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1. Introduction

Networked embedded systems play an increasingly important role and affect
many aspects of our lives. By enabling embedded systems to communicate,
new applications are being developed in areas such as health-care, industrial
automation, power distribution, rescue operations and smart buildings. Many
of these applications will result in a more efficient, accurate and cost effective
solution than previous ones. The European Integrated Project Reconfigurable
Ubiquitous Networked Embedded Systems (RUNES) [16] brings together 21
industrial and academic teams in an attempt to enable the creation of large
scale, widely distributed, heterogeneous networked embedded systems that
inter-operate and adapt to their environments. The inherent complexity of
such systems must be simplified if the full potential for networked embedded
systems is to be realized. The RUNES project aims to develop technologies
(system architecture, middleware, networking, control etc.) to assist in this
direction, primarily from a software and communications standpoint.

Networked control systems impose additional requirements that arise from
the need to manipulate the environment in which the networked systems are
embedded. Timing and predictability constraints inherent in control applica-
tions are difficult to meet in general, due to the variations and uncertainties
introduced by the communication system: delays, jitter, data rate limitations,
packet losses etc. For example, if a control loop is closed over a wireless link,
it should tolerate lost packets and be able to run in open loop over peri-
ods of time. Resource limitations of wireless networks also have important
implications for the control design process, since limitations such as energy
constraints for network nodes need to be integrated into the design specifica-
tions. The added complexity and need for re-usability in the design of control
over wireless networks suggest a modular design framework.

In this report, we propose a component-based approach to handle the soft-
ware complexity of networked control systems. A general framework is pre-
sented and it is shown how it can be instantiated in the specific problem of
robot self localization and control. Section 1.1 briefly presents the RUNES
middleware and component architecture. In the RUNES project a motivating
scenario was developed, this scenario is described in Section 1.2. The different
components and their connections are presented in Section 2 and in sections 3
and 4 the algorithms used for self localization and robot control are discussed.

1.1 Middleware and Components

The RUNES middleware [11] is illustrated in Figure 1. The middleware acts
as a glue between the sensor, actuator, gateway and routing devices, operat-
ing systems, network stacks, and applications. It defines standards for imple-
menting software interfaces and functionalities that allow the development of
well-defined and reusable software. The basic building block of the middle-
ware developed in RUNES is a software component. From an abstract point of
view, a component is an autonomous software module with well defined func-
tionalities that can interact with other components only through interfaces
and receptacles. Interfaces are sets of functions, variables and associated data
types that are accessible by other components. Receptacles are required inter-
faces by a component and make explicit the inter-component dependencies. A
graphical representation of a RUNES component is shown in Figure 2.

The connection of two components occurs between a single interface and
a single receptacle. Such association is called binding and is shown in more
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Figure 1 Overview of the RUNES middleware platform. The component-based
middleware resides between the application and the operating systems of the indi-
vidual network nodes.

detail in Figure 3. Part of the RUNES middleware has been demonstrated to
work well together with the operating system Contiki [5], which was developed
for low memory low-computation devices. The implementation of the compo-
nent model for Contiki is known as the component runtime kernel (CRTK).
This component framework provides for instance dynamic run-time bindings
of components, i.e., during execution it allows components to be substituted
with other components with the same interface.

Figure 2 Graphical representation of a RUNES component. Interfaces are sets of
functions, variables and associated data types that are accessible by other compo-
nents. Receptacles are required interfaces by a component.

1.2 Motivating Scenario

One of the major aims of the RUNES project is to create a component-based
middleware that is capable of reducing the complexity of application construc-
tion for networked embedded systems of all types. Versions of the component
runtime kernel, which forms the basis of the middleware, are available for a
range of different hardware platforms. However, the task is a complex one, since
the plausible set of sensing modalities, environmental conditions, and inter-
action patterns is very rich. To illustrate one potential application in greater
detail, the project selected a disaster relief scenario, in which a fire occurs
within a tunnel, much as happened in the Mont Blanc tunnel in 1999. In this,
the rescue services require information about the developing scenario both be-
fore arrival and during rescue operations, and such information is provided by
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a network of sensors, placed within the tunnel, on robots, and on rescue per-
sonnel themselves. We explore the scenario in more detail below, but it should
be noted this is intended to be representative of a class of applications in which
system robustness is important and the provision of timely information is cru-
cial. So, for example, much the same considerations apply in the prevention
of, or response to, Chemical, Biological, Radiological, Nuclear or Explosive
(CBRNE) attacks; likewise, search and rescue operations, and even industrial
automation systems form application domains with similar requirements for
predictability of response given challenging external conditions.

