, but many other nonuniform schedules are clearly possible.

• Simplified uniform (SU) schedule: Compared to the u-
niform schedule, the end blocks in this schedule only
perform I1 vertical iterations once during each horizontal
iteration. A diagram of the SU schedule is shown in Fig.
4(b), where we see that the middle blocks are updated
twice as often as the end blocks. (This is the decoding
schedule assumed in the description of the operation of
the window decoder given at the end of Sec. III-A.)
The total number of iterations in this case is given by
δ = 2 (w − 1) I1I2.

• Locally uniform (LU) schedule: In this schedule, during
the even numbered horizontal iterations, the decoding
schedule is the same as the uniform schedule. During the
odd numbered horizontal iterations, however, the forward
process stops at block (w′ − 1), 0 < w′ < w, and the

1I 1I

1I 1I 1I

1I

t + w ¡ 1t + w ¡ 1

Forward

Backward

(a) Uniform schedule diagram

1I
1I

1I
1I

1I

1I

t + w ¡ 1t + w ¡ 1t + w ¡ 2t + w ¡ 2

Forward

Backward

t + 1t + 1tt

(b) Simplified uniform (SU) schedule diagram

1I 1I

1I 1I 1I

1I 1I

1I

1I 1I

1I 1I 1I

1I

Even numbered iterations

Odd numbered iterations

t + w ¡ 1t + w ¡ 1t + w0 ¡ 1t + w0 ¡ 1

t + w0 ¡ 1t + w0 ¡ 1

Forward

Backward

Forward

Backward

t + 1t + 1tt

tt t + 1t + 1

(c) Locally uniform (LU) schedule diagram

1I 1I

1I 1I 1I

1IForward

Backward
1I

t + w ¡ 1t + w ¡ 1t + w ¡ 2t + w ¡ 2t + 1t + 1tt

(d) Modified uniform (MU) schedule diagram

Fig. 4. Different window decoding schedules.
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backward process starts at block (w′ − 1). A diagram of
the LU schedule is shown in Fig. 4(c). The total number
of iterations in this case is given by δ = I1I2 (w + w′).

• Modified uniform (MU) schedule: As shown in Fig. 4(d),
the difference between the uniform schedule and the MU
schedule is that the vertical decoding process operates on-
ly once, rather than twice, on the last block in the window
during each horizontal iteration. The number of iterations
performed during one horizontal iteration is thus I1 less
than for the uniform schedule, i.e., the total number of
iterations in this case is given by δ = (2w − 1) I1I2.

The idea behind both the LU and MU schedules is to devote
a greater fraction of the computational resources to updating
the blocks closest to the target symbols [16].

IV. DENSITY EVOLUTION ANALYSIS

We now use density evolution to analyze the asymptotic
performance of blockwise SBC codes with window decoding
over the binary erasure channel (BEC). The results are then
used to guide us in the selection of the window decoding size
and a window decoding schedule for large block sizes.

A. Erasure Probabilities of Component Decoders
We again consider the rate R = 1/3 blockwise SBC code

described in Sec. II, with a rate Rcc = 2/3 RSC convolutional
code as the component code, for illustration. In order to
derive an analytical expression for the erasure probability of
blockwise SBC codes with window decoding, the extrinsic
output erasure probabilities of the component BCJR decoders
must be computed.

Denote by p(0)e,out, p(1)e,out, and p(2)e,out the three extrinsic
output erasure probabilities of the component BCJR decoder.
In general, these extrinsic output erasure probabilities are
functions of the decoder input erasure probabilities p0, p1,
and p2, i.e.,

p(0)e,out = f0 (p0, p1, p2) ,

p(1)e,out = f1 (p0, p1, p2) ,

p(2)e,out = f2 (p0, p1, p2) ,

(7)

where the transfer functions f0 (·), f1 (·), and f2 (·) are derived
following the method proposed in [9] and [19].

B. Density Evolution for SBC Codes with Window Decoding
With the help of the extrinsic output erasure probabilities of

the component decoders, we are able to calculate the evolution
of the target symbol erasure probability during the window
decoding procedure. Since the component decoder is the same
for all iterations, we can use the transfer functions defined
above recursively to find the exact decoding probability of
erasure for a target symbol after a certain number of iterations.

Without loss of generality, we assume a decoding window
from time unit t to time unit t+ w − 1, where w is the win-
dow size. During the vertical decoding process, the extrinsic
output erasure probabilities after i vertical iterations for the
information symbol, the input parity symbol, and the output
parity symbol of Decoder 1 at time s ∈ [t, t+ w − 1] can be
obtained as

p(i,s)D1,Inf = fD1,Inf

(
q(i−1,s)
D2,Inf , q(I1,s−1)

D2,Pout , q(I1,s+1)
D2,Pin

)
(8a)

p(i,s)D1,Pin = fD1,Pin

(
q(i−1,s)
D2,Inf , q(I1,s−1)

D2,Pout , q(I1,s+1)
D2,Pin

)
(8b)

p(i,s)D1,Pout = fD1,Pout

(
q(i−1,s)
D2,Inf , q(I1,s−1)

