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Abstract  

Hematopoietic stem cells (HSCs) reside in the bone marrow of adult individuals and 

function to produce and regenerate the entire blood and immune system over the 

course of an individual’s lifetime. Historically, HSCs are among the most thoroughly 

characterized tissue specific stem cells. Despite this, the regulation of fate options 

such as self-renewal and differentiation has remained elusive, partly because of the 

expansive plethora of factors and signaling cues that govern HSC behavior in vivo. In 

the bone marrow, HSCs are housed in specialized niches that dovetail the behavior of 

HSCs with the need of the organism. The Smad signaling pathway, which operates 

downstream of the TGF- superfamily of ligands, regulates a diverse set of biological 

processes, including proliferation, differentiation and apoptosis, in many different 

organ systems. Much of the function of Smad signaling in hematopoiesis has 

remained nebulous due to early embryonic lethality of most knockout mouse models. 

However, recently new data has been uncovered suggesting that the Smad signaling 

circuitry is intimately linked to HSC regulation. In this review, we bring the Smad 

signaling pathway into focus, chronicling key concepts and recent advances with 

respect to TGF--superfamily signaling in normal and leukemic hematopoiesis.
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Introduction 

Transforming growth factor- (TGF-) is the founding member of a large superfamily 

of secreted polypeptide growth factors, which additionally includes activins, nodal, 

bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and 

others (1). From early development and continuously throughout adult life, TGF- 

members carry out pivotal functions by regulating biological events ranging from 

gastrulation and organ morphogenesis to homeostatic tissue turnover. Alterations in 

components of the TGF-β superfamily pathway lead to severe developmental 

abnormalities and have been shown to underlie a range of human diseases, including 

autoimmune and cardiovascular disorders as well as cancer (2, 3). A fundamental 

feature of the TGF- superfamily is its highly pleiotropic nature, a phenomenon well 

illustrated within the hematopoietic system; depending on the differentiation stage 

and environmental context of the target cell, these factors can affect proliferation, 

differentiation and apoptosis either positively or negatively (4-6). Part of the 

molecular basis for this is thought to stem from the unique repertoire of 

transcriptional co-factors expressed by each specific cellular target. The context 

dependent actions of TGF- ligands are reflected in vitro, often leading to opposing 

findings between in vitro and in vivo systems.   

In this review, we will discuss the role of TGF- and Smad signaling in normal 

hematopoiesis, featuring aspects of translational hematology, particularly the role of 

Smad signaling in the development of hematologic malignancies and how the Smad 

circuitry may be exploited for the purpose of stem cell expansion. It should be 

emphasized that although some of the findings discussed here come from studies of 

human and patients’ cells, the majority of the data derive from studies in well-defined 

mouse models. 
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Smad signaling  

The Smad signaling circuitry embodies an evolutionary conserved signaling module, 

which functions to convert biological information from activated TGF- receptor 

complexes at the cell surface to concrete transcriptional regulation in the nucleus. 

TGF-β ligands transmit signals through two types of serine/threonine kinase 

receptors, known as type I and type II receptors (1). In vertebrates seven different 

type I receptors (ALK1-7) and five distinct type II receptors have been identified (1). 

Although some promiscuity occurs each ligand generally signals through a specific 

combination of receptors (Figure 1). Following ligand binding, the type I receptor 

becomes activated through phosphorylation by the type II receptor. Activated type I 

receptors subsequently phosphorylate the Smad proteins at residues in the C-terminus, 

leading to propagation of the signal intracellularly. The Smad family of intracellular 

mediators is comprised of eight members in mammals, Smad1-8, which can be further 

subdivided into three distinct classes based on structural properties and the specific 

functions they carry out (7). Receptor-regulated Smads (R-Smads), Smad1, 2, 3, 5 and 

8, are the only Smads directly phosphorylated and activated by the kinase domain of 

type I receptors. Phosphorylation of R-Smads results in a conformational change, 

allowing complex-formation with the common-Smad (Co-Smad), Smad4. Activated 

complexes subsequently accumulate in the nucleus where they cooperate with other 

transcriptional co-regulators to modify target gene transcription. The third class of 

Smads includes the inhibitory Smads (I-Smads), Smad6 and Smad7, which function 

in a negative feedback loop to inhibit TGF-β superfamily signaling. TGF-

β/activin/nodal and BMP/GDF employ different subsets of R-Smads. R-Smad2 and 3 

specifically relay signals from TGF-β and activin receptors whereas R-Smad1, 5 and 

8 primarily operate downstream of BMP receptors (1, 8).  
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TGF- in hematopoiesis 

TGF-β is categorized as one of the most potent inhibitors of HSC growth in vitro and 

a large body of work from a variety of culture systems supports this notion (4, 9-11). 