In the RUNES scenario, we project what might happen in a similar situ-
ation if the vision of the US Department of Homeland Security’s SAFECOM
programme becomes a reality. The scenario is based around a storyline that
sets out a sequence of events and the desired response of the system, part of
which is as follows. Initially, traffic flows normally through the road tunnel;
then an accident results in a fire. This is detected by a wired system, which
is part of the tunnel infrastructure, and is reported back to the Tunnel Con-
trol Room. The emergency services are summoned by Tunnel Control Room
personnel. As a result of the fire, the wired infrastructure is damaged and the
link is lost between fire detection nodes (much as happened in Mont Blanc).
However, using wireless communication as a backup, information from (for
example) fire and smoke sensors continues to be delivered to the Tunnel Con-
trol Room seamlessly. The first response team arrives from the fire brigade and
rapidly deploys search and rescue robots, following on foot behind. Each robot
and firefighter carries a wireless communication gateway node, sensors for envi-
ronmental temperature, chemical and smoke monitoring, and the robots carry
light detectors that help them identify the seat of the blaze.

The role of the robots in this scenario is twofold: to help identify hazards
and people that need attention, without exposing the firefighters to danger;
and to augment the communications infrastructure to ensure that both tunnel
sensor nodes and those on firefighters remain in contact with the command
and control systems that the situation commander uses to make informed de-
cisions about how best to respond. To accomplish this, the robots are moving
autonomously in the tunnel taking into account information from tunnel sen-
sors about the state of the environment, from a human controller about overall
mission objectives, and from received signal strength measurements from the
wireless systems of various nodes about the communication quality. The robots
coordinate their activity with each other through communication over wireless
links. Local backup controllers allow the robots to behave reasonably in the
event that communication is lost.

2. Software Components

This section presents an overview of the components and their bindings used
for navigation, self localization and control of a single autonomous robot. Com-
ponents aimed at for example restoring or improving network connectivity,
radio power control, coordination of multiple robots, security issues and so on
are described in [1] and its companion papers.

A component-based middleware has, at least in theory, the big advantage
that components can be developed and tested independently. However, when
dealing with components that interact with the environment, one must be
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Figure 3 Overview of the component architecture used for navigation and deploy-
ment of a single autonomous robot.

aware of how the interconnection of components effect real-time performance.
Thus some of the advantages with a component-based architecture can be
illusive, especially in embedded systems with limited resources. Techniques
like reservation-based scheduling are promising, but it is still an active research
area, see for example [9] for a recent survey.

In Figure 3 an overview of the component architecture is shown. The system
also contains a network communication component which provides UDP and
TCP services together with Ad hoc On-Demand Vector Routing.

The interface-receptacle framework implies that components can be added
in an hierarchical fashion. For example, the wheel control component (WCC),
which does not require a connection to any other component and thus have no
receptacles, serves as the base of the hierarchy. The self localization component
(LoC) then binds to the WCC and so on.

As depicted in Figure 1 one component can reside in multiple devices,
possible running different operating systems. In case of the LoC and RCC this
is inherent to their function, whereas in the case of the HCC, WCC and NaC
it is an implementational choice. All components except the PC part of the
RCC was implemented in C code.

Next the different components together with their interfaces and recepta-
cles will be described.

2.1 Wheel Control Component

The wheel control component is the most rudimentary component discussed
here. It provides low level control of the movement of the robot. Two interfaces
are provided by the WCC: one containing the current angular velocity of the
two wheels and one providing a function to set the reference velocities.

2.2 Self Localization Component

The self localization component resides both in the robot and in a number of
stationary anchor nodes. To reduce the computational time of the algorithm,
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some computations are also distributed among two microprocessors within the
robot.