D2,Pout , q(I1,s+1)
D2,Pin

)
, (8c)

where

q(i−1,s)
D2,Inf = ϵ · p(i−1,s)

D2,Inf (9a)

q(I1,s−1)
D2,Pout = ϵ · p(I1,s−1)

D2,Pout (9b)

q(I1,s+1)
D2,Pin = ϵ · p(I1,s+1)

D2,Pin . (9c)

Here fD1,Inf , fD1,P in, and fD1,Pout are the extrinsic output
erasure probability transfer functions from (7) for the infor-
mation symbol, the input parity symbol, and the output parity
symbol of component Decoder 1 (D1), respectively; ϵ denotes
the erasure probability of the channel; and I1 is the maximum
number of vertical iterations. Because of the symmetric design,
the extrinsic output erasure probability update equations for
component Decoder 2 (D2) are identical to those of decoder
D1 after interchanging D1 and D2 in (8)-(9).

During the horizontal decoding process, in the forward
exchange, D1 ( resp. D2) at time unit s transmits the extrinsic
erasure probability of the output parity symbol to D2 (D1)
at time unit s + 1 as the a priori erasure probability of the
input parity symbol. In the backward exchange, D1 (D2) at
time unit s transmits the extrinsic erasure probability of the
input parity symbol to D2 (D1) at time unit s − 1 as the
a priori erasure probability of the output parity symbol. As
mentioned in Section III, the second inputs of Encoder 1 and
2 are all zeros at time unit 0. Therefore, in the case t = 0,
q(I1,−1)
D1,Pin = q(I1,−1)

D2,Pin = 0 and q(I1,−1)
D1,Pout = q(I1,−1)

D2,Pout = ϵ.
Finally, the decoding erasure probability of a target symbol

in the current decoding window [t, t+ w − 1] for blockwise
SBC codes after j iterations of the horizontal decoding process
is given by

pe,t = ϵ · p(j,t)D1,Inf · p
(j,t)
D2,Inf. (10)

C. Results and Discussion
Using the density evolution procedure described above, we

first measure the impact of the window size on decoding
performance. Then we evaluate different window decoding
schedules in terms of decoding complexity. In particular, given
the channel erasure probability and a target erasure probability,
the schedule which uses the fewest number of iterations is
taken to be optimal. As an example, we consider a R = 1/3
blockwise SBC code with two identical rate Rcc = 2/3, 4-state
RSC component encoders whose generator matrix is given by

G1 (D) =

(
1 0 1

1+D+D2

0 1 1+D2

1+D+D2

)
. (11)

The BEC thresholds ϵw for this blockwise SBC code
using window decoding with different window sizes and the
modified uniform schedule are shown in Table I. We observe
that there is no significant improvement in the threshold with
increasing window size beyond w = 3. This suggests that,
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TABLE I
THE BEC THRESHOLD ϵw OF A RATE R = 1/3 BLOCKWISE SBC CODE

USING WINDOW DECODING WITH DIFFERENT WINDOW SIZES w.

w 2 3 4 5 6 7
ϵw 0.652703 0.655166 0.655367 0.655384 0.655386 0.655386

TABLE II
REQUIRED NUMBER OF ITERATIONS δ FOR A RATE R = 1/3 BLOCKWISE

SBC CODE.

Schedule I1 I2 δ Schedule I1 I2 δ
Uniform 1 11 66 LU (w′ = 2) 1 11 55
Uniform 2 7 84 LU (w′ = 2) 2 7 70
Uniform 3 6 108 LU (w′ = 2) 3 6 90

SU 1 18 72 MU 1 11 55
SU 2 10 80 MU 2 7 70
SU 3 7 84 MU 3 6 90

for large block sizes, blockwise SBC codes using window
decoding with w = 3 will achieve good performance, which
is consistent with the simulation results presented in the
following section.

Table II shows the total required number of iterations δ
with different window decoding schedules for channel erasure
probability ϵ = 0.65, window size w = 3, and target symbol
erasure probability ε̂ = 10−9. The minimum possible vertical
iteration number I1 is 1 for any window decoding schedule,
and we see that this is sufficient to achieve good performance
in all cases. Consider the uniform schedule as an example.
Here, the number of iterations per horizontal iteration is 6I1.
For I1 = 1, the number of horizontal iterations needed to
achieve ε̂ = 10−9 is I2 = 11, and hence the total required
number of iterations is δ = 6I1 · I2 = 66. For I1 = 2,
the required number of horizontal iterations is now I2 = 7,
and thus the total number of iterations in this case increases
to δ = 6I1 · I2 = 84. For I1 = 3, the total number of
iterations grows further to δ = 6I1 · I2 = 108. Consequently,
for large block sizes, we should pick I1 = 1 to obtain the best
performance/complexity tradeoff.