Owing to the naturally quiescent state of HSCs, TGF has been hypothesized to be a 

cardinal regulator of HSC quiescence, maintaining a slow-cycling state of HSCs in 

vivo (Figure 2). In keeping with this, neutralization of TGF-β in vitro was shown to 

release early hematopoietic progenitor cells from quiescence (12-14). Several 

molecular mechanisms have been proposed to account for TGF-β-mediated growth 

inhibition, including alterations in cytokine receptor expression and up-regulation of 

cyclin-dependent kinase inhibitors (CDKIs), such as p15, p21 and p27 (13, 15-21). 

However, it has been shown that TGF- can exert growth inhibitory actions 

independently of p21 and p27 (22). Additionally, neutralization of TGF- coupled 

with antisense knockdown of p27 was shown to result in synergistically increased 

retroviral gene transfer efficiency in human CD34+ BM cells, implying that TGF- 

and p27 work in separate pathways (16). In human CD34+ cells, TGF--mediated 

cell-cycle arrest has been suggested to occur through up-regulation of p57, another 

member of the CDKI family (23). This finding was further corroborated by the 

observation that p57 was highly enriched in mouse CD34-Kit+lineage-Sca1+ (CD34-

KLS) cells as opposed to the more mature CD34+KLS fraction (24). Interestingly, a 

high level of p57 was shown to correlate with the activation status of Smad2 and 

Smad3, which were reported to be uniquely phosphorylated in freshly isolated CD34-

KLS cells but not in CD34+KLS progenitors (25). In addition, TGF- was shown to 

up-regulate p57 in CD34-KLS cells in vitro (25). These findings point to a mechanism 

where TGF- functions to induce p57 within the most primitive HSC compartment, 

thus maintaining their quiescent state in vivo.  
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Most work regarding TGF- in hematopoiesis has been carried out using TGF-1. 

However, TGF- exists in three isoforms, TGF-1-3. Although all TGF-s share 

significant sequence homology and signal through the same receptor complex (26, 

27), differing responses have been reported. Most notably KLS cells exposed to TGF-

2 exhibited a biphasic response, being growth inhibited at high doses and stimulated 

at low concentrations (28). The findings are intriguing as the stimulatory component 

of TGF-2 was shown to be dependent on serum factors, genetic background and age 

(29). However, this finding showed bearing in vivo as Tgf-2 heterozygote knockout 

cells exhibited a defective repopulative capacity upon transplantation. This effect 

became more pronounced following serial transplantation, suggesting that TGF-2 

functions cell autonomously as a positive regulator of adult HSCs that have 

undergone replicative stress (28).  

Recently evidence has accumulated suggesting that the adult HSC compartment 

consists of a number of functionally distinct subsets with diverse self-renewal and 

differentiation potentials (30-32). Challen and colleagues identified the TGF- 

pathway as a potential mechanism for differential regulation among discrete HSC 

subtypes (33). Specifically, TGF- stimulated proliferation of myeloid-biased HSCs 

whereas the opposite was true for lymphoid-biased HSCs (33). These bidirectional 

effects further substantiate the complexity of TGF- signaling and it remains to be 

clarified whether or not the Smad pathway is differentially regulated at low and high 

doses and between diverse HSC subtypes. Additionally, the roles of Smad2 and 

Smad3 in HSCs have not yet been functionally gauged in conditional knockout mouse 

models. This will be an important in vivo system to characterize, in order to further 

unwind the intricate nature of TGF- signaling in HSCs. 
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TGF-: Lessons from in vivo models 

TGF-β can affect most cell types throughout the hematopoietic hierarchy and 

depending on the context and differentiation stage of the target cell different 

biological responses are elicited (4-6) In vivo, TGF-β plays a principal role as 

regulator of immune cell homeostasis and function, as unequivocally shown by the 

development of a lethal inflammatory disorder in both Tgf-β1- ligand and receptor 

knockout mice (34-36). Furthermore, Tgf-β1 null mice exhibited enhanced 

myelopoiesis, suggesting that TGF-β acts as a negative regulator of myelopoiesis in 

vivo (35). When Tgf-1 knockout mice were analyzed before the onset of multifocal 

inflammation, a range of HSC properties were shown to be altered (37). Most 

significantly, BM cells from Tgf-1 deficient neonates exhibited impaired 

reconstitution ability upon transplantation, a finding attributed to defective homing 

(37). In contrast, mice deficient in the TGF-β type I receptor (TRI), displayed normal 

HSC self-renewal and regenerative capacity in vivo, even under extreme 

hematopoietic stress (38, 39). Thus, there are both overlapping and non-overlapping 

phenotypes between ligand and receptor knockout models and it appears to be 

significantly important at which level TGF- signaling is disrupted. The apparent 

discrepancies related to in vitro and in vivo findings may reflect redundant functions 

of other type I receptors or alternatively other ligands such as activin, which signals 

through the same R-Smad pathway. Due to the multifaceted nature of TGF- coupled 

with a potentially complex set of redundant mechanisms in vivo, its role as a critical 

regulator of HSC quiescence in vivo remains to be fully proven, despite intense 

research and despite increased knowledge of TGF- signaling.  

