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The response of electric devices to an applied thermal gradient has, so far, been studied almost exclusively
in two-terminal devices. Here we present measurements of the response to a thermal bias of a four-terminal,
quasiballistic junction with a central scattering site. We find a novel transverse thermovoltage measured across
isothermal contacts. Using a multiterminal scattering model extended to the weakly nonlinear voltage regime,
we show that the device’s response to a thermal bias can be predicted from its nonlinear response to an electric
bias. Our approach forms a foundation for the discovery and understanding of advanced, nonlocal, thermoelectric
phenomena that in the future may lead to novel thermoelectric device concepts.
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I. INTRODUCTION

Nanoelectronic devices with dimensions smaller than the
characteristic scattering lengths for electrons are easily driven
into the nonlinear regime and show electron dynamics that
depend on device symmetry. For instance, clear rectification
effects have been observed in asymmetric microjunctions,1–3

quantum dots,4 and quantum point contact systems.5,6 These
systems exhibit nonequilibrium effects that occur in the
nonlinear regime of ballistic transport.

At the same time, there has been considerable progress in
the use of mesoscopic conductors for thermoelectric devices
such as nanoscale coolers and ultrasensitive thermometers.7

At a more fundamental level, studies of heat flow in phase-
coherent systems allow one to investigate basic properties
of quantum transport when electric and thermal gradients
act jointly on the same system.8 Specifically, thermoelectric
effects are observed when a voltage drop builds up in response
to a temperature difference.9,10 Thus far, most of the literature
has investigated thermopowers in two-terminal arrangements
(for exceptions see Refs. 9 and 11).

Additionally, for the past four decades there has been
sporadic research on the so-called anisotropic thermoelectric
materials. These are materials that exhibit off-diagonal ele-
ments in their electrical conductivity, thermal conductivity, or
thermopower. Typically, anisotropic thermoelectrics are com-
prised of either stacked multilayers of alternating materials12,13

or anisotropic crystalline materials.14 Such systems, however,
can only change the anisotropic properties of a given system
by rotating the stacked multilayer or crystal orientation. This
effectively limits the range of anisotropic properties that can
be studied.

Here we address transverse thermoelectric effects in a
quasiballistic device fabricated in a two-dimensional electron
gas (2DEG), Fig. 1(a), which offers the great advantage that
the scattering properties of the system can be controlled during
fabrication. Specifically, we use a four-terminal microjunc-
tion with a central, asymmetric antidot to scatter electrons,
Fig. 1(b), and perform thermoelectric measurements at a
cryostat temperature of 0.74 K. In a similar device, previous
observations have shown that a lateral AC voltage leads to
a rectified, transverse response.1 Here, we instead apply a
lateral temperature difference across the junction through

terminals 1 and 2, and observe a nonlocal thermovoltage
between terminals 3 and 4, both of which are unheated. We
note that similar thermovoltages have been detected previously
in multiterminal 2DEGs subjected to magnetic fields normal to
the system (the Nernst effect).11,15,16 In contrast to these works,
the effect reported here is purely thermoelectric in nature and
only due to the symmetry-breaking property of the central
scatterer. Furthermore, we establish a theoretical model based
on the multiterminal scattering approach17,18 extended to the
weakly nonlinear regime (up to quadratic order in voltage and
linear order in temperature shifts). We then show that this
model can predict the transverse thermoelectric response to
a lateral thermal bias from nonlinear voltage measurements
similar to those reported by the authors of Ref. 1.

II. EXPERIMENTAL SETUP

Our device consists of an InP/Ga0.23In0.77As 2DEG wafer,
see Fig. 1(a), patterned using the same techniques as in Ref. 19.
The antidot junction itself and its dimensions are shown in
Fig. 1(b). Hall and Shubnikov de Haas measurements give
a carrier concentration and mobility of 2.93 × 1012 cm−2

and 1.16 × 105 cm2/Vs, respectively. The resulting mean
free path, 3.3 μm, exceeds the characteristic length of the
antidot region, 0.5 μm. Therefore, electrons within the antidot
junction are in the ballistic regime.