In addition, we see that, for fixed I1 with window decoding,
the MU schedule and the LU schedule use the same number
of iterations. Furthermore, they use the fewest number of
iterations among all the schedules to achieve ε̂ = 10−9. For
example, for I1 = 1, a total of δ = 55 iterations is needed
with the MU or LU schedule (note that the total number of
vertical iterations per horizontal iteration is 5I1 for both these
schedules). However, δ = 66 iterations are needed with the
uniform schedule and δ = 72 iterations are needed with the
SU schedule. Therefore, in this case, the MU or LU schedule
is the best choice for large block sizes. For larger w, we expect
the LU schedule to be the most efficient due to its flexibility.

V. PERFORMANCE OF BLOCKWISE SBC CODES WITH
SLIDING WINDOW DECODING

In this section, some examples are given to illustrate the
performance of blockwise SBC codes with sliding window
decoding over the AWGN channel with binary phase-shift
keying (BPSK) signaling.

We consider the rate R = 1/3 blockwise SBC code with two
identical 4-state RSC component encoders whose generator
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Fig. 5. BER performance of rate R = 1/3 blockwise SBC codes with
window decoding and different permutor sizes T . The vertical and horizontal
iteration numbers are I1 = 5 and I2 = 30, respectively.

matrix is given by (11), where we assume the encoders are
left unterminated at the end of each block. The three block
permutors P(0), P(1), and P(2) were chosen randomly with
the same size T . We assume that a transmission consists of
an information sequence of length 50T , i.e. 50 information
blocks, plus Λ = 1 all-zero termination block of length T , so
that the overall frame length is 152T and the actual rate is
R̃ = 0.329 (see (2)).

The bit error rate (BER) performance of rate R = 1/3
blockwise SBC codes with the SU sliding window decoding
schedule is shown in Fig. 5, where the permutor sizes are T =
100, 500, 1000, and 8000, and the corresponding window sizes
are w = 16, 12, 8, and 4, respectively. The results indicate
how the performance scales with permutor size, assuming we
choose a sufficiently large window. We found in general that
a smaller T requires a larger w. This is because the base turbo
code with a small block size is weak, so larger windows are
needed to protect the target symbols in this case. We also
see that the performance with window decoding improves as
we increase the size of the block permutors, as expected. For
code rate R = 1/3, the gap to capacity is about 0.5 dB with
permutor size T = 8000 and w = 4, and no error floor is
observed.

In addition to BER performance, the decoding latency
introduced by channel coding is a crucial factor in the design
of a practical communication system. For the rate R = 1/3
blockwise SBC code, the decoding latency of the sliding
window decoder is given by

τ = 3Tw (12)

symbols, where T and w are design parameters that can be
chosen to satisfy a latency constraint.

The bit signal-to-noise ratio Eb/N0 required to achieve a
BER of 10−5 as a function of decoding latency is shown in
Fig. 6. We observe that the performance of blockwise SBC
codes with a fixed permutor size improves as the window size
w increases; however, it does not improve much beyond a
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Fig. 6. Required Eb/N0 to achieve a BER of 10−5 for the rate R = 1/3
blockwise SBC code as a function of decoding latency.

certain window size. Moreover, beyond a certain latency, using
a larger permutor size T with a smaller window size w gives
better performance.

For a fixed number of iterations, the performance of block-
wise SBC codes with window decoding and different decoding
schedules is compared in Fig. 7. The uniform, SU, LU, and
MU schedules are examined with I1 = 1 and I2 = 20, block
size T = 8000, and window size w = 3, where w was chosen
according to the density evolution results from Table I for
large block sizes. In this case, the total number of iterations
for window size w = 3 is 120, 80, 100, and 100, respectively.
We see that the performance of the window decoder with
the locally uniform or modified uniform schedule is almost
identical to that of the uniform schedule, but this performance
is achieved with fewer iterations. This result is consistent with
the density evolution results from Table II, where the locally
uniform and modified uniform schedules were found to be the
most computationally efficient for large block sizes. We also
see that the SU schedule has the worst performance, since
the target symbols are updated less often during a round of
horizontal decoding than with the other schedules. Finally, we
note that the performance of the blockwise SBC code with the
locally uniform or modified uniform schedule shown in Fig. 7
is about 0.2 dB better than the results published in [7], which
used pipeline decoding with the same total number of turbo
iterations, i.e., 100, but with a much higher decoding latency.3

VI. COMPUTATIONAL COMPLEXITY

In this section, we investigate the computational complexity
of SBC codes with sliding window decoding and propose two
stopping rules, one based on cross entropy and the other on
LLR magnitudes, to reduce computational complexity.

3The reason for the better performance of the sliding window decoder when
the number of iterations is fixed is that it uses its iterations more efficiently,
since it confines them to a finite-size window, whereas the pipeline decoder
effectively implements the flooding schedule over an entire frame.
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Fig. 7. BER performance of rate R = 1/3 blockwise SBC codes with
window decoding using different decoding schedules for the same number of
vertical and horizontal iterations. The window size w = 3, the block permutor
size T = 8000, and the vertical and horizontal iteration numbers are I1 = 1
and I2 = 20, respectively. For the locally uniform schedule, w′ = 2.

