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Precision medicine will transform healthcare by using individualized treatment 
strategies and approaches. In oncology, this means that the exact changes 
in individual tumors will be exploited to assess the risk of recurrence, guide 
treatment decisions, and ultimately targeted with new treatment strategies. 
This thesis presents five studies towards better characterization of primary 
breast cancer by using high-throughput techniques, and further explores how 
the characterization can lead to individualized adjuvant treatment after surgery.
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Populärvetenskaplig sammanfattning 

Bröstcancer är den vanligaste cancerformen bland kvinnor och drabbar årligen 
omkring 8000 personer i Sverige. Prognosen har stadigt förbättras, framför allt tack 
vare bättre behandlingar, men fortfarande dör över 1500 kvinnor varje år på grund 
av sin sjukdom. Bröstcancer är inte en enda sorts sjukdom, utan består av många 
olika varianter där de individuella förändringarna i varje tumör styr hur aggressiv 
cancern är och vilka behandlingar som är lämpliga. En stor del av 
bröstcancerforskningen idag går ut på att karaktärisera olika typer av bröstcancer 
och ta reda på vilka behandlingar som passar bäst för varje enskild patient. Detta 
görs både för att öka chanserna till bot, och för att undvika att ge behandlingar som 
är verkningslösa, vilka istället enbart ger biverkningar och onödiga kostnader. 

Grundbehandlingen av bröstcancer är att operera bort tumören, och därefter ges 
tilläggsbehandlingar för att förhindra återfall. Tilläggsbehandlingarna verkar genom 
att ta bort eventuella tumörceller som finns kvar i bröstet, eller redan har spridit sig 
i kroppen utan att märkas. Vanligen lägger man till strålbehandling och ytterligare 
hormonbehandling och målriktade läkemedel, beroende på tumörens egenskaper. 
Tidigare har man eftersträvat att operera bort tumören med stor marginal och 
omfattande operationer, men med modern tilläggsbehandling räcker det oftast med 
att operera bort en del av bröstet. 

Arbetet i den här avhandlingen har som mål att använda nya molekylära metoder 
för att arbeta vidare med individanpassning av tilläggsbehandlingen, och består av 
av fem delstudier. 

I den första delstudien undersökte vi en ny östrogenreceptor, GPR30, och vilken roll 
den har för behandlingsresistens mot hormonbehandling med antiöstrogenet 
tamoxifen. Trots tecken på att GPR30 medverkar till resistens i försök med cellinjer, 
ser vi inget samband mellan mängden receptorer i tumörerna hos patienter, och hur 
de svarar på tamoxifenbehandling. Däremot har de patienter som har mycket GPR30 
specifikt på ytan av cancercellerna en sämre prognos, vilken kan tyda på att GPR30 
bidrar till en aggressiv tumör. 

I den andra delstudien fortsatte vi arbetet med GPR30 genom att undersöka hur 
receptorn fungerar. Vi upptäckte att den verkar kunna signalera utan att stimuleras 
av östrogen, och att den har en bromsande effekt på tumörceller. För mycket 
receptorer i cellen leder till s.k. programmerad celldöd (apoptos). Både i den första 
och andra delstudien fann vi att både de minst och de mest aggressiva tumörerna har 
mest av GPR30, vilket ytterligare talar för att något under cancerutvecklingen gör 
att GPR30 ändrar sin funktion, lokalisation i cellen och potentiellt bidrar till en 
aggressivare sjukdom. Det skulle kunna innebära att GPR30 är intressant som 
måltavla för riktad bröstcancerbehandling. 
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I delstudie tre undersökte vi hur de olika etablerade undergrupperna av bröstcancer 
svarar på strålbehandling som tilläggsbehandling. Idag ger man behandlingen till de 
flesta patienterna eftersom man inte vet vem som har nytta av den. Undantaget är 
en förmodad lågriskgrupp där man bedömer att den absoluta nyttan är så liten att 
nackdelarna med biverkningar är större. Vi samlade in tumörer från en tidigare 
studie där man randomiserade patienter till att få, eller inte få, strålbehandling. Vi 
kunde inte se någon skillnad i effekt av strålbehandling mellan olika undergrupper 
i frånvaro av systemisk och/eller målriktad behandling, förutom att tumörer som 
överuttrycker tillväxtfaktorreceptorn HER2 möjligen har sämre nytta av 
strålbehandling. Vidare undersökte vi den förmodade lågriskgruppen, som visade 
sig ha en mycket god effekt av strålbehandling avseende lokala återfall. Det väcker 
frågan om man kan använda strålbehandling istället för andra tilläggsbehandlingar. 

I delstudie fyra fortsatte vi arbetet med att hitta sätt att individanpassa 
strålbehandlingen. Vi samlade in tumörer från patienter i Lund, Stockholm och 
Uppsala och analyserade dem med s.k. genexpressionanalys, i vilken man 
analyserar vilka gener som är aktiva eller avstängda. Vi valde ut gener till en riktad 
analyspanel, som även kan analysera tumörprover med sämre kvalitet, vilket är 
vanligt i klinisk rutin. Utifrån genuttrycken som vi mätte med den riktade panelen 
utvecklade vi en statistisk modell för att förutsäga risken för lokala återfall. Genom 
att kombinera modellerna med och utan strålbehandling kunde patienterna delas in 
i grupper som svarade bra eller dåligt på strålbehandlingen. Ytterligare analyser av 
biologin bakom modellerna kunde förklara varför våra modeller, och de som 
tidigare publicerats, fungerar olika bra i olika typer av bröstcancer. 

I delstudie fem använde vi två typer av masspektrometri för att analysera 
glykosylerade proteiner hos brösttumörer som har hög eller låg risk för att få 
fjärråterfall trots hormonell behandling. En metod för att analysera det globala 
proteinuttrycket användes för att välja proteiner till en riktad panel. Tumörerna 
återanalyserades med den riktade panel och 9 proteiner var lovande som 
biomarkörer för risk att utveckla fjärråterfall, varav 5 kunde valideras i en separat 
kohort av patienter på genexpressionsnivå. 

Sammanfattningsvis är den här avhandlingen ett litet steg på vägen mot en förbättrad 
skräddarsydd behandling av bröstcancer.  
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Thesis at a glance 

Study Question Patients and methods Figure Results 

 

 

I 

Is GPR30 
prognostic and/or 
treatment 
predictive for 
tamoxifen? 

Tumors from 742 patients from 
the randomized trial Stockholm-
3 (2-5y of tamoxifen or no 
systemic adjuvant treatment) 
were scored for GPR30 
expression and plasma 
membrane expression by 
immunohistochemistry (IHC). 

 

GPR30 was not 
treatment predictive 
for adjuvant tamoxifen, 
but expression in the 
plasma membrane 
was associated with a 
worse prognosis. 

 

 

II 

Is GPR30 
prognostic for 
breast cancer 
outcome? Is 
GPR30 
proliferative or 
antiproliferative, 
and what are the 
basic signaling 
mechanisms? 

Tumors from two patient cohorts 
(N=273 and N=237) were 
scored for GPR30 expression 
with IHC. Cell lines were 
analyzed with GPR30 
transfection/knockdown, viability 
assays, western blotting, and 
flow cytometry.  

 

GPR30 is prognostic 
for breast cancer 
outcome and appears 
to be constitutively 
active and pro-
apoptotic in its 
signaling.  

 

 

III 

Is breast cancer 
subtype treatment 
predictive for 
adjuvant 
radiotherapy after 
breast-conserving 
surgery? 

Tumors from 1003 patients in 
the SweBCG91-RT randomized 
trial (adjuvant radiotherapy vs no 
radiotherapy) were collected and 
stained/analyzed for ER, PR, 
HER2 and Ki67 for surrogate 
subtyping. 

 

Subtype is not 
predictive of adjuvant 
radiotherapy, but 
HER2+ tumors appear 
to have a lower effect. 
A presumed low-risk 
group of patients have 
an excellent effect of 
radiotherapy. 

 

 

IV 

Can we use gene 
expression 
analysis to predict 
ipsilateral breast 
tumor recurrence 
and response to 
radiotherapy after 
breast-conserving 
surgery? 

Tumors from 336 patients were 
collected and analyzed with 
gene expression analysis. Top 
discriminating genes and genes 
from the litterature were 
combined to a targeted panel. 
Single Sample Predictors were 
created based on machine 
learning algorithms. 

 

The Single Sample 
Predictors were 
prognostic for 
ipsilateral breast tumor 
recurrence and 
showed promise in 
radiotherapy treatment 
stratification. 

 

 

V 

Can we combine 
different types of 
mass 
spectrometry-
based proteomics 
techniques for 
biomarker 
discovery and 
validation in 
breast cancer? 

Tumors from 80 patients with or 
without distant recurrence were 
collected. The N-glycosylated 
proteins were analyzed with 
discovery shotgun mass 
spectrometry. Top proteins were 
chosen for a targeted mass 
spectrometry technique (SRM), 
and all samples were re-run with 
SRM.  

The workflow was 
established and 
applied to the tumors. 
The top five potential 
new biomarkers were 
further validated by 
gene expression 
analysis. 
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Introduction and background  

Breast cancer epidemiology 

Breast cancer is the most common cancer among women worldwide with almost 1.7 
million estimated new cases in 2012, and it is the leading cause of cancer death with 
over 500,000 estimated annual deaths globally.1 In Sweden, 9,382 malignant breast 
tumors in 7,929 women were diagnosed in 2015, of which 7,368 were diagnosed 
with breast cancer for the first time, representing approximately 30% of all cancers 
among women.2 The survival chances after a breast cancer diagnosis has steadily 
improved, and the 10-year relative survival is over 80% in Sweden. Lung cancer has 
surpassed breast cancer as the leading cause of cancer death in both Sweden and 
other high income countries.1,3 However, the incidence of breast cancer is 
increasing, which is likely in part related to changes in life style patterns such as 
longer life expectancy, fewer child births, later birth of first child, hormonal 
replacement therapy, less physical activity, overweight and higher alcohol 
consumption.4 Despite the increased survival, the total number of breast cancer 
deaths and overall mortality has only seen a slight decrease during the last years.2 
The decrease in mortality is generally attributed to better adjuvant treatments, and 
to a lesser extent earlier detection of treatable breast cancer with mammography 
screening programs.5-8 However, due to the small decrease in mortality compared to 
the increase in survival, concerns have also been raised regarding detection and 
over-diagnosis of indolent cancers that were previously not detected, and did not 
affect mortality.8,9 

Breast cancer biology 

In general, cancer transformation of normal breast cells is believed to start in the 
terminal duct lobular units.10 By acquiring mutations in the DNA, the cells follow 
the hallmarks of cancer described by Hanahan and Weinberg, such as sustained 
proliferative signaling, evading growth suppressors, inducing angiogenesis and 
inflammation, activating invasion and metastasis, avoiding immune destruction and 
genome instability and mutation.11,12 Most breast cancers are sporadic, meaning that 
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there is no known genetic predisposition and the process appear to be stochastic. 
Around 5-10% of patients have a known genetic background, most notably due to 
germline mutations in the tumor suppressor genes BRCA1 and BRCA2 that are part 
of the DNA-repair system.13 Other genes with germline variants of more moderate 
penetrance have also been described, such as PALB2, CHEK2, CDH1 and ATM, and 
testing is being evaluated before introduction in clinical routine.14  

Increasingly deeper characterizations of somatic alterations in breast tumors have 
both improved the understanding of tumor biology, and provided insights in 
personalized treatment strategies.15 Large efforts have catalogued the changes in 
breast tumors, and we are on the verge of understanding the carcinogenesis in 
individual tumors.16-18 

Breast cancer subtypes 

For decades it has been known that not all breast cancers are the same, and that the 
prognosis and treatment response varies with the pathological characterization of 
the tumor. Traditionally, and most important for treatment decision purposes, the 
tumors have been characterized based on the expression of the hormone receptors 
estrogen receptor alpha (ER) and the progesterone receptor (PR), which determine 
the response to endocrine therapy. The proliferative profile (e.g. measured with the 
proliferation marker Ki67) and the aggressiveness based on a morphological 
examination summarized as the histologic grade, have been estimated to determine 
the overall risk, and the associated benefit of chemotherapy. Further, assessment of 
the amplification and/or overexpression of the human epidermal growth factor 
receptor 2 (HER2) have been made, as HER2 overexpression and/or amplification 
(HER2+) increases the proliferation and aggressiveness of the tumor, and 
determines the response to anti-HER2 treatment. Once a marker of poor prognosis, 
HER2+ now indicates a treatment opportunity, and anti-HER2 directed therapy with 
trastuzumab, pertuzumab, lapatinib and the antibody-drug conjugate trastuzumab 
emtansine (TDM-1) has dramatically changed the prognosis for these patients.19-21 
Furthermore, in vitro data suggest that HER2 overexpression and/or amplification 
may contribute to radioresistance.22-26 

Genomic profiling of breast cancer using transcriptomics revealed another level of 
the biologic diversity.27,28 On the global gene expression level, it was first 
discovered that breast cancers cluster together in distinct groups, with implications 
for breast cancer prognosis and treatment. Originally, five subgroups of breast 
cancer (Luminal A, Luminal B, HER2-enriched, Basal-like and Normal-like) were 
described based on the global gene expression profiles, and the similarity to luminal 
and basal ductal cells.19,29-31 The luminal-like tumors are characterized by expressing 
hormone receptors, while the basal-like subtype largely corresponds to a clinical 
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triple-negative tumor (lacking expression of ER, PR and HER2). The HER2-
enriched subtype can be either luminal or non-luminal, and is characterized by 
increased HER2 signaling. The separation of Luminal A from Luminal B has 
implications for risk of recurrence and time to recurrence, with Luminal A having a 
better prognosis and later recurrences. The Luminal A from B separation is used to 
guide the use of adjuvant chemotherapy, but mainly captures a difference in baseline 
risk, which alters the absolute value of added treatment. Other subtypes, especially 
further divisions of the basal subtype, have been characterized and although the 
biologic difference is interesting, the implication for patient care is limited so far.32 

Refinements of the clustering techniques has led to the use of a 50-gene subset 
(widely referred to as PAM50).33 PAM50 classification is used in a commercially 
available and FDA-approved assay, that also calculates a risk of recurrence score, 
and do not contain the Normal-like subtype.34,35 Several other commercial gene 
expression tests have been created for prognostication and to guide selection of 
adjuvant therapy.31,36-40 However, the widespread use, particularly in Sweden, is 
awaiting definitive evidence of patient benefit relative to the cost, and many argue 
that the same information can be achieved by traditional pathology information. 
Indeed, cost-effective tests based on traditional pathology and 
immunohistochemistry based markers, with an associated surrogate subtyping, may 
with sufficient accuracy capture the intrinsic molecular subtypes, and are currently 
used in Sweden and elsewhere, although the performance and complementary 
information to gene expression is being evaluated.29,41-43  

Ongoing clinical trials that evaluate the clinical utility of the gene expression tests 
include the MINDACT, RxPONDER and TAILORx trials.39,44-48 First analyses have 
been presented, suggesting that that a low-risk group can be spared adjuvant 
chemotherapy treatment with remained safety, and that gene expression-based 
decision tools detects a larger low-risk group than traditional clinicopathologic 
variables, with the potential decrease of over-treatment.36,49,50 However, the final 
long-term results are still to be presented.  

Estrogen signaling in breast cancer and endocrine treatment  

Estrogens are a class of steroid hormones, with 17-β estradiol being the 
physiologically most abundant, with important effects in breast cancer. The estrogen 
signaling is mainly mediated through the ER, which is activated upon ligand 
binding. Ligand binding causes dimerization, translocation to the nucleus, and 
activation of transcription that leads to proliferation and cell differentiation. 
Blocking of this signaling has long been used for treatment of breast cancer, but not 
all breast cancers are dependent on estrogen signaling for proliferative stimuli, and 
the tumor may not express ER at all. In addition, the tumor can lose the expression 



20 

of ER during tumor progression.51,52 Intact estrogen signaling and expression of ER 
have large effects on the global transcriptome activity, reflected in the luminal vs 
non-luminal molecular subtypes, and ER positive (ER+) and ER negative (ER-) 
tumors may be regarded as different diseases.28,53 It has long been suggested that the 
progesterone receptor (PR) is also required for intact estrogen signaling, and 
recently the molecular interplay between the receptors was shown, with implications 
for treatment efficacy.54,55 

Possible ways of targeting the estrogen signaling is through selective estrogen 
receptor modulators (SERMs) such as tamoxifen, selective estrogen receptor down 
regulators (SERDs) such as fulvestrant, aromatase inhibitors (AIs) such as 
examestane, anastrozole or letrozole, oophorectomy or chemical castration with 
gonadotropin-releasing hormone (GnRH) analogues. However, not all ER+ tumors 
are sensitive to endocrine therapy, and they may present with intrinsic or de novo 
resistance, or acquire resistance during treatment. Several mechanisms of resistance 
have been described, with or without loss of ER expression, such as mutations in 
the ESR1 gene, in the ligand binding domain or activating mutations, aberrations in 
co-factors or transcription factors, activating phosphorylation of the receptor, 
epigenetic changes, and cross talk with other signaling patwhays.56,57 Many attempts 
have been made to find treatment-predictive markers and classifiers for endocrine 
treatment besides ER, including at the protein level, but no test is yet in clinical 
use.58-63 

There are other estrogen receptors, most notably the estrogen receptor beta (ER 
beta), the splice variant of ER alpha, ER alpha-36, and the G protein-coupled 
receptor 30 (GPR30, also known as the G protein-coupled estrogen receptor, 
GPER), that may have different roles in breast cancer, and possibly in endocrine 
resistance.64,65 The expression of ER beta in breast cancer has been suggested to 
affect prognosis and treatment response, but its role is less well understood, and has 
been widely disputed.66,67 In addition, the research has been hampered by poorly 
validated antibodies.68 

GPR30 is a putative estrogen receptor that may mediate non-genomic estrogen 
effects.69-72 The receptor has attracted wide attention in cancer biology and is 
proposed to be a driver of cancer, mediate treatment resistance and to be a possible 
treatment target.73-76 However, studies on the receptor are not conclusive in terms of 
basic cellular function such as subcellular localization, signaling mechanism, and 
the identity of estrogen as the cognate ligand.77-85 Further, the receptor has been 
proposed to be both proliferative and antiproliferative.86-91 The association with 
other clinicopathologic variables in breast cancer and prognostic implications are 
unclear.92-94 Interestingly, this receptor has been proposed to be related to tamoxifen 
resistance, as several investigators have reported that tamoxifen, or one of its active 
metabolites 4-OH-tamoxifen, activates proliferation and migration through 
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GPR30.86,95,96 In addition, studies demonstrated tamoxifen resistant MCF-7 cells to 
be more sensitive to 17-β-estradiol, and a proposed GPR30 agonist (G1). The same 
authors associated GPR30 expression with a worse prognosis only in tamoxifen 
treated patients, and showed GPR30 expression to increases with tamoxifen 
treatment in vivo.87,97 Further, GPR30 activation by tamoxifen to up-regulate 
aromatase expression has been suggested to contribute to tamoxifen resistance, and 
GPR30 may be important for the interplay between cancer cells and cancer-
associated fibroblasts contributing to drug resistance.98-100 Interestingly, prolonged 
treatment with tamoxifen was also reported to up-regulate GPR30 specifically at the 
cell surface.87,101 

Breast cancer recurrence 

Breast cancer is a disease of the breast, but may spread or recur in the same breast, 
or at other sites. Hereafter, the term recurrence is used for any presentation of a 
breast cancer that is (thought to be) related to a first primary tumor, regardless of 
the timing of events. The site of recurrence, which is directly related to the chance 
of curing the disease, can be divided into ipsilateral breast tumor recurrence (IBTR, 
also commonly referred to as local recurrence), regional recurrence and distant 
recurrence (often referred to as metastasis).  

Ipsilateral breast tumor recurrences (IBTRs) are recurrences of the tumor after 
surgery, still localized to the same breast. IBTRs are treated with repeated surgery 
(most often mastectomy), and possibly adjuvant treatment, but the recurrence may 
be of a more aggressive phenotype than the primary tumor. Indeed, a meta-analysis 
from the Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) on 
adjuvant radiotherapy, suggest that the prevention of four local recurrences can 
prevent one breast cancer death, emphasizing the importance of avoiding local 
recurrences.102 In addition, the local recurrence may be a new primary tumor, not 
clonally related to the first tumor, with unknown treatment implications. 