The LoC provides one interface containing estimates of the robots position
and heading in a predefined coordinate system. The interface also contains
the covariance matrix of the estimation error which acts as a quality measure
of the estimates. To enhance accuracy the LoC uses information about the
movement of the robot. This is represented as a receptacle requesting wheel
velocities.

2.3 Heading Control Component

The heading control component provides one interface containing functions for
changing the desired heading together with the reference velocity of the robot.
Measurements of the heading and wheel velocities are requested through two
receptacles. The HCC also requires a way of changing the wheel reference
velocities, this is represented as a receptacle requesting an interface with this
functionality.

2.4 Navigation Component

The navigation component provides one interface containing a function to
change the desired location of the robot. Measurements of the robots location
and heading are requested through one receptacle. The NaC requires a way
of changing the heading and velocity references, this requirement is also rep-
resented as a receptacle. The algorithms used for navigation are described in
[13] and [6].

2.5 Remote Control Component

Naturally, also the remote control component is distributed between the con-
trolling computer and the robot. The RCC has only one receptacle, represent-
ing a requirement of an interface that provides a function for changing the
desired location of the robot. The remote control component generates this
value through interaction with a remote user.

3. Self Localization

A prerequisite for navigation is self localization, i.e., the robots must know
their current position and heading. Since the tunnel is assumed to be well-
known, automatic map building is not considered. Instead it is assumed that
the overall layout of the tunnel is known, with the exception of the position
of a number of stationary obstacles, modeling, e.g., stalled vehicles.

Self localization of mobile robots can be performed with a number of tech-
niques. In laboratory experiments it is common to use vision, e.g., a ceiling-
mounted camera combined with an image-processing system. In the tunnel
scenario this is not a realistic approach due to, e.g., problems with light and
smoke. Another possibility is to use dead-reckoning using a high-precision
inertial measurement sensor unit on-board the robot. A problem with dead
reckoning-based approaches, however, is that they are open loop and that un-
measurable disturbances will cause position errors that cannot be compensated
for. In an outdoor environment GPS would have been another possibility, but
inside a tunnel this is less realistic.

5



Figure 4 Stationary sensor network nodes with ultrasound receiver circuit. The
nodes are packaged in a plastic box to reduce wear.

The self localization approach chosen in the RUNES project is based on
measuring the distance to a number of objects with known positions, known
as anchors, and then computing the position of the unknown object, in this
case the robot, using these measurements. In a real road tunnel, the means of
acquiring these distance measurements, would be dependent on the environ-
ment in which the system must operate. As the aim of this project was not to
develop a positioning system capable of operating in the harsh environment of
a burning road tunnel, but to demonstrate the benefits of a component-based
design approach, a simple ultrasound based solution was chosen.

3.1 Ultrasound Distance Measurements

The basic idea is to transmit a wireless radio packet simultaneously with an
ultrasound pulse from each sender node. The receiver nodes measure the dif-
ference in time of arrival between the radio packet and the ultrasound pulse
and can in this way calculate their distance to the sender node.

Two main approaches exists, [17]. In an active mobile system the infrastruc-
ture, in this case the tunnel, has receivers at known locations, which estimate
distances to a mobile device based on active transmissions from the device.
Examples of this approach are the Active Badge [19], and the Ubisense [2]
systems. In a passive mobile system, instead, the infrastructure has active
beacons at known positions that periodically transmits signals to a passive
mobile device. The most famous example of this is the Cricket system [14].

An advantage of the active approach is that it is more likely to perform
accurate tracking than the passive approach. The passive approach, on the
other hand, scales better with the number of mobile devices. Since in the
tunnel scenario good tracking is important and the number of mobile robots
is small, the active approach was chosen. The stationary sensor nodes in the
tunnel are each equipped with an ultrasound receiver and each mobile robot
is equipped with an ultrasound transmitter. The stationary sensor nodes are
implemented as Tmote Sky sensor network “motes” together with a small
ultrasound receiver circuit interfaced to the mote via the AD converter, see
Figure 4. The mobile robots are equipped with an ultrasound transmitter
circuit. Both the ultrasound transmitters and receivers are designed to be
isometric, i.e., to transmit and receive in the full 360◦ degree plane.

