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Abstract

We consider the following signaling game. Nature plays first from the set {1, 2}. Player 1 (the Sender)
sees this and plays from the set {A, B}. Player 2 (the Receiver) sees only Player 1’s play and plays from
the set {1, 2}. Both players win if Player 2’s play equals Nature’s play and lose otherwise. Players are told
whether they have won or lost, and the game is repeated. An urn scheme for learning coordination in this
game is as follows. Each node of the decision tree for Players 1 and 2 contains an urn with balls of two
colors for the two possible decisions. Players make decisions by drawing from the appropriate urns. After
a win, each ball that was drawn is reinforced by adding another of the same color to the urn. A number of
equilibria are possible for this game other than the optimal ones. However, we show that the urn scheme
achieves asymptotically optimal coordination.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation for the model

In recent decades, much attention has been given to repeated two-player, non-zero-sum games
and the evolution of strategy. The evolutionary game theory paradigm, originating in the late
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1970’s in works such as [16] has been thoroughly explored in a variety of contexts, with particular
emphasis on explaining how cooperation might arise in games such as the Prisoner’s dilemma
for which there seems to be an inherent disincentive to cooperate.

Another recent line of inquiry has been the formation of reasonable strategies within a
population under myopic, bounded rationality types of constraints. The emphasis here is
on finding evolutionary pathways whose mechanisms are simple enough that they may be
employed by unsophisticated individuals, without much conscious thought, across a wide variety
of contexts. This kind of mechanism can, among other things, hope to explain the formation of
social and moral norms (see [14,1]). These norms are heuristics that may be easily understood
and employed in a wide variety of contexts, and their formation is possible if it results from
individual-level mechanisms that are advantageous when averaged over the many contexts in
which they are employed.

The emphasis in simplicity of micro-level mechanism has advantages beyond generalizability
across contexts and levels of intelligence or conscious thought. It makes models more
mathematically tractable. It also allows complexity to be increased in other dimensions, such
as allowing the simultaneous evolution of strategy and network structure [15,14]. Keeping the
number of parameters to a minimum allows in principle for empirical testing and calibration of
the micro-level parameters (see, e.g. the discussion of the discount rate parameter in [12]). On
a theoretical level, finding the simplest, most parsimonious model to explain a phenomenon is
generally thought to be a useful step in the investigation of the phenomenon in question.

The notion of an individual employing an urn model to govern plays in a repeated game is very
old. The “two-armed bandit” problem, for instance [3], features an individual trying to discover
the state of nature and balance the considerations of optimal play under known information
against play which will be most informative and thereby lead to gains in the future. One well
known strategy for this takes the form of an urn model; see for example [5]. This has been applied
to commonly used protocols such as sequential sampling in medical trials [17]. Urn models are
natural in the context of learning models for several reasons. It is not hard to posit micro-level
psychological processes (such as extrapolating from available memories) that correspond well
to the model. Urn models typically contain enough noise to avoid certain game-theoretically
unstable equilibria while still possessing good convergence properties. Models that are neither
quickly fixating (overly long memry) nor ergodic (overly short memory) correspond best to many
qualitative learning phenomena.

Early instances of urn models arose as attempts to formulate reasonable strategies for one
agent playing against Nature. More recent is the use of urns to model multi-player games in which
simplicity at the micro-level is desired. A considerable number of formal interaction models have
appeared in the last ten years in the fields of psychology, sociology and political science. One
may find many of these, for insance, in the literature on Agent-based modeling. This refers to a
much broader class of formal systems that includes urn models; for examples of agent-based urn
models in sociology, see [4,7].

An important precursor to the agent-based modeling paradigm is the evolutionary game theory
paradigm, which improves the explanatory power of classical game theory by incorporation
a Darwinian population dynamic along with the strategic interaction. A more recent twist,
introduced in [15], is to allow the network of interactions to evolve as well. The explanatory
power of such systems and the philosphical ramifications of this are discussed in [14]. Types
of classical games to which such an analysis has been applied include prisoner’s dilemmas,
cooperative games in the vein of Rousseau’s Stag Hunt, and bargaining games. In the present
work, we take up the application of urn models to signaling games. The model we analyze here
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Fig. 1. The game tree — dashed lines show information sets for the Receiver.

is the first in a series of models that incoporate successively more features of signaling problems.
The more complex models are described briefly in the final section.