Regional recurrence is defined as a recurrence in the nearby (regional) lymph nodes, 
such as in the axilla, in the infraclavicular or supraclavicular fossae, or parasternal 
lymph nodes. A regional recurrence is still curable, but is one of the strongest risk 
factors for distant recurrence and breast cancer death.103 

Distant recurrence to sites in the body beyond the regional lymph nodes is life-
threatening for the patient. The process of cancer cells escaping the tumor and the 
breast stroma and environment, and being able to establish themselves at distant 
sites, is under intense research. Particularly, the time-point when a breast cancer 
acquires this phenotype has been widely discussed during the last century. From a 
macroscopic view, models have been proposed ranging from a fully per 
continuitatem spread, eventually reaching the bloodstream, i.e. the metastatic 
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potential is a late feature during tumor development, to a view that breast cancer is 
a systemic disease from the onset. In terms of cancer lineage, this is represented by 
either a linear or a parallel progression. This progression may also occur during the 
development within the primary tumor, contributing to intra tumor heterogeneity.104 
Modern techniques (such as next generation sequencing, NGS, and mass 
spectrometry-based proteomics) have revealed the evolution from primary tumor to 
distant recurrence by showing a constant clonal selection and dynamic evolution. 
The degree of similarity of the recurrences to the primary tumor varies, with 
different studies suggesting that many mutations occur late in the history of a cancer, 
or that many of the mutations are shared between primary tumor and distant 
recurrence, suggesting early events.105 On a broader genomic scale, the similarity 
between the primary tumor and distant recurrence may be high, and larger 
rearrangements have been shown to be surprisingly similar between primary tumor 
and distant recurrence, suggesting early catastrophic events.106,107 On the protein 
level, changes in protein abundance from primary tumor to recurrence have been 
described, which may be important for the metastatic phenotype.52 There may also 
be a time-dependent effect on the degree of similarity between primary tumor and 
recurrence, i.e. the primary tumor is a good surrogate for choosing adjuvant 
treatment, but later distant recurrences have had time to evolve and acquire more 
mutations, and should be sampled for choice of treatment.108 Importantly, the 
genomic changes that occur in the recurrences may be targeted with treatments, and 
large clinical programs exploiting this are ongoing.109,110 

Breast cancer treatment 

Modern treatment of breast cancer started in the late 19th century with the ideas of 
William Halsted and Willy Meyer that the tumor needed to be removed with its 
roots, leading to the radical mastectomy (lat. radix = root). The mutilating surgery 
of the radical mastectomy led to extreme morbidity.111 Much has happened since, 
and the increased understanding of breast cancer biology has changed the “one size 
fits all strategy” to a personalized approach. With improved survival, more focus is 
on avoiding over-treatment, and improving the quality of life after breast cancer 
treatment.112  

Risk assessment of the primary tumor 

To determine the risk of recurrence and death from breast cancer, which also aids 
in the decision to add adjuvant treatments, factors of the tumor and patient are 
assessed. Traditionally, breast cancer has been classified and staged according to 
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the TNM classification, which stages the tumor for tumor size (T), if the tumor has 
spread to the lymph nodes (N) or to distant sites in the body (M). The TNM scores 
are combined to stages between 0-IV.113 Further, the histologic type, as well as the 
histological grade of the tumor, is determined based on the tissue differentiation, 
exemplified by tubular formation, nuclear morphology and number of mitoses, 
according to Elston and Ellis.114 In Sweden, the presence of the receptors ER, PR, 
HER2 and the proliferation marker Ki67, are routinely assessed with both 
prognostic and treatment-predictive implications.115 Another important factor for an 
unfavorable prognosis is young age.116 In parts of the world, the risk assessment is 
further guided by genomic tests, most importantly based on the assessment of gene 
expression for selected genes, mainly focusing on proliferation, cell cycle control, 
mitosis and receptor tyrosine kinase signaling.117 

Currently, besides the use of ER, PR and HER2, the American Society of Clinical 
Oncology recommends the use of OncotypeDX (Genomic Health, Redwood City, 
CA), EndoPredict (Sividon Diagnostics, Köln, Germany), PAM50-ROR/Prosigna 
(Nanostring Technologies, Seattle, WA), Breast Cancer Index (Biotheranostics, San 
Diego, CA), and urokinase plasminogen activator and plasminogen activator 
inhibitor type 1, as biomarkers in primary breast cancer.115 Further, the MammaPrint 
assay (Agendia, Irvine, CA) was recently also recommended for use in patients with 
high clinical risk, to avoid over-treatment with adjuvant chemotherapy.31 Many of 
the gene expression tests capture the same underlying biology, but the exact set of 
genes included in each test show remarkably little overlap. To unify the concepts in 
the assays, genes from several assays were recently combined to a 95-gene panel 
with improved performance that may identify gene modules for targeted 
treatment.117 On the other hand, a large proportion of gene expression values are 
correlated with each other, and with proliferation. The selection of genes at random 
have shown that sufficiently large gene sets (>100 genes) produce prognostic 
signatures, questioning the rationale for considering genes important for breast 
cancer biology by their association with outcome.118 

Using traditional clinicopathologic factors, increased risk of IBTR has been 
associated with young age, multifocal tumors, large tumor size, and non-clear 
surgical margins.119,120 Breast cancer subtypes have been associated with risk of 
IBTR with the same patterns as seen for distant recurrence, i.e. basal/triple-negative 
tumors having more early recurrences, while luminal tumors have fewer early 
recurrences, but more late recurrences.121-125 The risk of IBTR for HER2+ tumors 
depends on anti-HER2 treatment.126 Also, commercially available gene expression 
tests are associated with the risk of IBTR.127,128 
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Primary breast cancer treatment 

The treatment of primary breast cancer, here defined as a cancer that has not spread 
beyond the regional lymph nodes to distant sites, and is thus considered curable, has 
undergone dramatic shifts in strategy since Halsted and Meyer.111 First, the 
mastectomy was extended, and later modified to a less extensive procedure with less 
morbidity, and hereafter mastectomy will refer to the modern modified radical 
mastectomy. Although some evidence emerged that reducing the surgery did not 
alter the prognosis, the idea that an extensive operation was needed to cure breast 
cancer was largely dominant during the first half of the 20th century.111 

 

Figure 1. Treatment algorithm for primary (early) breast cancer by the European Society for Medical Oncolgy 
(ESMO).129 ChT – chemotherapy, ET – endocrine therapy, RT – radiotherapy, BCS – breast-conserving surgery. 
Reprinted with permission from ESMO and Oxford University Press. 

However, the traditional model of breast cancer as a disease with continuous spread 
was challenged with the growing evidence that breast cancer can be a systemic 
disease at time of diagnosis.130 Indeed, occult disease may be present in the body at 
other sites without manifest disease, and tumor cells are commonly found in the 
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blood and in the bone marrow of primary breast cancer patients.131 To treat also this 
occult disease, adjuvant therapy with radiotherapy, endocrine therapy, 
chemotherapy and targeted therapy is given to stop the breast cancer from recurring 
after surgery (endocrine therapy, such as tamoxifen, may be considered to be 
“targeted” to some extent, by I here reserve the term for more modern drugs 
designed for a specific target in the tumor). The advancement of adjuvant treatment 
allowed less extensive surgery to be developed, with the aim to minimize morbidity. 
The techniques of breast-conserving surgery were applied, and it has been shown in 
large trials that breast-conserving surgery with the addition of adjuvant RT (known 
as breast conservation therapy, BCT) is a safe alternative to mastectomy, or even 
superior.132-135 Today, the consensus is that an invasive tumor should be removed 
macroscopically (“no tumor on ink”), including surrounding ductal carcinoma in 
situ (DCIS) if present, provided that appropriate adjuvant therapy is offered (Figure 
1 and 2).19 

Surgery 

Breast-conserving surgery is recommended for the majority of patients where 
optimal surgery is feasible (e.g. excluding very large tumors and usually 
multicentric tumors), if the patient is willing to undergo the treatment, regardless if 
the tumor is multifocal (or multicentric per se). For patients undergoing 
mastectomy, immediate reconstruction should be offered if no oncologic 
contraindications are present, such as inflammatory breast cancer, but the 
availability varies between centers. Sentinel node biopsy is recommended for 
patients with clinically negative axilla. If no tumor cells, isolated tumor cells or 
micro-metastases are present, no further axillary surgery is needed, provided that 
the patient is offered adjuvant treatment according to established guidelines.136 With 
macro-metastasis, the traditional recommendation was axillary clearance, but trials 
have shown that this may not be necessary.19,129,137-140 For more conclusive results, 
the axillary clearance with macro-metastasis in one to two of the sentinel nodes is 
under further investigation.141 

Adjuvant radiotherapy 

Adjuvant RT to the breast is currently recommended for patients undergoing breast-
conserving surgery, with a boost to patients with aggressive tumors (e.g. in Sweden 
to younger patients). Adjuvant RT to the chest wall internationally is recommended 
for patients undergoing mastectomy with four or more lymph nodes and/or large 
tumors (pT3). Nodal irradiation is recommended with one to three positive lymph 
nodes and other high-risk features, as well as for patients with four or more positive 
lymph nodes.19 The value of administering RT to regional lymph nodes when micro-
metastasis is present is unclear and under current investigation, but not generally 
recommended in Sweden.129,142 
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Figure 2. Treatment algorithm for adjuvant treatment after surgery for primary breast cancer by the European Society 
for Medical Oncology (ESMO).129 ER – estrogen receptor, HER2 – human epidermal growth factor receptor 2, N0 – 
lymph node negative, ET – endocrine therapy, ChT – chemotherapy, T – trastuzumab. *For For special histological 
types, ESMO recommends following the St Gallen 2013 recommendations that propose ET for endocrine responsive 
histologies (cribriform, tubular and mucinous), ChT for high-risk endocrine nonresponsive (medullary, metaplastic) and 
no systemic therapy for low-risk endocrine nonresponsive (secretory juvenile, adenoid cystic and apocrine).29,129 
Reprinted with persmission from ESMO and Oxford Universtiy Press 

The addition of RT after breast-conserving surgery reduces primarily IBTRs, and 
has been shown to be a safe and effective treatment. A large meta-analysis by the 
EBCTCG have shown that RT also lowers breast cancer mortality, with a ratio that 
one breast cancer death is avoided at year 15 for every four IBTRs prevented at year 
10.102 However, most patients will not suffer a recurrence without RT, and some 
patients will suffer a relapse even with RT. The meta-analysis suggests that as much 
as 80% of patients may be over-treated or under-treated. Thus, there is a 
considerable interest in personalizing RT after surgery, and it would be very 
beneficial both to identify the patients that may be spared treatment, and the patients 
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with tumors that are radioresistant and will suffer a relapse even after postoperative 
RT. Indeed, several de-escalation trials are ongoing to investigate the safety of 
sparing a low-risk group of patients RT (e.g. the LUMINA study, NCT02653755, 
and the PRIMETIME study).19,143 These initiatives are largely based on the 
assumption that the effect of RT is uniform across subgroups, and that the 
background risk determines the absolute benefit of the treatment. The goal is thus 
to find a subgroup with so low background risk that the absolute benefit of RT does 
not warrant the side-effects and cost, as opposed to assess the biological response in 
the tumor. 

Several attempts for more personalized approaches have been made to individualize 
RT, but no study has been able to find a group of tumors without effect of RT, based 
on traditional biological markers.102,144,145 The search for treatment-predictive 
markers has also been made on a molecular level, with most attempts being made at 
the gene expression level.146-155 Promising results have been presented, but no 
marker or genetic profile is yet in clinical use.156 

Adjuvant endocrine treatment 

Endocrine therapy directed to interrupt the estrogen signaling is generally effective 
against tumors expressing ER, although there may be alterations of function not 
related to ER expression. Moreover, the exact definition of ER+ tumors is disputed, 
e.g. the cut-point of percentage of cells stained to consider a tumor ER+ varies.157,158 
Endocrine treatment reduces the rates of recurrence and breast cancer 
mortality.158,159 For premenopausal women, tamoxifen is recommended, although 
ovarian functional suppression can be added for young women and women with 
high-risk tumors, in selected cases.19 For post-menopausal patients, aromatase 
inhibitors appear to be superior to tamoxifen, but are associated with more adverse 
side effects.19,158 The length of treatment is traditionally five years, but improved 
outcome has been demonstrated by prolonging the treatment, especially if patients 
received tamoxifen during the first five years, and for women with high-risk 
disease.19,160,161 Recently, the long-term outcome after stopping endocrine therapy 
after five years was presented, and the risk of distant recurrence was high in several 
groups, further strengthening the rationale to continue endocrine treatment.103 In 
Sweden, patients with N+ tumors are recommended extended adjuvant endocrine 
treatment up to 10 years.142,162 

Adjuvant Chemotherapy 

Adjuvant chemotherapy with anthracycline- and taxane-based regimens is generally 
recommended for patients with intermediate or high-risk breast cancer. The risk may 
be considered intermediate or high in triple-negative and HER2+ disease, and ER+ 
disease with risk factors such as positive lymph nodes, high proliferation or high 
genetic score on gene expression-based test.19 Of note is that the biomarkers based 
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on traditional pathology and immunohistochemistry, as well as more modern 
molecular techniques, are more indicative of baseline risk than being truly treatment 
predictive. They are used to guide the use of chemotherapy by stratifying patients 
where the absolute benefit of treatment is greater than the side effects.19,159,163 

Adjuvant targeted therapy 

Anti-HER2 therapy has dramatically changed the outcome for patients with HER2+ 
disease. One year of adjuvant trastuzumab treatment is recommended for HER2+ 
disease, regardless if neoadjuvant dual HER2 blockade with trastuzumab and 
pertuzumab was given.19 

Neoadjuvant treatment 

Neoadjuvant treatment, i.e. giving the treatment before surgery, has the purpose of 
down-staging the tumor to make it operable, or operable with less extensive surgery, 
and has the advantage of early assessment of treatment response at the time of 
surgery. Neoadjuvant chemotherapy is recommended for stage II or III disease that 
is HER2+ or triple-negative, especially when down-staging for reduced surgery or 
radiotherapy might be possible. Dual HER2 blockade with trastuzumab and 
pertuzumab is recommended for HER2+ disease.19 

Other adjuvant treatments 

Postmenopausal patients are recommended adjuvant bisphosphonate treatment, as 
it reduces the rate of bone recurrence, and prolong survival.19 

Advanced breast cancer treatment 

The goal of the treatment of advanced breast cancer, i.e. breast cancer that have 
spread to distant sites, is to stop the cancer cells from growing and prolong the time 
before progression. Importantly, the treatment also aims to provide better quality of 
life, and treat pain and other problems related to the cancer. All of the treatment 
modalities used for early breast cancer treatment may be used in the metastatic 
setting. The evidence for one treatment over the other is however weak, although 
single drug regimens and lower doses may be used for reduced toxicity and 
improved quality of life.20,164,165 Generally, endocrine treatment is given first-line to 
ER+ disease, HER2+ directed treatment in combination with chemotherapy for 
HER2+ disease (with the addition of TDM-1 at second-line, and possibly lapatinib 
third-line), and at progression chemotherapy is used sequentially until further 
progression. Of particular note is that the tumor characteristics of the primary tumor 
may change, and molecular analysis of the recurrence may alter the treatment 
options. It is therefore recommended to sample the recurrence if possible.51,52 
Interestingly, circulating tumor cells or circulating tumor DNA may be sampled in 
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the future as surrogates for the metastatic disease and used to guide treatment. 
Indeed, they show high discrepancy regarding HER2 status.166-168 Several new 
treatment options are being introduced in clinical practice or are awaiting clinical 
approval, such as the CDK4/6 inhibitors for the treatment of ER+ breast cancer, 
PARP-inhibitors for BRCA1/2 mutated tumors, mTOR-inhibitors and 
immunomodulating therapy.169-171 

Conclusion of introduction  

In conclusion, I believe certain areas of breast cancer research are critical for the 
improved understanding of the disease and improved patient care. One such area is 
systems biology, meaning that we must understand what happens in the cancer cells 
at a comprehensive level.172 The individual technologies have so far been mainly 
implemented one at a time, providing an incomplete understanding on the different 
levels of biology. During the last couple of years, there have been efforts to combine 
data on the genomic, transcriptomic and proteomic levels to achieve a more 
complete picture of the cancer biology. Currently, researchers are working hard to 
understand how to combine the techniques. Much of the work and analysis made 
with high-throughput techniques rely heavily on knowledge of biological function, 
which is often limited and incomplete. Many times, the mechanistic details on how 
the molecules function cannot be achieved with current technologies, and the details 
must be elucidated with more time-consuming, traditional techniques such as in 
vitro or in vivo model systems. In the future, functional proteogenomics may 
facilitate this step, but it is still in need of orthogonal validation (independent with 
another technique).173-175 I have deliberately aimed to use several different high-
throughput techniques in my thesis work, as I believe a broad understanding of the 
techniques will be most valuable in future attempts to combine them, as well as to 
follow up the possible mechanistic implications. 

A second prioritized area of research is personalized treatment of breast cancer, as 
highlighted by the cancer moonshot initiative.176,177 The heterogeneity between 
tumors is large, and different types of breast cancers may be viewed as completely 
different diseases. It follows from the increasing understanding of tumor biology 
that every tumor has its own aberrations driving the carcinogenesis, and cancer 
transformation or progression, and must be treated accordingly. Ultimately, every 
breast cancer may be regarded as a rare disease on its own.178 The improved outcome 
after a breast cancer diagnosis, and a survival approaching 90%, also means that a 
large number of persons will live long after a breast cancer diagnosis. This fact 
stresses the importance of reducing and eliminating the treatment side-effects. Thus, 
de-escalation when possible, and abandoning treatments that are not effective, has 
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become a major goal of breast cancer research today.19 In the studies presented in 
this thesis work, we work towards individualizing the care of primary breast cancer 
to avoid both over-treatment and under-treatment. We investigate the possibility to 
tailor adjuvant endocrine therapy and radiotherapy by using a novel estrogen 
receptor (GPR30), evaluating its role in response and resistance, and also investigate 
the role of the breast cancer subtypes in response to radiotherapy. Additionally, we 
advance the high-throughput search for protein biomarkers for risk of metastatic 
disease, for possible use to guide adjuvant therapy. 

A third area of prioritized research is completely novel treatments, and to overcome 
treatment resistance. Ultimately, personalized medicine in the sense that we better 
adopt the treatments that are already at hands, may only achieve better outcome to 
a certain extent. The prognosis of advanced breast cancer remains dismal as, 
eventually, the tumor becomes resistant, and no current treatment is longer effective. 
To overcome resistance, the main strategy has been to use information of the 
primary tumor, and theoretically predict response based on prior evidence and/or 
biologic rationale. However, ways of empirically testing treatments on tumors 
derived from patients are being investigated, and although not clinically feasible for 
all patients, it may find resistance mechanisms.179 To truly transform the treatment 
of cancer, the hope is that the increasingly powerful techniques to analyze tumors 
will speed up discoveries, and provide an understanding of treatment resistance as 
well as completely new treatment targets. We explore the role of the novel estrogen 
receptor GPR30 in endocrine resistance, and its basic functional role in the cell, for 
a future use as a treatment target. Further, by using mass spectrometry to explore 
the proteins that may be responsible for distant recurrence, we move closer to 
potential treatment targets than is possible with genomics or transcriptomics. 
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Aims 

The general aim of the work in this thesis was to: 

• Use high-throughput methods to increase the knowledge of primary breast 
cancer biology, and develop tools and strategies for personalized medicine. 

 More specifically we aimed to: 

• Investigate the role of the putative estrogen receptor GPR30 in breast cancer 
biology and progression, and its role as a potential biomarker for prognosis 
and treatment prediction for adjuvant endocrine therapy. 

• Investigate if breast cancers of different subtypes respond differently to 
adjuvant radiotherapy after breast-conserving surgery, if the subtypes can 
be used for treatment stratification, and if a low-risk group of breast cancer 
can be spared adjuvant radiotherapy with remained safety. 

• Develop a gene expression-based method to assess radiosensitivity that can 
be used for prognostication of ipsilateral breast tumor recurrence, and for 
treatment stratification of adjuvant radiotherapy after breast-conserving 
surgery. 

• Develop a method for protein biomarker discovery, prioritization and 
validation, using different complementary mass spectrometry methods, and 
apply it to find biomarkers for risk of metastatic breast cancer. 
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Patients and methods 

Patients 

In this thesis work, we have studied tumors from six different patient cohorts (Table 
1). All cohorts consist of patients with primary breast cancer, but differ in their type 
(RCT, cohort or case-control), menopausal status, nodal status, adjuvant treatment, 
primary endpoint and follow-up time. Of note is that endpoint distant disease-free 
survival (DDFS) follows an old definition, and only includes distant recurrence or 
breast cancer death (and not contralateral breast cancer or death from any 
cause).180,181 Further, endpoint ipsilateral breast tumor recurrence (IBTR) is IBTR 
as first event. 
Table 1. Patient characteristics of the studies included in the thesis.  