TGF- signaling diversified: a role for TIF1 in hematopoiesis 

Smad4 has traditionally been viewed as the nexus of Smad signaling as it functions as 



 8

a core component of both TGF-/activin and BMP signaling branches. However, 

Smad2/3 have been shown to partner not only with Smad4 but also with 

Transcriptional Intermediary Factor-1 (TIF1), suggesting that the Smad pathway is 

more diversified than previously thought (Figure 3). In a model proposed by He et al. 

TGF- was shown to mediate erythroid differentiation concomitantly with balancing 

growth inhibition in human hematopoietic stem/progenitor cells (40). According to 

this model, TIF1 selectively binds Smad2 and Smad3 in competition with Smad4. In 

response to TGF-, the TIF1/Smad2/3 complex stimulated erythroid differentiation 

whereas Smad2/3 in association with Smad4 led to growth inhibition of human 

hematopoietic progenitors. Thus, the relative abundance of Smad4 and TIF1 appears 

crucially important for determining the precise outcome of TGF- stimulation. 

Interestingly, the zebrafish homolog of TIF1, encoded by moonshine, has been 

shown to be essential for blood formation with mutants displaying severe red cell 

aplasia, indicating that the function of TIF1 may be preserved across species (41). 

Furthermore, Bai and colleagues recently uncovered a role for TIF1 in regulating 

transcription elongation of erythroid genes (42). The model proposed suggests that 

TIF1 functions to release paused Pol II at erythroid genes by recruiting positive 

elongation factors to the blood-specific transcriptional complex, thus promoting 

transcription (42). TIF1 also functions in a broader context as it was recently shown 

to play a role in erythroid/myeloid lineage bifurcation by modulating GATA1 and 

PU.1 expression (43). The role of the Smad pathway in these processes has not been 

investigated and what signaling pathways function to control transcription elongation 

of blood genes remains to be determined. It is however interesting to note that the 

BMP pathway has been previously linked to stress erythropoiesis, as will be discussed 
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below (44, 45). The mechanism by which TIF1 cooperates with Smads continues to 

be a controversial issue. Developmental studies from a variety of species have 

suggested that TIF1, also known as Ectodermin, acts as a ubiquitin ligase for Smad4, 

thus functioning as a direct inhibitor of Smad4 downstream of TGF- and BMP 

signaling (46, 47). Mice deficient in TIF1 die during early somitogenesis, displaying 

phenotypes which are consistent with excessive TGF/nodal signaling, supporting a 

role for TIF1 as negative regulator of Smad4 (48). How these seemingly disparate 

molecular mechanisms can be reconciled will require further investigation, but it is 

possible that temporal aspects and differences in cellular context play critical roles in 

determining the precise role of TIF1. Regardless of the exact molecular mechanism, 

accumulated data suggest that TIF1 functions to restrict Smad signaling downstream 

of TGF-/nodal. 

BMP signaling in hematopoietic development 

BMPs figure early during development as morphogens regulating mesoderm 

patterning. In mice, targeted deletions of a variety of BMP signaling components, 

including Bmp2, Bmp4 and BmpRIa, resulted in severe mesoderm deficiency and 

embryonic lethality (49-51). Because blood is derived from mesoderm, BMPs have 

been implicated as key regulators of blood formation during embryonic development. 

However, since BMP signaling is required before the onset of hematopoietic 

development the exact role of BMPs in hematopoietic induction has been challenging 

to study particularly in the mouse. Therefore, much of the initial knowledge on the 

role of BMP signaling in hematopoietic development has been derived from studies in 

lower vertebrates and from culture systems in vitro (52). For example, studies 

performed in Xenopus, have revealed an important role for BMP4 in induction of 

hematopoiesis (53, 54). In zebrafish, BMP2 and BMP7 mutants displayed lack of 
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ventral mesoderm development and a complete absence of blood cells (55). 