A second reason for choosing ultrasound-based self localization is that it
involves the use of the sensor network in closed loop. One of the objectives
of the RUNES project was to investigate the possibilities and problems asso-
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ciated with networked control over sensor networks. In wireless networks the
lack of worst-case latency guarantees and risk of losing radio packets creates
extra challenges for control. The ultrasound based location method provides
a possibility for evaluating this.

3.2 State Estimation

Inferring the position (or any other quantity) of an unknown object from
measurements of the distance to a number of objects with a priori known
positions can be done using a variety of methods. In general the distance
measurements are corrupted by noise, so any method used should involve
some kind of filtering. If additional measurements such as wheel velocities and
heading information is available, this information should also be incorporated
in the estimate of the position. Both these requirements suggest the use of a
dynamic model of the object to be positioned together with some statistical
inference technique. The problem can thus be formulated as a general nonlinear
state estimation problem on the form

x(k + 1) = f(x(k), k) + w(k)

y(k) = h(x(k), k) + v(k)
(1)

where x(k) ∈ Rn is the state vector to be estimated, y(k) ∈ Rp is the measured
output, w(k) ∈ Rn and v(k) ∈ Rp are unknown disturbances. Note that a
known input can be seen as a time dependent f(·).

When solving a general nonlinear state estimation problem one must al-
most always resort to approximations of some sort. The by far most common
approach is the Extended Kalman filter [7] where the probability distribution
of x(k) given all previous information is approximated using a Gaussian distri-
bution. A Gaussian distribution is fully described by its mean and covariance,
thus it is sufficient to find an approximate way of updating these quantities
after a new measurement is taken and as time progresses. In the Extended
Kalman Filter, or EKF for short, this is done through linearization of f(·) and
h(·).

An alternative way of updating the mean and covariance is through the use
of the so called unscented transform, which results in the Unscented Kalman
Filter (UKF) [8]. The UKF uses a deterministic sampling approach where the
mean and covariance is represented using a minimal set of carefully chosen
sample points. When propagated through the true nonlinear system, these
points capture the mean and covariance accurately to the 3rd order Taylor
series expansion of the non-linearity.

In both the EKF and UKF the the probability density of x(k) is approx-
imated by a Gaussian distribution. If a more general distribution is needed,
the use of sequential Monte Carlo methods such as the so called particle filter
[3] is a common approach.

All the methods presented so far, aim at approximating the full probability
distribution of x(k) given all previous information. A different approach is
the joint maximum a posteriori- or trajectory estimation method where a
point estimate of the full trajectory x(0) . . . x(k) is generated. Using dynamic
programming a recursive procedure for generating a point estimate of the last
value x(k) can be derived in principal. However, in general the complexity
of this recursive scheme grows with k making it impossible to implement.
One common method that finds an approximation of the joint maximum a
posteriori estimate is moving horizon estimation (MHE) [15]. In MHE a point
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Figure 5 Standard deviation of the distance measurement error as a function of
distance together with 95% confidence intervals.

estimate of x(k − N) . . . x(k) for some fixed value N is generated by solving
an optimization problem online.

3.3 Measurement Models

The measurement function h(·) is determined by if the distance measurements
are preprocessed or not. If no preprocessing is done it will simply be the
Euclidean distance between the object and the anchors. This setup will be
referred to as the direct measurement model. In this case the unknown distur-
bance v(k) can, at least approximately, be modeled as white Gaussian noise
independent of the state. As can be seen in Figure 5 the implemented system
gives an error of about 1 cm for distances up to 7 m. Also, the accuracy is
fairly independent of the distance.

Trilateration One common way of preprocessing the distance measure-
ments is called trilateration. Trilateration is a process, where three (in the
plane) distance measurements together with the known positions of the an-
chor nodes, produces an estimate of the position of the unknown object. In
this case h(·) reduces to an identity map for the position coordinates, but at
the cost of making v(k) highly dependent of x(k). This dependence is in gen-
eral difficult to model, due to the nonlinear characteristics of the trilateration
procedure.