 

Study No Type Menop. N RT ET CT Endpoint FU 

I 912 RCT Post N0 +/- 2-5y 
vs 0 

0% DDFS 17.0y 

IIa 
 

273 Cohort Pre,Post N0,N+ +/- 2y 0% DDFS 6.1y 

IIb 
 

237 Cohort Pre N0 +/- 4% 10% DDFS 10.8y 

III 
 

1003 RCT Pre,Post N0 +/- 7% 2% IBTR 15.2y 

IV 336 Case-
control 

Pre,Post N0,N+ +/- 49% 21% IBTR 12.6y 

V 80 Case-
control 

Pre,Post N0,N+ +/- 2y 0% DDFS 6.4y 

Study IIa – study II cohort I, study IIb – study II cohort II, No - number of patients before exclusion due to technical 
reasons, RCT- randomized controlled trial, Menop.- menopausal status, N – positive lymph nodes, RT – adjuvant 
radiotherapy, ET – adjuvant endocrine therapy, CT – adjuvant chemotherapy, FU – median follow-up time for patients 
alive and free from event. Few or no patients were treated with anti-HER2 therapy in the adjuvant setting. 

Study I 

Study I is based on the low-risk part of the Stockholm-3 (STO-3) randomized 
controlled clinical trial, which randomized post-menopausal patients with low-risk 
breast cancer (defined as tumor size ≤30mm and N0) to 2-5 years of tamoxifen 
treatment or no systemic adjuvant treatment.182,183 1,780 patients were included in 
the original trial and tumor tissue was collected from 912 patients for the 
construction of tissue microarrays (TMAs). Of the 912 samples, we were able to 
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stain and score 742 tumors for GPR30. DDFS was the primary endpoint, and median 
follow-up time was 17.0 years for patients free of event. 

Study II 

In study II, we used two retrospective breast cancer cohorts based in part on clinical 
trials.184,185 Patient cohort I in study II (study IIa) consisted of 273 pre- and post-
menopausal stage II breast cancer patients operated with modified mastectomy or 
breast-conserving surgery, with axillary dissection and adjuvant radiotherapy (RT) 
as indicated. All patients were treated with two years of adjuvant tamoxifen, 
irrespective of ER status. Endpoint used was DDFS, and median follow-up time was 
6.1 years for patients alive and free from event. 

Patient cohort II in study II (study IIb) consisted of 237 pre-menopausal women 
with node-negative breast cancer operated with modified mastectomy or breast-
conserving surgery with adjuvant RT as indicated. A majority of patients received 
no adjuvant systemic treatment (4% endocrine treatment and 10% chemotherapy). 
Endpoint was DDFS, and median follow-up time was 10.8 years for patients alive 
and free from event. 29 patients were excluded because of no tumor material left, 
only normal tissue or cancer in situ present, or technical problems with staining and 
scoring. 

Study III 

Study III is based on the SweBCG91-RT trial which is a randomized controlled trial 
of breast-conserving surgery +/- adjuvant whole breast RT.144,186 It consists of 1,178 
patients with N0 stage I and II breast cancer with very little use of systemic adjuvant 
treatment (8%). Primary endpoint was ipsilateral breast tumor recurrence (IBTR) 
within 10 years, and secondary endpoints were any recurrence at 10 years, breast 
cancer death and death from any cause. Follow-up time was 15.2, 15.2, 20.0 and 
21.2 years, for patients alive and free from event, for the respective endpoints. We 
were able to collect tissue from 1,003 patients, and successfully stained and scored 
markers on TMAs necessary for subtyping for 958 patients. 

Study IV 

Study IV is based on a retrospective collection of 336 fresh frozen tumors from three 
biobank centers in Sweden, divided into a training cohort (N=172) and a validation 
cohort (N=164). Tumors were selected and sampled based on development of an 
IBTR (cases) or being recurrence free (controls) for at least the same time as a 
matched case. Matching was done for RT, ER status and follow-up time. Patients 
were pre- or post-menopausal, and operated with breast-conserving surgery with or 
without adjuvant RT. Axillary dissection was performed as indicated (22% were 
node-positive), and adjuvant systemic treatment was administered according to 
regional guidelines at the time. Primary endpoint was IBTR and median follow-up 
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time for patients free of event (controls) were 13.2 years for the training cohort, and 
12.6 years for the validation cohort, respectively. 

Study V 

Study V is based on retrospective collection of 80 breast tumor samples from 
patients participating in previous clinical trials.184,185 The tumors were sampled in a 
semi case-control fashion so that the patients were either suffering distant recurrence 
(N=41), or were recurrence-free for at least 6.4 years (N=39). All patients were 
diagnosed with stage II breast cancer and treated with surgery, RT and adjuvant 
tamoxifen for two years. 

Methods 

Cell lines and in vitro experiments 

Two breast cancer tumor-derived cell lines natively expressing GPR30 were used 
in study II, MCF-7 and T47-D, which are both ER+ cell lines and belonging to the 
Luminal B subtype, based on gene expression studies.187 In addition, we used two 
recombinant cell lines without or with stable expression of human GPR30 tagged at 
the N-terminus with the FLAG epitope. These were HEK293 cells, a well proven 
model system for G protein-coupled receptors, and HeLa cells, used for receptor 
antibody validation. 

Western blotting was performed in study II to assess GPR30 expression and 
signaling protein responses. Proteins analyzed were native and recombinant FLAG-
tagged GPR30, signaling proteins in proliferation (ERK1/2 phosphorylation, p53), 
and signaling proteins in apoptosis and cellular stress (ubiquitin, PARP, caspase-3, 
cytochrome C). 

Flow cytometry was used in study II for assessing plasma membrane expression of 
GPR30 and cell cycle analysis. Confocal immunofluorescence microscopy was used 
to assess cellular localization and expression of GPR30 and cytokeratin 8. 

In study II, cell viability was assessed by visual inspection of cell morphology, by 
Hoechst 3342 staining and phase-contrast microscopy to visualize nuclear 
fragmentation, and by the MMT assay and spectrophotometry to monitor the 
conversion of MTT to formazan in living cells. 

Constitutive GPR30 activity was studied, in the absence of any added receptor 
stimulus, by assaying signaling proteins in 1) HEK293 cells stably expressing 
GPR30 (HEK-R) as compared to naïve HEK293 cells (HEK), and 2) naïve MCF-7 
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cells as compared to MCF-7 cells in which GPR30 had been transiently knocked 
down with GPR30-specific shRNA. 

Immunohistochemistry and tissue microarrays 

Immunohistochemistry (IHC) was used to evaluate the protein expression on tissue 
sections with protein specific antibodies, and conjugated reporter systems for 
visualization. IHC is based on a two-step process of protein targeting and 
visualization. A pre-treatment step is used for antigen retrieval for formalin-fixed 
paraffin-embedded (FFPE) tissue. A primary antibody, targeting the protein of 
interest, is added and bound to proteins on the tissue slide. After washing, a 
secondary antibody with species specific targeting of the primary antibody, and 
conjugated to a reporter system, or biotinylated for further amplification with other 
reporter systems, such as streptavidin-HRP, is added. Finally, a chromogenic 
substrate is added for visualization. The major reason for the two-step process is the 
signal amplification and the high cost to produce antibody-reporter conjugate for 
specific antibodies. IHC gives an opportunity to study protein expression in situ, 
with the possibility to evaluate only the cancer cells (or stromal cells), and 
subcellular localization of staining, such as plasma membrane or nuclear expression. 
Potential problems with IHC may be associated with the fixation and pre-treatment 
of the tissue, protein degradation due to sample age or incorrect tissue handling, 
nonspecific staining and, importantly, antibody specificity. Problems may also arise 
in the scoring and analysis of the data, as discussed later.188 Important to note is that 
IHC is semi-quantitative due to the amplification process, and attempts to use 
staining intensity for quantitative measurements of protein expression must be 
interpreted carefully. 

We used IHC in study I, II and III. The GPR30 antibody was validated in-house 
with wild-type HeLa cells (not expressing GPR30), and cells transfected with 
GPR30. The antibodies used in study III are used in clinical routine and have been 
validated extensively by others. 

To increase the throughput of tumor evaluation of protein expression by IHC, we 
used TMAs.189 Instead of analyzing whole tissue sections for each tumor, several 
representative core punches (usually 0.6 or 1.0 mm in diameter) are taken and 
mounted in a recipient paraffin block. Up to 200 cores can be mounted in one block, 
which is then sectioned and stained, allowing an investigator to evaluate 200 cores 
on one microscopy slide. Concerns have been raised that the small tumor area 
analyzed may not be representative of the tumor, especially considering the 
heterogeneity in breast cancer.190 However, good correlation between whole tissue 
sections and TMAs have been presented for common clinically used IHC 
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markers.191 The evaluation of TMAs has been further facilitated by the use of digital 
pathology, making it even more high-throughput. 

We use IHC and TMAs to evaluate GPR30 on patient cohorts in study I and II, and 
to evaluate the factors for subtyping in study III. At least two investigators scored 
the tumors, and two or three cores were analyzed for most tumors. Depending on 
the factor studied, the method to combine cores and cut-offs for grouping was 
different (for details, see respective study and the discussion section). To evaluate 
other pathologic factors such as histological grade, whole tissue sections were used. 

Gene expression analysis 

The central dogma of molecular biology states that DNA is transcribed to RNA, 
which is translated to proteins.192 This process is tightly regulated at many steps, 
and the concept of gene expression analysis is based on the idea that the activity and 
expression of a gene, meaning the amount of RNA that is present at any moment, 
carries information important for the function of the cell.193 Usually that is 
interpreted as more protein being translated, resulting in higher activity of the 
protein, although the correlation between RNA expression and protein amount is 
sometimes weak, and RNA may have other regulatory effects.194,195 Traditionally, 
the measurement of mRNA molecules has attracted most attention, but other types 
of RNA species, such as microRNAs and long non-coding RNAs, are getting more 
attention for roles in cellular and tumor biology.196,197 

The analysis of gene expression in tumor biology started to grow when 
oligonucleotide or cDNA arrays were created, which made the analysis of thousands 
of genes possible for hundreds of samples. Oligonucleotide probes were “spotted”, 
or synthesized in situ, to a solid surface and organized in tiny arrays – microarrays. 
RNA from samples are extracted, reverse transcribed to cDNA, amplified and 
labeled by either Cy5 (red) or Cy3 (green). The experimental and a reference 
sample, with different color labeling, are hybridized to the microarray with the most 
abundant sample binding more probes. A scanner registers intensity for each dye, 
and the ratio between the experimental and reference sample is interpreted as a 
relative measurement of RNA amount, and thus gene expression and activity. 
Reports soon followed that the transcriptional patterns provided crucial information 
on the active state of the tumor, and clustering was used to divide breast cancers 
into distinct subtypes, with clinical implications.27,28 The oligonucleotide technique 
was refined, and highly stable commercial gene expression microarrays were 
created and widely used. Some of the refinements included single channel arrays 
without the need for a reference sample, and bead arrays.198-200 

However, gene expression microarrays are limited by several shortcomings. First, 
they require relatively high-quality RNA that is typically only achieved by RNA 
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extraction from fresh frozen tissues. They are thus hard to implement in a clinical 
setting, although microarrays have recently been adapted to also being able to 
handle lower quality RNA, e.g. from FFPE samples, which is achieved either by a 
RNA pre-processing step involving amplification, or more robust microarray 
techniques.201 Secondly, traditional microarrays are restricted to analyze gene 
products represented by the probes on the array, meaning that alternative splice 
products, as well as mutations, are not detected. Thirdly, the sensitivity may be low, 
and limit of detection high, for traditional microarrays. Another aspect, although not 
limited to microarrays, is that the extraction of RNA from tumor tissue usually 
includes both cancer cells and stromal cells. This makes it hard, or impossible, to 
determine which part of the tumor (e.g. tumor cells, fibroblasts or immune cells) 
contribute to the observed gene expression results. 

Other genes expression analysis techniques have been developed with advantages 
that overcome some of the shortcomings of microarrays. Targeted techniques have 
higher sensitivity and can be tailored to find almost any gene product of interest. 
Typical targeted techniques include quantitative polymerase chain reaction (qPCR), 
used e.g. in the OncotypeDX test, and which has been modified for the analysis of 
very small amounts of RNA (digital droplet PCR).202 Another targeted technique is 
the Nanostring nCounter platform.203 

RNA sequencing (RNA-seq) has been developed and is widely used in cancer 
research today. It has the advantage of the possibility of detecting novel gene 
transcripts but still have disadvantages, such as high cost, requirement of high-
quality RNA, and more complicated data-analysis.204 

In study IV, gene expression analysis was performed with the transcriptome wide 
Illumina HT12 v4 microarray (Illumina, San Diego, CA), and the targeted 
Nanostring nCounter platform (Nanostring Technologies, Seattle, WA), with a 
custom design assay. 

Illumina HT12 v4 microarray 

Illumina HT12 v4 microarray is a bead array oligonucleotide microarray. 
Nucleotide sequence probes are attached to small beads, which are randomly 
distributed over an array, and an individual key is needed for each array to decipher 
the positions. It is a single-channel technique which involves cDNA production, 
amplification, in vitro transcription to cRNA, and labelling with biotin. Each chip 
has 12 arrays for the analysis of 12 samples. The array includes 47,231 target probes 
that mainly targets coding genes, and further includes negative and positive controls.  
The microarray has been widely used and is considered robust and well annotated. 
Typical pre-processing includes background correction, positive offset for avoiding 
negative values, log2 transformation, quantile normalization and filtering of probes 
for quality, intensity and variance.200,205 
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Nanostring nCounter platform 

The Nanostring nCounter technique uses a target probe and a reporter probe, with 
the aim to identify and count individual molecules. Initially it was created only for 
mRNA molecules, but the technique has been extended to analyze also other 
molecules, including proteins.206 The reporter probe and capture probe have 50 
nucleotides each that are adjacent and target a specific 100 nucleotide target 
sequence.203 The reporter probe have an additional specific sequence of fluorescent 
molecules that identify the probe. The capture probe has a biotin molecule attached 
that is used for in solution capture and later attachment to a cartridge. Excess probes 
are washed away, and a scanner is used to detect the reporter probes with an 
individual key to decode the scan. The probes can be designed to detect any specific 
nucleotide sequence, and up to 800 probes can be analyzed simultaneously in a run. 
Typically, house-keeping genes are included for normalization purposes. Pre-
processing is more custom than for a standard microarray, but typically includes 
normalization based on house-keeping genes, and filtering of probes and samples 
based on quality.207 The assay benefits from high sensitivity and specificity, but is 
limited to the subset of targets included in the assay. 

Mass spectrometry-based proteomics  

Protein analysis and proteomics 

Proteomics is the study of the proteome, meaning the entire set of proteins in a given 
system. The proteome is vastly more complex than the genome or transcriptome, as 
every gene can give rise to many protein isoforms, and proteins may be subject to 
post translational modifications governing their function (e.g. phosphorylation and 
glycosylation), creating a large number of proteoforms. In addition, the temporal 
control of protein abundance is important, and the cellular response can be much 
faster at the protein level than the genomic or transcriptomic response, e.g. by 
activating phosphorylation. As proteins are the major functional molecules in the 
cell, additional functional understanding of cancer biology could be obtained by 
analyzing proteins in addition to DNA and mRNA sequences. Although major 
biological concepts seem to be similar across techniques, the correlation between 
mRNA expression and protein abundance is sometimes weak.208 Ultimately, 
proteomics may provide better biomarkers and novel treatment targets.209-211 Indeed, 
characterizations of tumors at the protein level partly recapitulates the genomic and 
transcriptomic findings, but also provide additional information.17,212,213 

Traditionally, protein analyses have been performed with low-throughput methods 
such as antibody-based techniques, e.g. enzyme-linked immunosorbent assay 
(ELISA), western blotting (WB) or IHC, alone or in combination with gel 
electrophoresis-based protein separation. Besides low sample throughput, the 
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analysis with antibody-based methods is dependent on the development and 
validation of antibodies, which may be time-consuming and costly. However, with 
the improvement of chromatographic separation and mass spectrometry 
instrumentation, the field of proteomics has grown exponentially, becoming a high-
throughput technology able to analyze thousands of proteins out of a biological 
sample in a few hours. 

Mass spectrometry principles 

Mass spectrometry identifies molecules based on an accurate determination of their 
mass to charge ratio (m/z). The basic principle is to ionize the molecules and 
accelerate the ions within an electric field. The mass analyzer uses the properties of 
the charged molecule in a magnetic field to separate the ions, exploiting the principle 
that the charged particles will deflect in the magnetic field proportionally to their 
mass. Finally, a detector records the ion. Several types of mass analyzers exist, such 
as quadrupoles (Q), Linear ion traps (LIT), time-of-flight (TOF) analyzers, Fourier 
transform ion cyclotron resonance (FTICR) analyzers and orbital traps (Orbitrap), 
as well as different detectors such as electron multipliers and detectors based on 
FTICR (Figure 3). In study V, we use LIT combined with FTICR analyzers for a 
discovery analysis, and quadrupoles for targeted proteomics. 

 

Figure 3. Different mass analyzers. The colored arrows represent molecules with different m/z, and the grey are 
electromagnets. A) In a quadrupole mass analyzer (Q), four magnetic rods act as a filters and only lets a molecule 
with a certain m/z through, deflecting the others. B) In a linear ion trap (LIT) the ions are “trapped” in an 
electromagnetic field based on their m/z. C) A time-of-flight mass analyzer uses the principle that a charged particle 
deflects proportional to the mass in an electromagnetic field. D) Fourier transform ion cyclotron resonance (FTICR) 
mass analyzers analyze the movement within an electromagnetic field. E) An Orbitrap is a barrel-like structure and the 
ions oscillate around the barrel, with the oscillations dependent on the m/z. Illustration by Kristoffer Sjöholm, reprinted 
with permission from A holistic approach to host-pathogen interactions – detecting the large to unravel the small.214 

Several steps must be performed before proteins of a sample can be run on a mass 
spectrometer. Typically, the samples are prepared either chemically or mechanically 
to extract the proteins, cleaned for contamination, denatured and digested with an 
enzyme. The digestion of peptides before analysis is called bottom-up proteomics, 
as opposed to top-down approaches, where the intact proteins are separated before 
analysis. Digestion is usually done by trypsin, as this produces the most proteotypic 
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peptides (i.e. specific to a protein). Trypsin cuts proteins into peptides of 6-25 amino 
acids, split at the C-terminal side of lysine and arginine, except (maybe) when the 
next amino acid is proline.215 If the digestion is made in solution, the peptides need 
to be reduced and alkylated.216,217 

Further, the online separation of peptides by liquid chromatography (LC) is usually 
applied to separate the peptides based on chemical properties, such as 
hydrophobicity, before injection into the mass spectrometer.210 

The mass of an intact peptide is generally not sufficient to identify the exact amino 
acid sequence. The solution is to apply two mass spectrometers that work in tandem 
(MS/MS – tandem mass spectrometry), either in space, or time (Figure 4). The first 
MS (MS1) analyses the intact peptides (precursor ions) which are then fragmented, 
typically in a collision cell with an inert gas using collision induced dissociation 
(CID), and the second MS (MS2) analyzes the fragment ions. 

The specific analysis of proteomics data consists of several parts that can be divided 
into identifying the peptide, combining peptides to proteins, and quantification. The 
ways to perform these steps are dependent on the mass spectrometry setup.218 

 

Figure 4. Tandem mass spectrometry using two mass analyzers that work together. A) In targeted mass 
spectrometry-based proteomics, a common approach is to use a triple quadrupole (Q-q-Q) set-up, using two 
quadrupoles as filters, and the third quadrupole as a collision cell for fragmentation. B) In discovery mass 
spectrometry proteomics, a common set-up is to use a quadrupole to filter peptides for analysis with an orbitrap. In the 
MS1 scan, several precursor ions are let through and the orbitrap analyzes the intact peptides. For fragmentation 
analysis (MS2 scan), the quadrupole filters a specific peptide for fragmentation with high-energy collision induced 
dissociation (HCD), and the fragments are analyzed by the orbitrap. Illustration by Kristoffer Sjöholm, reprinted with 
permission from A holistic approach to host-pathogen interactions – detecting the large to unravel the small.214 

Discovery mass spectrometry proteomics 

Shotgun, or sometimes “discovery”, proteomics refers to using a bottom-up LC-
MS/MS configuration operating in data-dependent acquisition (DDA) mode. In 
DDA mode, the mass spectrometer first performs a MS1 run of intact peptides, 
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selects a number of peptides based on the MS intensities (dependent on the data) to 
fragment, and then performs sequential runs to fragment and analyze the peptides 
with MS2. The precursor ions (intact peptides) are then placed in a dynamic 
exclusion list, and other precursor ions are selected for fragmentation and MS2 
analysis. 

The subsequent identification of peptides can be made by interpreting the 
fragmentation (MS2) spectra as amino acid sequences (de novo sequencing). 
However, this is generally too time consuming and difficult for practical purposes 
in clinical research, as some amino acids and amino acid pairs have very similar or 
identical mass, and fragmentation does not occur at every peptide bond or cannot be 
observed in the mass spectrometer. A faster and usually more feasible way is to use 
a reference database of with in silico tryptic peptides, create theoretical mass 
spectra, and compare with the experimental spectra using specialized software. 

