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Abstract

Perlecan is a heparan sulfate proteoglycan assembled into the vascular basement membranes (BMs) during vasculogenesis.
In the present study we have investigated vessel formation in mice, teratomas and embryoid bodies (EBs) in the absence of
perlecan. We found that perlecan was dispensable for blood vessel formation and maturation until embryonic day (E) 12.5.
At later stages of development 40% of mutant embryos showed dilated microvessels in brain and skin, which ruptured and
led to severe bleedings. Surprisingly, teratomas derived from perlecan-null ES cells showed efficient contribution of
perlecan-deficient endothelial cells to an apparently normal tumor vasculature. However, in perlecan-deficient EBs the area
occupied by an endothelial network and the number of vessel branches were significantly diminished. Addition of FGF-2
but not VEGF165 rescued the in vitro deficiency of the mutant ES cells. Furthermore, in the absence of perlecan in the EB
matrix lower levels of FGFs are bound, stored and available for cell surface presentation. Altogether these findings suggest
that perlecan supports the maintenance of brain and skin subendothelial BMs and promotes vasculo- and angiogenesis by
modulating FGF-2 function.
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Introduction

The formation of an elaborate vascular network is critical for

development, tissue repair and tumor growth. During develop-

ment, the vascular system forms by two different processes termed

vasculo- and angiogenesis. During vasculogenesis mesenchymal

progenitor cells differentiate into endothelial cells and establish

a primitive vascular plexus. Angiogenesis occurs when endothelial

cells start to proliferate and to sprout from preexisting vessels and

thereby forming new vessels. The newly formed endothelial tubes

finally mature by assembling a basement membrane (BM) and by

recruiting smooth muscle cells or pericytes [1]. The formation and

maturation of blood vessels are tightly controlled by a finely tuned

balance of pro- and anti-angiogenic actions executed by growth

factors, cell adhesion molecules and components of the extracel-

lular matrix ECM.

Perlecan is a major a heparan sulfate (HS) proteoglycan

associated with blood vessels. Its highest expression in the

mammalian embryo coincides with the development of blood

vessels (E10.5 in the mouse) and the heart. Later in development it

is expressed in most visceral organs, skeletal muscle and cartilage

[2,3]. Perlecan is deposited in vascular BMs, in the mesenchyme of

several developing organs, and in the stroma of wounds and

tumors. The targeted deletion of the perlecan gene in mouse

revealed a critical role for the development of cartilage [4,5], heart

[6] and brain [7]. Perlecan deficiency is embryonic lethal. Mutant

embryos die between E10.5 and around birth. Laminin, collagen

IV, nidogen and perlecan are major components of BMs.

Although perlecan is not essential for BM assembly it is important

to maintain BM integrity in several tissues. For example, perlecan-

null embryos display disrupted BMs in the developing heart [8]

and around the expanding telencephalic vesicles leading to

neuronal ectopias or exencephaly [7]. Other critical functions of

the protein include neuroblast proliferation [7], endochondral

ossification [5], acetylcholinesterase clustering at the neuromus-

cular junctions [9] or proliferation of mesenchymal cells in the

endocardial ridges that form the heart outflow tract [6]. In

humans, mutations in the perlecan gene cause Schwartz-Jampel

syndrome, a disorder consisting of chondrodysplasia and myotonia

[10,11].

One of the most intriguing functions of perlecan is its

involvement in blood vessel formation. The mRNA levels of

perlecan are high in endothelial cells of the developing mouse

embryo [2], and further increase after recruitment of pericytes to

the endothelial tubes. Both cell types contribute to the secretion

and assembling of the vascular BM [1]. Perlecan together with

other proteins, such as fibronectin, nidogen and laminin, are

progressively remodeled by integrins to finally ensheath the

mature vessel [12,13].

Perlecan can exert promoting as well as inhibiting roles during

angiogenesis (reviewed in [14,15]). Suppression of perlecan

expression in a colon cancer cell line or in metastatic prostate

cancer cells [16] for example, leads to diminished tumor

angiogenesis and tumor growth. In fibrosarcoma, however, the

opposite effect was observed [17]. Perlecan can bind pro-
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angiogenic factors including growth factors such as fibroblast

growth factors (FGFs), vascular endothelial growth factor (VEGF),

platelet-derived growth factor-B (PDGF-B), transforming growth

factor-b (TGF-b), b1 and b3 integrins and fibronectin. Apart from

binding growth factors, perlecan can also present angiogenic

growth factors to their receptors [18] or prevent growth factor

receptor signaling through binding them. The latter was shown for

VEGF-A which cannot bind VEGFR2 in the presence of perlecan

[19]. Furthermore, perlecan also serves as a slow release reservoir

of growth factors and protects them from proteolysis [20]. It has

also been shown that proteolytic cleavage products of BM

constituents can serve as potent inhibitors of tumor angiogenesis.

They can be derived from collagens type IV and XVIII, laminins

and also perlecan (reviewed in [21]). The C-terminal domain V of

perlecan is called endorepellin and was shown to inhibit

angiogenesis [22,23]. Apart from these anti-angiogenic properties

of fragments from perlecan, perlecan may also interact with other

HS-binding regulators of angiogenesis such as thrombospondin

[24], endostatin [25], NK4 [26] and platelet factor-4 [27] and thus

indirectly contribute to angiogenesis. Finally, a key role of perlecan

is also to maintain BMs, which constitute a structural and

functional microenvironment for vascular cells.