The basic problem is to find a solution [ px py pz ]T to the following
three nonlinear equations

(px − px1)
2 + (py − py1)

2 + (pz − pz1)
2 = d2

1

(px − px2)
2 + (py − py2)

2 + (pz − pz2)
2 = d2

2

(px − px3)
2 + (py − py3)

2 + (pz − pz3)
2 = d2

3.

where pxi, pyi and pzi are known positions of the anchors and di is the distance
from anchor i to the object to be positioned. The problem can be transformed

8



to a system of two linear equations and one quadratic equation by e.g sub-
tracting the second and third equation from the first, see [10] for a detailed
analysis.

An alternative more geometric approach was taken in [18] where the prob-
lem is solved using Cayley-Menger determinants. This approach as the benefit
of a geometric interpretation of the solution in terms of volumes, areas and
distances. Also the error analysis with respect to e.g distance errors is simpli-
fied.

1

2

3

Figure 6 The intersection of two lines defining the solution to the trilateration
problem. The three circles correspond to distance measurements to three anchor
nodes with known positions. When measurement noise is present the circles may
as shown overlap or not intersect. However, the trilateration procedure results in a
reasonable result in both these cases.

As the robot is assumed to only move in the xy-plane, the problem can
be reduced to a set of two linear equations as discussed above. The two lin-
ear equations will always have a solution unless all three known points are
positioned on a line. The two linear equations defines two lines, see Figure 6,
which can be represented as

a0y = a1 + a2x (2)

b0y = b1 + b2x (3)

where

a0 = 2(py2 − py1)

a1 = d2
1 − d2

2 + p2
y2 − p2

y1 + p2
x2 − p2

x1 − 2pz(pz2 − pz1)

a2 = 2(px1 − px2)

b0 = 2(py3 − py1)

b1 = d2
1 − d2

3 + p2
y3 − p2

y1 + p2
x3 − p2

x1 − 2pz(pz3 − pz1)

b2 = 2(px1 − px3).
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Note that the z-coordinate pz of the robot is assumed to be known, as it
is only moving in the xy-plane. The intersection point of these two lines con-
stitute the trilaterated position [ ptri

x ptri
y ]T . Even though the three circles do

not intersect in one point, the algorithm provides a reasonable result. How-
ever, for nearly singular situations like the one shown in Figure 7, the result
produced need not to be very accurate. For a detailed discussion on how errors
both in distance measurements and node positions influence the trilateration
result, see [18] and [10].

1

2

3

Figure 7 Nearly singular configuration where the trilateration result (intersection
of the two lines) need not be very accurate. The distance measurements suggest that
the object is located in the vicinity of anchor 3, but the trilateration procedure gives
a result far away.

3.4 Choice of measurement model

Using the direct measurement model has two major advantages over trilat-
eration: First of all, the direct approach can make use of only one or two
measurements, whereas to perform trilateration three measurements are nec-
essary. In a system relying on wireless communication, this is an important
advantage. Secondly, modeling the state dependent noise in the trilateration
case is very difficult. This results in that the algorithm is unaware of how good
a measurement really is. This information is available to the direct approach
as it uses a nonlinear measurement function h(·).

The trilateration approach has the advantage that it is conceptually sim-
pler, as after a trilateration computation is done, an estimate of the position
is directly available. In the direct measurement model, the position estimate
is the result of an iterative algorithm involving other known signals and/or
unknown states.

3.5 Dynamical Model

The choice of dynamical model f(·) should reflect both the available knowledge
and which quantities that are of interest. The robot used in the RUNES project
is a two wheeled dual drive robot with an unactuated support. Using this type
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of robot has the big advantage that when turning, the actuated wheels are not
slipping, thus a third order kinematic model can easily be derived.

The robot together with coordinate definitions is shown in Figure 8. Using
the two position variables px and py together with the heading θ as state
variables the model can be written as



























ṗx =
R

2
(ω1 + ω2) cos(θ)

ṗy =
R

2
(ω1 + ω2) sin(θ)

θ̇ =
R

D
(ω2 − ω1)

(4)

where R is the radius of the wheels and D is the distance between them. Inputs
to the system are the angular velocities ω1 and ω2 of the two wheels. In this
model, these angular velocities are assumed to be completely known as they
are controlled by two PI-controllers, see Section 4.2.