Error estimates of peptide identifications are usually made by a search against a 
false decoy database, such as the reference database in reverse, or random 
sequences, generating a false discovery rate (FDR) estimate. Important to note is 
that the probability of finding a false hit increase with the size of the reference 
database – there are more possible false hits. This becomes very important when we 
think of analyzing cancer genomes including somatic changes: if all possible or 
known mutations are included in the database, the search space will be large and the 
probability of a false hit high. To overcome this, a reference database from the 
specific DNA sequence of the tumor would be valuable, and indeed, this area of 
combining genomics and proteomics – proteogenomics – promises to give new 
insights in cancer biology.219,220 

After peptide identification, the next step is to match peptide to proteins. The 
principle is the same in that the most likely peptide sequence, given from the mass 
spectra searches, is searched against a protein database. This is also associated with 
uncertainty, and error rates on the peptide level are amplified on the protein level. 

The results of LC-MS/MS operated in DDA mode are inherently random to some 
extent due to the selection of precursor ions (intact peptides) for fragmentation, 
meaning that two runs may not be identical, and DDA produces large numbers of 
missing data. Further, the quantification based on the precursor may be unreliable 
as the precursor will be excluded from fragmentation for a period of time. To 
overcome this problem, targeted approaches have been created. 

Targeted mass spectrometry proteomics 

A common targeted approach is selected reaction monitoring (SRM), or multiple 
reaction monitoring (MRM), which is based on a triple quadrupole mass 
spectrometry set-up, with two quadrupoles acting as filters, and a third quadrupole 
as a collision cell resulting in a triple quadrupole set up, Q-q-Q (Figure 5).221 It is 
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operated so that the first quadruple is a static filter for a specific peptide, the second 
quadrupole fragments the peptide, and the third is a static filter measuring a specific 
fragment ion while. The final detector records amount of fragment ions that are let 
through the filters, giving a relative estimate of the abundance. The combination of 
precursor ion and fragment ion is called a transition, which in combination with 
dilution time from LC results in very high peptide specificity. Typically, several 
transitions are used per peptide to create an assay for reliable measurements. The 
pre-requisite to use SRM is that the properties of the peptide is known, and large 
efforts have been made to create libraries of assays.222 The increased quantitative 
performance and dynamic range of SRM, compared to shotgun LC-MS/MS, 
promises to greatly facilitate the clinical use of mass spectrometry.223 

 

Figure 5. Overview of the selected reaction monitoring (SRM) method of targeted proteomics. First, the peptides are 
separated by liquid chromatography (LC), then ionized by electrospray ionization (ESI). In the first quadrupole (Q1), a 
specific intact peptde is selected for fragmentation in the second quadrupole (Q2). The third quadrupole (Q3) is a filter 
for selected fragment ions. Finally, a detector is registering the amount of fragment peptides, which is used for 
quantification. Reprinted from Picotti et al in Nature methods224 by permission from Macmillan Publishers Ltd, 
copyright (2012). 

Data-independent analysis 

Recently, a data-independent acquisition (DIA) mode has been set up, which aims 
to combine the identification advantages of shotgun/discovery mass spectrometry 
with the quantification advantages of targeted mass spectrometry.221 In DIA-MS, all 
precursor peptides are fragmented and recorded, creating a highly populated dataset 
(Figure 6). With advanced data analysis, the peptides can be identified, and 
abundance measurements achieved retrospectively.225 Still being optimized and 
relying on libraries of peptide properties created with DDA approaches, and better 
data analysis tools, it could provide a middle ground between shotgun and targeted 
mass spectrometry. One implementation of the concept, termed Sequential 
Windowed Acquisition of all THeoretical fragmentation spectra (SWATH) uses the 
first mass analyzer not set to select a specific precursor ion, but instead an entire 
mass window that is typically 2-25 m/z wide. All precursor ions in that window will 
be fragmented and mass spectra of all fragment ions generated. Given that we have 
previous knowledge of the properties of the spectra, we can identify and quantify 
all peptides in a retrospective/post-acquisition analysis of the data. The technology 
is promising, and intensive research is ongoing to optimize the methods.225,226 
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Figure 6. Comparison of different mass spectrometry set-ups. A) In data-dependent acquisition (DDA), precursor ions 
are selected for fragmentation. B) In selected reaction monitoring (SRM), precursor ions and fragment ions are 
selected by quadrupoles that act as filters. C) In data-independent acquisition (DIA), the precursor ions in a selected 
mass window are fragmented, and all the fragment ions are analyzed. Illustration by Kristoffer Sjöholm, reprinted with 
permission from A holistic approach to host-pathogen interactions – detecting the large to unravel the small.214 

Quantification 

After peptide and protein identification, protein abundance is calculated. For LC-
MS/MS operated in DDA mode, a simple way is to use the number of times mass 
spectra from a peptide is appearing (spectral count). More common is to use the 
peak area under the chromatogram/intensity of the MS1 peak, commonly referred 
to as label-free quantification (LFQ).221 LFQ can timely quantify many peptides, but 
the intensity of the peak is dependent on the chemical and physical properties of the 
peptide, meaning that the peak intensity is hard to interpret in terms of absolute 
abundance.227 

The quantitative performance of shotgun mass spectrometry can be enhanced by the 
use of labeling methodologies, such as stable in culture labeling of amino acids 
(SILAC), or methods of chemical labeling, such as isobaric tag for relative and 
absolute quantification (iTRAQ) and tandem mass tags (TMT). Peptides from 
different samples are tagged with heavy or light isotopes, and can then be compared 
relative to each for a reliable relative quantification (Figure 7).218,228 

In SRM, the goal of the analysis is not to identify the molecule, as the properties are 
already known, and the machine is set-up to specifically analyze the peptide of 
interest.221 The intensities of the fragments detected with the final detector are 
compared across samples as a relative measurement of abundance, and automated 
software have been created for this, as well as for manually evaluating the 
profiles.229-233 LFQ can be used with SRM, but the performance may be improved 
by adding labeled standards.228 
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Figure 7. Labeling of amino acids for quantification. The principle is to tag peptides from different samples with heavy 
or light isotopes to make them separable in the mass spectrum created by injecting the samples togeher (B). 
Illustration by Kristoffer Sjöholm, reprinted with permission from A holistic approach to host-pathogen interactions – 
detecting the large to unravel the small.214 

The N-glycosylated subproteome 

To achieve even greater depth of analysis than can be achieved separating the 
peptides with LC alone, further fractionation of the samples can be made. Oher ways 
of decreasing the complexity are to remove proteins that are not relevant for 
analysis, such as the depletion of plasma proteins, or to focus the analysis on a 
selected subproteome, which also excludes irrelevant proteins such as albumin or 
immunoglobulins.234-236  

The N-glycosylated subproteome constitutes an interesting subproteome in cancer 
research since it contains proteins at the cell surface important for cell-cell 
communication, interaction with the intracellular matrix, receptors and other 
signaling molecules, and are commonly found among clinically used biomarkers. 
Further, they are commonly secreted to the bloodstream which may make the 
clinical detection easier.237,238 Therefore, in study V, we chose to analyze this 
subproteome. 

Glycosylated proteins are post-translationally modified by attaching a carbohydrate 
group, either to an asparagine which takes place in the endoplasmic reticulum (N-
linked glycosylation) or to the oxygen atom of a serine or threonine performed in 
the Golgi apparatus (O-linked glycosylation). N-glycosylation is performed to an 
asparagine with the surrounding motif N-X/P-ST, where X/P means any amino acid 
except proline, and ST means serine or threonine. In study V, we enriched for N-
glycosylated peptides using hydrazide chemistry. Briefly, the enrichment is made 
on peptides cleaved by trypsin. The carbohydrate cis-diol group is oxidized to 
aldehyde which then can form a covalent hydrazone bond with hydrazide groups 
immobilized at a solid support (beads). The bound peptides are washed to remove 
non-bound material. Finally, the peptides are released by cleavage of the 
carbohydrate residue with PNGase F. This cleavage also results in the deamidation 
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of the asparagine, producing an aspartic acid, which is used for further validation of 
the specific N-glycosite.239,240 Of note is that in study V, the carbamidomethylated 
cysteine is denoted as B, and the deamidated asparagine is denoted as an aspartic 
acid (D). Also, trypsination may cleave the peptide in the N-glycosylation motif (if 
the motif is N-RK-ST, RK meaning arginine or lysine), meaning that the N-
glycosylation sequence motif can be found at the peptide end, and thus only have a 
deamidated asparagine (aspartic acid - D) and an arginine (R), or lysine (K), at the 
C-terminal end, but a serine (S) or threonine (T) at the other side of the cleavage, 
which is the case for some of the peptides in study V. 

Statistical analysis 

Statistical significance and two group comparisons 

The definition of a p-value is the probability of getting the observed result, or a more 
extreme result, if the null hypothesis is true, with the null hypothesis being that there 
is no difference between the groups tested. The p-value is traditionally used to reject 
the null hypothesis if a certain significance level is reached, typically <0.05. 
However, this has nothing to do with “clinical significance”, meaning the effect size 
and implication for patients, and thus a p-value should always be interpreted in 
combination with effect size.241 Important to note is that for a given effect size, a 
larger sample size generates a lower p-value, and thus with enough sample size 
small differences become “significant”. This is important to note in relation e.g. to 
the Kaplan-Meier plotter results in study IV.242 Conversely, for a given effect size, 
a small sample size produces a high p-value and it is thus important not to interpret 
a non-significant p-value in an underpowered study as evidence that there is no 
difference. 

For standard two-group comparisons, the t-test and Mann-Whitney test (also known 
as Wilcoxon’s test) can be used as the parametric and non-parametric variants, 
respectively, and both can also be used with modifications for paired data. Similar 
tests for associations with categorical variables include Fisher’s exact test and the 
Chi-square test which both calculates the probability to get the observed or more 
extreme results in a cross-tabulation. The Chi-square test is a parametric test that is 
built on an approximation to the chi-square distribution, while Fisher’s exact test 
analyzes the exact probabilities making it better suited for small groups.243,244 The 
Chi-square test can be used to test for trend, which equals a linear regression with 
test for zero slope. 
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Survival analysis  

Survival analysis deals with time-to event data, which is commonly used in cancer 
research. Problems arise on how to handle observations that do not start and end at 
the same time, and observations that may end for other reasons than the intended 
endpoint, e.g. due to end of follow-up.245 Initially this was made by creating life 
tables but a more direct method was applied by Kaplan and Meier, that censors 
observations and calculates the risk for the remaining population.245-247 To test if the 
observed differences between groups are likely to happen by chance, a log-rank test 
is usually used. The log-rank test can be extended to test several groups, or to test 
for trend. 

The most commonly used model to compare the risk between groups, as separated 
by a biomarker, is the proportional hazards regression model proposed by Sir David 
Cox.248 The model calculates the hazard ratio between groups, and is assuming the 
hazard to be proportional over time, which may be checked with Schoenfeld’s test, 
or by graphical examination of the model or residuals.249 If the hazards appear to be 
non-proportional, a proportional hazards regression model may still be fitted, but 
the interpretation would only allow to consider the hazard ratio as the mean over the 
time period studied. The Cox proportional hazards model can be used to compare 
several groups, and can either handle factor variables describing the hazard ratios 
between pairs of groups, or treat the variable as a linear/continuous score. The 
hazard ratio is then interpreted as the hazard ratio of one unit in the predictor. The 
univariable model can further be extended by adding more covariates into a 
multivariable model. The estimated HRs then represent adjusted effects, i.e. the 
hazard ratio of the variable of interest, given that all other variables are held 
constant. 

Competing risks 

When working with the Kaplan-Meier method, the assumption is that the censoring 
is non-informative, i.e. that the process of censoring is independent of the process 
of events. In many situations this assumption is not valid, e.g. when death is not the 
endpoint. Patients can then end the study when an event (e.g. death) other than the 
endpoint occur, and the event obviously hinders or alters the probability of the 
endpoint of interest (you cannot get a cancer recurrence if you are dead). This is 
known as competing risk events.250-254 This is a common problem when working 
with recurrence endpoints in cancer, and is even more so when working with “early” 
recurrences such as local recurrences.255 If standard Kaplan-Meier analysis is used, 
the estimates of risk would be biased upward, since patients that can no longer have 
the event of interest are treated as censored (i.e. assuming they are still under risk 
of the event).256 Instead, the cumulative incidence should be computed to account 
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for the competing risk, e.g. by treating the competing events as another event, 
instead of censoring.252,257,258 

For modeling hazards, there are mainly two alternatives: either using a cause 
specific Cox proportional hazards regression model, or to model the hazard of the 
so-called sub distribution as described by Fine and Gray.259 The cause-specific Cox 
model treats the censored/competing risk events as loss to follow-up, and thus the 
hazard ratio should be interpreted as in a world where only the event of interest 
exists. This can be good for studying the overall treatment effects and for biological 
interpretation, but will not give the “true” hazard ratios as expected in a natural 
cohort, i.e. a cohort where the event is sometimes excluded due to a competing 
event. The Fine and Gray model, on the other hand, corresponds directly to the 
cumulative incidence estimate of risk, i.e. the model takes the competing events into 
account. Accordingly, the Fine and Gray model can only be generalized to cohorts 
with similar sub distributions, and where the hazard has an unintuitive 
interpretation, as representing the world where persons that encounter the competing 
events are regarded to remain under risk for the endpoint of interest for an infinite 
time. 

Analogously, there are different approaches to test for significance, where the cause 
specific log-rank test is analogous to the cause specific Cox, while Gray’s test is 
analogous to modeling the sub distributions hazard.260 To calculate the change in 
hazard, cause specific Cox proportional hazards regression may be better to study 
biology or treatment effects, while the Fine and Gray sub distributions hazard 
regression gives a better estimate of the hazard in a clinical context, but is dependent 
on the cohort composition.261-263 Calculating with competing risks is an important 
part of study III. 

Interaction test 

When analyzing treatment-predictive biomarkers, the goal is to find differences in 
the effect of a treatment on prognosis, in different groups separated by the 
biomarker. Doing the analysis stratified for grouping by the biomarker of interest 
gives descriptive information, but does not allow to directly assess the difference of 
effect. Importantly, it is not correct to draw the conclusion that the treatment effect 
differs between groups because there is a statistically significant effect in one group, 
but not the other. Instead, the difference in effect can be tested by creating a model 
with both the treatment and the biomarker as variables, and then an interaction term 
for the product of the treatment and biomarker. The interaction variable allows the 
treatment effect to be different between the biomarker stratified groups, in contrast 
to the standard multivariable Cox proportional hazards regression model, where the 
effect is estimated with the other variables kept fixed, i.e. assumed to be constant 
over different subgroups. The p-value of the interaction term is usually interpreted 
as the statistical evidence against the null hypothesis that the treatment effect is 
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equal between the groups, but it is important to consider that large sample sizes are 
needed for appropriate power to perform interaction testing.264-267 Differences in 
treatment effects between groups are tested by interaction variables in study I, II, III 
and IV. 

Discriminating performance 

To assess the discriminating performance with binary outcomes, especially 
important for diagnostic tests and classification problems with two distinct groups, 
a receiver operating characteristics (ROC) analysis and the associated C-index is 
commonly used. The ROC analysis is made by plotting the sensitivity against 1-
specificity for all possible cut-points. The C-index is defined as the probability that 
the test correctly orders the event times of a randomly selected pair of observations, 
and is a generalization to the area under the curve (AUC) in the ROC analysis. In 
both cases, 1.0 means perfect discriminating power and 0.5 is the performance by 
pure chance.268 Sometimes it is not relevant to know the overall performance, since 
a cut-off with say very low sensitivity would never be used, and the performance 
for high sensitivity values would be more interesting. In these cases the partial AUC 
can be used.269 However, the discriminating performance is often not enough to fully 
evaluate the tests and for survival data, the AUC at a specific time point may be of 
interest. Also, the clinician using the test may be interested in what the results mean 
for the patient taking the test, and the negative predictive value and the positive 
predictive value are then used. They are calculated to be the probabilities of being 
truly negative when the test is negative, and the probability of being truly positive 
when the test is positive. Both are dependent on the prevalence, or population 
probability, of being negative or positive.270,271 

High-dimensional data analysis and bioinformatics 

With the advancement of high-throughput methods, the field of bioinformatics, 
which lies in the intersection of computer science, programming, big data, machine 
learning and biology, has grown exponentially. An important characteristic of omics 
data is that it contains many variables, or features, per observation, and sometimes 
many thousands of features. Special consideration must be applied to prepare the 
raw data as produced by the machines, referred to as pre-processing.272,273 

Pre-processing 

Pre-processing of data refers to the process of taking the raw measurements from a 
high-throughput machine and make it ready for downstream or “high-level” 
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analysis. It includes quality control of the data, filtering of low quality 
measurements and samples, normalization of the data with or without background 
correction, assessment of batch effects and possibly correction, scaling of the data, 
and transformation of values. 

Normalization and filtering 

Normalization is the attempt to make the data comparable from one analysis to 
another, either between samples or across cohorts.274,275 The reason for the need of 
normalization is that measurement values can systematically vary both due to 
technical/machine related sources and sample related sources, e.g. change in 
intensity over time or sample input amount. These systematic differences can make 
the analysis impossible without correction. Many normalization techniques exist 
and are under constant development. They can broadly be divided into techniques 
that shift the overall expression to be similar across samples under the assumption 
that most genes or peptides does not change between samples, such as quantile 
normalization, normalization to a common (geometric) mean or total sum of 
measurements, and methods that use internal controls, either spiked in references or 
endogenous house-keeping genes or peptides. Single sample methods, such as the 
SCAN-algorithm, have also been developed with the aim to improve personalized 
medicine workflows.276 Advantages and disadvantages exist for all techniques. For 
the Illumina HT12 microarray analysis in study IV, we used quantile normalization, 
which has been proven to be robust for this platform.200 For the Nanostring nCounter 
data in study IV, we normalized based on positive control probes for each sample 
(to correct for technical variation in counts over time) and for housekeeping genes 
(to correct for differences in sample input). For the LC-SRM data in study V we did 
not normalize since the input was highly standardized, and we did not want to 
normalize based on peptides that were selected to be different across samples. 

In omics methods using image analysis, i.e. scanning machines that measure the 
light intensity as relative to the amount of the molecule present, and most mass 
spectrometry techniques, the total measurement will consist of both background 
intensity and the intensity from the molecule of interest. The intensity is relative in 
its nature and cannot be interpreted as an absolute value in the absence of explicit 
standards. Improvements in the analysis have been seen by subtracting the 
background in microarray experiments. To avoid negative values and/or missing 
data an offset can be applied. In the analysis of the Illumina data in study IV, we 
subtracted the background signal based on the negative control probes, and added 
an offset of 16.200 

From the analysis of the global transcriptome or proteome it follows that a large 
proportion of measured molecules will not be present in the sample, and the 
resulting measurements for these molecules will be equivalent to the background 
signal. This is expected since not all genes are expressed at a certain timepoint in a 
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cell. However, from an analysis point of view, it is hard to tell which molecules are 
truly not present, and which are not measured correctly by the machine due to 
technical errors. The Illumina HT12 analysis outputs a p-value that is describing the 
probability that the transcript is expressed above background. A common pre-
processing approach is to exclude all measurement above a certain p-value 
threshold, but that results in missing data points. Another way is to exclude a probe 
entirely that is expressed with high confidence in e.g. less than 80% of samples. The 
fundamental problem is that we do not know if the molecule is truly absent in the 
sample or not correctly measured. It may well be expected that, considering the 
heterogeneity of breast cancers, only a minority of cancers express a certain gene 
with important biological function. To account for this, we applied two strategies to 
filter probes in the Illumina data. First, we included probes with a detection p-value 
of < 0.01 in ≥ 80% of samples, and second we included probes with detection p-
value of < 0.01 in <80% samples, but with a high intensity in the measurements with 
high confidence. 

A similar filtering procedure was made for the LC-SRM data in study V, where 
mProphet was used. The program filters for high confidence measurements, and we 
show in the supplemental data that this is highly equivalent to an intensity filter. 

In an additional attempt to alleviate the problem of technical issues, an annotation 
package for Illumina HT12 v4 has been created, with additional information on 
which probes are theoretically well designed for a specific transcript.205,277 

From my experience, the filtering based on intensity and/or confidence score of a 
measurement roughly filters out 50% of probes in a typical microarray experiment. 
To improve performance of downstream analyses, an unbiased further reduction of 
features can be made based on the variance of the probes, and in the Illumina HT12 
data, we filtered down to the 5,000 most varying probes. 

In many high-throughput analyses, the same gene or protein is measured several 
times by several probes or peptides. For downstream analysis and biological 
interpretation, a single value per gene/protein is often desired, and the combination 
can be made on the mean, the sum, picking the highest varying probe or other more 
advanced methods. For microarrays, typically the mean is better for long transcript 
platforms, while the most varying is better for short transcript platforms.33 For the 
Illumina HT12 data, we did the analysis per probe as we wanted to retain the 
possibility to use the probe information for the design of the targeted assay. For the 
LC-MS/MS experiments we used the sum of peptide abundances as the protein 
abundance, and for the LC-SRM we analyzed individual peptides. 