A. Computational Complexity Analysis

The computational complexity of a sliding window decoder
can be analyzed by enumerating the number of operations
required to decode a block of T information bits. As illustrated
above, window decoding of blockwise SBC codes requires a
set of w turbo decoders operating within a sliding window.
The factors determining the computational complexity of a
turbo decoder include the trellis complexity, the number of
iterations allowed, and the number of constituent decoders.
We now enumerate the number of multiplications (divisions),
additions (subtractions), and comparisons in the BCJR algo-
rithm for a single trellis section of target bits (the first block
of information bits in the window).

Assume that we take a rate Rcc = k/n RSC code (k inputs,
n outputs) with S states and B branches leaving each state
in its trellis representation as the component code. For the
Log-Map BCJR algorithm with forward recursion values α,
backward recursion values β, and branch metrics γ (see [20]
for details), the following operations are required:

• For the forward recursion, S · (B − 1) comparisons and
S · (2B − 1) additions are required. To normalize the
α’s, an additional S−1 comparisons and S additions are
needed. Hence, the total number of required computations
for the forward recursion is 2S ·B additions and S ·B−1
comparisons per trellis section;

• The required number of computations for the β’s is the
same as for the α’s, i.e., 2S ·B additions and S ·B − 1
comparisons per trellis section;

• For the branch metric γ, S · B · (n+ 1) multiplications
and S ·B · n additions are required;

• For the computation of the APP values, S · B − 2
comparisons and 2S ·B additions are required;

• For the computation of the extrinsic LLRs, 1 addition is
required;

• For one trellis section, one vertical iteration, and per bit,
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TABLE III
COMPUTATIONS CTS PER BIT FOR ONE TRELLIS SECTION AND ONE

ITERATION.

Multiplications Additions Comparisons
α 0 2S ·B S ·B − 1
β 0 2S ·B S ·B − 1
γ S ·B · (n+ 1) S ·B · n 0

APP values 0 2S ·B S ·B − 2
Extrinsic values 0 1 0

the number of computations (multiplications, additions,
and comparisons) required for a Log-MAP decoder, CTS ,
is summarized in Table III.

Therefore, for a sliding window decoder with Tw informa-
tion bits in a window, number of vertical iterations I1, number
of horizontal iterations I2, component code rate Rcc = k/n,
and code rate R, the computational complexity of the overall
decoder can be written as

Ctotal = 2 · δ · T · n · CTS (13)

where δ is the total number of iterations per bit for a given
window decoding schedule as defined in Sec. III-B. Note that,
as mentioned previously, the component decoders calculate the
LLRs of the information bits and the parity bits, and hence a
total of T · n LLRs must be calculated in each block.

We now consider a performance vs. complexity comparison
of a blockwise SBC code and a turbo code with the same rate
and decoding latency τ . For the turbo code, the computational
complexity is given by 2 · δ′ · T ′ · n′ · C ′

TS , where δ′ is the
number of turbo iterations, T ′ is the number of information
bits in a block, n′ is the total number of output bits of
each trellis section, and C ′

TS is the number of required
computations per bit for one trellis section and one iteration.
Both the BER and the frame error rate (FER) performance of
a rate R = 1/3 blockwise SBC code with 4-state, Rcc = 2/3
component codes and the rate R = 1/3 turbo code used in the
CDMA2000 industry standard [21] with a randomly chosen
permutor and 8-state Rcc = 1/2 component codes is shown
in Fig. 8, where we choose T ′ = Tw so that the decoding
latency τ = T ′ = Tw is the same in both cases. We see that,
in the waterfall region, the SBC code outperforms the turbo
code by 0.075 dB at a BER of 10−6 and by 0.095 dB at an
FER of 10−2. Moreover, there is no visible error floor for the
SBC code4, while an error floor appears for the turbo code
beginning at a BER of 10−6 and an FER of 5 × 10−3. In
terms of performance, SBC codes are particularly attractive
for moderate and high latency applications; however, their
advantage over turbo codes disappears for smaller latencies
since, referencing the results of Fig. 5, we see that relatively
large windows are required for small permutor sizes. With
respect to computational complexity, since S · B is the same
in both cases, that is C ′

TS = CTS , but n = 3 for the
SBC code and n′ = 2 for the turbo code, n · CTS for
the SBC code is larger than n′ · C ′

TS for the turbo code.
Also δ = 2wI1I2 = 72 for the SBC code, whereas the
number of iterations δ′ = 20 is smaller for the turbo code.

4This is expected because of the linear distance growth property of these
codes.
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Fig. 8. BER and FER performance of a blockwise SBC code and a turbo
code with the same rate R and decoding latency τ . For the SBC code, a
uniform decoding schedule is used where the parameters chosen are w = 3,
T = 8000, I1 = 1, and I2 = 12. For the turbo code, the information block
length is T ′ = 24, 000 and the number of iterations is δ′ = 20.

In summary, we get improved waterfall performance and no
error floors with SBC codes when compared to turbo codes,
at the expense of some additional computation. It is important
to note, though, that the performance vs. complexity tradeoff
will change if the number of iterations is reduced or if decoder
stopping rules are employed, but that additional iterations will
not change the performance. We will see in the following that
the complexity Ctotal of SBC codes can be reduced without
significant performance degradation by considering efficient
stopping rules.