In spite of the extraordinary amount of information about the

role of perlecan in angiogenesis in vitro, it is still not clear whether

perlecan is also involved in the regulation of de novo vasculogen-

esis and angiogenesis. For example, morpholino-mediated knock-

down of perlecan in zebrafish produces anomalous development of

the intersegmental and dorsal longitudinal vessels [28]. Mice

engineered to express a HS-deficient perlecan are born normally

and have a normal blood vessel development [29], although they

suffer from lens degeneration and aberrant wound healing, tumor

growth and impaired corneal angiogenesis [30].

In the present paper we tested the role of perlecan in vessel

formation by disrupting the perlecan gene in mice, teratomas and

embryoid bodies (EBs). We demonstrate no rate limiting function

for perlecan in vasculo- and angiogenesis but a critical role in

maintaining microvessel integrity in vivo. Furthermore, we show

that perlecan does not modulate teratoma angiogenesis, but

controls the vascular network in EBs through its ability to store

and/or present FGF-2.

Materials and Methods

Ethics Statement
The mice used for this study were kept in the animal house of

the Max Planck Institute of Biochemistry. The analysis of

perlecan-null mice was carried out in strict accordance with all

German (e.g. German Animal Welfare Act) and EU (e.g. Directive

86/609/EEC) applicable laws and regulations concerning care

and use of laboratory animals. The Max Planck Institute of

Biochemistry has a license for breeding and housing laboratory

animals (No. 5.1-568 - rural districts office). All animals used were

bred for scientific purposes. The Max Planck Institute of

Biochemistry is registered at NIH and has a PHS Approved

Animal Welfare Assurance from the Office of Laboratory Animal

Welfare: #A5132-01 (see: http://grants.nih.gov/grants/olaw/

assurance/500index.htm?Country =GM#GridTop).

Mice, ES Cells and Antibodies
Perlecan-null mice and ES cells were generated by gene

targeting and have been described previously [5]. Briefly, the

targeting construct was electroporated into ES derived from 129/

Sv mice. The ES cell clones were injected into blastocysts from

C57BL6 females to generate germline chimeras.

The following primary antibodies were used for immunohisto-

chemistry: rabbit anti-laminin-1; rabbit anti-perlecan antibodies

against domain V; rabbit anti-nidogen-1; rabbit anti-collagen IV;

rabbit anti-collagen XVIII against endostatin (obtained from Dr.

Rupert Timpl); rabbit anti-desmin (Sigma-Aldrich); rabbit anti-

NG2 (Millipore); rabbit anti PDGFR (Cell Signaling); rat anti-flk-1

(obtained from Dr. Urban Deutsch, Bad Nauheim, Germany);

rabbit anti-fibronectin (Chemicon); rat anti-PECAM-1 (Pharmin-

gen) and mouse anti-smooth muscle cell a-actin (Sigma-Aldrich).

The following secondary antibodies were used: biotinylated goat

anti-rabbit IgG, biotinylated goat anti-rat IgG, biotinylated goat

anti-mouse IgG, biotinylated rabbit anti-goat IgG (all obtained

from Vector Laboratories Inc.); FITC-conjugated goat anti-rabbit,

Cy3-conjugated goat anti-rat (both obtained from Jackson

Immunoresearch Laboratories Inc.).

To quantify vessel size in the cortical primordium of E15.5

embryos, vessel perimeters from three mutant and wild type

embryos were measured in four areas of three coronal sections

immunostained for laminin111 using ImageJ (NIH, USA). The

results were statistically evaluated using a two-tailed Mann-

Whitney Test.

Generation of Teratomas
For teratoma induction, wild type and perlecan-null ES cells

were trypsinized, washed twice in PBS, suspended in PBS at

a concentration of 108 cells/ml, and a 100 ml cell suspension (107

cells) was injected subcutaneously on the back of syngeneic 129/Sv

male mice. After 28 days, the tumors were surgically removed,

weighed and frozen in ice-cold isopentane.

Generation and Analysis of Embryoid Bodies
For in vitro differentiation in EBs, wild type and mutant ES cells

were cultured in hanging drops as described elsewhere [31].

Briefly, 600 cells were cultured in 20 ml of DMEM, supplemented

with 20% fetal calf serum (FCS), non-essential amino acids and

0.1 mM b-mercaptoethanol, hanging from the lid of a Petri dish

for 2 days allowing the formation of cell aggregates and then for 3

days in bacteriological Petri dishes. Subsequently, the aggregates

were plated on Tissue Tek chambers pre-coated with 0.1% gelatin

and incubated for 5–12 days in 20%, 10%, 5%, 2% or 0.5% FCS-

containing medium. Perlecan with or without HS side chains

(10 ng/ml, 100 ng/ml and 500 ng/ml) purified from the EHS

tumor [2] was added to the EB cultures in rescue experiments. To

evaluate the effect of growth factors, EBs were cultured in the

presence of VEGF165 (1 nM and 3 nM; R&D Systems), human

FGF-2 (0.3 nM, 0.6 nM and 1.2 nM; Cell Concepts) and

a combination of both VEGF165 and FGF-2 (1 nM and 1.2 nM,

respectively). The EBs were immunostained as previously de-

scribed [32]. The number of PECAM-positive vessel branch-

points was counted in randomly selected areas of 1.5 mm2. The

size of the vascularized area was measured on low-magnification

images using the Axiovision Software (Zeiss). The resulting data

was statistically evaluated using a two-tailed Mann-Whitney Test.

FGFR1-AP Preparation and in Situ assay for Quantification
of FGF-2 Binding to FGFR1 in EBs
An expression construct encoding the extracellular domain of

fibroblast growth factor receptor 1 (FGFR1) linked to human

placental alkaline phosphatase (AP) was kindly provided by Dr.