Additionally, to block BMP signaling after its initial requirement during specification 

of mesoderm, Schmerer and Evans devised a model where activity of the I-Smad6 

could be induced after gastrulation in Xenopus explants (56). Using this approach it 

was shown that Smad signals are required for primitive erythropoiesis and 

maintenance of Gata1 expression within specified mesoderm. Furthermore, when 

BMP signaling was disrupted in lateral mesoderm in the zebrafish model, by targeting 

a dominant negative BMP receptor to Lmo2+ cells, it was concluded that BMP 

signaling continues to function in the regulation of lineage specification after lateral 

mesoderm commitment (57). However, at this stage BMP signaling functions to 

restrict hemato-vascular fate in favor of pro-nephric development (57), indicating that 

the effect of BMP signaling on hematopoiesis is affected by the exact stage of 

development. Moreover, in both murine and human ES cells exposure to BMP4 has 

been reported to induce mesoderm formation including hematopoietic commitment 

(58-61). BMP4 has also been shown to enhance hematopoietic development of rhesus 

monkey ES cells (62). Data obtained from the murine ES cell system further supports 

that BMP signaling functions in a two-step manner, its role in mesoderm patterning 

being separable from its function in blood fate specification (63). Thus, in vertebrates 

embryonic hematopoiesis depends on BMP-signaling in a mechanism that appears to 

be independent from its role in mesoderm patterning.  

Modeling BMP deficiency in vivo  

The role of Smad-mediated BMP signaling in hematopoiesis has recently been 

investigated in both mouse and zebrafish model systems, using mutants and targeted 

deletions of Smad1 and Smad5 (Table 1). Intriguingly, data accumulated suggest that 

this pathway is subject to considerable species and temporal variation with a 
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seemingly more pronounced role for Smad1 and Smad5 in zebrafish as compared to 

the mouse. Using both loss of function approaches and hypomorphic mutants, the 

roles of Smad1 and Smad5 were studied in zebrafish (64). Interestingly, distinct 

phenotypes were generated with respect to primitive erythropoiesis. While smad1 

morphants exhibited enhanced erythropoiesis, knockdown of smad5 resulted in a 

failure to maintain the erythroid program and thus erythropoiesis failed (64). Both 

genes, however, were shown to be required for definitive hematopoiesis as deficiency 

of either Smad1 or Smad5 caused a failure in the generation of definitive 

hematopoietic progenitors (64). To what extent this is a cell-autonomous effect is not 

clear, as Hild et al previously showed that transplantation of somitabun (a Smad5 

dominant negative mutation) mutant cells survived and formed blood tissue in a wild 

type environment (65). In the zebrafish model system, the initial requirement for 

BMP signaling can be overcome by injection of mRNA of the wild-type gene into 

fertilized eggs, thus allowing analysis of hematopoietic parameters in adult fish. 

Several allelic mutations of smad5 were studied, revealing anemia with mutants 

exhibiting decreased numbers of erythroid progenitors (66). Additionally, smad5 

mutants had an altered response to hemolytic anemia, indicating that Smad5 may be 

involved in regulating the kinetics of recovery under conditions of acute anemia (66). 

This is particularly interesting in the context of the flexed-tail mouse mutant, which 

carries a spontaneous mutation in the Smad5 gene. Neonatal mutant mice are anemic 

but recover in adulthood, except under conditions of stressed hematopoiesis (44). 

Mice carrying the flexed-tail mutation could not mount an effective response to acute 

anemia due to a specific defect in splenic erythropoietin-responsive progenitors to 

respond to BMP4 (44). Subsequently, it was shown that Stem Cell Factor (SCF) and 

hypoxia synergize with BMP4 to drive effective recovery upon stress anemia (45). 
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Although acute anemia has never been studied in the context of complete deletion of 

Smad5 in the mouse, these studies stand in sharp contrast to studies performed by 

Singbrant and colleagues. In a series of experiments it was shown that Cre-mediated 

deletion of Smad1 and/or Smad5, did not impair adult hematopoiesis in the mouse and 

mutant HSCs displayed normal self-renewal and differentiation capacities upon 

transplantation (67, 68). Similarly, using a fetal liver-specific Cre-driver to induce 

deletion of Smad5 or Smad1/Smad5 together, hematopoiesis was shown to occur 

normally upon transplantation into wild-type hosts (67). These differences are 

intriguing, but may suggest that Smad-mediated BMP signaling is only required under 

very specific stressed conditions. Taken together, the canonical BMP signaling 

pathway does not seem to regulate critical aspects of HSC biology in the adult mouse, 

in spite of its pivotal function in earlier developmental events. However, BMPs are 

present in the BM and a role for BmpRIa, has been established in the osteoblastic 

niche (69). BmpRIa-deficient mice exhibited an increase in the number of N-

cadherin+ osteoblastic cells resulting in an increase in the number of HSCs (69). 