1.2. A two-state, two-signal communication game

We consider the following game, in which the players are the Sender, the Receiver, and Nature.
Nature plays first, choosing a state of nature which is either 1 or 2. The Sender sees this play and
must choose a signal. In this simplest nontrivial model, there are only two legal signals, A and B.
The last play belongs to the Receiver, who sees the Sender’s play but not Nature’s play. The
Receiver chooses an action from the set {1, 2}. The mutual goal is to have the action match the
state of nature. The game is completely cooperative, in the sense that either both players win or
both players lose. The game tree, shown in Fig. 1, has eight paths, which we may denote by 1A1,
1A2, 1B1, 1B2, 2A1, 2A2, 2B1 and 2B2. The first, third, sixth and eighth of these are wins and
the other four are losses.

Of course, if the players are allowed to confer, they will simply decide on a code. One
reasonable code for the messages sent from the Sender to the Receiver is “A means the state
of nature is 1 and B means the state of nature is 2”. There is another equally reasonable code,
namely “B means the state of nature is 1 and A means the state of nature is 2”. Agreeing on
either of these beforehand will yield 100% efficiency. Even if the players are not allowed to
confer, there are good protocols for minimizing the number of times one fails to get a win. One
example, which seems likely to occur in real life, would be for the Sender to choose one of the
two languages arbitrarily and never deviate, and for the Receiver eventually to conform to it. This
requires differentiating the roles in advance but not breaking the symmetry. Such a protocol might
be usable, for example, by nodes in a computer network, if the network is bipartite (there are two
types of nodes and communication only takes place between nodes of different types). A more
general and symmetric protocol might begin with both players playing arbitrarily; subsequent
plays could be chosen by copying if the last play in the same situation was successful while
choosing randomly otherwise. Here, the definition of “in the same situation” is context dependent
but the protocol seems otherwise fairly general.

1.3. An urn scheme for playing the game

The Sender’s information set is naturally indexed by Nature’s plays: {1, 2}. Correspondingly,
the Sender has two urns, call them Urn 1 and Urn 2. Each of these has two colors of ball, call
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them color A and color B. The contents are initialized to one ball of each color in each urn. Each
time the Sender plays, if Nature has played j , then the Sender picks the signal by choosing a ball
at random from urn j .

The Receiver plays at four different nodes but, like the Sender, has information partition of
size two, indexed by the Sender’s plays: {A, B}. Correspondingly, the Receiver has two urns,
called urn A and urn B. Each initially contains one ball of color 1 and one ball of color 2. When
the Receiver sees signal x , she chooses an action by picking at random from urn x . Once both
players have played, it is revealed whether they won. If they lose, the contents of all urns remain
the same, but if they win, the plays are reinforced: each player adds another copy of the ball they
chose to the urn it came from. For example, if on the first play the state of nature is 2, the Sender
signals A, and the Receiver plays 2 (which, under our model will happen 1/4 of the time that
nature plays 2 initially), then a ball of color A is added to the Sender’s urn 2 and a ball of color 2
is added to the Receiver’s urn A.

We analyze the resulting random sequence of plays under the assumption that Nature chooses
states according to independent fair coin flips. When viewed in the classical framework for
signaling games, this game has multiple equilibria. In particular, there are two pareto-optimal
Nash equilbria corresponding to play according to the two possible languages, and a family of
“babbling” equilibria where the Sender ignores the state of nature, choosing signals according
to independent coin flips and the Receiver ignores the signal, choosing plays according to her
own sequence of independent coin flips. Our goals for this analysis are modest: we show that the
urn model protocol converges to one of the two optimal languages in a sense to be made precise
in the next section. Note that it is not a priori necessary that the urn model produce any Nash
equilibrium at all, though we will see in the next section that the model must converge to an
appropriately defined set of dynamic equilibria.