David Ornitz. This construct has successfully been used to

determine binding of FGF-2 and FGFR1 in cells and tissues

[33]. The expression vector FGFR1-AP in pcDNA3 (Invitrogen)

was linearized and transfected into human embryonic kidney 293

Perlecan and Vascular Development
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cells (HEK 293 cells; American Type Culture Collection) with

LipofectAMINE reagent (Invitrogen) and selection was carried out

with 800 mg/ml G418 (Geniticin, Life Technologies, Inc.-BRL).

G418-resistant clones were isolated, expanded and assayed for AP

activity according to Flanagan and Leder [34]. Conditioned

serum-free medium was collected from the highest expressing

clone, dialysed in 20 mM triethanolamine (pH 7.5), 50 mM NaCl

and applied on a 2 ml bed volume Q-sepharose Fast Flow

(Amersham Biosciences) column equilibrated with the same buffer.

The FGFR1-AP protein was eluted by a linear gradient from

50 mM to 1 M NaCl over 20 bed volumes at 1 ml/min, and 0.5-

ml fractions were collected. Fractions containing FGFR1-AP were

identified by AP activity and the protein purity was judged by

7.5% SDS-PAGE and Coomassie R-250 Brilliant Blue staining.

The positive fractions were pooled and dialyzed in PBS. FGFR1-

AP concentration was determined by BCA protein assay (Pierce,

Rockford, IL). For the binding assay, wild type and perlecan

mutant EBs were grown until confluency in 96-well plates and

fixed with 4% paraformaldehyde in PBS for 20 minutes. After

washing in PBS, EBs were incubated with 10 nM-500 nM of

recombinant FGF-2 in PBS +0.1% BSA for 1 h at 37uC. After
rinsing, FGFR1-AP was added at a concentration of 300 mg/ml

for 1 h at 37uC. Unbound receptor was removed by washing and

immobilized AP activity was determined by adding an AP

substrate mix to the wells as described above. The resulting data

were statistically evaluated using a two-tailed Students t-test.

Whole-mount Immunohistochemistry
For whole embryo immunohistochemistry staged embryos were

dissected in PBS. Part of the yolk sac was used for genotyping by

Southern blot. Yolk sacs and embryos were fixed overnight in

Dent’s fixative (80% methanol: 20% DMSO). The samples were

incubated in 6% H2O2 in methanol for 1 hr at room temperature

to quench endogenous peroxidases. The samples were then

rehydrated to PBS with 0.1% Tween-20, incubated in antibody

buffer (10% goat serum, 5% BSA in PBS) 261 hr, and exposed to

PECAM-1 or flk-1 rat monoclonal antibody overnight at 4uC
After 5–7 hr washes in 0.1% Tween-20 in Tris-buffered saline,

samples were incubated with alkaline phosphatase-conjugated

goat-anti rat IgG (Boehringer Mannheim). The detection system

was NBT/BCIP (Boehringer Mannheim). Stained embryos and

yolk sacs were post-fixed with 10% formaldehyde, examined, and

photographed on a dissecting microscope.

Histological Analysis, Immunohistochemistry and
Electron Microscopy
Embryos were either fixed in 4% fresh paraformaldehyde in

PBS, pH 7.2, overnight, dehydrated in graded alcohol series and

embedded in paraffin (Paraplast X-tra; Sigma) or directly

embedded in tissue freezing medium (Tissue Tek, Leitz Industries).

Sections were cut at 6–8 mm. Staining with haematoxylin and

eosin was performed using standard procedures and immunostain-

ings either with the Vectastain ABC Elite kit (Vector Laboratories)

or an immunofluorescence method described previously [7].

Ultrastructural analysis of BMs was performed as described [8].

Results

Early Vasculogenesis and Angiogenesis is not Altered in
the Absence of Perlecan
To evaluate the role of perlecan in vasculo- and angiogenesis we

analyzed 46 perlecan-null embryos and 90 wild-type littermates,

ranging from E9.0 to E17.5. Until E12.5 perlecan-deficient

embryos displayed a normal appearance and were indistinguish-

able from wild type controls. To test whether the lack of perlecan

affects vasculogenesis and angiogenesis, whole mount immunohis-

tochemical stainings were performed with an antibody recognizing

PECAM-1, a marker for endothelial cells. At E9.5 PECAM-1

staining was indistinguishable between normal and perlecan-null

embryos (Fig. S1 A–D). Perineural capillary plexus, intersomitic

vessels and dorsal aorta were well-developed and contained blood

cells. The extra-embryonic vasculature analyzed in the yolk sacs at

E10.5–18.5 using anti-PECAM-1 and anti-flk-1 antibodies showed

normal expression of these endothelial markers (Fig. S1 E–H and

not shown). We quantified the density of the capillary networks by

counting the number of vessel branch points per mm2 in the dorsal

perineural area of E9.5 brain sections and in E10.5 and E14.5 yolk

sacs (Fig. S1I). The number, size and shape of vessels were similar

between control and mutant. These data suggest that perlecan is

not essential for early vasculo- and angiogenesis and remodeling of

capillaries into different vessel sizes.

Perlecan-null Microvessels Dilate and Rupture at Later
Developmental Stages
At E12.5-13.5, 7 out of 28 perlecan-null embryos (25%) showed

distensions in microvessels and small hemorrhages in the brain.

Figs. 1C and 1E depict different telencephalic areas with distended

microvessel and blood leakage. At E15.5 the vessel distensions in

the brain became even more evident (Fig. S2 A–E). We measured

the mean perimeter of vessels in 4 areas of 62.5 mm2 size per

section (fig. S2A,B). The vessel perimeter in the perlecan-null

brain was 1.75-fold higher than the wild type littermates (Fig.