For our thermoelectric measurements, we are primarily
interested in the transverse voltage response, V34 = V3 − V4,
due to a change in the side terminal temperature(s), of either θ1,
θ2, or both. Here Vi and θi are the shifts of the electrochemical
potential and temperature in the ith terminal away from
the common electrochemical potential, μ/e, and background
cryostat temperature, θ . To increase either θ1 or θ2, we apply
two 37 Hz heating currents, which have a relative phase
difference of 180◦, to the channel to be heated. Figure 1(b)
shows the circuit diagram for heating the right side channel.
Using P1 as a voltage probe, the relative amplitudes of ν+

H

and ν−
H were tuned so that the resulting 1ω voltage at terminal

1 was minimized. Any remaining DC offset could have been
minimized as well using a DC source to shift both heating
voltages; however, no offset was needed. This technique allows
us to apply a thermal bias without an electrical bias.
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FIG. 1. (Color online) (a) Schematic of the wafer structure with
a 2DEG located in the GaInAs quantum well. (b) Schematic and
scanning electron micrograph of a four-terminal antidot junction
similar to the one reported on here. The four circles indicate
connections to distant Ohmic contacts, not shown. The circuit diagram
on the right shows the heating circuit used to heat the side channels;
the configuration shown here is used to heat the right side channel.
The lateral and transverse voltage drops are given by V12 and V34,
respectively. The actual four-terminal junction measured here had
terminal widths of d1 ≈ 500 nm and d2 ≈ 450 nm, and an antidot
with a base and height of about 550 and 380 nm, respectively. The
side heating channels are 5-μm wide, 30-μm long, and ≈4 μm from
the scatterer. Note that the side channels are not to scale.

III. TRANSVERSE THERMOELECTRIC RESPONSE

In Fig. 2 we show results from an experiment where a
temperature shift θ1 was applied to terminal 1, and the first
four harmonics, with respect to the heating voltage, of V34

were measured. Since the thermal gradient is generated from
Joule heat, which is primarily proportional to the square of the
applied heating voltage, the dominant 2ω response implies
that the transverse response is proportional to the applied
temperature gradient, V34 ∝ V 2

H ∝ θ1. We also measured the
first and second harmonics of the lateral voltage drop V12 using
the probes labeled P1 and P2 (see inset to Fig. 2). The lateral
voltage by itself, V12 < 4 μV, is far too small to cause the
observed transverse voltage, as can be seen from the device’s
measured 1ω and 2ω responses to an applied 37 Hz voltage,
see Fig. 3.
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FIG. 2. (Color online) Main figure: First four harmonic transverse
voltage responses to a temperature increase in terminal 1. The solid
red line is a parabolic fit to the 2ω curve at low voltages, and is given
by V

(2ω)
34 = (1.9 V−1)V 2

h . Top inset: Schematic of the measurement
configuration. Bottom inset: Measured lateral voltage drop across the
junction during heating.
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FIG. 3. (Color online) Main figure: First and second harmonic
transverse responses, V34, to a laterally applied 37 Hz voltage ν12.
Also shown is a parabolic fit to the 2ω curve at low voltages. Inset:
Circuit schematic for the applied voltage measurement.

At low voltages, V34 in Fig. 2 is linear in θ1 and can thus
be interpreted as a thermovoltage. Remarkably, however, this
thermovoltage is across two unheated contacts that, based
on device geometry, can be assumed to be isothermal. We
therefore propose that V34 is due to the difference between two
or more thermovoltages in the junction. Sources of thermo-
voltages that are easily identifiable are the four quantum point
contacts (QPC) defined by the antidot and the surrounding
channel walls. In the general case of zero symmetry, each
QPC thermovoltage would be unique, resulting in all four
terminals being at different potentials. We will return to this
interpretation below.

Given the intended left-right geometric symmetry of
the junction one may intuitively expect that V34(θ1,θ2) =
V34(θ2,θ1). When the lateral temperature differential is re-
versed, however, measurements show a sign reversal in
V34 (Fig. 4). Furthermore, when both terminals are heated
simultaneously, the response tends toward zero. We will return
to these unexpected observations shortly.
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FIG. 4. (Color online) 2ω transverse response due to heating both
side channels simultaneously and individually. The vertical dotted
lines indicate the approximate onsets of nonlinear regimes.
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IV. THERMOELECTRIC SCATTERING THEORY