Batch effect correction 

So far, the pre-processing has attempted to correct for general technical differences 
or individual sample differences. However, the processing of biological samples can 
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be very sensitive for external factors, especially the handling of RNA. Factors such 
as storage, extraction method, time of extraction, shipping etc. can influence the 
RNA on a global level. Techniques have been developed to adjust for these 
differences, here called “batch effects”, once the important batches are known. The 
advantage of batch effect correction is that several batches can be studied together 
with many statistical analysis techniques, but the downside is that the analysis 
becomes cohort dependent, and there is a possibility that the correction alters the 
data in undesirable ways. Especially, batch effect correction with the specification 
of the phenotype of interest is known to produce artefacts with false positive 
findings.278,279 In the Illumina HT12 data we used batch effect correction, without 
specifying the variable of interest, for study center and hybridization plate. For the 
Nanostring nCounter data, we did not use batch effect correction as we wanted to 
make the analysis as platform independent as possible. 

Scaling of the data 

The absolute expression of different genes or proteins can differ greatly, which can 
impact the downstream analyses by e.g. assigning greater weight to highly 
expressed genes or proteins. This may be undesirable, and the data may be 
transformed in a way so that the individual features are weighted equally. The most 
common transformation is to median center and scale the data by the standard 
deviation, also known as Z-transformation. Other methods are to median center and 
scale to a common min and max (used in the radiosensitivity score in study IV), or 
to use gene ranks instead of expression measurement (used in radiosensitivity index 
in study IV). Finally, before downstream analysis, values are typically log 
transformed to alter the usually highly skewed distribution of values, to make them 
proportional instead of additive, and to make the variance less dependent on 
absolute values. 

High-level analyses 

After pre-processing is completed, the “high-level” analysis starts, which is where 
biological or clinical conclusions are to be drawn from the data. Many concepts are 
similar between platforms, and high-level analyses can broadly be divided into 
unsupervised analysis and supervised analysis. Unsupervised analysis is 
characterized by the goal to find overall patterns in the data that explain the biology 
without pre-specifying the phenotype to characterize. The typical example is to find 
new subgroups of a cancer based on the data. In contrast, supervised analysis starts 
with a pre-defined phenotype of interest, and we typically want to find differences 
between phenotypes. Possible goals are to find differentially regulated pathways, or 
classify future samples as high or low risk of recurrence based on data with known 
outcomes. 
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Unsupervised analysis 

A general feature of omics data is the high number of features (genes, peptides) per 
sample, and a typical start of an analysis is to understand the data by reducing the 
number of dimensions to examine the overall structure of the data. Common 
methods include multi-dimensional scaling (MDS), principle component analysis 
(PCA) and Sammon maps. 

Principle component analysis (PCA) 

Principle component analysis performs dimension reduction by finding components 
that maximizes the variation. The first, or leading, component (PC1) is calculated 
as the linear combination of all variables (loading vectors) that maximizes the 
overall variation. The second principal component (PC2) is calculated so that the 
remaining variance is maximized in a vector orthogonal to PC1. The following 
components are calculated in the same way.272 PCA analysis can be used for various 
further analysis including regression on the components. We used PCA in study IV 
1) for visualization, 2) to check for batch effects and 3) to compare the contribution 
by the classical clinicopathologic variables to the variation in the data. 

Clustering 

Clustering is broadly defined as a collection of methods to find groups of associated 
observations in the data. Commonly used methods include k-means clustering and 
hierarchical clustering. K-means clustering aims to partition the data into k pre-
defined groups, while hierarchical clustering produces a dendrogram joining the two 
most similar observations at a time, and the number of groups can be decided at any 
height of the dendrogram. In study IV, we used hierarchical clustering to monitor 
batch effects and investigate gene clusters selected for the targeted assays. 

Hierarchical clustering first calculates all the distances between the observations 
based on a defined distance metric, often defaulting to Euclidean distance or Pearson 
correlation. Then a summary metric, or linkage, for the two joined observations, 
which now forms an own cluster or group, is calculated. The most common types 
of linkage methods are complete, average, single and centroid. Next, the second 
most similar sample or cluster is joined.272 Important to note is that the vertical 
height of the joining node in the dendrogram is describing how similar the 
observations are, and not the horizontal ordering, which is usually random within a 
cluster. 

A typical hierarchical clustering on high-throughput data is made both for samples, 
to find related samples, and for genes/proteins to find related 
clusters/networks/pathways of with similar biological functions. Commonly 
associated with hierarchical clustering are heatmaps as a graphical representation of 
the data producing the clustering. Usually expression values are artificially colored 
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to highlight up and down-regulation of genes. Clustering of samples based on 
mRNA expression data has been extensively used in breast cancer, resulting in the 
intrinsic subtypes.27,28 The clustering was later refined using a subset of 50 genes 
selected by supervised prediction analysis of microarrays (PAM).33 To overcome 
the problems with this type of clustering, namely platform compatibility issues, and 
cohort composition, single sample predictors have been proposed, and subtyping is 
constantly developing with better algorithms.280 

Supervised analysis 

Supervised analysis deals with prediction in the form of regression analysis and 
classification, and is here described together with differential expression analysis. 
The goal of the analysis is 1) to find biological differences between known 
phenotypes, 2) to use that information to create models describing the biology, and 
3) to make predictions of unknown samples. 

One might speculate that increasing the number of variables to analyze by adding 
more genes or proteins will automatically increase the performance of the models 
and make the predictions stronger. Unfortunately, this is not the case and the 
opposite may be true, sometimes referred to as the curse of dimensionality. The 
reason is that many of the measured variables are not in a meaningful way correlated 
with the outcome of interest, introducing noise in the data. If not handled carefully, 
the powerful machine learning techniques available may dramatically overfit the 
data with consequently deteriorated performance.272 

Supervised analysis involving classification problems must further deal with the 
bias-variance trade-off when selecting and training models. Put simply, the modern 
techniques are so powerful that they easily can find patterns in the data that separate 
the outcome of interest in a training dataset. However, this relies heavily on the 
individual observations, which introduces variability, meaning that the model will 
look very different depending on the training dataset. To reduce the variance, the 
model can be biased towards a hypothetic relationship among predictors and 
outcome variable, such as linear relationship, or more complex relationships. The 
trained model will not follow the training data as closely, with reduced variance and 
increased performance until a point where the model becomes too inflexible to 
accurately describe the true relationship. The trade-off between bias and variance is 
an important task in creating a good model.272,281 

Differential expression 

The first aim of many gene expression and proteomics studies is to find which gene 
expression or protein abundances that differ between two phenotypes. The most 
basic approach is to use traditional statistics to calculate a statistical confidence that 
the gene is indeed differentially expressed e.g. by a t-test or a Mann-Whitney test. 
As discussed elsewhere, this is of little importance without the effect size and an 
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accompanying calculation of fold-change between the two different phenotypes, 
which can be presented in a volcano plot. For purposes of ranking the genes, this 
may be sufficient, and the resulting gene list may be used for further analysis of the 
important features by e.g. pathway analysis. If the goal is to more conclusively 
determine that these genes are differently regulated, more advanced models such as 
linear modelling for microarrays (limma), or significance analysis of microarrays 
(SAM), or methods that include multiple correction testing, false-discovery rate 
calculations or permutation calculations, should be used. 

Regression and classification 

The next type of analysis is usually the prediction of new samples based on the 
knowledge of previous samples, today often performed through different machine 
learning algorithms. In this context, we have mainly used linear regression (study I, 
II, and IV), random forest modeling (study IV), support vector machines (IV) and 
k-top scoring pairs (study IV). 

Standard linear regression consists of fitting a presumed near linear relationship 
between a single predictor variable and the outcome variable, using least squares 
methodology. One can easily incorporate more predictor variables in a multiple 
linear regression, but with more predictor variables, the risk of overfitting increases, 
and with the number of predictors being the number of observations -1, there is 
always a perfect fit. This becomes important in the high-dimensional setting. The 
linear model has been further extended and many other techniques may be seen as 
a generalization of the linear model.272 

Decision trees are methods of segmenting predictors into regions, which can be 
easily visualized in a tree-like structure. However, they do not have the same 
performance as more advanced models, but their performance can be increased by 
combining many trees into a single model to yield a consensus prediction. Random 
forest is a tree-based method that utilizes this; the average of many decision trees 
reduces variance and is thus more robust than one tree alone. The method uses a 
way of decorrelating individual trees by allowing only a random subset of the 
variables in each node split, usually the square root of the total number of variables 
(but may be optimized using cross validation), and creates a tree of a subset of the 
observations, around 2/3 of the data. The performance can then be tested with the 
remaining 1/3 of samples, called the out-of-bag samples, which resembles cross 
validation. Also, the importance of each variable in the model can be calculated, and 
used for recursive feature elimination and feature selection, as exemplified in study 
IV. Random forest models are usually using hundreds to thousands of trees, and the 
average of the trees is used for the final model, making them much harder to 
interpret than a single decision tree, but usually with higher performance.272 
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Support vector machines is another machine learning method that we evaluated in 
study IV, but did not choose to use as random forest models performed as good, and 
were easier to implement. Support vector machines use a hyperplane that maximally 
separates the observations in different groups from each other, and further uses 
support vectors (vectors that are created by the closest observations to the separating 
hyperplane), to calculate the hyperplane. In the case that a hyperplane cannot 
perfectly separate the observations, or is not desirable as it may introduce extreme 
variance in the model, a soft margin that allows observations to be on the “wrong” 
side of the separating hyperplane is used, and the width of the soft margin is used 
as a tuning parameter (C or “slack” parameter). In addition, the support vector 
machine can be extended to use non-linear kernels to find even more complex 
patterns and decision boundaries.272 

Top scoring pairs (TSP) is a method using simple, rule based, classifiers in the form 
of gene A is higher than gene B. The process of selecting a k number of top scoring 
pairs is called k-top scoring pairs (kTSP). The advantage of a kTSP model is that it 
is only dependent on the relative values within a sample, and should thus in theory 
be independent of the platform used, normalization and scaling, provided that the 
relative intensities within a sample do not shift.282 In addition, the simplicity of the 
model may make it easier to understand in terms of underlying biology. The value 
of a kTSP approach has also been demonstrated for feature selection.283 In study IV, 
we used kTSP and data from a targeted gene expression assay to train single sample 
predictors for risk of breast cancer IBTR after breast conserving surgery, with and 
without adjuvant RT. 

For both random forest and support vector machine models, the tuning parameters 
(number of variables to input for random forest, and C-value specifying the slack or 
the width of the soft margin, for support vector machine) must be specified. This is 
a potential source of information leakage, and proper use of cross-validation must 
be used. 

Pathway analysis 

Pathway analysis aims to go beyond the findings of individual genes and proteins 
that differ between phenotypes, and interpret the findings in a larger biological 
context. Pathways in this sense is very loosely defined as a set of genes that are 
related in a certain biological function, and a more appropriate nomenclature may 
be gene sets. There are several ways to analyze genes together, of which clustering 
of genes has already been discussed. Other common methods include gene set 
enrichment analysis, overrepresentation test of gene lists, and network based 
analysis. Important to mention is that these methods rely heavily on previous gene 
annotation, and the results cannot be expected to be better than the prior biological 
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knowledge. However, attempts to collect and curate such gene sets are ongoing and 
promises to increase the accuracy of pathway analysis.284 

In addition to finding the biological context, the use of pathways or biological 
concepts to analyze tumors has indeed been shown to be more robust than individual 
genes. There is a small overlap between prognostic genes in public datasets, but 
large collections of genes are correlated, and many genes capture the same biology, 
even to the extent that randomly selected genes perform as good as pre-selected 
genes, provided the number of genes is sufficiently large.285 

Gene set enrichment methods, such as the gene set enrichment analysis (GSEA), 
use ranked gene lists of difference between two phenotypes, and calculate an 
enrichment score based on how many genes are ranked in the top or bottom of the 
list. The exact calculation of the enrichment scores may be different, and simpler 
methods have proved more successful.286 Over-representation tests also use gene 
sets, and analyze the top differing genes to assess if certain gene sets have more 
genes present than would be expected by chance. This is commonly used together 
with gene ontology (GO) annotations, such as implemented in the PANTHER 
tool.287 Network analysis focuses on physical or chemical interactions between 
molecules, known for biological experiments or in silico predictions, and searches 
for such patterns in the data.288 

We have used the PANTHER tool in study V, and in study IV we use both clustering 
of genes and the correlation of these clusters with previously described breast cancer 
gene clusters, and calculate proliferation scores and immune scores by manually 
creating gene lists.289,290 

Important considerations for high-dimensional data 

Usage of high-dimensional data techniques demands certain considerations to be 
able to draw correct conclusions. First, proper validation cannot be overstated, and 
ideally in independent and prospective data. This is often not possible, and 
validation of models under development can be done by dividing the data into a 
training and a validation part, with no access to the validation data before a final 
model is locked. Further, independent retrospective cohorts, and already published 
data, can be used. Before validation in independent data, cross-validation is used to 
optimize model parameters, and to estimate the performance in future cohorts. 
Cross-validation is performed by dividing the data into k-number of folds, usually 
five or ten folds, meaning equally sized splits of the data. A model is then trained in 
k-1 folds and tested in the left-out fold. The procedure is repeated for all folds and 
the performance is averaged. A special case of k-fold cross-validation is with k set 
as the number of observations, meaning that the model is trained on all except one 
observation, also known as leave one out cross validation (LOOCV). Cross-
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validation gives an opportunity to estimate model performance and optimize the 
model without information leakage before further testing in a locked dataset. Correct 
use of cross validation should in theory produce an overestimate of the model error, 
since not all data is used to train the model and the model should improve with more 
training observations. However, empiric studies have shown that cross validation 
often over-estimate the performance, which is probably due to improper use, such 
as training several models and use the cross-validated performance of the best one, 
or other types of information leakage.291 

In study IV, we use random forest and recursive feature selection and must thus use 
a double-loop of cross validation, both for the selection of features, and for the 
performance of the model itself. 

Another consequence of high dimensions is that the search space for important 
features increases the risk of chance findings. This becomes problematic e.g. when 
trying to search for peptides in databases combining different species, or in 
databases incorporating all possible cancerogenic mutations. Three general ways of 
dealing with this dimensionality problem can be used.272 The first alternative is to 
use only a subset of the predictors. This can be achieved by prior knowledge of 
important variables, e.g. variables that have been previously reported as important 
in a certain setting. It can also be achieved by testing how variables perform in a 
known dataset, and the iterative approach of removing features from a model is 
known as recursive feature elimination. We use recursive feature elimination in 
study IV to select genes for further development into a targeted assay, ranking of 
features based on simple t-tests in study V, and we also use prior knowledge in study 
IV and V. When the data is used to select for variables, this is of course a situation 
of information leakage and must be properly validated, otherwise chance findings 
are highly likely. This has been demonstrated in a colon cancer dataset where perfect 
discriminating performance was found after randomly permutating the data.292 

The second method is directed at altering the coefficients in the models to reduce 
variance, which is achieved by shrinking the coefficients towards zero. Lasso 
regression is a method that removes non-contributing predictors completely, while 
ridge regression keeps all predictors. The elastic net method represents a middle 
ground between lasso and ridge regression. 

The third way is to use dimension reduction, such as PCA or MDS, and use the 
reduced variables for modeling. 
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Summary of results 

This thesis consists of three main parts. Study I and II investigate the role of the 
putative estrogen receptor GPR30 in response to adjuvant endocrine therapy, and 
the signaling mechanisms of this receptor. Study III and IV consider the possibility 
to personalize adjuvant radiotherapy (RT) treatment after breast-conserving surgery 
(BCS), either by breast cancer subtype or gene expression-based classifiers. Study 
V explores the use of mass spectrometry-based proteomics to find biomarkers of 
increased risk of metastatic breast cancer after endocrine treatment failure. 

GPR30 and endocrine therapy (study I and II) 

GPR30 as a prognostic and treatment-predictive biomarker 

In study I, we investigated GPR30 as a prognostic biomarker in early breast cancer, 
and as a predictive biomarker for adjuvant endocrine therapy. The study is based on 
tissue from the Stockholm-3 (STO-3) trial, which was a randomized controlled trial 
of low-risk breast cancer patients randomized to 2-5 years of tamoxifen treatment 
or no systemic adjuvant treatment. The original study showed a benefit of adding 
tamoxifen after surgery, and that the response was dependent on the expression of 
the estrogen receptor alpha (ER).183 The low-risk part of the STO-3 study consisted 
of 1780 patients, of which 912 were sampled for tissue, and tissue microarrays 
(TMAs) were constructed. On the TMAs, we were able to stain and score 742 
tumors for GPR30 with immunohistochemistry (IHC), both as overall staining in 
the cancer cells, and as plasma membrane staining (Figure 8). 

First, we found that GPR30 was not prognostic for distant disease-free survival 
(DDFS) when analyzed as a total score (p=0.38). However, when analyzed as 
expression localized to the plasma membrane (PM), it was associated with a shorter 
DDFS (HR 1.8 95%CI 1.2–2.5, p = 0.002) in all patients. Stratifying for ER status, 
the results remained significant only in the ER+ tumors (HR 2.1 95%CI 1.4–3.1, 
p<0.001) but not in the ER- tumors (HR 1.1 95%CI 0.55–2.2, p = 0.79), although 
an interaction test was not significant (p=0.13), calling for caution on the subgroup 
analyses. In a multivariable analysis, GPR30 PM expression remained a significant 
prognostic factor. To further investigate the prognostic potential of GPR30, we 
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investigated a pre-defined group of patients with a supposedly excellent response to 
endocrine therapy, the ER+ and progesterone receptor (PR) positive patients, and 
GPR30 could still separate this group, with the GPR30 PM negative tumors having 
a 20-year DDFS of 91% (95%CI 84-95) (Figure 9). 

 

Figure 8. GPR30 staining of breast cancer cells on tissue microarray with immunohistochemistry. Strong staining in 
the plasma membrane is seen. 

Second, we sought to evaluate if GPR30 expression, either total score or expression 
in the plasma membrane, was treatment-predictive of adjuvant tamoxifen treatment. 
However, neither of the staining scores could show any treatment prediction 
information in the adjuvant setting. 

In study II, we investigated the mechanistic role of GPR30 in terms of its signaling, 
and its prognostic effect in two different breast cancer cohorts. The first cohort 
consisted of 273 pre- and postmenopausal patients with stage II breast cancer treated 
with surgery and RT as indicated, and two years of tamoxifen treatment, but no other 
systemic treatment. Cohort II consisted of 237 premenopausal patients with lymph 
node-negative breast cancer treated with surgery and RT as indicated, and little 
adjuvant systemic treatment (13%). 
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Figure 9. GPR30 (GPER) as a prognostic biomarker in the STO-3 study. Overall staining was not prognostic (A). 
However, GPR30 in the plasma membrane was a biomarker for worse prognosis (B). The results were similar among 
ER+ patients (C) and tamoxifen untreated patients (E), but not for ER- patients (D). Among the ER+, PR+ and 
tamoxifen treated patients, GPR30 could still separate patients with a long-term better vs worse prognosis (F). First 
published in Sjöström, M., Hartman, L., Grabau, D. et al. Breast Cancer Res Treat (2014) 145: 61. Reprinted with 
permission. 
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GPR30 was evaluated with IHC on TMAs for the two cohorts. In cohort I, GPR30 
expression was associated with a longer DDFS (HR 0.75 95% CI 0.60-0.94, 
p=0.014), and the results remained significant in the ER+ subgroup (HR 0.66 95%CI 
0.49–0.88, p=0.007), but not in the ER- subgroup (HR 1.06 95%CI 0.76–1.48, 
p=0.7), and an interaction test showed moderate evidence for interaction between 
ER status and GPR30 (p=0.06). In, cohort II, we found a trend towards association 
with a longer DDFS (HR 0.75 95%CI 0.55-1.04, p=0.08) and again, this was the 
pattern in ER+ disease (HR 0.62 95%CI 0.39–0.99, p=0.05) but not in ER- disease 
(HR 0.97 95%CI 0.63–1.49; p=0.89), although an interaction test was not significant 
(p=0.16). 

Apoptotic GPR30 signaling in breast cancer 

As previous reports have suggested GPR30 to be pro-apoptotic, and because the 
prognostic effect of GPR30 appeared to be independent of tamoxifen treatment, we 
investigated the constitutive pro-apoptotic signaling of GPR30. Such signaling was 
investigated in HEK293 cells (HEK), a model system cell lacking GPR30, before 
and after stable transfection of GPR30. Cells expressing GPR30 (HEK-R) showed 
a 35% decrease in cell viability, as compared to HEK. Moreover, the HEK-R cells 
also had an increased release of mitochondrial cytochrome C and PARP cleavage, 
both markers of apoptosis, and increased ERK1/2 phosphorylation. The pro-
apoptotic signaling was increased with addition of the proteasome inhibitor 
epoxomicin, which blocks GPR30 degradation, and thus increases the levels of 
GPR30. Pro-apoptotic signaling was further confirmed with visual inspection of 
fragmented nuclei and condensed chromatin using phase-contrast and fluorescence 
microscopy. 