S2E). At E17.5 39% (5 out of 13) mutants suffered from severe

hemorrhages and swollen body (Fig. 1G). Hematoxilin/eosin

staining of E16.5 skin sections showed increased interstitial spaces

(Fig. 1J, K) and large and irregular blood vessels (see arrow in

Fig. 1I). Immunostaining for nidogen in skin sections demarcated

the vessel perimeter in the wild type embryos (Fig. S2F). However,

in perlecan-null embryos the deposition of nidogen was only

visible around the small vessels but not in the distended vessels (see

arrow in Fig. S2G). To investigate whether the BM components

were normally deposited in perlecan-deficient vessels, the cerebral

microvessels were immunostained with antibodies against different

BM proteins. Perlecan expression was detected in BMs lining

microvessels of E14.5 wild type embryos (Fig. 2A). No staining was

observed in perlecan-deficient embryos (Fig. 2B). Laminin-1,

collagen IV, nidogen and collagen XVIII were present in the

microvasculature of both control and perlecan-null embryos

(Fig. 2C–D, and data not shown). In liver, kidney and skeletal

muscle we found no evidence of blood vessel distension or

abnormal deposition of BMs components (not shown).

Since smooth muscle cells are essential for vascular stability, we

investigated the presence of pericytes surrounding the mutant

microvessels using smooth muscle a-actin (SMA) immunostainings

and electron microscopy. At E17.5, brain vessels of normal and

perlecan-null mice stained strongly for SMA, indicating that they

were surrounded by pericytes (Fig. 2F). Other markers for

pericytes, such as desmin, NG2 and PDGFR1B, confirmed the

presence of VSMCs in brain microvessels of E17.5 perlecan-null

embryos (not shown). Ultrastructural analysis of 4 normal and 4

perlecan-null E14.5 brain sections also confirmed the presence of

pericytes in perlecan-deficient vessels (Fig. 2I). While in normal

brain vessels endothelial cells remained tightly associated with

adjacent cells, in perlecan-null brains large gaps between

endothelial cells and adjacent tissue were visible (Fig. 2 G–I). In

skin continuous BMs were present both in wild type and in

perlecan-null vessels (Fig. 2 J–L). Moreover, microvessels in

choroid plexus and major blood vessels such as the dorsal aorta

Perlecan and Vascular Development
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examined by histology, immunohistochemistry and electron

microscopy appeared normal (not shown). These data show that

perlecan supports cohesion between endothelial and adjacent cells

in some microvessels, while it is dispensable for the recruitment of

pericytes or smooth muscle cells.

Teratomas Derived from Perlecan-null ES Cells Grow
Normally and Attract Host Vessels
To investigate whether perlecan influences the development of

teratomas, wild type and perlecan-null ES cells were injected

subcutaneously into syngeneic male mice. Wild type and perlecan-

null tumors had a similar size and weighed 1.361.1 g and

1.461.0 g (n = 10 of each genotype), respectively. Hematoxylin/

eosin staining revealed that wild type and perlecan-null teratomas

were composed of a variety of differentiated cells and tissues

including glandular structures, neuronal cell nests, muscle cells and

areas of connective tissue (Fig. 3A,B). Some (6 out of 14) perlecan-

null teratomas appeared looser in structure with more extensive

glandular structures compared to wild type tumors.

To analyze the deposition of BM components, sections were

stained for perlecan, laminin and collagen IV. In wild type

teratomas, perlecan (Fig. 3C) and other BM components (not

shown) were present in the stroma, and in the BMs along blood

vessels (see arrow in Fig. 3C) as well as in several other structures

such as glands. In perlecan-null teratomas, perlecan (Fig. 3D),

laminin and collagen IV (not shown) were also present in the

stroma and along BMs. The presence of perlecan-positive BMs

indicates that it was host derived. To evaluate whether the

perlecan-null ES cells also contributed to the tumor vasculature,

we double immunostained perlecan-null teratomas with PECAM-

1 and perlecan antibodies. As shown in Fig. 3E,F the BM of some

PECAM-positive vessels lacked perlecan (see the arrowheads),

indicating that both perlecan-null ES cells together with the

invading host endothelial cells contributed to the tumor vascula-

ture. The vessels without perlecan were of normal size.

To determine whether the vascular invasion from the host into

the tumor tissue differed between wild type and perlecan-deficient

teratomas the number of perlecan-positive and negative vessels

was counted to distinguish between ES cell-derived tumor tissue

(perlecan-negative) and host-derived, stromal tissue (perlecan-

positive). The total number of vessels was determined in 10 wild

type and 10 mutant teratomas by counting PECAM-positive

microvessels in 3 sections of each teratoma. Wild type teratomas

contained 100630/0.3 mm2 vessels and perlecan-null teratomas

contained 86620 vessels per 0.3 mm2. The vessels in the perlecan-

deficient teratomas were distributed into 40% perlecan-negative

and 60% perlecan-positive vessels (Fig. 3G). Thus, the contribu-

tion of the mutant ES cells to form vessels in the tumor was slightly

but not significantly reduced, compared to the wild type ES cells

contribution. These data show that perlecan is not essential for

teratoma growth, and that perlecan-null endothelial cells partic-

ipate in blood vessel formation.