1.4. Formal construction of the model and statement of results

Let (Ω ,F ,P) be a sufficiently rich source of randomness; for specificity, we take it to be a
probability space on which there are defined random variables {Un, j : j ∈ {1, 2, 3}, n ≥ 1}, that
are independent and uniform on the unit interval. Let Fn = σ(Uk, j : k < n, j ≤ 3) be the σ -field
of information up to time n. By induction on n, we may simultaneously define random variables
corresponding to the contents of the urn at time n and the plays chosen at time n. The variable
V (n, i, x) is interpreted as the number of balls of color x in urn i at time n. The induction begins
with the initialization V (n, i, x) = 1 for i = 1, 2 and x = A, B (this populates the two urns used
by the Sender) and for i = A, B and x = 1, 2 (populating the two urns used by the Receiver).

Given the eight values of V (n, i, x), the plays Nn, Sn and Rn are constructed as follows. Let
Nn = 1 if Un,1 < 1/2 and Nn = 2 otherwise. The interpretation of Nn is the play chosen by
Nature at step n, which is always equally likely to be 1 or 2 independent of the past. Let Sn = A
if

Un,2 <
V (n, Nn, A)

V (n, Nn, A)+ V (n, Nn, B)

and Sn = B otherwise. Thus, conditional on the past, the probability of the Sender choosing
signal A is equal to the proportion of balls of color A in the urn Nn , that is, in the urn
corresponding to the state that Nature has just played. Similarly, let Rn = 1 if

Un,3 <
V (n, Sn, 1)

V (n, Sn, 1)+ V (n, Sn, 2)
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and Rn = 2 otherwise, so that the probabilities for the Receiver’s plays are proportional to the
contents of the urn with the label of the signal at time n.

To complete the induction, update the contents of the urns by defining

V (n + 1, i, x) = V (n, i, x)+ 1

if Nn = i and Sn = x and Rn = i (updating the Sender’s urns) or if Sn = i and Rn = x and
Nn = x (updating the Receiver’s urns), and let V (n + 1, i, x) = V (n, i, x) otherwise.

Our main result may now be stated. Denote the number of wins up through the nth play by
winn :=

∑n
k=1 δ(Nn, Rn)where δ is the usual delta function, namely 1 if the arguments are equal

and zero otherwise.

Theorem 1.1. With probability 1, winn/n → 1 as n → ∞. Furthermore, this occurs
in one of two specific ways. With probability 1/2, as n → ∞, V (n, 1, B)/V (n, 1, A),
V (n, 2, A)/V (n, 2, B), V (n, A, 2)/V (n, A, 1) and V (n, B, 1)/V (n, B, 2) all go to zero, while
with probability 1/2, the reciprocals of these all go to zero.

Remark 1.2. If arbitrary initial conditions are permitted, that is, if {V (n, i, x)} are allowed to
be any real vector with strictly positive coordinates, then the same conclusions hold with some
probability other than 1/2, measurable in F1.

Before proceeding to the proof, we make one observation which, though it seems small,
reduces the dimension of the problem and simplifies notation considerably. That is, we observe
that for each n,

V (n + 1, 1, A) = V (n, 1, A)+ 1⇔ V (n + 1, A, 1) = V (n, A, 1)+ 1

V (n + 1, 1, B) = V (n, 1, B)+ 1⇔ V (n + 1, B, 1) = V (n, B, 1)+ 1

V (n + 1, 2, A) = V (n, 2, A)+ 1⇔ V (n + 1, A, 2) = V (n, A, 2)+ 1

V (n + 1, 2, B) = V (n, 2, B)+ 1⇔ V (n + 1, B, 2) = V (n, B, 2)+ 1.