B. Stopping Rules

Since the computational complexity of a sliding window
decoder depends on the number of iterations performed in
a window, stopping rules can be used to detect decoder
convergence and thereby reduce the computational complexity.
Here we propose two stopping rules: one based on the cross
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entropy (CE) [17] of the distribution of APP values at the
outputs of two decoders; the other based on the magnitudes
of the LLRs of the target information bits.

1) Cross entropy based stopping rule: The CE stopping rule
is based on the difference between the APP values of the target
information bits (the first block in the window) at the output
of the two decoders after successive horizontal iterations. Let
Q(i) (ul) and P(i) (ul) represent the APP distributions at the
output of Decoders 1 and 2 at the ith horizontal iteration,
respectively, and let L(Q)

(i) (ul) and L(P )
(i) (ul) represent the

corresponding APP values. We write the difference in the two
soft outputs as (see [17] for details)

∆L(P )
e(i) (ul)

∆
= L(P )

(i) (ul)−L(Q)
(i) (ul) = L(P )

e(i) (ul)−L(P )
e(i−1) (ul) ;

(14)
that is, ∆L(P )

e(i) (ul) represents the difference in the APP
extrinsic LLRs L(P )

e(i) (ul) of Decoder 2 in two successive
horizontal iterations. We next define (see [17] for details)

T (i)
∆
=

T∑

l=1

∣∣∣∆L(P )
e(i) (ul)

∣∣∣
2

e

∣∣∣L(Q)
(i)

(ul)
∣∣∣

(15)

as the approximate value of the CE at horizontal iteration i.
T (i) can be computed after each horizontal iteration.

Experience has shown that once convergence is achieved,
T (i) drops by a factor of at least 10−3 compared with its
initial value T (0). Hence if T (i) is less than ηT (0) after
i horizontal iterations, where η ∈

[
10−3, 10−6

]
is a user

selected parameter, decoding stops and the window shifts.
2) LLR magnitude based stopping rule: The LLR mag-

nitude stopping rule is based on the convergence of the
cumulative LLR magnitudes of the target information bits.
During the decoding process, as decoding converges to the
correct codeword, the LLRs of the T target symbols typically
tend to large positive or negative values and become more
stable as the number of iterations increases. We define the
total LLR magnitude of the T target symbols at horizontal
iteration i, denoted λ(i)

tot, as

λ(i)
tot =

T∑

l=1

∣∣∣λ(i) (l)
∣∣∣, (16)

where
∣∣λ(i) (l)

∣∣ is the LLR magnitude of target information
bit l at horizontal iteration i. This value typically increases
iteration by iteration and eventually converges to a stable
value; consequently, the difference of the λ(i)

tot values in two
successive horizontal iterations typically decreases. We write
the absolute value of the difference of the λ(i)

tot values in two
successive horizontal iterations as

∆λ(i)
tot =

∣∣∣λ(i)
tot − λ(i−1)

tot

∣∣∣ . (17)

The LLR magnitude based stopping rule uses two user
selected parameters: one is a magnitude threshold, denoted by
θ, used to determine whether the difference of two successive
LLR magnitudes is sufficiently small; the other is a depth fac-
tor, denoted by M , whose role is to ensure that the diminishing
LLR magnitude difference is consistent and actually reflects
decoding convergence. The two parameters together determine
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Fig. 9. Performance comparison of rate R = 1/3 blockwise SBC codes using
a uniform window decoding schedule with and without the CE based stopping
rule. The numbers next to the simulation points are the average number of
horizontal iterations. The parameters chosen are w = 3, T = 8000, I1 = 1,
I2 = 20, and η = 10−6.

whether further iterations should be performed. Hence if λ(i)
tot

is less than θ for M successive horizontal iterations, decoding
stops and the window shifts.

3) Numerical Examples: To examine the efficiency of the
proposed stopping rules, we performed simulations of block-
wise SBC codes with code rate 1/3 and a uniform decoding
schedule with I1 = 1. The performance comparison of the
blockwise SBC codes with and without the CE stopping rule
is shown in Fig. 9. With the CE stopping rule (η = 10−6),
the performance is less than 0.01 dB worse than without the
stopping rule at a BER = 10−5, but the average number of
horizontal iterations is greatly reduced. For Eb

N0
= 0.1 dB,

where the BER = 10−5, the average number of horizontal
iterations Ī2 = 4.5, and hence the computational complexity
with the CE stopping rule is Ctotal = 2δ · T · n · CTS =
2·2·I1 ·Ī2 ·w·T ·n·CTS = 162T ·CTS , while the computational
complexity without the stopping rule is Ctotal = 720T ·CTS .