Thus, BMPs are indirectly involved in regulating HSC-frequency in adult mice.  

BMP signaling ex vivo 

In vitro, BMP4 has been shown to promote maintenance of human HSCs in culture, 

whereas lower concentrations of BMP4 induced proliferation and differentiation of 

human hematopoietic progenitors (70). Furthermore, Shh induced proliferation of 

primitive human hematopoietic progenitors in vitro, apparently through a BMP4 

dependent mechanism (71). However, while BMP4 has been shown to maintain 

human NOD/SCID repopulating cells in culture it does not seem to cause an 

expansion, suggesting that Shh may act through additional mechanisms. The murine 

fetal liver stromal cell line AFT024 has previously been shown to maintain and 
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expand HSCs in long-term cultures (72). Interestingly, AFT024 cells were shown to 

produce BMP4 and this contributed significantly to maintenance of co-cultured 

human hematopoietic progenitors from cord blood (73). In the murine system, BMP4 

does not appear to affect proliferation of purified HSCs in vitro, although it is 

currently unclear whether BMP4 can extend the maintenance of murine HSCs in 

culture as this study did not assess in vivo reconstitution ability following BMP4 

exposure (74).  

Complete disruption of the Smad pathway 

To block the entire Smad signaling network and to sidestep potentially redundant 

mechanisms within this circuitry, two parallel approaches have been used: 

overexpression of the inhibitory Smad7 and deletion of Smad4. Smad7 was 

overexpressed in murine HSCs using a retroviral gene transfer approach (75). Forced 

expression of Smad7 resulted in significantly increased self-renewal capacity of HSCs 

in vivo, indicating that the Smad pathway negatively regulates self-renewal in vivo. 

Importantly, differentiation was unperturbed suggesting that self-renewal is regulated 

independently of differentiation by Smad signaling. When a similar strategy was used 

in human SCID repopulating cells (SRCs), overexpression of Smad7 resulted in 

altered differentiation from lymphoid dominant engraftment toward increased 

myeloid contribution (76). Thus, in the xenograft model system, forced expression of 

Smad7 modulates differentiation of primitive multipotent human SRCs. Using a 

conditional knockout mouse model, disruption of the entire Smad pathway at the level 

of Smad4 was recently investigated. Intriguingly, Smad4 deficient HSCs displayed a 

significantly reduced repopulative capacity of primary and secondary recipients, 

indicating that Smad4 is critical for HSC self-renewal in vivo (77). Since 

overexpression of Smad7 vs. deletion of Smad4 would be anticipated to yield similar 
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hematopoietic phenotypes, it is conceivable that Smad4 functions as a positive 

regulator of self-renewal independently of its role as a central mediator of the 

canonical Smad pathway. The precise molecular mechanism for this is currently 

unknown, but it is possible that Smad4 participates in other signaling cascades such as 

Wnt or Notch (78-80). 

Smad signaling in hematopoietic malignancies 

The role of TGF- in hematologic malignancies has been reviewed in detail, 

including the role of TGF- in leukemia, lymphoma/lymphoproliferative disorders, 

multiple myeloma, myeloproliferative diseases and myelofibrosis (81). Here, we will 

review briefly the role of TGF- in hematologic malignancies and myelofibrosis. 

Despite the pronounced anti-proliferative effect of TGF- on HSCs in vitro and the 

fact that alterations in genes encoding components of the TGF- pathway are 

frequently found in many epithelial neoplasms, such as pancreatic and colon cancer 

(82, 83), mutational inactivations involving the TGF- signaling pathway are 

uncommon in leukemias and other hematological malignancies (reviewed in (84)). A 

potential role for TGF- as a tumor suppressor has been demonstrated in vivo where 

heterozygous knockout mice for Tgf-1 developed increased numbers of lung and 

liver tumors upon exposure to carcinogenic stimuli (85). In addition, Smad3 

homozygous knockout mice live to adulthood, but spontaneously develop metastatic 

colorectal cancer, clearly supporting a role for TGF- signaling in tumor suppression 