The pro-apoptotic signaling was further tested in the breast cancer cell lines MCF-
7 and T47-D. As MCF-7 cells express GPR30, we changed strategy and used 
transient knockdown of GPR30 to study the effect of receptor expression. Doing so, 
we found decreased p53 expression and cytochrome C release, but no change in 
PARP cleavage or ERK1/2 phosphorylation. We also tested if this was affected by 
a GPR30 agonist (G1), and one of the active metabolites of tamoxifen (4-OH-
tamoxifen). Generally, we found markers of apoptosis to be up-regulated when 
treating MCF7 cells with G1 or 4-OH-tamoxifen, and that the effect was weaker in 
MCF7 with transient knockdown of GPR30, and in T47D cells, which express less 
GPR30. The results should be interpreted with caution, keeping in mind that both 
G1 and 4-OH-tamoxifen have effects that are not mediated through GPR30. 
Nevertheless, the results indicate that GPR30 effects can be pharmacologically 
modified. 
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Association of GPR30 with clinical factors and possible mechanistic change  

In both study I and II, the association of total GPR30 expression with other 
clinicopathologic variables was tested. In cohort I in study II, an association of total 
GPR30 was found for ER and PR, but no other variable, while in cohort II the same 
association was found for ER and PR, but also with age and a negative association 
with tumor size, histologic grade and Ki67 expression. 

In study I, we also tested the association of total GPR30 and clinicopathologic 
variables. Again, total GPR30 was associated with ER and PR, but interestingly the 
GPR30 expression in the PM was negatively associated with ER and PR, and 
positively correlated with histological grade. This led us to investigate in more detail 
how the clincopathologic variables vary with different levels of GPR30 expression. 
Indeed, a biphasic correlation was found, meaning that the most extreme values had 
the same association. We also redid the analysis for cohorts I and II in study II, and 
the results were strikingly similar, showing that both the GPR30 negative tumors, 
and the tumors most highly expressing GPR30, were associated with a more 
aggressive phenotype (ER-, PR- and histologic grade 3, Figure 10). 

 

Figure 10. Biphasic relationship of GPR30 staining intensity with estrogen receptor alpha expression (ER+), 
progesterone receptor expression (PgR+) and histological grade 3 in three cohorts: A) study I, B) study II cohort II and 
C) study II cohort I. First published in Sjöström, M., Hartman, L., Grabau, D. et al. Breast Cancer Res Treat (2014) 
145: 61. Reprinted with permission. 
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This may well explain why the literature has been so inconsistent regarding GPR30 
as a prognostic marker for better or worse prognosis. From our data, the role of 
GPR30 appears to be highly dependent on how the data is split in groups. 

Taken together, several observations in study I and study II would be consistent with 
a hypothesis that GPR30 is expressed in normal cells and decreases in expression 
during cancer transformation and acquisition of more non-differentiated phenotype 
in most cells. This is also the case for e.g. ER.293 However, in a minority of tumors, 
an activating event, may it be a mutation, amplification or post translational 
modification, alters the function of the receptor, makes it shift signaling, and 
localize to the plasma membrane. This is also supported by the high staining of 
normal cells and cancer in situ, which generally are highly expressing GPR30, with 
a marked decrease when the cancer become invasive (Figure 11). Second, this would 
explain the biphasic relationship with other clinicopathologic variables, and markers 
of an aggressive phenotype. Third, the fact that the expression of GPR30 is only 
prognostic in the STO-3 trial when expressed in the plasma membrane, and confers 
a worse prognosis, suggests that the receptor shifts function, localizes to the plasma 
membrane, and potentially drives the cancer. Although speculative, this hypothesis 
merits future investigations. 

 

Figure 11. GPR30 staining in cancer in situ and in surrounding infiltrating tumor cells. A clear decrease in GPR30 
expression is seen in the cancer cells, compared to cancer in situ. 
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Personalized radiotherapy (study III and IV) 

In study III, we investigated if the breast cancer subtypes respond differently to 
adjuvant RT after BCS, and could thus be used as a treatment-predictive tool. We 
further evaluated the effect of RT in the absence of systemic adjuvant treatment in 
a presumed low-risk group of breast cancer, similar to the groups that are being 
investigated in de-escalation trials. In study IV, we continued the work to find a 
predictor for response to adjuvant RT on the gene expression level, with the aim to 
create prognostic signatures for ipsilateral breast tumor recurrence (IBTR), and 
investigate the biologic details behind gene expression predictors for 
radiosensitivity. 

Breast cancer subtype and the response to adjuvant radiotherapy after BCS 

Study III is based on the SweBCG91-RT randomized trial, which is a trial of BCS 
+/- RT. Patients with lymph node negative stage I-II breast cancer were included. 
Important to note is that systemic adjuvant treatment was given according to 
regional guidelines at the time, meaning that the patients in SweBCG91-RT were 
largely systemically untreated (92%). From the 1,178 patients in the trial, we could 
retrieve tissue and construct TMAs from 1,003 tumors. Tumors were stained for ER, 
PR, HER2 and Ki67, and surrogate subtyping was performed according to the St. 
Gallen 2013 guidelines, with the modification that luminal HER2+ and non-luminal 
HER2+ tumors were grouped together, due to group sizes (Figure 12). The effect of 
RT on the 10-year cumulative incidence of IBTR as first recurrence was studied as 
the primary endpoint with a competing risk analysis. In addition, all recurrences, 
breast cancer death and death from any cause were studied. 

 

Figure 12. Algorithm for surrogate breast cancer subtyping used in study III. ER – estrogen receptor, PR – 
progesterone receptor, HER2 – human epidermal growth factor receptor 2. 
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RT reduced the cumulative incidence of IBTR at 10 years for all subtypes except 
the HER2+ groups (Luminal A–like tumors: 19% vs 9%, HR 0.46, p = 0.001; 
Luminal B–like tumors: 24% vs 8%, HR 0.33, p=0.001; triple-negative tumors: 21% 
vs 6%, HR 0.25, p= 0.08; HER2+ 15% vs 19%, HR 1.29, p = 0.6), but an interaction 
test did not support an overall difference in effect (p=0.21). The results were similar 
when analyzing all recurrences, except that Luminal B-like tumors had less effect 
of RT (Luminal A–like 26% vs 14%, HR 0.50, p=0.001; Luminal B–like tumors 
29% vs 23%, HR 0.76, p=0.3; triple-negative tumors 38% vs 15%, HR 0.35, p = 
0.03; HER2+ 30% v 30%, HR 1.0, p = 1.0). These results are in line with the idea 
that Luminal B tumors have a higher risk of distant metastasis than Luminal A 
tumors, and that RT is less effective to prevent distant metastasis than IBTR. For 
the endpoints breast cancer death (BCD) and death from any cause, no subtype had 
a significant effect from RT (except the triple-negative that were borderline 
significant for endpoint BCD), which is consistent with the entire study, as well as 
the literature, where a large meta-analysis was needed to obtain the required power 
to demonstrate benefit from RT on survival.102 

 

Figure 13. Effect of adjuvant whole-breast radiotherapy (RT) for a clinical low-risk (N0, age ≥ 65 years) luminal A–like 
group on cumulative incidence of (A) ipsilateral breast tumor recurrence (IBTR), (B) any breast cancer (BC) 
recurrence, (C) breast cancer death, and (D) any death. CIF, cumulative incidence function; HR, hazard ratio. First 
published in: Martin Sjöström et al. JCO  2017, 35, 3222-3229.Copyright © 2017 American Society of Clinical 
Oncology. Reprinted with permission. 
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Effect of adjuvant radiotherapy in a presumed low-risk group of breast cancer 

The effect of RT was tested in a pre-defined low-risk group of breast cancer (lymph 
node-negative, > 65 years of age and Luminal A-like). The effect of RT on 
cumulative incidence of IBTR as first event at 10 years was excellent (20% vs 6%, 
HR, 0.30, p = 0.008) but no effect was seen on BCD or death from any cause (Figure 
13). 

Development of a targeted breast cancer gene expression radiosensitivity assay 

In study IV, we aimed to develop a gene expression assay with classifiers prognostic 
for IBTR after BCS, and treatment-predictive for adjuvant RT (Figure 14). We 
collected fresh frozen breast cancer tissue samples from three health care regions in 
Sweden. The samples were collected in a case-control fashion with cases being 
defined as patients later suffering from an IBTR, and controls as being recurrence-
free for at least the same time as the matched case. The patients were matched for 
ER status and RT treatment, and the analyses were performed stratified for ER status 
and RT. The aims were to identify a low-risk group of patients that do not need any 
addition of RT, and a group that is radioresistant and would need additional 
treatment. These aims can be thought of as creating a “radiation omission” and a 
“radiation intensification” signature. We hypothesized that the biology governing 
these signatures would not be the same, and therefore decided to use the RT- tumors 
as the group in which to develop the “radiation omission” signature, and the RT+ 
tumors as the group in which to develop the “radiation intensification” signature. 
This resulted in the analysis of four separate groups: ER+RT+, ER+RT-, ER-RT+ 
and ER-RT-. 

In all, we were able to collect 336 fresh frozen tumors. Total RNA was extracted, 
and we noted that samples from one of the centers had significantly lower RNA 
quality than the others. Since targeted, or more robust assays, are required for the 
analysis of lower quality RNA, we decided to use the higher quality RNA samples 
as a discovery cohort (N=172), transfer the results from the discovery cohort to a 
targeted assay, and use the lower quality RNA samples as a validation cohort 
(N=164) with the targeted assay. 

The first step was to select the panel of genes to use for a targeted assay. To that 
end, the discovery cohort was analyzed with the Illumina HT12 v4 whole 
transcriptome microarray. A random forest model with cross-validation and 
recursive feature elimination was used for each of the four groups to rank the top 
discriminating genes for IBTR. For the groups were discriminating potential was 
found (ER+RT+, ER+RT-, ER-RT-), the top 50 genes, respectively, were selected 
for the targeted assay. 
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Figure 14. Overview of study IV. Patients were included as cases and controls, and divided into a discovery cohort 
and a validation cohort. The discovery cohort was analyzed with a whole transcriptome analysis (Illumina HT12 v4), 
and genes were selected for a targeted panel. All samples were rerun using the targeted assay. Singe Sample 
Predictors (SSPs) for risk of IBTR, and treatment stratification, were developed in the discovery cohort and tested in 
the validation cohort. Finally, the SSPs were validated in public datasets, and previously published signatures were 
tested in our data. 

To the genes selected from the discovery cohort analysis we added genes from three 
previously described radiosensitivity signatures,147,154,294 genes from the literature 
reported to be associated with radiosensitivity or biology relevant to radiobiology 
such as DNA repair, apoptosis and hypoxia, and house-keeping genes for 
normalization purposes. The final panel included 248 genes. 
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The next step was to select a platform for the targeted assay. For clinical use, the 
ability to analyze samples that are formalin-fixed and paraffin-embedded (FFPE) is 
important. We therefore chose the Nanostring nCounter platform, which is already 
FDA approved for use with clinical FFPE samples. All samples from the discovery 
cohort and the validation cohort were analyzed using the custom designed nCounter 
assay. 

Single Sample Predictors for predicting ipsilateral breast tumor recurrence 

With the data from the targeted assay, we created signatures for classifying a sample 
as a case (high risk of having an IBTR) and control (low risk of having an IBTR) 
for each of the four groups. Data was normalized for technical and sample factors, 
and probes and samples were filtered for quality. As expected when analyzing data 
from several centers with different handling and storage (e.g. embedded in OCT 
embedding media), and even more with one center having samples of lower quality, 
batch effects were observed. One strategy to overcome this problem is to correct for 
batch effects (as was done for the Illumina HT12 data), but that risks making any 
final predictor/classifier cohort specific, and requires re-training or re-calibration 
for each new dataset. Instead, we chose a Single Sample Predictors (SSP) approach, 
using the k-top scoring pairs (kTSP) algorithm, a method that in theory should be 
cohort independent and only analyze the relative expression values within a 
tumor.282,283 Four classifiers, one for each group, were trained in the data from the 
discovery cohort using the targeted assay, and the results were validated in the 
corresponding group in the validation data. 

The SSPs were prognostic for IBTR in the ER+RT+ group (p=0.005, AUC 0.67 
95%CI 0.56-0.78), the ER+RT- group (p=0.015, AUC 0.89 95%CI 0.73-1) and in 
the ER-RT+ group (p<0.001, AUC 0.78 95%CI 0.58-1). We could not test the 
predictor in the ER-RT- group, as there were too few samples remaining for 
meaningful analysis (N=3). 

In addition, we tested the SSPs in two publicly available breast cancer datasets: the 
data by Servant et al., and the data by van de Vijver et al.150,295 In the Servant dataset, 
all patients were treated with RT, while a majority was treated in the van de Vijver 
dataset, and we therefore only could test the SSPs trained in the RT+ data. The 
ER+RT+ SSP was prognostic both in the Servant dataset and the van de Vijver 
dataset (p=0.006, AUC 0.62 95%CI 0.54-0.69 and p=0.001, AUC 0.69 95%CI 0.63-
0.76, respectively). The ER+RT- SSP was prognostic for IBTR in the Servant data 
(p=0.006, AUC 0.74 95%CI 0.61-0.86) but not in the van de Vijver data (p=0.85 
AUC 0.48 95%CI 0.33-0.62). 

Combination of Single Sample Predictors for treatment prediction 

So far, the SSPs were validated to be prognostic for IBTR in the respective groups. 
However, this requires that we know if the patient was (or will be) treated with RT 
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to apply the correct model. The goal is instead to be able to stratify the patients 
before a treatment decision. To that end, we hypothesized that the SSPs developed 
in the RT- tumors could be used to determine if the patient needs addition of RT, 
which would be equivalent to a “radiation omission” signature. If predicted low risk, 
the patients would be stratified to the “No RT” group. If the patient was predicted 
to be at high risk of IBTR, the SSP developed in the RT+ patients was used, which 
we hypothesized could determine if the patient is at high risk of IBTR when given 
RT. If predicted low-risk by the second classifier, the patient would be stratified in 
the “Give RT” group, while if at high risk of IBTR after RT, the patient would be 
assigned to the “More treatment” group (Figure 15). 

 

Figure 15. Proposed combination of Single Sample Predictors for radiation omission and radiation intensification to 
stratify patients for adjuvant radiotherapy. GEX – gene expression profiling, BCS – breast-conserving surgery, RT- 
adjuvant radiotherapy. 

We applied this sequential algorithm separately for the ER+ and ER- tumors, and 
assessed the effect of giving RT in the predicted groups. For the ER+ tumors, the 
“No RT group” had no benefit of RT (p=0.4), but did not have a low risk of 
developing IBTR (25% at 10 years). Notably, these numbers are hard to evaluate as 
this study is enriched for patients suffering IBTR, and not representative of a 
consecutive breast cancer cohort. The group predicted as “Give RT” on the other 
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hand had an excellent effect of RT (p<0.001). The group predicted as “More 
treatment” did not have an effect of RT (p=0.4), and a substantially higher risk of 
IBTR than the “No RT” group (55% at 10 years). Again, these number should be 
interpreted in the context of the current study only (Figure 16). 

For ER- tumors, only two were RT untreated, and we could thus only investigate 
the prognostic effect in the whole group. The “More treatment” group had a 
significantly higher rate of IBTR than the patients predicted in the “No RT” and 
“Give RT” groups (p<0.001) (Figure 16). 

Although the analysis in study IV is exploratory, the conceptual idea show promise 
in stratifying patients for RT treatment. 

 

Figure 16. Effect of radiotherapy in the groups as predicted by combining Single Sample Predictors for radiation 
omission and radiation intensification in ER+ tumors (A). For ER- tumors, only two were radiotherapy untreated and 
we thus only assessed the prognostic potential (B). 
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The underlying biology behind radiosensitivity predictors 

The SSPs were developed in different groups of breast cancer, and the aim was to 
answer different biological questions about the tumors. In addition, we saw a clear 
difference in performance for different subgroups when testing the two public 
profiles (the radiosensitivity signature (RSS) and the radiosensitivity index (RSI)), 
which has also been shown previously by the authors.296 To this end, we correlated 
the scores from the profiles with proliferation and overall immune response, two of 
the most important biological determinants of breast cancer outcome. The SSPs 
developed in ER+ tumors showed a correlation with proliferation, while SSPs 
developed in ER- tumors were correlated with immune response. The RSS was 
correlated with proliferation, and negatively with immune response. RSI on the 
other hand, was negatively correlated with both immune response and proliferation. 
Interestingly, the original authors of RSI recently showed the same correlation with 
immune activation.296 

Proliferation is the major determinant of prognosis in ER+ disease and immune 
response is a major prognostic factor in ER- disease.297 Thus, considering how the 
signatures correlate with biology, the subgroup specific performance seems logical. 
The RSS, correlated with proliferation, performed best in ER+ disease, while the 
RSI, correlated with immune response, performed better in ER- disease. In fact, the 
tumors that score high in RSI, and thus have a worse prognosis and/or are 
radioresistant, are slowly proliferating and have a low immune response. Indeed, the 
ER+ untreated tumors that are predicted to be at high risk, have the better prognosis. 

Taken together, the underlying biology that the signatures capture may well explain 
why they perform differently in ER+ and ER- disease, and this should be considered 
when planning future studies. Further, it strengthens the rationale to create 
subgroup-specific classifiers and predictors in breast cancer. 
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Protein biomarkers for distant recurrence (study V) 

In study V, we explored a method of combining two conceptually different mass 
spectrometry techniques to analyze proteins, namely shotgun LC-MS/MS and 
targeted LC-SRM (Figure 17). The method was applied to the N-glycosylated 
subproteome of a set of 80 primary tumors from patients with primary breast cancer 
that underwent surgery 1983-1991. The patients were treated with RT as indicated, 
and treated with two years of adjuvant tamoxifen. 

 

Figure 17. Overview of study V. DR – distant recurrence, ER – estrogen receptor, LC – liquid chromatography, 
MS/MS – tandem mass spectrometry, SRM – selected reaction monitoring. First published in Sjöström et al. J. 
Proteome Res., 2015, 14 (7), pp 2807–2818. Reprinted with permission. 
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Figure 18. A gene ontology analysis using the online tool PANTHER, for the N-glycosylated proteins identified in the 
discovery phase of study V. Results are shown for molecular function (A) and cellular component (B). First published 
in Sjöström et al. J. Proteome Res., 2015, 14 (7), pp 2807–2818. Reprinted with permission. 

In a first phase of the study, we did a label-free shotgun LC-MS/MS analysis of the 
samples. The major reason for this analysis was to identify proteins present in the 
samples, and their peptide composition and properties to develop the targeted assay. 
The LC-MS/MS shotgun approach is a good method of identifying peptides and 
proteins present in a sample, but it lacks in quantitative accuracy. With stringent 
filtering criteria, we could identify 1,515 N-glycosylated peptides from 778 
proteins. To confirm the enrichment for N-glycosylated peptides of relevant 
biology, a search with the PANTHER gene ontology tool was made and the 
molecular function and cellular components of the proteins were assessed.287 The 
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proteins showed the expected enrichment for receptors, signaling molecules and 
components of the cell surface and extracellular matrix (Figure 18). 

In the second phase, we developed a 92-protein-plex LC-SRM assay. The candidate 
proteins selected for the targeted assay were based on several criteria. First, we did 
an overview differential expression analysis on the LC-MS/MS, although the results 
should be interpreted with statistical caution, as the quantitative accuracy is 
suboptimal, and the data suffers from a high fraction of missing data. Second, we 
added kinases, which are important signaling molecules that can drive cancer 
progression.298 Finally, SRM assays were already developed for several important 
proteins in breast cancer biology, and we included those in the assay. In total, the 
panel consisted of 155 proteotypic peptides from 92 proteins. 

The samples were then re-run using the targeted LC-SRM assay. To assess the 
clinical accuracy and validity, we specifically assessed the HER2 protein, from 
which two peptides were chosen for the targeted LC-SRM. At the time of surgery 
HER2 evaluation was not routine, and we therefore only had clinical data for 28 of 
the patients. Of these 28 patients, we detected at least one HER2 peptide in 18 
tumors, and the correlation for the measurements of the HER2 peptides with clinical 
status was perfect, except for one case which had a very high abundance measured 
for both HER2 peptides, but was clinically negative (Figure 19). Not detecting a 
HER2 peptide in a sample could be because the peptide was below the level of 
detection, and all samples where we did not detect a HER2 peptide, and had clinical 
data, were clinically negative. 