The BER performance of SBC codes with the LLR magni-
tude based stopping rule is shown (for θ = 80 and M = 2)
in Fig. 10. Similar to the CE stopping rule, we see that the
average number of horizontal iterations is greatly reduced with
negligible performance loss. For Eb

N0
= 0.1 dB, where the

BER = 10−5, the average number of horizontal iterations
Ī2 = 8, and hence the computational complexity with the LLR
magnitude stopping rule and the uniform decoding schedule
is Ctotal = 288T · CTS .

Based on these numerical examples, there appears to be
little difference between the two stopping rules, with the CE
stopping rule needing somewhat fewer iterations but the LLR
magnitude stopping rule giving slightly better performance.
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Fig. 10. Performance comparison of rate R = 1/3 blockwise SBC
codes using a uniform window decoding schedule with and without the LLR
magnitude based stopping rule. The numbers next to the simulation points
are the average number of horizontal iterations. The parameters chosen are
w = 3, T = 8000, I1 = 1, I2 = 20, M = 2, and θ = 80.

VII. RATE-COMPATIBLE BLOCKWISE SBC CODES

In this section, we discuss the construction of rate-
compatible blockwise SBC codes 5, obtained by puncturing
a low rate SBC mother code to achieve higher code rates. We
first introduce the puncturing technique and present simulation
results illustrating the performance of punctured SBC codes.
We then introduce a set of rate-compatible SBC codes obtained
from a lower rate SBC mother code.

A. Puncturing Technique

As an example, we take the R = 1/3 blockwise SBC code
with rate Rcc = 2/3 component codes as the mother code.
Periodic puncturing is then used to obtain higher code rates.
The puncturing patterns used to obtain R = 1/2 and R = 2/3
blockwise SBC codes are shown in Fig. 11. Due to the fact that
the blockwise SBC mother code is systematic, we puncture
only parity bits. At each time instant, one information bit and
two parity bits come out of the SBC encoder. In order to obtain
an SBC code with rate R = 1/2, one parity bit at each time
instant is punctured in an alternating pattern (see Fig. 11(a)).
In order to obtain an SBC code with rate R = 2/3, six parity
bits in every four time instants are punctured (see Fig. 11(b)).
Additional puncturing to produce a code rate R greater than
the rate Rcc of the component codes does not produce good
results.

B. Numerical Examples

We now investigate the performance of punctured rate-
compatible blockwise SBC codes with window decoding.
Using the rate R = 1/3 SBC code with T = 8000 as the
mother code, we obtain rate-compatible SBC codes with code

5The puncturing patterns are not nested, and hence the codes are not rate-
compatible in the strictest sense.

Parity bits 1:

Parity bits 2:

Information bits:

(a) Puncturing pattern used to obtain a blockwise SBC code with rate 1/2.

Parity bits 1:

Parity bits 2:

Information bits:

(b) Puncturing pattern used to obtain a blockwise SBC code with rate 2/3.

Fig. 11. Puncturing patterns based on the mother code with rate 1/3. White
circles indicate transmitted bits and black circles correspond to punctured
(non-transmitted) bits.
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Fig. 12. Performance comparison of rate-compatible SBC codes with window
decoding obtained by periodic puncturing. Shown for comparison are capacity
limits (dot-dash lines) and finite-length limits (dotted lines) [22], [23].

rates of 1/2 and 2/3 by periodic puncturing as illustrated in Fig.
11. Their BER performance using a uniform window decoding
schedule with I1 = 1, I2 = 20, and w = 3 is shown in
Fig. 12. The decoding latencies of the rate-compatible SBC
codes with rates 1/3, 1/2, and 2/3 are 72, 000, 48, 000, and
36, 000, respectively. At a BER of 10−5, the rate-compatible
SBC codes with code rates of 1/3, 1/2, and 2/3 perform
about 0.56 dB, 0.58 dB, and 0.62 dB away from the Shannon
limit, respectively, and they show no visible sign of an error-
floor down to a BER of 10−8. It can also be seen that, at a
BER of 10−8, the rate-compatible SBC codes are less than
0.5 dB away from the finite-length limit, which is calculated
according to [22], [23] for a code length equal to the decoding
latency of the SBC codes.

Next, the performance of a rate R = 0.495 blockwise SBC
code is compared to a rate R = 0.499 turbo code and a rate
R = 0.49 LDPC convolutional (spatially coupled) code, all
with the same decoding latency τ , in Fig. 13. The blockwise
SBC code is obtained by puncturing the R = 1/3 SBC
mother code with 4-state, Rcc = 2/3 component codes, the
turbo code is obtained by puncturing the rate R = 1/3 turbo
code with 8-state, Rcc = 1/2 component codes used in the
CDMA2000 standard, and the LDPC convolutional code is
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Fig. 13. BER performance of a blockwise SBC code, a turbo code, and an
LDPC convolutional code, all with the same decoding latency τ = 48, 000
symbols.

randomly constructed based on the (4, 8)-regular protograph
with base matrix B = [4, 4], where the component base
matrices are B0 = B1 = B2 = B3 = [1, 1] (see [24] for
details of the protograph construction). For the SBC code,
a uniform window decoding schedule was used, where the
window size w = 3 and the block permutor size T = 8000.
For the turbo code, the information block length is 24,000,
and for the LDPC convolutional code, the window size, the
protograph lifting factor, and the coupling length are 12, 2000,
and 100, respectively (see [24] for details). We observe that,
for the same decoding latency τ = 48, 000 bits, the blockwise
SBC code outperforms the LDPC convolutional code by about
0.1 dB at a BER of 10−6. Moreover, the blockwise SBC code
outperforms the turbo code used in the CDMA2000 standard
by about 0.15 dB and displays no visible error floor, which
is expected because of the linear distance growth property of
SBC codes.