We may therefore keep track of the entire process by keeping track of the four quantities
{V (n, i, x) : i = 1, 2; x = A, B} instead of all eight quantities. Denoting

Vn := (V (n, 1, A), V (n, 1, B), V (n, 2, A), V (n, 2, B))

represents the process as a Markov chain {Vn}. Various formulae will appear more canonical if
we refer to the coordinates of Vn in order as 1A, 1B, 2A, 2B instead of 1, 2, 3, 4, e.g., (Vn)1A =

V (n, 1, A) and so forth. If the initial conditions are altered as in Remark 1.2 so that V (1, i, x) 6=
V (1, x, i) for some (i, x), then instead of symmetry V (n, i, x) = V (n, x, i), we have that
V (n, i, x)− V (n, x, i) is independent of n; the arguments are messier in this case, but the same
conclusions hold.

Let on denote the set {1A, 1B, 2A, 2B} and let Tn :=
∑

j∈on V j be the total number of balls
in the Sender’s urns. Let

Xn :=

(
V (n, 1, A)

Tn
,

V (n, 1, B)

Tn
,

V (n, 2, A)

Tn
,

V (n, 2, B)

Tn

)
(1.1)

be the normalized proportion vector. The vector Xn is an element of the interior of the 3-simplex

∆ := {(x1A, x1B, x2A, x2B) ∈ Ron : x1A, x1B, x2A, x2B ≥ 0,
∑
j∈on

x j = 1}.
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Let us write Xn,1,A instead of (Xn)1A and so forth. Let ψn = Vn+1 = Vn be the standard basis
vector corresponding to the reinforcement due to the play at time n if there was a win, and the
zero vector otherwise. Thus |ψn| = winn+1 −winn , where we use the L1-norm on Ron here and
throughout.

In this notation, Theorem 1.1 is a consequence of the reformulation

Xn →

(
1
2
, 0, 0,

1
2

)
or

(
0,

1
2
,

1
2
, 0
)
. (1.2)

That these happen with equal probability when V1 = (1, 1, 1, 1) follows from symmetry.

2. Relation to stochastic approximation and an ODE

A common version of the stochastic approximation process is one that satisfies

Xn+1 − Xn = γn(F(Xn)+ ξn), (2.1)

where {γn} are constants such that
∑

n γn = ∞ and
∑

n γ
2
n < ∞, and where ξn are bounded

and E(ξn | Fn) = 0. Sometimes an extra, possibly random, remainder term Rn is added to
F(Xn) + ξn , with the condition that

∑
n |Rn| < ∞ almost surely. There is no precise definition

for an urn model, but the normalized content vector in an urn model is typically a stochastic
approximation processes with γn = 1/n. One sees this by computing E(Xn+1 − Xn | Fn) and
seeing that when scaled by 1/n it converges to a vector function F .

To analyze the particular chain {Vn}, or equivalently the time-inhomogeneous chain {Xn},
begin by writing down the transition probabilities.

P(ψn = (1, 0, 0, 0)) = P(1A1) =
1
2

Xn,1,A

Xn,1,A + Xn,1,B

Xn,1,A

Xn,1,A + Xn,2,A
;

P(ψn = (0, 1, 0, 0)) = P(1B1) =
1
2

Xn,1,B

Xn,1,B + Xn,1,A

Xn,1,B

Xn,1,B + Xn,2,B
;

P(ψn = (0, 0, 1, 0)) = P(2A2) =
1
2

Xn,2,A

Xn,2,A + Xn,2,B

Xn,2,A

Xn,2,A + Xn,1,A
;

P(ψn = (0, 0, 0, 1)) = P(2B2) =
1
2

Xn,2,B

Xn,2,B + Xn,2,A

Xn,2,B

Xn,2,B + Xn,1,B
;

P(ψn = (0, 0, 0, 0)) = P(1 ∗ 2, 2 ∗ 1) = 1− P(|ψn| = 1),

(2.2)

where ∗ denotes a symbol that can be either A or B. Since ψn denotes Vn+1 − Vn , we have

Xn+1 − Xn =
Vn+1

1+ Tn
−

Vn

1+ Tn
+

Vn

1+ Tn
−

Vn

Tn
=

1
1+ Tn

(ψn − Xn) (2.3)

if |ψn| = 1, and Xn+1 − Xn = 0 otherwise.
Taking expectations gives

E(Xn+1 − Xn | Fn) =
1

1+ Tn
F(Xn), (2.4)

where F(x) := E(|ψn|(ψn − Xn) | Xn = x) is a function from ∆ to the tangent space
T∆ := {x ∈ Ron :