Perlecan Modulates Vascular Formation in Embryoid
Bodies
Vasculo- and angiogenesis is modulated by a large number of

growth factors and ECM proteins [35]. They have overlapping

functions and therefore, loss of one component may not result in

defects. In order to minimize the in vivo complexity, we generated

normal and perlecan-null EBs to examine endothelial cell

differentiation and vessel formation in the presence of different

growth factor levels. ES cells were cultured for 5 days in

suspension culture to aggregate into EBs and then plated on

tissue culture slides and cultured for up to 12 days. Scattered

PECAM-positive cells differentiated in cultures of both wild type

and perlecan-null ES cells to a similar extent and arranged into

a similar vascular network that started to form branches 4 days

after plating. Twelve days after plating, a prominent vascular

network with extensive branching was evident in wild type and

Figure 1. Vascular defects in perlecan-null embryos. (A)
Schematic view of the region of the forebrain shown in (B–E). (B–C)
Nissl stained coronal sections of E12.5 forebrain: the cerebral
microvasculature is tightly embedded into the neuronal tissue of
E12.5 wild type embryos (B); the perlecan-deficient vessels are dilated
and loosely incorporated in the tissue (C). (D–E) Laminin immunos-
tained BMs of neuroepithelium and blood vessels in ventral forebrain
sections. A region with a blood leakage in a mutant embryo is shown
(arrow in E). (F–G) Whole-mount picture of wild type (F) and perlecan
mutant (G) at E17.5. Hemorrhages (arrow in G) and edema in the skin is
evident in the mutant embryo. (H–I) Hematoxilin and eosin staining of
the skin sections of E16.5 embryos. The skin of the perlecan-null embryo
shows increased interstitial spaces (arrowheads) and dilated vessels
(arrow). Bars: (B and C) 125 mm; (D and E) 40 mm; (H and I) 50 mm.
doi:10.1371/journal.pone.0053715.g001
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perlecan-deficient EBs (Fig. 4A,B). The size of this network was

quantified by counting the number of vessel branch points and the

size of the vascularized areas (Table 1). At all serum concentrations

(20% to 0.5% FCS-containing DMEM) the number of vessel

branches and the PECAM-positive vascularized areas were

significantly smaller in the perlecan-null EBs (Fig. 4A,B and

Table 1). As shown in the Table 1, the perlecan-deficient EB

vascularization was about 60% of that of the wild type. In rescue

experiments perlecan with or without HS side chains purified from

the Engelbreth-Holm-Swarm sarcoma was added to the EB

Figure 2. Immunostaining and ultra-structural analysis of microvessels. (A–B) Perlecan is expressed in the sub-endothelial BMs of normal
brain capillaries and is absent in the mutant tissue. (C–D) Laminin-1 is present in both wild type and perlecan-null BMs. (E–F) SMA is expressed in the
microvessels sprouting into the brain parenchyma in wild type E17.5 (E), as well as mutant brains (F). (G–I) Ultrastructural analysis of endothelial cells
from E14.5 brain capillaries. Note the tight association between the endothelial cell (ec) and the directly adjacent cells (ac) in the wild type brain
capillary (G). The BM is visible on the upper surface of the adjacent cells (arrows in G). In the mutant brains, gaps are evident between the endothelial
cells and the adjacent cells and pericytes (p) (arrows in H and I). (J–L) Electron micrographs of E16.5 skin microvessels. Electron dense material
(arrows) is deposited at the abluminar side and appears as a BM-like structure in the wild type (J) as well as in the perlecan-null vessels (K,L).Vessel
lumen (VL). Bars: (A–F) 250 mm; (G–L) 400 nm.
doi:10.1371/journal.pone.0053715.g002
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cultures. Interestingly, neither of the perlecans rescued the

vascular plexus development of the null EBs at any concentration

(not shown) suggesting that exogenous perlecan was improperly

integrated into tissues.

To test whether addition of angiogenic growth factors can

rescue the vascularization defect, EBs were cultured in the

presence of VEGF165 and/or FGF-2 in 5% FCS-containing

medium, the numbers of vessel branches and the vascularized

PECAM-positive areas were measured and the fold change with

respect to EBs growing in 5% FCS of the same genotype was

calculated (Fig. 4C–F and Table 1). A 3 nM VEGF165 treatment

for 12 days increased the number of vessel branches and the size of

the PECAM-positive area by 1.4-fold and by 2.4-fold, respectively

in wild type EBs, and by 1.4-fold and 2-fold, respectively, in

mutant EBs. Although the relative increase compared to control

values occurred to a similar extent in normal and mutant EBs, the

number of vessel branches and the size of the vascularized plexus

in perlecan-deficient EBs did not reach the final values of wild type

EBs. Treatment of wild type EBs with 1.2 nM FGF-2 had also

a stimulatory effect on vascular plexus formation, as the number of

Figure 3. Histological and immunohistochemical analysis of teratomas. Hematoxylin/eosin staining shows teratomas derived from wild
type (A) and mutant (B) ES cells that are composed of a variety of differentiated cells. (C–D) Perlecan immunofluorescent labeling in wild type (C) and
mutant (D) teratomas. In wild type perlecan is expressed in the stroma (s), and in BMs surrounding vessels (arrow in C) and other structures including
glands. Perlecan-null teratomas also have perlecan expression in the tumor stroma (s) and vessels. (E–F) Double fluorescent labeling with PECAM-1 in
red (E) and perlecan in green (F) reveal that the vasculature of the perlecan-null tumors is composed of a mixture of perlecan-positive (host-derived)
and perlecan-negative (ES cell-derived; arrowheads) endothelial cells. (G) Quantification of perlecan-positive and perlecan-negative vessels per area in
wild type (n = 10) and mutant teratomas (n = 10). Bars: (A–D) 250 mm; (E–F) 125 mm.
doi:10.1371/journal.pone.0053715.g003
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vessel branches and the size of the vascularized area increased 1.1

and 2.7-fold, respectively. In perlecan-null EBs the increase was so

massive (1.7 and 4.2-fold, respectively) that the number of vessel

branches and the sizes of vascularized areas became similar to

those of control EBs. These data suggest that perlecan is

modulating FGF-2 but not VEGF165 function.