We now aim to explain our results using the multiterminal
thermoelectric scattering approach17,18 extended to the weakly
nonlinear transport regime.20 We consider a four-terminal
junction with a central scatterer, as in Fig. 1(b) and Ref. 1,
but without assuming any particular model for the scattering
matrix. Based on the linear temperature and quadratic voltage
responses shown in the experiment (see Figs. 2 and 3), we
express the current Iα through lead α up to linear order
in temperature and quadratic order in voltage differences,
Vαβ = Vα − Vβ :

Iα =
∑
β �=α

[Gαβ(Vαβ) + Fαβ(Vαβ)2 + Lαβ(θα − θβ)] . (1)

Importantly, Eq. (1) is manifestly gauge invariant, a property
recently emphasized for mesoscopic rectifiers.21

In the low temperature limit, the linear transport coefficients
read

Gαβ = 2e2

h
tαβ(εF ), (2)

Lαβ = 2π2ek2
Bθ

3h
t ′αβ(εF ). (3)

This approximation is valid provided the energy variation of
the transmission probability tαβ between leads α and β is
weak and the Fermi energy εF is larger than the background
temperature θ . This amounts to neglecting band edge effects.
Hence, the transmission and its energy derivative t ′αβ are
evaluated at εF .

The leading order rectification term Fαβ is a compli-
cated function of t ′αβ and of the transmission derivative
∂tαβ(E,{Vi})/∂Vα|eq evaluated at equilibrium.20 Knowledge
of the latter requires a self-consistent determination of the
screening potential U ({Vi}) inside the conductor. However,
within a qualitative discussion we can neglect this term
since it is proportional to the characteristic potential uα =
(∂U/∂Vα)|eq (Ref. 20), whose strength can be estimated within
mean-field theory from u ∼ Cμ/C, where C−1

μ = (e2D)−1 +
C−1, C is a capacitance coefficient that measures interactions,
and D denotes the density of states associated with the
scattering states. In widely open systems one has C � e2D

(noninteracting limit), and the rectification term becomes

Fαβ 	 −e3

h
t ′αβ(εF ). (4)

To find V34 as a function of the lateral voltages (V1 and
V2) and temperatures (θ1 and θ2) we recall that terminals 3
and 4 act as voltage probes. We then solve the two conditions
I3 = I4 = 0 with the aid of Eq. (1) in the cold isothermal case
(θ3 = θ4 = 0), that is, we assume that the channel thermal
conductances are much greater than the thermal conductances
across the antidot region. For definiteness, we neglect the
products ViV(3,4) since in our experiment, V34 is much smaller
than V12. Then,

V34 = A(V1 − V2) +
∑
j=1,2

Bj

(
gθθj − geV

2
j

)
, (5)

where we have defined

A = t31t42 − t41t32

D
, (6)

Bj = (t41 + t42)t ′3j − (t31 + t32)t ′4j

D
, (7)

with D = (t31 + t32)(t41 + t42) + t34(t41 + t42) + t43(t31 + t32).
Here ge = e/2 and gθ = π2k2

Bθ/3e.

V. ANALYSIS AND DISCUSSION

Interestingly, Eq. (5) predicts that the coefficients Bj

that describe the nonlinear voltage response also describe
the transverse response to a laterally applied temperature
differential. We can utilize this relationship to extract the
expected thermopower from the electrical measurements in
Fig. 3, and the electron temperature rise from the thermal bias
measurements in Fig. 2.

From the parabolic fit in Fig. 3, and Eq. (5), we deter-
mine B1 = 2.02 × 1020 J−1. Inserting this value back into
Eq. (5) yields a transverse thermopower of S34,12 = B1gθ =
594 nV/K. We will address the magnitude of this thermopower
in a moment.

With S34,12 in hand, we can then estimate θ1 as a function
of Vh. Using the parabolic fit from Fig. 2, we find θ1 ≈ (3.2 ×
106 K/V2)V 2

h , which is valid for Vh < 0.2 mV. At the upper
limit of the fit, Vh = 0.2 mV, this yields θ1 ≈ 130 mK. These
temperatures agree well with a simple diffusive-heat finite-
element simulation of the electron temperature in the side
channel: θ sim.

1 ≈ (2.5 × 106K/V2)V 2
h for Vh < 0.2 mV.