 

Figure 19. Selected reaction monitoring (SRM) measurements of two HER2 peptides compared to clinical status, as 
reported from the pathology laboratory. First published in Sjöström et al. J. Proteome Res., 2015, 14 (7), pp 2807–
2818. Reprinted with permission. 
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We further assessed the differential regulation between patients with or without 
distant recurrence, stratified for ER status, with a Wilcoxon rank-sum test. At the 
0.05 significance level, 10 peptides from 10 proteins were significantly regulated 
and interestingly, only 1 was significant in both ER+ and ER- tumors. Moreover, 15 
peptides from 11 proteins were significantly regulated between ER+ and ER- 
tumors, strengthening the rationale to analyze them as separate groups. A literature 
search showed that most of the discovered proteins were known to be important in 
cancer biology, but some of the proteins were also previously not reported in cancer 
biology. 

Finally, we performed orthogonal validation of the candidate proteins in publicly 
available gene expression data using the online tool Kaplan-Meier plotter.299 Good 
quality probes were available for analysis for 9 out of 10 proteins, and 5 were 
significantly regulated also at the gene expression level. The patterns with ER status 
specificity was largely reproduced for these proteins at the gene expression level. 
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Discussion 

In the following discussion I will comment on the main results and some of the 
methodological considerations that have been highlighted during our work towards 
this thesis. The main results concern the use of endocrine therapy and radiotherapy 
(RT) in an adjuvant setting, and possible ways to personalize the treatment. Further, 
the work goes into detail regarding the role and functioning of the putative estrogen 
receptor GPR30 in breast cancer. From a methodological perspective, I have 
focused much on the data analysis, and many aspects are important for the 
interpretation of the work, and worth discussing, such as patient and sample 
selection, subgroup analysis, cut-point definitions, study endpoints and multiple 
hypothesis testing. Finally, study IV and V aim to select features and creating 
targeted assays for clinical use, and I discuss demands for such assays. 

Personalized endocrine therapy or radiotherapy 

Endocrine therapy and RT are widely used adjuvant treatments for primary breast 
cancer. Both are proven to reduce the risk of recurrence, and risk of breast cancer 
death. In the attempts to personalize treatment, the trend is towards de-escalation of 
RT (e.g. by avoiding RT to a low-risk group of patients), and sometimes escalation 
of endocrine therapy, such as prolonging the treatment to ten years (although other 
personalized approaches are also used, such as tamoxifen and GnRH analogue in 
younger women, and switching AI to tamoxifen in older women). In addition, 
endocrine therapy is attracting increased attention for a role in prevention of breast 
cancer.19,300 This is interesting, since although RT may appear like a more invasive 
treatment than endocrine medications, the side-effects of endocrine therapy may be 
severe and followed by a low adherence to the treatment, and many women may 
prefer a treatment spanning weeks instead of years.301,302 Based on the results we 
present in study III, this is worth discussing. We report that a proposed low-risk 
group of breast cancer patients, similar to the groups that are part of the de-
escalating trials, have a very good effect of adjuvant RT for local control, and we 
propose that the low-risk group instead could be spared endocrine therapy in 
selected cases. It must be stressed that the SweBCG91-RT study, which our study 
is based on, differs from modern treatment in that other systemic treatments were 
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used sparsely, and it is important to remember that endocrine therapy exerts its effect 
systemically throughout the body. Although RT prevents breast cancer deaths in 
meta-analyses, we observed no effect on breast cancer death, nor overall survival, 
in our study. A pre-requisite for only administering RT is that the risk for distant 
recurrence is sufficiently low. 

Our results are in line with previous studies that show an effect of adding RT to 
endocrine treatment, and that the effect on reduction of ipsilateral breast tumor 
recurrence (IBTR) is similar between endocrine therapy and RT, or that RT is 
superior.303-308 In our study, we have a unique opportunity to study the effect of 
adjuvant RT as a single adjuvant treatment, and the results suggest it is highly 
effective for local control. Further, the rate of IBTR in this supposedly low-risk 
group is high without RT. Interestingly, some studies on the other hand indicate that 
the risk is sufficiently low in the untreated patients to avoid RT, but importantly 
those were treated with endocrine therapy and still have limited follow-up.309 The 
follow-up time becomes even more important in the low-risk group, since they tend 
to have a longer interval to recurrence. 

Taken together, I believe that the omission of endocrine therapy in favor of RT is 
not to be recommended based on the limited documentation of effect of RT on 
distant events. However, in cases where side-effects, compliance, age and patient 
preferences are against the use of endocrine therapy, RT should be considered. 
Indeed, it is worth noting that RT spans 3 to 5 weeks instead of 5 to 10 years, and 
that endocrine therapy is accompanied with side-effects and an adherence rate of 
50% to 80%.301,302 These options should be discussed with the patients, and in the 
end, the patient should decide which treatment effects are worth the side-effects. If 
RT is to be avoided, the patient should be informed that the risk of an IBTR may be 
substantial. This discussion highlights the need for better understanding of which 
patients will respond to radiotherapy, and ultimately true treatment-predictive 
biomarkers. 

A low-risk group that may be spared treatment? 

Attempts to further stratify patients for endocrine therapy have shown that high-risk 
and low-risk groups within ER+ patients have an effect of tamoxifen, regardless of 
risk score by transcriptomic tests.310 In study I and II, we also show that GPR30 is 
not a treatment-predictive biomarker for endocrine therapy. This raises the idea that 
if differences in treatment response cannot be detected, an alternative strategy may 
be to identify a group with so low baseline risk that that the absolute effect of 
treatment is negligible, although the relative reduction may still exist. This is the 
basis for the use of proliferation markers and gene expression tests for treatment 
stratification of chemotherapy. In study I, we examine the use of GPR30 to define 
such a low-risk group, with promising results in the tamoxifen-treated setting with 
possible implications for choice of chemotherapy or RT. Interestingly, the same 
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patient cohort was recently used to define such a low-risk group by gene expression 
signatures, with similar results to our GPR30 study, but importantly also the finding 
of a low-risk group among the systemically untreated patients. This may indicate 
that for some patients, surgery alone could be a treatment strategy.311 However, in 
the already low-risk Stockholm-3 trial, the proportion of patients that is considered 
“ultra-low risk” is 15% by gene expression signatures, and 22% by the classical 
markers, tamoxifen treatment, and lack GPR30 plasma membrane staining, 
suggesting that further optimization of the classifiers is needed to better define the 
low-risk group. Conversely, in study III, the proposed low-risk group defined by 
clinicopathologic markers did not have a low risk of IBTR. It would be highly 
interesting to investigate if molecular high-throughput techniques could be used to 
define a low-risk group also among these patients. In summary, the identification of 
a group of patients that can be treated with surgery alone is very interesting, but so 
far only small subset analyses have been presented, and more studies are needed 
before we safely can recommend surgery alone. 

Interesting to note is the overall high risk of recurrence, especially IBTR, reported 
in study III and in other studies from the same time period. Modern treatment 
outcomes tend to be better, and this may be because of both better treatments but 
also earlier detection. It will be interesting to follow the long-term results from 
current de-escalation trials, and if the promising early results will hold also long-
term. 

Gene expression-based predictors for personalized adjuvant radiotherapy 

Several groups have attempted to create gene expression-based predictors for 
response to adjuvant RT after breast-conserving surgery (BCS). One of the first 
reports came from Kreike et al. who used a small number of patients (19 with later 
IBTR vs 31 without later IBTR) and found no evidence of overall differences 
between tumors that developed, or did not develop, IBTR.153 However, the same 
group simultaneously published that refinement of already established gene 
expression signatures were prognostic of IBTR.151 Niméus et al. published that a 
support vector machine classifier on the global gene expression profile could 
differentiate between ER+ tumors with or without later IBTR in LOOCV, but the 
top discriminating genes could not be validated in follow-up studies.146 The group 
of Kreike et al. continued the work and presented a cross platform validated 
signature for IBTR mainly based on cell proliferation, but again, the sample size 
was relatively small (56 vs 109 samples).152 The authors tried to validate the 
signature in a larger cohort (343 samples), but were not able to reproduce the 
performance in this cohort and concluded that there are no significant gene 
expression patterns for the risk of IBTR.150 In separate attempts, Eschrich et al. 
validated the previously created radiosensitivity index (RSI), a radiosensitivity 
classifier based on the relative ranks of ten genes, also in breast cancer.147 The 
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performance was later confirmed only in ER- tumors.148 The group has since that 
combined the RSI with the linear quadratic model to a genomic-adjusted radiation 
dose (GARD), and also showed the signature to be correlated with immune 
response.149,296 Speers et al. have presented another model, based on a 51-gene 
random forest model, that appears prognostic for IBTR in RT treated patients.154 
Finally, Tramm et al. have also proposed a four gene classifier in the post-
mastectomy setting, with promising performance, but so far without further 
validation.294 

Taken together, promising results have been presented but definitive validations 
have been elusive. In study IV, we tried to address some of the problems remaining 
before introducing gene expression-based classifiers in the clinic, such as platform 
and pre-processing independence, handling of lower quality samples, biological 
basis for the classifiers, determining the performance in subgroups of breast cancer, 
and further validation of previously presented signatures. However, neither our 
newly proposed signatures, nor any of the previously published signatures, reach 
the needed accuracy for changing practice of administering RT. Part of the problem 
is the low power associated with the low number of samples and events we and 
others use, and further the non-randomized nature of the cohorts. In practice, the 
lack of high-quality samples and long-term follow-up is a major obstacle, and the 
search for high-quality materials is ongoing, and we are awaiting the definitive test 
of the signatures in large cohorts. 

Eventually, it may turn out that the biological drive for developing local recurrence 
is too small compared to the randomness of the recurrence process or response to 
RT. In combination with the effectiveness, and relatively mild side-effects with 
modern RT, perhaps we must conclude that some patients will be over-treated and 
instead use the baseline risk in the discussion with the patient, and make the patient 
involved in the decision to receive therapy. Here, gene expression tests may prove 
very valuable to determine the baseline risk. 

GPR30 in breast cancer biology 

We investigated the role of GPR30 in endocrine resistance of adjuvant treatment for 
early breast cancer and found no support for a treatment-predictive role. However, 
the adjuvant setting may be different from the metastatic setting, and the in vitro 
experiments have shown that GPR30 appears to be up-regulated during prolonged 
treatment with tamoxifen.87 This may be more similar to the metastatic setting where 
tumors acquire treatment resistance during treatment, and investigations specifically 
in that setting would be very interesting. A study in a consecutive sampling of the 
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same tumor during tumor progression, and preferably under endocrine treatment, 
would be an ideal study setting. 

A very interesting hypothesis derived from our data, and with some evidence in the 
literature, is the possibility that GPR30 is generally downregulated during breast 
cancer progression, but changed in a minority of tumors with shifted signaling and 
increased localization to the plasma membrane (Figure 20). Recently, more 
evidence for the first part was presented as hyper-methylation and down-regulation 
of GPR30 occurs with breast cancer progression.312 Also, prolonged treatment with 
tamoxifen has been reported to up-regulate GPR30 at the cell surface.87,101 Further 
studies of GPR30 in breast cancer is warranted, and in parallel, the basic mechanism 
of receptor function must be elucidated. A possible mutation or amplification could 
be searched for in the growing amount of publicly available data. 

 

Figure 20. Proposed model of GPR30 down-regulation during cancer progression, until a minority of the tumors 
experience a changing event that alters GPR30 functioning, resulting in overexpression and translocation to plasma 
membrane. 

Although we present evidence that it may be possible to affect the receptor 
pharmacologically, the receptor appears to be mainly constitutively active, meaning 
that it functions without a ligand, and thus regulated by the amount of receptor 
expressed. Following the success of anti-HER2 treatment, the possibility of GPR30 
over-expression at the plasma membrane is very exciting. Indeed, a surface receptor 
may be targeted specifically by treatments without targeting downstream signaling, 
as antigen-dependent cell-mediated cytotoxicity (ADCC) plays a crucial role in the 
effectiveness in many targeted therapies using antibodies. I acknowledge that this is 
highly speculative, but at the very least, our observations should urge future efforts 
on GPR30 investigations in breast cancer to analyze more levels of GPR30 
expression, and subcellular localization, and not simply dichotomize the 
measurements. 
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Statistics and data analysis 

All models are wrong, but some are useful. 

Attributed to George E. P. Box, who also wrote the following when describing the 
famous statistician RA Fisher: 

Since all models are wrong the scientist cannot obtain a "correct" one by excessive 
elaboration. On the contrary, following William of Occam he should seek an 
economical description of natural phenomena. Just as the ability to devise simple but 
evocative models is the signature of the great scientist, so overelaboration and 
overparameterization is often the mark of mediocrity.313 

In the era of big data, machine learning and bioinformatics, I think one sometimes 
should take a step back and look at what we are trying to achieve. The powerful 
tools at hand, and relative ease of use of advanced modeling, enables researchers 
without mathematical training, myself included, to explore these techniques. 
Careful consideration, as well as close collaboration with statisticians, is crucial for 
avoiding pitfalls. Correct statistical methodology used to analyze badly designed 
experiments may be worse than using the wrong statistical methods on well-
designed experiments. With that said, here are some considerations regarding the 
data analysis used in my thesis work. 

Patients and sample selection  

The five studies in this thesis involve analyses of tumors from six different patient 
cohorts, and the analysis of experimental cell lines. The patient cohorts represent 
randomized clinical trials (study I and III), well-defined retrospective cohorts (study 
II) and semi-matched case-control cohorts (study IV and V). Each cohort type has 
strengths and weaknesses. 

Randomized controlled trials (RCTs) have many advantages, the major advantage 
for our research being that it provides the best opportunity to search for treatment-
predictive biomarkers. The purpose of the randomization is that the groups 
compared should only differ in the (treatment) variable of interest, and 
randomization takes care of both known and unknown bias.314 Otherwise, treatment 
may be influenced by the factors we want to study. For instance, in study IV, RT is 
not improving the rate of IBTRs across patients from all centers. This is very likely 
due to physicians deciding treatment based on the risk of the patients predicted by 
clinical factors, meaning that the patients not receiving treatment are the ones with 
the best outcome already before treatment. This makes it hard to truly investigate 
the predictive potential of biomarkers, and some methodologies are not feasible to 
apply. Due to the mandatory power calculations, RCTs also often have the 
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advantage of a large sample size and high-quality follow-up of patients. The 
potential disadvantage of using RCTs is that they are usually fixed in what other 
types of treatment are allowed. This means that once the treatment guidelines are 
updated, the results from analyzing RCTs may be hard to interpret in a more recent 
context, which is the case with the results from study III. For the low-risk trials used, 
the number of events is smaller, meaning that the power of the studies decreases. 
This problem if further enhanced by studying subgroups in RCTs that the study was 
not originally designed for, and consequently, not powered for. In addition, RCTs 
are generally more expensive to conduct. 

Retrospective cohorts selected from larger RCTs, such as used in study II, have the 
advantage that they are usually well defined with high-quality follow-up, but lack 
the full potential of analyzing treatment-predictive variables. 

The semi case-controlled sampling used in study IV and V (semi meaning that the 
samples are selected as cases and controls, but with little matching) has the 
advantage from an experimental point of view that more samples can be included, 
and that the biological differences are enhanced when there are more tumors with 
extreme biology (i.e. aggressive tumors with recurrences). The downside is that 
most classical statistical analyses become very hard to interpret, and one could even 
argue that they should not be performed. E.g. the use of the Kaplan-Meier method 
presented in study IV can only be interpreted as the performance of the classifiers 
in this very specific cohort, and cannot be generalized to a wider cohort of patients. 
As already mentioned, the oversampling of cases may also produce other 
unexpected results, such as that RT has no overall effect in study IV, which calls for 
caution when interpreting the treatment-predictive results. 

Taken together, several considerations must be made when selecting a cohort to 
study. In general, large RCTs are to be preferred, but this is not universally true as 
even these cohorts may have too few events to find any the underlying biology 
governing recurrences. This is even more true when studying early breast cancer 
and low-risk patients which generally have a very good prognosis. The enrichment 
of tumors with extreme biology can be needed to discover biologically relevant 
features, and case-cohort or nested case-control studies may be interesting study 
designs for biology driven research.315,316 There is also practical considerations on 
what tissue is available, which stresses the importance of clinical specimen 
collection and patient participation in ongoing clinical trials. 

Besides selecting the cohort to study, there is also a difference in the type of tissue 
specimens to analyze. The quality of the biologic material is quite different between 
snap-frozen tumors and FFPE samples. Until very recently, the analysis of FFPE 
samples was not possible with high-throughput methods, but technological 
advancements have made this possible, and the ability to analyze clinical FFPE 
samples would greatly enhance the possibility to use the methods in the clinic. But 
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even so, my experience from study IV is that although it would be possible to 
analyze FFPE samples, the biologic depth is diminished with lower RNA quality, 
and fresh-frozen tissue may still represent the best tissue for investigating detailed 
biology. 

Analysis of subgroups 

With the effort to personalize breast cancer treatment, it inevitably follows that the 
patient groups that will receive the same type of treatment will be numerically 
smaller. Ultimately, each individual tumor may be analyzed for the specific cancer 
transforming events, and treated accordingly. This poses several research 
challenges. In our studies, we have sub-grouped the patients mainly by ER status 
(study I, II, IV and V), as this is the major determining factor in breast cancer with 
genome wide changes in gene expression patterns,53 for intrinsic molecular subtype 
(study III), and for treatments given (study I and IV). 

The most obvious implication for future studies is that much larger sample 
populations must be collected to retain the necessary statistical power to detect 
treatment differences. On the other hand, targeted treatment strategies are hopefully 
more effective, which to some extent counterbalances this problem. When re-
analyzing retrospective data, which is the case in my studies, the risk of performing 
both type I and type II statistical errors increases, and  subgroup analyses have been 
claimed to be surprisingly unreliable.317 The risk of performing type I errors increase 
because of multiple hypothesis testing, and the risk of a false positive finding is 
especially high when embarking on studies without a pre-specified hypothesis. The 
risk of type II errors also increases because of the loss of statistical power, and it is 
very important to remember that the statistical hypothesis testing is made to reject 
the null hypothesis, not to reject the alternative hypothesis. Or alternatively stated, 
absence of evidence is not evidence of absence.318-320 

Possible measures to overcome problems with subgroup analyses have been 
suggested.317 First is to pre-specify subgroup analyses of clinical trials, based on 
prior evidence or sound rationale, before trial start. This would require appropriate 
power calculations, and could then make the results more reliable. Another strategy 
is to avoid direct subgroup analyses and instead interpret the overall treatment effect 
as a relative risk uniform across subgroups, and focus on the absolute risk when 
deciding to treat patients. Generally, patients with a high-risk tumor usually also 
have a greater absolute risk reduction with treatment. However, this option may be 
well suited for large trials with relatively unspecific treatments, but less suited for 
future targeted trials. A third way of overcoming problems with under-powered 
subgroup analysis is to use other endpoints with more events, such as recurrence-
free survival instead of overall survival. 
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Since we are performing subgroup analyses, the results must be approached with 
statistical caution, and the appropriate validation of results must be stressed before 
final conclusions. However, whenever possible we have taken measures to 
counteract this problem. In study I and II, we used multiple cohorts for independent 
validation and we based subgrouping (for ER and tamoxifen treatment) on a biologic 
rationale that GPR30 would have different functions depending on the endocrine 
environment. In study III, despite being a retrospective study, the study design was 
pre-specified before any analysis started. In study IV, the entire analysis was 
separate for ER+ and ER- disease, meaning that we created different classifiers for 
ER+ and ER- disease, based on biological knowledge that these are very distinct 
diseases. This is somewhat different than testing the same classifier in multiple 
groups, and provide the opportunity to study biologic differences between the 
groups. However, the numbers in many of the analyzed subgroups are small, and 
appropriate caution should be applied. 

Future analysis of breast cancer will require more and more subdivision of patients, 
and future targeted treatments may be used for a small fraction of patients with 
cancers harboring the druggable change. The ability to perform high-quality meta-
analyses and pooling studies, as well as planning studies that include patients world-
wide, will become increasingly important. From my point of view, pre-specified 
subgroup analysis could be a good option for targeted treatment, and there is also a 
great interest in even faster endpoints, such as pathologic complete response with 
neoadjuvant treatment, although the association with survival is unclear. Eventually, 
designing future breast cancer studies may require redefining the RCT 
completely.321 

Cut-point selection and grouping of data 

The aim with personalized medicine is to divide the patients into smaller groups 
with different, more effective, treatments. A major task is to define those groups and 
choose the cut-point for division of groups. For established clinical markers this 
may be chosen with great confidence from existing data, but for experimental 
assays, this is not always straight forward. An important finding in study I and II is 
that the expression of GPR30 appear be non-linear with respect to its correlation 
with other clinicopathologic variables, and most important, outcome. In fact, the 
relationship is biphasic which means that the common way of dichotomizing the 
data in to two groups makes the results highly sensitive for the cut-point chosen. I 
realize that there is a balance between having statistical power to detect difference 
between groups and analyze relevant biology, but in this case, I think it calls for 
analyzing the entire data without grouping. Indeed, the conflicting results from 
earlier studies may well be related to the cut-points chosen. Interestingly, we found 
similar results for the stem cell biomarker ALDH1 in a study not included in this 
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thesis.322 This calls for cautions interpretation of quantitative results from antibody 
based methods using experimental antibodies in general. 