Figure 4. In vitro analysis of vessel formation in embryoid bodies. EBs were generated from control (+/+) and perlecan mutant (2/2) ES
cells. (A–F) The data are shown from PECAM-1 immunostainings of 5+12 days EBs cultured in 5% FCS-containing DMEM. A prominent vascular
network is formed in wild type EBs (A), while mutants form endothelial networks that are less dense and smaller (B). (C–D) Treatment with 20 ng/ml
VEGF165 stimulates the formation of large PECAM-positive vascularized areas both in control and mutant EBs. (E–F) Treatment with 20 ng/ml FGF-2
strongly induces the formation of extensive vascular networks in both control and perlecan-deficient EBs. (G) Binding of FGFR1-AP to control (+/+)
and perlecan mutant (2/2) 5+9 days EBs. The EBs were grown until confluency in 96-well tissue culture plates and fixed. The fixed EBs were
incubated with increasing concentration of FGF-2 and exposed to FGFR1-AP at a concentration of 300 mg/ml. After washing to remove unbound
receptor bound FGFR1-AP was measured with AP chromogenic substrate. The data are means of 8 EBs per data-point. Statistical differences were
tested by Students t-test (***, p,0.001). The experiment was repeated 3 times. Bars: (A–F) 1 mm.
doi:10.1371/journal.pone.0053715.g004

Table 1. Number of PECAM-positive vessel branches and size of vascularized areas in wild type and perlecan-null EBs.

Treatment No of vessel branches/1.5 mm2 Vascularized area (mm2)

+/+ FC 2/2 FC p* +/+ FC 2/2 FC p*

0.5% serum 154652 94637 0.0001 1.560.8 0.960.6 0.0032

2% serum 162653 89645 0.0001 1.960.6 1.360.6 0.0003

5% serum 170639 110640 0.0001 2.661.4 1.861.4 0.0001

10% serum 320658 161650 0.0001 3.561.4 2.061.0 0.0001

20% serum 324679 207639 0.0001 4.261.6 2.361.2 0.0001

1 nM VEGF165
a 218649 1.3 170645 1.6 0.0046 4.962.7 1.9 2.862.5 1.6 0.0001

3 nM VEGF165
a 243676 1.4 150641 1.4 0.0001 6.164.0 2.4 3.662.3 2.0 0.0001

0.3 nM FGF2a 173653 1.0 111624 1.0 0.0001 3.061.9 1.2 1.861.0 1.0 0.0001

0.6 nM FGF2a 156649 -1.1 105617 1.0 0.0005 3.461.5 1.3 3.662.0 2.0 0.8049

1.2 nM FGF2a 193630 1.1 185625 1.7 0.9053 7.162.9 2.7 7.662.9 4.2 0.0759

1.2 nM FGF2+1nM VEGF165
a 237646 1.4 227647 2.1 0.1137 1163.8 4.1 1062.9 5.7 0.6457

Data are presented as mean6SD collected from three independent experiments, including a total of 40–60 EBs analyzed per experiment. Statistical differences were
evaluated using the two-tailed Mann-Whitney Test, p-values are given (p*).
aAll growth factor treatments were performed in 5% serum-containing medium.
FC: Fold change with respect to ES cells growing in 5% serum of the same genotype.
doi:10.1371/journal.pone.0053715.t001
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To test whether the heparan sulfate (HS) side chains of perlecan

play a significant role for the presentation of FGF-2 to the FGFR1,

we added FGF-2 and soluble FGF-receptor1-alkaline phosphatase

(FGFR1-AP) fusion protein to the EB cultures. This assay allows

quantifying the number of HS chains in EBs cultures that bind

FGF-2 and FGFR1-AP by determining the AP activity. Fig. 4G

shows that addition of increasing levels of FGF-2 (10–500 nM) to

wild type EBs responded with an increasing AP activity. In

perlecan-null EBs, however, FGF-2 binding to HS chains was

saturated at 50 nM of FGF-2 and no further increase in AP

activity was observed (Fig. 4G). These data indicate that the

numbers of HS chains capable of mediating the formation of the

tri-molecular complex is reduced in perlecan-deficient EBs.

Discussion

In the present report we have investigated vascular development

in mice, teratomas and EBs lacking perlecan expression. We found

that perlecan has no critical function during early vascular

development in mice or in teratomas. At later stages of embryonic

development, when blood vessels have matured and the blood

pressure is rising, perlecan-null mice develop dilations and

ruptures in some vessels suggesting that perlecan is critical for

maintaining microvessel integrity. Finally, in vitro differentiation

of perlecan-null ES cells in EBs revealed a significantly reduced

efficiency of blood vessel formation which could be rescued by the

addition of FGF-2 but not VEGF165 suggesting that perlecan

modulates angiogenesis by presenting FGF-2 but not VEGF165 to

endothelial cells.

Perlecan is not Required for Early Vasculo- and
Angiogenesis in Mice
The consequence of a loss of perlecan expression for vascular

development was difficult to predict from previously published

data. The strong expression of perlecan by migrating endothelial

cells and its ability to bind and modulate angiogenic growth factors

suggested a crucial role for perlecan already during early vessel

formation. Knockdown of the perlecan mRNA in zebrafish

showed relatively normal development of axial vessels, dorsal

aorta and posterior cardinal vein, but abnormal intersegmental

vessel sprouts [28,36], and the vascular invasion into the growth

plate of perlecan-null mouse embryos was also impaired [37]. In

the last two cases a role for VEGF signaling was demonstrated to

regulate developmental angiogenesis.