C. Rate-compatible SBC codes obtained from a higher rate
mother code

In previous sections, we discussed a rate R = 1/3 blockwise
SBC code with two identical rate Rcc = 2/3, 4-state RSC
component convolutional codes. In this section, we consider
a rate R = 1/2 blockwise SBC code with two identical rate
Rcc = 3/4, 8-state RSC component convolutional codes. The
generator matrix of the component encoders is given by

G2 (D) =

⎛

⎜⎝
1 0 0 1+D+D3

1+D3

0 1 0 1+D2+D3

1+D3

0 0 1 D+D3

1+D3

⎞

⎟⎠ ,

and the encoder is shown in Fig. 14 (compare to the encoder
in Fig. 1). The difference is that the information block ut of
length 2T is divided into two sub blocks ut,1 and ut,2, each
of length T , which are two of the inputs to each component
encoder. In this case, the actual rate of the resulting SBC
codes, including the termination, is R̃ = 1

2
L

L+Λ/2
→

L→∞
1
2 ,

where L and Λ are defined in Section II.

Rate 3/4
Encoder 1

Rate 3/4
Encoder 2

! "0P

! "1P

! "2P

MUX
tvtu

! "1
tv
! "1
tv

! "2
tv
! "2
tv

! "1ˆ tv

! "2ˆ tv

S/P
,1tu

,2tu

,1tu ,1tu ,2tu ,2tu

D

D

Fig. 14. Encoder for a rate R = 1/2 blockwise SBC code.

Parity bits 1:

Parity bits 2:

Information bits 2:

Information bits 1:

(a) Puncturing pattern to obtain a blockwise SBC code with rate 2/3.

Parity bits 1:

Parity bits 2:

Information bits 2:

Information bits 1:

(b) Puncturing pattern to obtian a blockwise SBC code with rate 3/4.

Fig. 15. Puncturing patterns based on the mother code with rate 1/2.

The puncturing patterns used to obtain R = 2/3 and R =
3/4 blockwise SBC codes are shown in Figs. 15(a) and 15(b),
respectively. By puncturing, we obtain a rate-compatible set of
blockwise SBC codes with code rates of 1/2, 2/3, and 3/4. In
Fig. 16, we show the BER performance of this rate-compatible
set with T = 9000. A uniform window decoding schedule was
used with I1 = 1, I2 = 20, and w = 3. It is observed that,
at a BER of 10−5, the rate-compatible SBC codes with rates
1/2, 2/3, and 3/4 perform within 0.5 dB of the finite-length
limit and they show no visible signs of an error floor down to
a BER of 10−7.

From the results presented in Figs. 12 and 16, we see that
puncturing has virtually no negative effect on the performance
of SBC codes, and thus different approaches to achieving high-
er code rates can be compared on the basis of implementation
complexity.

VIII. CONCLUSIONS

In this paper, we introduced a novel sliding window de-
coding scheme for blockwise SBC codes and proposed both
uniform and nonuniform iterative decoding schedules that
can significantly reduce the decoding memory and latency
requirements. We used a density evolution analysis to guide
the selection of the window size and the decoding schedule.
We examined the BER performance and analyzed the com-
putational complexity of blockwise SBC codes, and we com-
pared their behavior with turbo codes under an equal latency
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Fig. 16. Window decoding performance comparison of rate-compatible SBC
codes obtained by periodic puncturing of a rate 1/2 mother code with the
finite-length limit (dashed lines) and the Shannon limit (dot-dash lines). The
decoding latencies of the rate-compatible SBC codes with rates 1/2, 2/3, and
3/4 are τ = 108, 000, 81, 000, and 72, 000 bits, respectively.

constraint. Periodic puncturing was then used to achieve rate-
compatible blockwise SBC codes, all of which perform within
0.5 dB of the finite-length limit. Moreover, these codes show
no visible sign of an error floor down to a BER of 10−8.
Finally, a comparison of a blockwise SBC code, an LDPC
convolutional code, and the turbo code used in the CDMA2000
standard, all with code rate R ≈ 1/2 and the same decoding
latency, showed that blockwise SBC codes can outperform
both LDPC convolutional codes and turbo codes.

Based on their excellent performance in both the waterfall
and error floor regions, their robust behavior with puncturing,
and their ability to employ a low-complexity soft decision
iterative decoding algorithm at high code rates, blockwise SBC
codes appear to be worthy competitors to the product-like
codes that have recently been proposed for high-speed optical
communication.
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the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5,
pp. 2307-2359, May 2010.