(86). The lack of leukemogenesis in our TGF- signaling-deficient mouse models 

implies that loss of responsiveness to TGF- is more important for progression rather 

than initiation of leukemogenesis (38, 67, 75, 77). These findings suggest that 

deficient TGF- signaling alone is not sufficient to induce neoplastic transformation 

in hematopoietic cells. 
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Although, loss-of-function mutations that disrupt the TGF-β pathway are rare in 

hematological malignancies, a number of cases have been reported involving SMAD4 

and TGFRII in patients with acute myelogenous leukemia (AML) (87-90). Using 

ultra-dense array comparative genomic hybridization on 86 AML genomes, 18 copy 

number alterations (CNAs) regions were found recurrently modified, one of which 

represented the deletion of the SMAD4 gene, demonstrating that SMAD4 can be an 

AML-associated gene (Walter, PNAS, 2009). Furthermore, sporadic mutations in 

both TRI and TRII have been reported in lymphoid neoplasms (91, 92). Another 

study reported that the SMAD3 protein could not be detected in fresh samples from 

patients with T-cell acute lymphocytic leukemia (ALL). The mechanism for the 

SMAD3-deficiency is not known since the SMAD3 mRNA was present and no 

mutations could be detected in the MADH3 gene, which encodes SMAD3 (93). 

However, T-cell leukemogenesis was promoted in mice with haploinsufficiency of 

Smad3 and a complete deficiency of p27 (93). These findings are interesting because 

the p27 gene is frequently mutated in pediatric ALL, due to translocations and 

deletions or germline mutations (94, 95). Impaired TGF- signaling in hematologic 

malignancies can also be caused by suppression of Smad-dependent transcriptional 

responses by oncoproteins like TAX, EVI-1 and AML1-ETO (96-98). Similarly, 

downregulation of the transcription factor ZEB1 and overexpression of Smad7 

contribute to resistance to TGF-1-mediated growth suppression in adult T-cell 

leukemia/lymphoma without known mutations in TGF- pathway genes (99). In 

addition, there have been a number of reports on oncoproteins, which generate 

leukemias and simultaneously neutralize the growth inhibitory signal of the Smad 

pathway by binding or interacting with Smads. Fusion oncoproteins, like TEL-AML1 

and AML1-EVI1 have been shown to bind to Smad3, impairing both TGF- signaling 
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and apoptosis of transduced HSCs in vitro (97, 100-102). Furthermore, Smad4 has 

been shown to physically associate with HoxA9, thus reducing its ability to regulate 

transcriptional targets in hematopoietic cells in vitro (103). Recently, in vivo studies 

have shown that in wild type mice overexpressing HoxA9 or Nup98-HoxA9, Smad4 

binds to the oncoproteins and sequestrates them to the cytoplasm, suggesting a 

protective role of Smad4 against further promotion and growth of leukemic cells 

(104). Therefore, Smad signaling is often reduced or neutralized in hematopoietic 

malignancies, but in a majority of cases this is not due to primary mutations in genes 

encoding proteins of the Smad circuitry. Rather, malignant cells may exploit other 

mechanisms to reduce Smad signaling indirectly, through altered expression or 

function of co-factors and oncoproteins, or alternatively via loss of or disruption of 

TGF- target genes.  

Although TGF- plays a major role as tumor suppressor, TGF- can also 

paradoxically facilitate tumor growth, particularly in the later stages of disease. This 

is due to effects on the tumor microenvironment and the immunosuppressive function 

of TGF-, rendering the patient/animal with reduced possibilities to reject tumor cells 

by immunological means. 

Myelofibrosis with myeloid metaplasia is a chronic myeloproliferative disease 

characterized by clonal myeloproliferation and reactive bone marrow fibrosis (81). 

Myelofibrosis appears in the later stages of chronic myeloid leukemia and 

polycytemia vera while it occurs early in myelofibrosis with myeloid metaplasia. 

Several cytokines have been reported to contribute towards accumulation of reticulin 

fibers in the bone marrow of patients with myelofibrosis. These include TGF-, 

mainly TGF-1, basic fibroblast growth factor and platelet-derived growth factor 

(105-108). Some of the strongest evidence for a prominent role of TGF- in the 
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generation of myelofibrosis involved the use of bone marrow cells from Tgf-1 null 

mice. To induce myelofibrosis, irradiated mice were transplanted with bone marrow 

cells transduced with vectors containing the TPO gene. Importantly, prominent 

myelofibrosis only developed in mice receiving transduced wild type cells but not 

Tgf-1 null cells (107). These data indicate that TGF-1 produced by hematopoietic 

cells is a vital component in the development of myelofibrosis. 

Stem cell expansion towards advanced cell therapy 

One of the most important therapeutic modalities in hematology is blood and marrow 

transplantation to cure leukemia and genetic disorders. The process of finding donors 

that have compatible histocompatibility antigens for patients that need blood and 

marrow transplantation (BMT) is often a challenge and a limiting factor in current cell 

therapy is the shortage of available donors. As of today, umbilical cord blood (CB) is 

being used increasingly as a source of HSCs due to the common availability of CB 

cells and the diversity of histocompatibility gene haplotypes that are available in 

banked CB samples (109). However, the number of HSCs in each CB sample is 

limited and it would, therefore, greatly increase the applicability of CB-derived HSCs 

if efficient expansion could be safely achieved ex vivo prior to transplantation. In 

order to achieve stem cell expansion, a detailed understanding of cell signaling is 

required, including Smad signaling but also other major signaling pathways. 