In our mouse mutant, however, we found that the entire

vasculature was indistinguishable between control and perlecan-

null mice at E9.5–10.5. All major vessels including the dorsal aorta

and the vascular plexus around the brain developed normally. The

mutant mice showed no defects in angiogenesis, sprouting, and

remodeling and generated vessels of different sizes. The extra-

embryonic circulation was also identical between normal and

perlecan-null mice. Several additional heparan sulfate (HS)

proteoglycans including agrin and collagen XVIII are expressed

by endothelial cells, incorporated into the BM, and are also able to

bind and present growth factors. Mice lacking agrin or collagen

XVIII are available, and it would be possible in the future to

intercross them with our perlecan-deficient mice in order to test

whether compensation among these proteoglycans is the reason

for the absence of an early vascular phenotype.

Perlecan is Essential for the Integrity of Mature Blood
Vessels
After E12.5, microvessels in brain and skin of perlecan-null mice

appeared distended and loosely incorporated into the adjacent

tissue. At E15.5 microvessel perimeters in brain were 1.75-fold

larger when compared to wild type. Ultrastructural analyses

revealed abundant gaps between endothelial and adjacent cells. In

E17.5 skin, 39% of perlecan-null embryos showed formation of

edemas and interstitial hemorrhages. Interestingly, not the entire

vasculature of the mutant embryos was affected. For example,

microvessels of choroid plexus and also several other tissues, such

as liver, skeletal muscle or kidney, developed neither macroscopic

nor ultrastructural defects.

An important step in vascular morphogenesis is the recruitment

of pericytes, which, in conjunction with endothelial cells, facilitate

tube stabilization. Factors secreted by endothelial cells, such as

PDGF-B play a critical role in this event and mice lacking either

PDGF-B or PDGF-Rb have reduced numbers of microvascular

smooth muscle cells leading to microaneurysm formation and

capillary rupture at late embryonic stages [38,39]. Perlecan binds

PDGF-B with high affinity [40], but immunostaining and electron

microscopy revealed the presence of pericytes surrounding

microvessels of brain and skin in all perlecan-deficient embryos

analyzed.

Since the defects in distinct perlecan-null vessels develop during

or shortly after the maturation of microvessels, abnormal BM

assembly could cause the defects. Several other mice carrying

mutations in BM components and cell adhesion receptors have

similar defects in vascular integrity, such as the Fibulin-1-null

mutants [41], the deletion of the laminin a4 chain that produces

a drastic reduction of type IV collagen and nidogen in vascular

BMs [42], mice lacking type XV collagen [43], and absence of av
integrin [44] or b8 integrin [45]. According to our data the

distribution of laminin, nidogen, type IV and type XVIII collagen

and av integrins was not altered in the perlecan mutants

suggesting that perlecan is not required for vascular BM assembly.

However, its presence could maintain vascular integrity. We found

evidence supporting this hypothesis using perlecan-deficient ES

cells and showed that perlecan is not required for laminin

accumulation on the cell surface but rather for appropriate

organization of laminin-1 into complex structures [46]. Since

vascular BMs have distinct compositions of ECM proteins, it is

possible that in the absence of perlecan, some BMs fail to resist

hemodynamic pressure and finally degrade whereas others are

more independent of perlecan. Other tissues under heavy strain,

such as the heart wall suffer from BM instability in the perlecan-

null embryos [8].

It is well documented the role of perlecan to inhibit vascular

smooth muscle cells (VSMCs) proliferation in a HS-dependent

way [47–49]. Accordingly, perlecan-deficient embryos show SMC

hyperplasia in the heart outflow tract [6] and in the aorta [48],

and the perlecan-HS-deficient mice show intimal hyperplasia

following carotid artery injury [49,50]. It is possible that an excess

of SMCs during vessel formation could contribute to alter blood

vessel stability and to the formation of aneurisms. However, we did

not observed accumulation of pericytes in microvessels. In addition

control of SMCs proliferation has been shown to depend on HS

chains [48], and mice with HS-defective perlecan do not suffer

from hemorrhages [50].

Normal Host-derived Endothelial Cell Recruitment,
Growth and Differentiation in Perlecan-null Teratomas
Several laboratories have reported that perlecan can exert

a strong influence on tumor angiogenesis and tumor growth

[16,51]. ES cells have the ability to induce benign teratomas when

they are grown ectopically in mice and, therefore, represent

a suitable system to test endothelial cell differentiation and to test

whether perlecan acts as a structural scaffold, influencing teratoma
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angiogenesis and growth. In contrast to tumors derived from

somatic tissue, the vasculature of teratomas is derived from the

host as well as from the ES cells [52,53]. Like the mutant mice,

perlecan-null ES cells were able to differentiate into endothelial

cells in teratomas. Furthermore, tumor growth was also normal.

This finding is not surprising since the 60% of the tumor

vasculature was of host origin and thus surrounded by a perlecan-

containing BM. However, perlecan-null endothelial cells also

contributed to the vessel lining. Despite this finding, the total

number of vessels was not different when compared to wild type

teratomas suggesting that the postulated angiogenic activities of

perlecan are not crucial in this experimental system. It has

previously been noted that the growth rate of vessels in many

tumor types is very slow compared to physiological angiogenesis

[54]. Such a delay in angiogenesis may very effectively compensate

defects in vessel maintenance in tumors. It is also possible that the

teratoma-derived vasculature is excluded from alterations due to

the presence of other HS proteoglycans in BM.