To offer a more conceptual description of our observations,
we now interpret the effective thermopower of the junction
as the difference of QPC thermopowers between neighboring
terminals. For the configuration where heat is applied to the
right channel, we interpret the effective thermopower as the
difference between the top-right and bottom-right QPC ther-
mopowers. Correspondingly, we interpret the thermopower
for heating of the left channel as due to the left-hand pair of
QPCs in the junction. To check whether this interpretation
is reasonable, we compare the magnitude of S34,12 to the
difference between two ideal QPC thermopower peaks:


SQPC = −kB ln(2)

e

(
1

NT − 0.5
− 1

NB − 0.5

)
, (8)

where N(T ,B) � 1 represents the integer number of conduc-
tance modes in the respective top and bottom QPCs. Using
the measured two-terminal conductance between terminals 1
and 2, Gmeas.

12 = 8.73 × 10−4 �−1, we estimate the number
of modes to be around 11. For mode numbers between
10 and 13, Eq. (8) predicts two-QPC thermopowers with a
magnitude between 0.4 and 1.5 μV/K, which fits well with
S34,12. Here it is important to note that the true two-QPC
thermopower is a function that strongly oscillates between
positive and negative values,9 and Eq. (8) only predicts the
range of reasonable values. However, the oscillatory nature
of this thermopower offers a simple explanation for the sign
change in the thermopower observed in Fig. 4: because the
sign of the thermopower depends sensitively on the number
of occupied modes in each QPC, even a very small left-right
asymmetry in the width (occupation number) of the QPCs in
our ballistic junction can lead to a sign change.

Our conceptual two-QPC model also offers an explanation
for the nonlinear changes in slope of the thermopower as a
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function of heating power (see vertical, dashed lines in Fig. 4),
which have been seen in similar two-QPC systems.9 As the
temperature drop across a QPC increases, thermal broadening
about the Fermi energy accesses neighboring thermopower
peaks and increases the QPC’s thermopower. The downward
change in slope in the heat-right curve can then be interpreted
as an increase in the number of accessed thermopower peaks in
the top right QPC as a function of θ1. Similarly for the heat-left
configuration, the two nonlinear points indicate increases in
the number of accessed thermopower peaks in the bottom
left QPC.

It is important to note that there are in fact four interacting
QPCs in the junction, a point the two-QPC model partially
neglects. To properly interpret the observed sign change
in Fig. 4 then, we refer to Eq. (5), which simultaneously
accounts for all four QPCs. Focusing only on the response
to temperature changes, the 2ω response can be decomposed
into components that are symmetric, SS

34, and antisymmetric,
SA

34, under the transformation (θ1,θ2) → (θ2,θ1):

V34 = SS
34

θ1 + θ2

2
+ SA

34
θ1 − θ2

2
, (9)

where SS
34 = B1 + B2 and SA

34 = B1 − B2. When both ter-
minals are heated simultaneously and equally, the main
contribution stems from the symmetric component, which
is generally nonzero. When θ1 and θ2 are not equal and
exchanged, the symmetric component remains unchanged
while the antisymmetric component reverses sign. Note that
SA

34 exists only for scatterers showing some kind of asymmetry

in the transmission derivative coefficients (t ′31 �= t ′32 or t ′41 �=
t ′42). Since we observe a complete change in sign, our device
must have a strong asymmetric component.

We have shown that a four-terminal junction with a
symmetry-breaking scatterer can be used to generate a ther-
movoltage between two cold isothermal contacts. We have
put forward a simple noninteracting model for multiterminal
thermoelectric transport that accounts for most observed
effects. Given the great control over device geometry and
symmetry afforded by nanofabricated devices, our approach
can be used to explore advanced thermoelectric function-
alities—such as electronic thermal rectifiers or more efficient
thermoelectric energy converters—due to the opportunity to
separate heat and charge flow in multiterminal devices.
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J. D. Pedarnig, D. Bäuerle, and H. Lengfellner, Europhys. Lett. 40,
673 (1997).

15S. Maximov, M. Gbordzoe, H. Buhmann, L. W. Molenkamp, and
D. Reuter, Phys. Rev. B 70, 121308 (2004).

16S. Goswami, C. Siegert, M. Pepper, I. Farrer, D. A. Ritchie, and
A. Ghosh, Phys. Rev. B 83, 073302 (2011).
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