Therefore, we will discuss the possible role of Smad signaling and that of other 

pathways in future efforts to expand stem cells in vitro. 

Successful stem cell expansion involves symmetric self-renewal divisions of HSCs, 

where both daughter cells retain HSC properties (110). More commonly, HSCs grown 

in vitro undergo asymmetric divisions characterized by the production of one HSC 

and a more differentiated progenitor, or alternatively, a symmetric division where 
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both progeny cells have lost their HSC potential. Although BMPs have been reported 

to contribute to HSC expansion ex vivo, manipulations of the Smad signaling pathway 

alone are not likely to result in effective stem cell expansion (70, 71). Rather, 

stimulation of several signaling circuitries and suppression of other pathways will be 

essential to generate stem cell expansion in vitro prior to transplantation in clinical 

settings. Positive and negative regulators ultimately balance the transition from 

quiescence to proliferation of HSCs. Thus, the strategies for stem cell expansion 

should involve activation of regulators that encourage HSC self-renewal and/or 

inhibition of pathways that mediate quiescence, differentiation or apoptosis of HSCs. 

Some approaches, such as over-expression of HoxB4, require viral vector-mediated 

gene transfer to HSCs for efficient expansion (111). However, this strategy is not 

likely to be accepted for clinical therapy due to the risk of insertional mutagenesis 

(112, 113). The safest approaches would involve soluble factors, for example 

cytokines, developmental cues or components such as Angiopoietin-like (Angptl) 

proteins.   

Developmental cues that activate Notch and Wnt signaling in HSCs have been shown 

to affect self-renewal positively ex vivo. Most notably, Wnt3A was shown to expand 

murine repopulating HSCs and injection of Wnt5A into NOD/SCID mice repopulated 

with human hematopoietic cells increased the reconstitution and number of primitive 

hematopoietic cells (114, 115). Similarly, a soluble form of the Notch ligand, Jagged 

1, was reported to stimulate growth of human HSCs and may therefore be used to 

expand stem cells ex vivo (116). However, the Angptl proteins Angptl 2 and 3 are by 

far the most promising soluble factors identified to date for expansion of murine 

HSCs (117). Using cultures containing Angptl 5 together with SCF, Thrombopoietin 

(TPO), Fibroblast Growth Factor-1 (FGF-1) and insulin growth factor binding protein 
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2 (IGFBP2), the number of Scid Repopulating Cells (SRCs) could be expanded by a 

factor of 20 (118). Clinical benefits can also be achieved by expanding hematopoietic 

progenitors ex vivo to prevent delayed myeloid engraftment following HSC 

transplantation. Engineered Notch ligand attached to tissue culture plates was used to 

significantly expand SRCs and was also used in a clinical trial to improve engraftment 

and prevent delayed myeloid reconstitution following transplantation of CB CD34+ 

cells (119). As more detailed knowledge is unearthed concerning the regulatory 

pathways that govern HSC self-renewal, it may be possible to modulate these 

pathways with small molecule drugs. Recently, it was demonstrated that chemicals 

that increase prostaglandin E2 synthesis could expand HSC numbers in both zebrafish 

and mice (120). Similarly, a chemical screen identified a purine derivative, 

StemRegenin 1, which was shown to promote ex vivo expansion of human CD34+ 

cells and SRCs (121). In the future, more detailed information on single signaling 

pathways that determine cell fate options will be required, in order to increase our 

understanding of how integration of major signaling modules may be exploited in 

vitro. Such increased knowledge will open up new avenues for maintaining and 

expanding HSCs in vitro.  

Concluding remarks 

The Smad pathway constitutes a fundamental signaling component downstream of the 

TGF- superfamily of ligands. Manipulations of this pathway at various levels and in 

a range of species have revealed important functions of this signaling circuitry in HSC 

self-renewal and differentiation. 