∑
j∈on x j = 0} given by the formula (written as a column vector so as
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Fig. 2. The surface Q = 0 in barycentric coordinates, and the two other zeros of F .

to fit better)

1
2



(1− x1A)x
2
1A

(x1A + x1B )(x1A + x2A)
−

x1A x2
1B

(x1A + x1B )(x1B + x2B )
−

x1A x2
2A

(x2A + x2B )(x2A + x1A)
−

x1A x2
2B

(x2B + x2A)(x2B + x1B )

−
x1B x2

1A
(x1A + x1B )(x1A + x2A)

+
(1− x1B )x

2
1B

(x1B + x1A)(x1B + x2B )
−

x1B x2
2A

(x2A + x2B )(x2A + x1A)
−

x1B x2
2B

(x2B + x2A)(x2B + x1B )

−
x2A x2

1A
(x1A + x1B )(x1A + x2A)

−
x2A x2

1B
(x1B + x1A)(x1B + x2B )

+
(1− x2A)x

2
2A

(x2A + x2B )(x2A + x1A)
−

x2A x2
2B

(x2B + x2A)(x2B + x1B )

−
x2B x2

1A
(x1A + x1B )(x1A + x2A)

−
x2B x2

1B
(x1B + x1A)(x1B + x2B )

−
x2B x2

2A
(x2A + x2B )(x2A + x1A)

+
(1− x2B )x

2
2B

(x2B + x2A)(x2B + x1B )


.

Letting ξn = (1+Tn)(Xn+1−Xn−F(Xn)) be the noise term, we see that (2.4) is variant of (2.1)
with non-deterministic γn .

For processes obeying (2.1) or (2.4), the heuristic is that the trajectories of the process should
approximate trajectories of the corresponding differential equation X′ = F(X). Let Z(F) denote
the set of zeros of the vector field F . The heuristic says that if there are no cycles in the vector
field F , then the process should converge to the set Z(F). A sufficient condition for nonexistence
of cycles is that there be a Lyapunov function, namely a function L such that ∇L · F ≥ 0
with equality only where F vanishes. When Z(F) is larger enough to contain a curve, there is
a question unsettled by the heuristic, as to whether the process can continue to move around in
Z(F). There is, however, a nonconvergence heuristic saying that the process should not converge
to an unstable equilibrium.

Proposition 2.1 (Zero Set of F). Let Q be the polynomial x1Ax2B − x1B x2A. The zero set Z(F)
of F on ∆ consists of the zero set Z(Q) := {Q = 0} together with the two points ( 1

2 , 0, 0, 1
2 )

and (0, 1
2 ,

1
2 , 0). Z(F) is shown in Fig. 2.
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Proof. It is routine to check that F vanishes on the surface and the two points. It suffices,
therefore, to check that these are the only solutions to F = 0 on ∆. Let Z ′ be the subset of
the simplex where x1Ax1B x2A vanishes. In other words, Z ′ is a union of three of the four faces
of ∆. We claim that Z(F) is contained in the set Z(Q) ∪ Z ′.

First, clearing denominators, we let P1, . . . , P4 denote the four polynomials obtained by
multiplying the components of F by (x1A + x1B)(x1A + x2A)(x1B + x2B)(x2A + x2B). Let
P5 := 1 − x1A − x1B − x2A − x2B . We will check that g := Qx1Ax1B x2A is contained in
the ideal generated by P1, . . . , P5. This is defined as the set of

∑5
i=1 qi Pi as qi range over

polynomials, and we denote it by I. Assuming this for the moment, let us see how the claim
is proved. On Z(F), we know that P5 vanishes because Z(F) ∈ ∆ and P1, . . . , P4 vanishes
because F vanishes. Hence every polynomial in I vanishes, and in particular g vanishes. The set
where g vanishes contains Z(Q) ∪ Z ′, which establishes the claim.