θ

px

py

ω1

ω2

Figure 8 Definition of coordinates with respect to the robot.

To get a model on the form 1 the continuous time model 4 must be dis-
cretized. The most common choice of discretization scheme is the simple for-
ward Euler scheme,

x(k + 1) = x(k) + T ẋ(k) = f(x(k), k) (5)

However, due to the limited computational resources in the hardware plat-
form, the sampling interval T must be kept rather large. For large sampling
intervals the forward Euler scheme can perform very badly. This motivates the
use of a higher order scheme such as a second order Adams-Moulton method,

x(k + 1) = x(k) +
T

2
(ẋ(k) + ẋ(k + 1)) (6)

In general the Adams-Mouton method is implicit, that is, we have to solve
for x(k + 1) using some numerical method. However, for the continuous time
model 4 an explicit solution can be obtained. Note that f(x(k), k) will depend
on the wheel velocities at time k + 1, but this poses no problem if the model
is not used for prediction.
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3.6 Extended Kalman Filter

This section presents the extended Kalman filter and points out some imple-
mentational issues. The presentation is made with the direct measurement
model in mind, but the same procedure applies for trilateration. Care must
however be taken with how to compute the measurement noise covariance
matrix Rv in the case of trilateration.

The EKF consists of two steps: time update and measurement update. In
the time update step the mean x̂ and covariance P of the Gaussian approxima-
tion of the probability density of x(k) given all information up to k is updated
as

x̂(k + 1|k) = f(x̂(k|k), k)

P (k + 1|k) = F (k)P (k|k)F T (k) + Rw

(7)

where Rw is the covariance of the process disturbance w(k). The matrix F (k)
is the Jacobian of f(·) with respect to x(k) at x̂(k|k),

F (k) =
∂

∂x
f(x, k)

∣

∣

∣

∣

x=x̂(k|k)

(8)

When a measurement is available the mean and covariance is updated as

x̂(k|k) = x̂(k|k − 1) + K(k) (y(k) − h(x̂(k|k − 1), k))

P (k|k) = (I − K(k)H(k))P (k|k − 1)
(9)

where

K(k) = P (k|k − 1)HT (k)S−1(k)

S(k) = H(k)P (k|k − 1)H(k)T + Rv

H(k) =
∂

∂x
h(x, k)

∣

∣

∣

∣

x=x̂(k|k−1)

(10)

and Rv denotes the covariance of the measurement disturbance v(k).
Note that if the Adams-Mouton approximation is used the time update

step has to be computed at the beginning of the sampling interval due to the
dependence in f(x, k) of ω1(k + 1) and ω2(k + 1).

Because the number of received distance measurements may vary with
time, the size of H(k), S(k) and K(k) will also change over time. In the
extreme, when no measurements are received, the measurement update step
is simply ignored and the estimates are updated using the dynamical model
only. This is often referred to as dead reckoning.

Perhaps both the most numerically sensitive and computationally demand-
ing part of the above computations is the inversion of the output prediction
error covariance matrix S(k). This square matrix has the same dimension as
the number of received measurements. For a linear Kalman filter, processing
measurements with independent noise one at a time, thus reducing the matrix
inversion to division with a scalar, is equivalent to processing them all at once.
For a description, see for example [7] or [12] where a detailed computational
analysis is done. For the EKF a similar procedure can be used, however se-
quential and non-sequential processing are in general not equivalent due to the
nonlinear update equation. To be consistent with the structure of (9) H(k)
should be re-linearized after the addition of each new measurement.
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3.7 Experimental Validation

To validate the accuracy of a self localization system using an EKF with the
direct measurement model, a reference camera system was used. The EKF
with sequential measurement processing was implemented in C code using 32
bit software emulated floating point arithmetic.