Apart from Smad-mediated signals, TGF- and related ligands have been shown to 

activate TGF- activated kinase 1 (TAK1), a component of the mitogen-activated 

protein kinase (MAPK) pathway, in a range of cell types (122-124) (Figure 3). 
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Interestingly, TAK1 has been studied in the context of hematopoiesis resulting in 

severe hematopoietic failure upon Mx1-Cre mediated deletion (125). Thus, TAK1 

appears to be crucially important for hematopoietic maintenance, but the link to TGF-

 has not been established. To what degree non-canonical pathways function 

downstream of TGF- and BMPs in HSCs remains unclear and constitutes an exciting 

avenue for future research. Additionally, the complexity of the Smad pathway 

continues to be exposed as new layers of regulatory mechanisms are established. For 

example, the linker region of Smads has been shown to be subject to negative 

regulation by GSK3 and FGF or EGF (126-129). The importance of this type of signal 

integration in hematopoietic cells has not been studied, but it will be an interesting 

area to explore as both WNTs and FGFs have been shown to be involved in HSC 

regulation (114, 130). In the future, more detailed mechanistic studies are required to 

precisely define how the Smad signaling pathway may be manipulated in relation to 

other signaling circuitries, ultimately controlling self-renewal decisions in a manner 

compatible with expansion of HSCs for advanced cell therapy. 
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Figure legends 

Figure 1. The TGF- superfamily. Schematic representation of the various 

components of the TGF- superfamily pathway, including ligands, receptors and 

Smads. Following ligand binding to type I and type II receptors, R-Smads become 

phosphorylated by activated type I receptors. Phosphorylation of R-Smads results in a 

conformational change allowing for complex-formation with Smad4. The R-

Smad/Smad4 complex subsequently translocates to the nucleus where target gene 

transcription is modified in cooperation with other DNA-binding factors. P indicates 

phosphorylation. R-Smad denotes receptor-activated Smad; Co-Smad common Smad; 

and I-Smad indicates inhibitory Smad.  

Figure 2. The bone marrow niche. Quiescent HSCs reside in the bone marrow 

endosteal region in close proximity to osteoblastic cells and other cellular and 

structural components with supportive and regulatory functions. BMPs signal via 

ALK3 on osteoblastic cells, regulating the size of the osteoblastic niche and 

consequently the size of the HSC pool. Autocrine and/or paracrine TGF- is thought 

to induce quiescence of HSCs, contributing to maintenance of HSCs. Loss of Smad4 

in HSCs results in impaired self-renewal capacity whereas overexpression of Smad7 

leads to increased self-renewal of HSCs.  

Figure 3. Summary of TGF- signaling. TGF- signaling results in growth 

inhibition of HSCs when Smad2/3 partners with Smad4. In human cells binding of 

TIF1 to Smad2/3 stimulates erythroid differentiation in response to TGF-. 

Activation of non-canonical MAPK signaling downstream of TGF- has been shown 

in other cell types, but is largely unexplored in HSCs. However, TGF--activated 

kinase1 (TAK1) is expressed in the LSK compartment and is essential for HSC 

survival in vivo.  
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Table 1. Smad knockout/overexpression or mutant models and associated 

hematopoietic phenotypes. 

Smad	
signaling	
component	

Organism	 Model	system Hematopoietic	
phenotype	

Reference

Smad1	 Mouse	 Conditional	
knockout	,	Mx‐
Cre	

Normal	HSC	
properties.	

(67)	

Smad1	 Zebrafish	 Morpholino	
knockdown		

Enhanced	primitive	
erythropoiesis,	failure	
to	generate	definitive	
hematopoietic	
progenitors.	

(64)	

Smad5		 Zebrafish	 piggytail
mutant,	
morpholino	
knockdown	

Defective	primitive	
erythropoiesis,	failure	
to	generate	definitive	
hematopoietic	
progenitors.	

(64)	

Smad5	 Mouse	 Conditional	
knockout,	Mx‐
Cre,	
Vav‐Cre	

Normal	adult	HSC	
parameters.	
Unperturbed	fetal	
liver	hematopoiesis.		

(67,	68)

Smad5		 Mouse	 flexed‐tail
mutant		

Defective	erythroid	
response	during	acute	
anemia.	

(44)	

Smad1/5	 Mouse	 Conditional	
knockout	,	Mx‐
Cre,	Vav‐Cre	

Reduced	myeloid	
component	in	PB	
upon	transplantation	
of	fetal	liver	cells,	but	
otherwise	normal	
adult	and	fetal	liver	
hematopoietic	
parameters.	

(67)	

Smad4	 Mouse	 Conditional	
deletion,	Mx‐
Cre	

Impaired	self‐renewal	
of	HSCs.	

(77)	

Smad7	 Mouse	 Retroviral	over‐
expression		

Enhanced	self‐
renewal	of	HSCs	in	
vivo.	

(75)	

Smad7	 Human/xenograft Retroviral	over‐
expression	in	
cord	blood	scid‐
repopulating	
cells	

Altered	cell	fate,	
favoring	myeloid	
commitment	over	
lymphoid.	

(76)	
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