Checking that g ∈ I is easy with the aid of a computer algebra system. For example, in
Maple 11 with the Groebner package loaded, the command

B := Basis([P1, P2, P3, P4, P5], tdeg(x1A, x1B, x2A, x2B));

produces a Gröbner basis for I (with respect to the term order tdeg(x1A, x1B, x2A, x2B)),
this being a canonical representation of I for which an algorithm exists to test membership.
Specifically, given a polynomial g and a Gröbner basis B, the command to produce a remainder
r for which g − r ∈ B and r is small (with respect to the same term order) is

NormalForm (g, B, tdeg(x1A, x1B, x2A, x2B));

When we try this, we find that r = 0, implying that g ∈ I and verifying the claim.

Finally, having seen that Z(F) ⊆ Z(Q) ∪ Z ′, identical arguments show that Z(F) ⊆
Z(Q) ∪ Z ′′ where Z ′′ is the zero set in ∆ of the product of any three of the four variables
x1A, x1B, x2A, x2B . Taking the intersection over the four possible sets Z ′′ shows that Z(F) ⊆
Z(Q) ∩ Z∗ where Z∗ is the intersection of the zero sets in ∆ of the four monomials
x1Ax1B x2A, x1Ax1B x2B, x1Ax2Ax2B and x1B x2Ax2B . In other words, Z∗ is the 1-skeleton of ∆
(the 1-skeleton being the union of all one-dimensional edges). The set Z(Q) already contains four
of the six edges in the 1-skeleton. Checking the edge (α, 0, 0, 1−α) produces exactly one solution
to F = 0 in the interior of the edge, namely ( 1

2 , 0, 0, 1
2 ). Checking the edge (0, α, 1 − α, 0)

produces the point (0, 1
2 ,

1
2 , 0). This finishes the proof of the proposition. �

We now check that Z(Q) is a geometrically unstable set for the vector field F .

Proposition 2.2 (Instability of Z(Q)).

sgn(∇Q · F) = sgn(Q)

at all points of ∆, except ( 1
2 , 0, 0, 1

2 ) and (0, 1
2 ,

1
2 , 0).

Proof. The previous proposition shows that F vanishes when Q vanishes, so the conclusion is
true when Q = 0. By symmetry it suffices to prove that Q > 0 implies ∇Q · F > 0 on ∆.
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Let x = (x1A, x1B, x2A, x2B) be any point of ∆ with Q(x) > 0 and with at most one vanishing
coordinate. Then the following relations hold:

x1A

x1A + x1B
>

x2A

x2A + x2B
;

x1A

x1A + x2A
>

x1B

x2B + x1B
;

x2B

x2B + x2A
>

x1B

x1B + x1A
;

x2B

x2B + x1B
>

x2A

x2A + x1A
.

(2.5)

We may write

2∇Q · F = x1Ax2B H − x1B x2A H̃ , (2.6)

where

H(x) =
x1A

(x1A + x1B)(x1A + x2A)
+

x2B

(x2B + x2A)(x2B + x1B)
− 4ψ(x)

H̃(x) =
x2A

(x2A + x2B)(x2A + x1A)
+

x1B

(x1B + x1A)(x1B + x2B)
− 4ψ(x),

where ψ(x) := P(|ψn| = 1 | Xn = x).
By the inequalities Eq. (2.5),

4ψ(x) =
2x2

1A

(x1A + x1B)(x1A + x2A)
+

2x2
1B

(x1B + x1A)(x1B + x2B)

+
2x2

2A

(x2A + x2B)(x2A + x1A)
+

2x2
2B

(x2B + x2A)(x2B + x1B)

<
2x2

1A

(x1A + x1B)(x1A + x2A)
+

x1A(x1B + x2A)

(x1A + x1B)(x1A + x2A)

+
x2B(x2A + x1B)

(x2B + x2A)(x2B + x1B)
+

2x2
2B

(x2B + x2A)(x2B + x1B)

=
x1A

x1A + x1B
+

x1A

x1A + x2A
+

x2B

x2B + x2A
+

x2B

x2B + x1B
. (2.7)