[24] D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, Jr., “Spatially
coupled LDPC codes constructed from protographs,” IEEE Trans. Inf.
Theory, vol. 61, no. 9, pp. 4866-4889, Sept. 2015.

Min Zhu (S’15-M’17) received the B.S., the M.S.
and the Ph. D. degrees in communication and in-
formation system from Xidian University, China,
in 2006, 2009, and 2016 respectively. From Sept.
2014 to Sept. 2015, she was with the Department of
Electronic Engineering, University of Notre Dame,
IN, as a visiting Ph. D student. She is currently
with State Key Lab. of ISN, Xidian University. Her
research interests include channel coding and their
applications to communication systems.



14

David G. M. Mitchell received the Ph.D. degree in
Electrical Engineering from the University of Edin-
burgh, United Kingdom, in 2009. Since 2015, he has
been an Assistant Professor in the Klipsch School
of Electrical and Computer Engineering at the New
Mexico State University, USA. He previously held
Visiting Assistant Professor and Post-Doctoral Re-
search Associate positions in the Department of
Electrical Engineering at the University of Notre
Dame, USA. He is a Senior Member of the IEEE
and his research interests are in the area of digital

communications, with emphasis on error control coding and information
theory.

Michael Lentmaier (S’98-M’03-SM’11) received
the Dipl.-Ing. degree in electrical engineering from
University of Ulm, Germany in 1998, and the Ph.D.
degree in telecommunication theory from Lund Uni-
versity, Sweden in 2003. He then worked as a Post-
Doctoral Research Associate at University of Notre
Dame, Indiana and at University of Ulm. From 2005
to 2007 he was with the Institute of Communications
and Navigation of the German Aerospace Center
(DLR) in Oberpfaffenhofen, where he worked on
signal processing techniques in satellite navigation

receivers. From 2008 to 2012 he was a senior researcher and lecturer at the
Vodafone Chair Mobile Communications Systems at TU Dresden, where he
was heading the Algorithms and Coding research group. Since January 2013
he is an Associate Professor at the Department of Electrical and Information
Technology at Lund University. His research interests include design and
analysis of coding systems, graph based iterative algorithms and Bayesian
methods applied to decoding, detection and estimation in communication
systems. He is a senior member of the IEEE and served as an editor for IEEE
Communications Letters (2010-2013), IEEE Transactions on Communications
(2014-2017), and IEEE Transactions on Information Theory (since April
2017). He was awarded the Communications Society & Information Theory
Society Joint Paper Award (2012) for his paper Iterative Decoding Threshold
Analysis for LDPC Convolutional Codes.

Daniel J. Costello, Jr. received the M.S. and Ph.D.
degrees in Electrical Engineering from the Univer-
sity of Notre Dame, Notre Dame, IN, in 1966 and
1969, respectively. Dr. Costello joined the faculty
of the Illinois Institute of Technology, Chicago, IL,
in 1969. In 1985 he became Professor of Electrical
Engineering at the University of Notre Dame, Notre
Dame, IN, and from 1989 to 1998 served as Chair of
the Department of Electrical Engineering. In 2000,
he was named the Leonard Bettex Professor of
Electrical Engineering at Notre Dame, and in 2009

he became Bettex Professor Emeritus.
Dr. Costello has been a member of IEEE since 1969 and was elected Fellow

in 1985. In 2009, he was co-recipient of the IEEE Donald G. Fink Prize Paper
Award, which recognizes an outstanding survey, review, or tutorial paper in
any IEEE publication issued during the previous calendar year. In 2012, he was
a co-recipient of the joint IEEE Information Theory Society/Communications
Society Prize Paper Award, which recognizes an outstanding research paper
in the IT or COM Transactions during the previous two calendar years. In
2013, he received the Aaron D. Wyner Distinguished Service Award from the
IEEE Information Theory Society, which recognizes outstanding leadership in
and long standing exceptional service to the Information Theory community.
In 2015 he received the IEEE Leon K. Kirchner Graduate Teaching Award,
which recognizes inspirational teaching of graduate students in the IEEE fields
of interest.

Dr. Costello’s research interests are in digital communications, with special
emphasis on error control coding and coded modulation. He has numerous
technical publications in his field, and in 1983 he co-authored a textbook
entitled ”Error Control Coding: Fundamentals and Applications”, the 2nd
edition of which was published in 2004.

Baoming Bai (S’98-M’00) received the B.S. degree
from the Northwest Telecommunications Engineer-
ing Institute, China, in 1987, and the M.S. and Ph.D.
degrees in communication engineering from Xidian
University, China, in 1990 and 2000, respectively.
From 2000 to 2003, he was a Senior Research
Assistant in the Department of Electronic Engineer-
ing, City University of Hong Kong. Since April
2003, he has been with the State Key Laboratory
of Integrated Services Networks (ISN), School of
Telecommunication Engineering, Xidian University,

China, where he is currently a Professor. In 2005, he was with the University
of California, Davis, as a visiting scholar. His research interests include
information theory and channel coding, wireless communication, and quantum
communication.