A similar problem is encountered in study III where we use the proliferation maker 
Ki67 to separate the Luminal A-like from the Luminal B-like tumors. Ki67 is 
notoriously known for its laboratory specific values and hard to define cut-
point.323,324 We used a method based on the Swedish guidelines at the time: that each 
laboratory should adjust the cut-point so that 1/3 of all tumors is scored Ki67 high. 
We adjusted this for the early nature of the SweBCG91-RT cohort and set the cut-
point at 10% cells being Ki67 high, resulting in 27% of tumors being scored high. 
Arguably, the cut-point selection will produce different low-risk groups, but we also 
tested to include grade and size to define the low-risk group with only marginally 
altered results. Time will tell if gene expression-based predictions of low-risk 
tumors will perform better. 

Endpoints 

Endpoint selection is an important part of study design, and efforts are ongoing to 
standardize the definitions.180,181 The distant disease-free survival (DDFS) endpoint 
provides a way of gaining power compared with overall survival, both because it 
produces events at an earlier point, and because cancer unrelated events do not dilute 
the signal (although the standardized definition efforts recommend to call this 
“interval” instead of “survival”, this was not incorporated in our studies, and DDFS 
used in this thesis work excludes non-breast cancer death). DDFS is used in study 
I, II, and V. However, if there is any chance the factor studied (e.g. treatment) may 
have deleterious effect not related to the cancer, overall survival must be monitored. 

In study III we used another type of primary endpoint: IBTR as first recurrence at 
10 years, analyzed with a competing risk approach. This was the primary endpoint 
of the original study, and is further chosen for the best performance of detecting 
effects of adjuvant RT, which mainly reduces IBTRs. Further, IBTR after metastasis 
is not of equal clinical importance, and is not monitored as carefully. However, the 
endpoint IBTR as first event may be problematic for several reasons. First, IBTR 
may arguably be considered to depend less on biology and more on random factors 
and surgical performance than distant recurrence, as distant recurrence is a more 
definite proof of aggressive biology. Also, in the search for biomarkers associated 
with IBTR as a first event, this does not take later IBTR events into account. This 
results in an analysis trying to find a marker that is predicting IBTR as a first event, 
in contrast to samples with IBTR after distant recurrence. Thus, it detects genes that 
are mutually exclusive between those endpoints. As many of the traditional 
nongenomic markers are the same for IBTR and distant metastasis, as well as for 
commercially available gene expression tests, it seems logical not to conduct the 
experiment in this way.  
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In study IV on the other hand, we use IBTR or no IBTR as the endpoint, which is 
better suited to maximize the biological differences between the tumors, but is not 
representative for a clinical consecutive cohort of breast cancer patients. Study IV 
is also sampled as cases and controls, which enriches for patients suffering an IBTR, 
with the drawback that the assumption of many statistical methods does not hold in 
this setting. 

Multiple hypothesis testing 

Many problems with statistics comes from the question of what is “significant”. I 
believe there is a lot of confusion here, and from my perspective, it really depends 
on the aim of the analysis. In study III, the aim was to draw generalizable 
conclusions, and thus the strict use of correct statistical methodology, predefined 
hypotheses, and to avoid multiple hypothesis testing, was important. 

In study V in contrast, we tested the difference of abundance of proteins between 
groups. In my view, this was not with the aim to finally draw the conclusion that the 
proteins are differentially regulated, and to generalize the idea to other breast 
tumors. Because of the limited sample set, and exploratory nature of the analysis, 
the aim was to prioritize proteins for further investigation, and we therefore 
performed no multiple hypothesis correction. Ultimately, this should be viewed as 
a step in technological advancement towards a future assay that must be properly 
validated. 

I believe that the ranking of variables by p-value for importance may be fine, but 
once you try to interpret the p-values to reject the null hypothesis, other 
considerations must be made. One way is to calculate the false-discovery rate as 
originally described by Benjamini and Hochberg, and the later described q-value. 
The idea is to control the total number of type I errors, which is less strict than 
controlling the risk of performing at least one type I error, the goal of e.g. Bonferroni 
correction. While the p-value describes the false-positive rate of all tested features, 
meaning the number of truly null features that are called significant, the q-value 
describes the false-discovery rate as the proportion of the features called significant 
that are in truly null. The latter may be a better choice when we do not know how 
many features to expect to be significant.325-328 To illustrate the problem of not 
correcting for multiple hypothesis testing, a report using functional magnetic 
resonance imaging (MRI) was presented on the feelings by a dead Atlantic salmon 
when put in different socially demanding situations.329  
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Creating a targeted assay for clinical use 

Much of our work has been focused on creating targeted assays for potential clinical 
use, and there are some points I believe need to be addressed for future success, and 
before eventual introduction into clinical practice. 

Accuracy 

The accuracy of the assay, and the proper reporting of assay development, is crucial 
for clinical utility, but several aspects of accuracy must be considered.330-332 First, 
the technical accuracy of the measurements is important, often referred to as 
analytical validity.115 The analytical validity of the methods in study IV and V is 
largely unknown, and the methods must be further tested before eventual clinical 
use.333 To initiate the investigation of performance of label-free SRM under clinical 
conditions, we conducted an experiment (not part of this thesis) where we tested the 
normal variation, i.e. the variation not attributed to the phenotype studied, of other 
cancer associated proteins in blood plasma of healthy volunteers.234 We could show 
that there was technical variation, but that the dominant source of variation was 
time, from day to day, and hour to hour. This is probably more extreme for blood 
biomarkers, but highlights the testing that needs to be done before clinical 
introduction. It also raises the question of the generalizability to other cohorts. I 
view the experiments in study V mainly as proof of concept work for developing 
the techniques, and ranking potential biomarkers for further investigation. 

Further, the gene expression assay in study IV relies on a well-documented platform, 
but the individual probes used have only been validated in silico, and internally by 
the manufacturing company. The overall results seem very good, and the correlation 
with known clinical markers is excellent. However, experimental probes may suffer 
from high variance and design problems. Indeed, one probe was not working at all 
(AKNA). Further validation of the assay is motivated, especially with regards to the 
possible use in FFPE samples, for which it is not yet tested. We validated the overall 
signature in degraded fresh frozen samples that seem similar to FFPE samples, but 
the degradation mechanisms may be different, and a non-linear degradation could 
prove very difficult to handle for both the short probe based gene expression assay, 
and the relative top scoring pairs algorithm.334 

Validation 

As stated in methodological considerations, the use of high-dimensional methods 
brings the risk of interpreting noise for signal. Even though rigorous statistical plans 
are used, unconscious information leakage may be one of the reasons it has been 
hard to validate studies in other data. Further validation is therefore crucial to assess 
the clinical validity, meaning consistent ability to accurately divide patients into 
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meaningful groups.115 For GPR30, we observe the same trends in three independent 
cohorts in study I and II. For the gene expression predictors in study IV, we validate 
them in two publicly available datasets, and for study V we perform orthogonal 
validation in publicly available gene expression data. Further, in study IV we build 
on previous knowledge and include previously described genes in our assay, and 
test these profiles in our data. I think this is a very important step, that we must 
follow up previous findings, while ultimately the proposed classifiers must be 
validated in prospective data. 

Cost-benefit and clinical utility 

Cost-benefit has become an increasingly important factor in modern health care, and 
novel molecular tests must prove a considerable cost-benefit improvement to be able 
to be introduced in clinical practice. It is not enough with perfect analytical and 
clinical validity, or interesting biology insights, if the patient’s outcome is not 
changed in a meaningful way. I believe the key for cost-benefit is to target important 
clinical questions and from start aim at clinical utility, including the avoidance of 
costly treatment for patients that do not benefit from them.115,335 

Sample throughput 

Related to the cost-benefit is the sample throughput, and the analysis of samples in 
large clinical trials is emerging.336 The targeted assay in study IV has proven 
scalability and the throughput is sufficient to meet the number of clinical breast 
cancer samples. The LC-SRM assay in study V on the other hand, needs 
improvements before true high-throughput capability. Part of the bottle-neck is the 
sample preparation that is time-consuming, especially if fractionation of samples is 
necessary for the targeted sensitivity. Also related to the separation of peptides is 
the nano-LC system that we used, which provide excellent research-grade peptide 
separation for clinical samples, but limits the throughput. 

Ability to work under clinical conditions 

The sample collection, storage and preparation are very important, and have large 
impact on the possible analysis, as we describe in study IV. The introduction of new 
sampling techniques or storage is hard to do in a clinical environment that is under 
considerable time and economic stress already. Also, we are far from, if ever, 
reaching a point where molecular diagnostics will fully overtake the pathologist 
manual inspection of the tumor. As analysis by the pathologist must be prioritized 
over newer high-throughput techniques, the possibility to analyze the same type of 
specimen, handled the way the pathologists do it for routine analysis, is a key for 
clinical introduction. The ability of the assay presented in study IV to handle 
degraded RNA is one step towards this goal. 
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The traditional way of handling clinically collected samples as FFPE tissue has 
made the use of modern technologies impossible until recently.337 However, the data 
produced from FFPE samples still commonly contains more noise and fewer genes 
and proteins that can be measured with high confidence. For biology driven 
research, and finding the most relevant biological mechanism, samples with optimal 
handling will still have a place in the research setting. 

Another important aspect of clinical utility is the possibility to take any new sample 
and classify it regardless of the characteristics of other samples. Most molecular 
high-dimensional techniques rely heavily on normalization, scaling and cohort 
composition of the samples. Even IHC techniques, such as Ki67 measurements, are 
not truly single sample as the cut-off to consider a sample high or low shift over 
time. Accordingly, the laboratory must calibrate itself. To truly be able to classify a 
single sample will make the step to the clinic easier. The top scoring pairs method 
we used in study IV is an important attempt towards this, and the same strategy has 
been adopted for several other breast cancer classifers.280,338 

Strategy for selection of features for a targeted analysis 

The definition of a targeted assay is that a small subset of all available features is 
measured. This can greatly improve the sensitivity, accuracy, throughput and cost 
of the assay. However, inherently it follows that information not conveyed by the 
targeted features are lost. The selection of features is therefore of high importance. 
Broadly, the selection process can be divided in features that have known biological 
associations with the outcome of interest, or methods that prove to work but where 
the function of the genes and proteins are largely unknown. We use both these 
strategies in study IV and V. 

In study IV, we base the selection of the largest proportion of genes for the targeted 
assay on data from the full transcriptome analysis, without considering the biology 
conveyed by the selected genes. The reason for this is that we think that the genes 
and biology governing radioresistance in this setting are largely unknown. Indeed, 
when we analyzed which genes were chosen for the targeted assay, known 
biological functions such as proliferation and immune response were captured, but 
also genes without apparent known mechanism. We used the random forest model, 
as it can find combinations of genes with non-linear relationships with the outcome 
variable, but a comparison with ranking with an ordinary Mann-Whitney test 
showed a large gene overlap (data not shown). In my mind, it is important to use 
previous knowledge, and to that end we added previously reported signatures and 
genes reported to be associated with radioresistance. This combination of 
approaches allowed us to take advantage of both prior knowledge, and discover new 
biological concepts. In study V, we used a similar approach when we ranked genes 
from a global discovery analysis, and then added proteins based on prior biological 
knowledge from the literature. 
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As our biological knowledge increases, the use of that information to create targeted 
assays will also increase, and from a scientific standpoint, the use of existing 
biological knowledge to create targeted assays is very tempting. Especially in 
clinical trials, the targeted approach with hypothesis driven research may be 
valuable.330 However, we must not let our lack of complete biological information 
hinder the development of useful clinical assays.  
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Conclusions 

The specific conclusions from my thesis are: 

• The putative estrogen receptor GPR30 appears to be constitutively 
apoptotic, and may undergo changes that alters the function of the receptor 
in breast cancer with potential use as a treatment target. 

• GPR30 in the plasma membrane is a prognostic biomarker, but it is not 
treatment-predictive for adjuvant tamoxifen in primary breast cancer. 

• Breast cancer subtype is not treatment-predictive for adjuvant whole breast 
radiotherapy, although the HER2+ tumors may respond less to radiotherapy 
without adjuvant anti-HER2 treatment. 

• A presumed low-risk group of breast cancer patients, that are currently 
enrolled in clinical trials of de-escalating radiotherapy after breast-
conserving surgery, has an excellent effect of radiotherapy and high risk of 
recurrence without radiotherapy, in the absence of systemic adjuvant 
treatment. 

• A targeted 248-gene radiosensitivity gene expression panel with classifiers 
utilizing the top scoring pairs classifier algorithm can be used in a single 
sample manner, and is prognostic for the development of ipsilateral breast 
tumor recurrence. 

• The use of two classifiers in a step-wise fashion on the 248-gene targeted 
panel that assess both radiation omission and radiation intensification may 
stratify patients for treatment with adjuvant radiotherapy after breast-
conserving surgery. 

• The combined use of shotgun LC-MS/MS and LC-SRM mass spectrometry 
is feasible for clinical samples, and show promise in detecting and 
prioritizing biomarkers during discovery phase research. 
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Future perspectives 

The work presented in this thesis is a small step towards better personalized adjuvant 
treatment for primary breast cancer, and provides insights into the biology 
governing the response to therapy. Much work is still needed, and research is an 
ever-ongoing process. Here I present some thoughts on possible directions forward. 

GPR30 

To be able to utilize GPR30 in breast cancer, as a biomarker for prognosis, treatment 
prediction, or as a treatment target, I believe we first must understand the basic 
function of this receptor. Still, properties such as cellular localization, signaling 
mechanisms, trafficking, and even the true ligand are poorly understood and widely 
disputed. All these areas are under investigation, and it will be very interesting to 
follow the development. However, even without knowing the biological 
background, our data suggest that GPR30 changes the behavior in a minority of 
breast cancers, and that it may be targeted at the plasma membrane. One first step 
to investigate this hypothesis is to mine the public data repositories for any evidence 
that there are overexpression, amplification, mutations, or other events that may 
change the functioning of the receptor. 

Interesting in vitro data suggest that GPR30 may play a role in acquired endocrine 
treatment resistance. Although we find no evidence for this in the adjuvant 
tamoxifen setting, other systems may be better to study. The effect of prolonged 
treatment would be very interesting to study, e.g. in the metastatic setting and after 
failure to prolonged endocrine treatment. Also, a way of analyzing the receptor at 
different stages during cancer progression could elucidate what happens during this 
course.  

Will this receptor be used as a biomarker in the future? I doubt so. First, the scoring 
of the receptor is difficult and the finding of the receptor in the plasma membrane 
may be dependent on tissue handling and fixation. Second, although the prognostic 
value is significant in a multivariable analysis, the added value compared to classical 
markers, and especially modern gene expression tests, is only marginal. Third, 
without a known function or rationale, it will be very hard to motivate the 
introduction to clinical use.  
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However, as a single marker that appear to be over-expressed at the plasma 
membrane, the role as a treatment target, and potentially after endocrine treatment, 
remains very tempting, and would be very interesting to study further. 

Individualized radiotherapy 

Individualized radiotherapy, here meaning radiotherapy based on the characteristics 
of the tumor, has long been a goal of radiation oncology, but very hard to implement. 
In this thesis, we show that intrinsic subtype is not enough to personalize the 
adjuvant radiotherapy after breast-conserving surgery. We further show that on the 
gene expression level, there is a reproducible biological signal on who are at higher 
risk of recurrence with or without radiotherapy. However, the performance of the 
classifiers proposed here will not be enough to change clinical practice. The 
classifiers must be further tested and refined in larger studies, and ultimately in 
prospective cohorts. There are ongoing efforts to do this, but there is a long road 
ahead. 

In the end, one must also ask whether the process to develop ipsilateral breast tumor 
recurrence is to some extent more random than the process of developing distant 
recurrence. If so, it may not be possible to determine exactly who will respond to 
radiotherapy or not based on the characteristics of the primary tumor. The usage of 
baseline risk to individualize radiotherapy is a way forward, such as performed in 
current de-escalation trials. Ultimately, we may have to live with some patients 
being over-treated, and the most important thing becomes to get the patient involved 
in the decision, and make an informed decision if the possible gains with treatment 
are worth the potential side-effects. 

Future of proteomics and systems biology 

Study V concerns the study of the proteome, and I have come in contact with 
proteomics in other studies during my work that is not included in this thesis.52,234 
The study of the proteome lags behind genomics and transcriptomics, and I 
sometimes feel like being in Plato’s cave allegory. The allegory points out that we 
are only aware of what our senses tells us, but there is no reason, considering the 
limits of our senses, that our perceived world should be the complete and final 
reality. He describes it with a tale of a group of people that are trapped, since before 
they know, in a cave with no possibility to connect to the outside world. However, 
there is an opening of the cave, which they cannot look out from, but a fire outside 
casts shadows of objects and other humans on the cave walls. This is the outside 
world they know, and they interpret this world through the shadows. For them, this 
is the ultimate reality, and they have no reason to even question there should be 
another reality. For me, the study of gene expression and DNA sequences to gain 
insights into the functional biology of cancer is like studying the shadows. The point 
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here is that the study of proteins is one level closer to the functional phenotype of 
the cell, and should thus provide a better understanding of cancer biology. 

Mass spectrometry-based proteomics has been associated with several problems and 
the development was halted with the improper discovery and use of unidentified MS 
peaks, that later turned out to be markers not associated with cancer.339 The 
techniques have matured and are now providing considerably more reliable data. 
However, there is still much work to be done, especially in the field of combining 
non-targeted proteome-wide studies and targeted methods more applicable to 
clinical problems, which we advance in study V. An exciting development is the 
data-independent acquisition method that may combine the advantages of proteome 
wide coverage with the specificity of the targeted approach, and remained 
quantitative performance. 

A further note is as proteomics becomes more reliable and more widely applied, 
there will be tremendous opportunities to combine data on several biological levels, 
and especially the connection of DNA changes that lead to functional protein 
changes will be exciting. So far, most cancer studies concern the dynamic regulation 
of abundances of molecules (genes, proteins) that still function as normal. However, 
it is expected that many changes important in cancer are changes at the structural 
level that results in altered function, i.e. DNA sequence changes that lead to altered 
protein structure, and ultimately function. Thus, the study of altered protein 
structure may provide new insights in cancer biology. This area has just recently 
attracted attention, and I believe much more is to come.17,220,340-346 

The future oncologist 

However risky it may be to foresee the future and make bold claims of what will 
happen during a lifetime, I will take this opportunity for a few remarks. I have 
started my clinical career in a time when the area of clinical medicine is on the verge 
of undergoing a change of magnitudes not previously seen. The rate at which we 
use the new powerful techniques to create biological data is simply breathtaking. 
During the coming years, the most important work will be to transform the amounts 
of data into real knowledge, and ultimately transform the knowledge into better tools 
to battle disease. To speak with Sir Winston Churchill: This is not the end. It is not 
even the beginning of the end. But it is, perhaps, the end of the beginning. 
In terms of cancer care, every tumor will undergo sequencing and global analysis at 
several levels, including functional protein analysis. Eventually, the entire cancer 
biology dynamics of an individual tumor will be modeled, and the exact 
perturbations leading to the disease known. This will lead to targeted treatments, 
and although we may not cure all cancers, treatments will stop the tumors from 
growing until they are no longer a problem for the patient’s life and health. 
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Ultimately, I believe that during my lifetime and work as a physician, cancer will 
no longer be a leading cause of death. 

This will put much pressure on the future oncologist to be updated and master, or at 
least understand, many more areas than traditionally, such as data analysis.273 
Molecular tumor boards is one way forward, and the possibility to work more 
closely with tumor biologists and data scientists in the clinic to provide the best 
possible care is truly fascinating. However, to make these boards meaningful and 
discussions constructive, a deeper understanding of the methods used from the 
treating physician is required. 
The nature of science is to take small steps forward to eventually make 
improvements, and it is a world-wide collaborative effort. The work I present in this 
thesis should be viewed in that light. The ultimate goal is to provide improved care 
for our patients, but to reach that goal, it is important to both deepen our 
understanding of biology, and how to use the novel techniques at our hands. I 
believe my work is a small step towards that goal, and I expect the work to continue.  
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Precision medicine will transform healthcare by using individualized treatment 
strategies and approaches. In oncology, this means that the exact changes 
in individual tumors will be exploited to assess the risk of recurrence, guide 
treatment decisions, and ultimately targeted with new treatment strategies. 
This thesis presents five studies towards better characterization of primary 
breast cancer by using high-throughput techniques, and further explores how 
the characterization can lead to individualized adjuvant treatment after surgery.
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