Denote the common denominator

D := (x1A + x1B)(x1A + x2A)(x2B + x2A)(x2B + x1B). (2.8)

It follows (using x1A + x1B + x2A + x2B = 1 in the second line) that

H(x) >
x1A(1− (x1A + x1B)− (x1A + x2A))

(x1A + x1B)(x1A + x2A)
+

x2B(1− (x2B + x2A)− (x2B + x1B))

(x2B + x2A)(x2B + x1B)

=
x1A(x2B − x1A)

(x1A + x1B)(x1A + x2A)
+

x2B(x1A − x2B)

(x2B + x2A)(x2B + x1B)

= (x1A + x2B)

[
x2B

(x2B + x2A)(x2B + x1B)
−

x1A

(x1A + x1B)(x1A + x2A)

]
=
(x1A − x2B)

2 Q

D
> 0.
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Analogous computations show that H̃ < 0. Since at most one of the coordinates vanishes, it
follows that the left-hand side of (3.5) is strictly positive.

Finally, if more than one of the coordinates of x vanishes but Q 6= 0, then x is interior to one
of the two line segments (α, 0, 0, 1− α) or (0, α, 1− α, 0). Plugging in these parameterizations
shows the only interior zeros of ∇Q · F to be at the midpoints. �

3. Probabilistic analysis

Lemma 3.1. With probability 1,

1
2
≤ lim inf

Tn

n
≤ lim sup

Tn

n
≤ 1.

Proof. The upper is trivial because Tn ≤ n−1+T1. The lower bound follows from the conditional
Borel–Cantelli lemma [6, Theorem I.6] once we show that ψ(x) is always at least 1/2. To prove
the lower bound, multiply the expression (2.7) for ψ by D to clear the denominators, and double.
The result is easily seen to be D + Q2. Thus

ψ −
1
2
=

Q2

2D
,

which is clearly a nonnegative quantity. �

With this preliminary result out of the way, the remainder of the proof of Theorem 1.1 may
be broken into three pieces, namely Propositions 3.2–3.4. We have seen that L := Q2 is a
Lyapunov function for the stochastic process {Xn}; this is implied by Proposition 2.2 and the fact
that ∇(Q2) is parallel to ∇Q. The minimum value of zero occurs exactly on the surface Z(Q)
and the maximum value of 1/16 occurs at the two other points of Z(F). Let

Z0(Q) := Z(Q) ∩ ∂∆ = Z(D).

Proposition 3.2 (Lyapunov Function Implies Convergence). The stochastic process {L(Xn)}

converges almost surely to 0 or 1/16.

Proposition 3.3 (Instability Implies Nonconvergence). The probability that limn→∞ Xn exists
and is in Z(Q) \ Z0(Q) is zero.

Proposition 3.4 (No Convergence to Boundary). The limit limn→∞ Xn exists with probability 1.
Furthermore, P (limn→∞ Xn ∈ Z0(Q)) = 0.

These three results together imply Theorem 1.1. The first is an easy result; it is shown via
martingale methods that {Xn} cannot continue to cross regions where F does not vanish. The
second result, fashioned after the non-convergence results of [9, Theorem 1] and generalizations
such as [2, Theorem 9.1], follows the argument, by now standard, given in condensed form
in [10, Theorem 2.9]. The third result is the trickiest, relying on special properties of the process
{Xn}. This is necessary because the nonconvergence method of [9] fails near the boundary of
an urn scheme due to diminished variance of the increments; a more general rubric for proving
nonconvergence to unstable points in such cases and proving convergence of the process (and
not just the Lyapunov function) would be desirable.
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Proof of Proposition 3.2. Denote Yn := L(Xn). Decompose {Yn} into a martingale and a
predictable process Yn = Mn + An where An+1 − An = E(Yn+1 − Yn | Fn). The increments
in Yn are O(1/Tn) = O(1/n) almost surely by Lemma 3.1, so the martingale {Mn} is in L2 and
hence almost surely convergent. To evaluate An , use the Taylor expansion

L(x+ y) = L(x)+ y · ∇L(x)+ Rx(y)

with Rx(y) = O(|y|2) uniformly in x. Then

An+1 − An = E
[
L(F(Xn+1))− L(F(Xn)) | Fn

]
= E

[
∇L(Xn) · (Xn+1 − Xn)+ RXn (Xn+1 − Xn) | Fn

]
=

1
1+ Tn

(∇L · F)(Xn)+ E[RXn (Xn+1 − Xn) | Fn].