In Figure 9 the estimated position and heading is shown together with the
measurements generated by the camera system. The camera system had a ac-
curacy of about 1 cm and 6 degrees. The estimates were generated using seven
anchor nodes distributed to form equilateral triangles covering the working
area.
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Figure 9 Estimates generated by a self localization system using the EKF together
with the direct measurement model together with measurements generated by a
reference camera system.
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4. Robot Control

Many robot navigation algorithms produce heading- and speed references as
their output. These reference values must be turned into actual control sig-
nals for the two motors driving the robot. In Figure 10 a hierarchical control
system for thus purpose is shown. First the heading- and speed references are
transformed into wheel speed references. The two wheels are then controlled
individually to these references.

Wheel Controller

Wheel Controller

Heading Controller

Position Encoder

Position Encoder

Speed Reference

Heading Reference

Heading Estimate

Wheel Speed Reference

Wheel Speed Reference

Motor Voltage

Motor Voltage

Figure 10 Hierarchical control system used to transform heading- and speed ref-
erences into actual control signals for the two motors.

4.1 Heading Control

Using the same dynamical model of the heading θ as in the self localization
algorithm and assuming that the wheel speeds are well controlled, a model
suitable for control can be written as

d

dt

[

θ

∆ω

]

=

[

0 R
D

0 − 1
Tω

] [

θ

∆ω

]

+

[

0
1

Tω

]

∆ωref (11)

Here ∆ω = ω2 − ω1 and Tω ≈ 0.4 s is the time constant of the closed loop
wheel control systems. Sampling the system with a sampling interval of 400
ms and designing an LQ-controller that minimizes

∞
∑

k=0

(θ(k) − θref(k))2 + R2∆ω2(k) + 10R2∆ω2
ref(k) (12)

results in a controller on the form

∆ωref = −L1(θ − θref) − L2∆ω (13)

Because θ̇ is proportional to ∆ω, the control law can be interpreted as a PD-
controller. The two wheel speed references are then computed as

ωref,1 =
vref

R
−

1

2
∆ωref

ωref,2 =
vref

R
+

1

2
∆ωref

(14)

where vref is the speed reference of the robot in m/s.
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4.2 Wheel Speed Control

As mentioned in Section 3.5 the angular velocity of the two wheels are con-
trolled by two PI-controllers operating at 100 Hz. The angular velocity is
estimated from position encoders by differentiating the position signal and
then using a low pass filter with a time constant of 100 ms.

In the heading control model it was assumed that the closed loop wheel
speed control system has a time constant of Tw ≈ 0.4 s. This is achieved
by prefiltering the reference signal with a first order low pass filter. The time
constant Tw had to be chosen large enough to prevent the wheels from slipping,
which would violate the assumptions made when deriving the kinematic model
(4).

5. Conclusions

The self localization and robot control system was part of a large scale demo
involving a variety of hardware platforms, wireless radio technologies and op-
erating systems. This situation very much captures what might be expected
in a real world scenario. In the light of the experience draw from the demo, a
number of areas, some where further development is needed, can be pointed
out:

Co-existence of different wireless radio technologies need to be further in-
vestigated. In the RUNES project IEEE 802.15.4, IEEE 802.15.1 (Bluetooth)
and IEEE 802.15.11 (WLAN), all operating in virtually the same frequency
band, where used simultaneously. This together with the complicated indoor
radio environment created by multipath propagation and the presence of peo-
ple, gave rise to time variations which were virtually impossible to predict. How
to develop closed loop control systems capable of handling this environment
still remains a very challenging task.

When constructing distributed control/estimation systems operating on
severely resource constrained platforms the lack of distributed debugging and
monitoring tools becomes evident. Normally straight forward tasks such as
logging of measured signals become a problem. Using wired logging is not pos-
sible if the network covers a large geographical area and wireless logging will
consume bandwidth and CPU time, thus effecting the system under study.
Debugging also becomes cumbersome as many problems will only be detected
after deployment. Thus, there is great potential for development of tools re-
solving these issues. Another option is of course simulation, but simulating
wireless radios, dynamical systems and software all at the same time is no
simple task.

In heterogeneous environments such as the one described above, the use
of a common network technology is very important. In the RUNES project a
IP based solution was used. This allowed for example sensor nodes to com-
municate with desktop PCs without the use of adaptor functions, that would
have been necessary if for example ZigBee would have been used. The key
technology that allowed this is the uIP stack [4] which is capable of running
on systems with severe resource constraints.
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