Perlecan Modulates Vessel Formation in EBs
Differentiation of ES cells in vitro mimics events in early

embryogenesis and has been widely used to analyze the

maturation of several cell types such as muscle, epithelial,

hematopoietic and endothelial cells. ES cells can be differentiated

at high or low serum concentrations, in the presence or absence of

angiogenic growth factors and are therefore, often used to unravel

specific functions that are redundant in complex in vivo system

such as embryos and tumors. We also used this in vitro system to

investigate differentiation and endothelial tube formation of

perlecan mutant ES cells. Our data clearly demonstrate that

perlecan-null ES cells can differentiate into PECAM-positive

endothelial cells that organize into large networks of vessel-like

tubes of various diameters at high (20%) and low (0.5%)

concentrations of serum. The networks formed by the mutant

cells, however, contained significantly fewer numbers of vessel

branches and the area they covered was significantly smaller than

in wild type EBs, indicating that tube formation in vitro is less

efficient in the absence of perlecan. This defect of the perlecan

mutant ES cells was evident at all serum concentrations tested.

Addition of perlecan with or without HS side chains purified from

the Engelbreth-Holm-Swarm sarcoma did not rescued the

vascular plexus development of the null EBs. This could be

explained by the fact that the exogenous perlecans did not

incorporate into the matrix of the EBs where perlecan normally is

very abundant. This result contrasts the normal vasculogenesis

observed in perlecan-null embryos. An explanation for this

discrepancy could be that certain components in the culture

medium may become limiting during in vitro vessel network

formation that are available in excess locally in tissues. One main

proposed function of perlecan is to modulate growth factor

responses both by preserving them from proteolysis and by

mediating high affinity binding to the FGF-receptor. We tested

two perlecan-binding growth factors, VEGF165 and FGF-2, for

their effects on endothelial cell tube formation and growth in

control and mutant EBs. Although VEGF165 stimulated endothe-

lial cell expansion and sprouting in control and mutant EBs, the

mutant endothelial cells responded significantly less than the wild

type cells at all concentrations tested. Treatment with 1.2 nM

FGF-2, however, stimulated and rescued the defective formation

of a vessel-like network by the perlecan-null cells. FGF-2 has

previously been shown to support the induction and survival of

angioblasts in EBs [55], suggesting that FGF-2 can be the limiting

factor that causes the reduced vascular network formation in

mutant EBs. Although FGF-2 could be limiting for EB vessel

branching in our in vitro system, it may not be limiting during

development, perhaps due to a moderate rate of growth or due to

a higher availability of FGF-2 locally in embryos. Another

explanation could be that angiogenesis is not FGF-2-dependent

during development, while it may be postnatally. Such situation

has been described in perlecan mutant mice lacking the HS side

chains [29,50], in which the embryonic vasculature develops

normally but the vessel numbers are diminished in the granulation

tissue after wound healing, or after FGF-2-induced corneal

neovascularization postnatally.

The relevance of perlecan HS to trap and to present FGF-2 to

its receptor is further supported by the experiments using the

FGFR1-AP fusion protein as a tool to estimate the proportion of

HS chains capable of mediating binding to the FGF-2 and FGFR1

complex. These experiments show that fewer numbers of

permissive HS chains were present in the perlecan mutants. The

fewer binding sites mediating formation of the tri-molecular

receptor complex (HS/FGF-2/FGFR1) present in the EBs may

contribute to the reduced vascular formation in the mutants.

However, this reduction can be rescued with high amounts of

FGF-2. Moreover, during FGF stimulation, the potentially fewer

number of FGF-binding sites in the matrix lacking perlecan may

have the opposite effect, namely resulting in higher levels of FGFs

available for immediate receptor presentation and activation and

rescue of the vascular defect. The apparent absence of vascular

defects during development in both mutant mouse strains, as well

as in the FGF-2 knockout mice [56], highlights the high

redundancy operating to ensure the development of vital processes

such as vasculo- and angiogenesis.

Supporting Information

Figure S1 Vessel formation in perlecan-null embryos.
(A–H) PECAM-1 whole-mount immunostainings of E9.5 control

(A, C) and perlecan-null embryos (B, D), and E10.5 and 14.5

control (E, G) and perlecan-null yolk sacs (E, H). C and D shows

the capillary plexus of the head. The PECAM-positive vasculature

is indistinguishable between wild type and perlecan-null embryos

and yolk sacs. (I) Quantification of microvessel density, as number

of branch points per mm2 in wild type (n = 6) and perlecan-null

(n = 6). Statistical differences in number of vessel branch-points

between +/+ and 2/2 were tested by two-tailed Mann-Whitney

test. Bars: (A–B) 250 mm; (C–D) 50 mm; (E–H) 25 mm.

(TIF)

Figure S2 Vessel dilations in perlecan-null embryos. (A–
B) Nissl staining of the pallium shows the areas where diameter of

blood vessel was measured in wild type and perlecan-null E15.5

embryos. (C–D) Laminin immunofluorescence shows perineural

and blood vessel BMs in wild type (C) and perlecan-null (D)

embryos. (E) The perimeter of the neuroepithelial microvessels in

the square were measured in three sections (n = 3 for wild type and

n=3 for perlecan-null). Statistical differences between +/+ and

2/2 were tested by two-tailed Mann-Whitney test (*, p,0.05).

(F–G) Nidogen immunofluorescent staining showing the BM lining

the blood vessels in E16.5 wild type (F) and perlecan-deficient skin

(G). The epidermis (e) is at the left-upper corner. Note the

deposition of nidogen in the wild type vessels (arrow in F), and its

absence in some vessels of the mutant skin (arrow in G). Bars: (A–

B) 250 mm; (C–D) 40 mm; (F–G) 20 mm.

(TIF)
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