Since the RXn (Xn+1 − Xn) = O(T−2
n ) = O(n−2) is summable, this gives

An = η(n)+
n∑

k=1

1
1+ Tk

(∇L · F)(Xk)

for some almost surely convergent η.
We may now use the usual argument by contradiction: if Xn is found infinitely often away

from the critical values of the Lyapunov function, then the drift would cause the Lyapunov
function to blow up. To set this up, observe first that boundedness of {Yn} and {Mn} imply that
{An} is bounded. For any ε ∈ (0, 1/32), let ∆ε denote L−1

[ε, 1/16 − ε]. On ∆ε , the function
∇L ·F , which is always nonnegative, is bounded below by some constant cε . Let δ be the distance
from ∆ε to the complement of ∆ε/2. Suppose Xn,Xn+1, . . . ,Xn+k−1 ∈ ∆ε and Xn+k 6∈ ∆ε/2.
Then, since |ψn| and |Xn| are at most 1, from (2.3) we see that

δ ≤

n+k−1∑
j=n

|X j+1 − X j |

≤

n+k−1∑
j=n

2
1+ T j

≤
4
ε

[
An+k − An − (η(n + k)− η(n))

]
.

Thus, if Xn ∈ ∆ε infinitely often, it follows that {An} increases without bound. By contradiction,
for each ε, {Xn} eventually remains outside of ∆ε , which proves the proposition. �

Proof of Proposition 3.3. The idea of this proof appeared first in [8, page 103], but the
hypotheses there, as well as those of [9, Theorem 1] and [2, Theorem 9.1] require deterministic
step sizes {γn} and analyses of isolated unstable fixed points or entire unstable orbits. We
therefore take some care here to document what is minimally required of the process {Xn} and
its Lyapunov function Q.

For any process {Yn} we let ∆Yn denote Yn+1 − Yn . Let N ⊆ Rd be any closed set, let
{Xn : n ≥ 0} be a process adapted to a filtration {Fn} and let σ := inf{k : Xk 6∈ N } be the time
the process exits N . Let Pn and En denote conditional probability and expectation with respect
to Fn . We will impose several hypotheses, (3.1)–(3.3), on {Xn} and then check that the process
{Xn} defined in (1.1) satisfies these conditions. We require

En|∆Xn|
2
≤ c1n−2 (3.1)
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for some constant c1 > 0, which also implies En|∆Xn| ≤
√

c1n−1. Let Q be a twice
differentiable real function on a neighborhood N ′ of N . We require that

sgn(Q(Xn)) [∇Q(Xn) · En∆Xn] ≥ −c2n−2 (3.2)

whenever Xn ∈ N ′. Let c3 be an upper bound for the determinant of the matrix of second partial
derivatives of Q on N ′. We require a lower bound on the incremental variance of the process
{Q(Xn)}:

En(∆Q(Xn))
2
≥ c4n−2 (3.3)

when n < σ . The relation between these assumptions and the process {Xn} defined in (1.1) is as
follows. �

Lemma 3.5. Suppose there is a function F : N → T∆ and there are nonnegative quantities
γn ∈ Fn and c′ > 0 such that

|En∆Xn − γn F(Xn)| ≤ c′n−2
; (3.4)

sgn(∇Q · F) = sgn(Q). (3.5)

Then (3.2) is satisfied. When N is disjoint from ∂∆, it follows that the particular process {Xn}

defined in (1.1) satisfies (3.1) and (3.3) as well as (3.2).

Proof. Let R := En∆Xn − γn F(Xn). Then

∇Q(Xn) · En∆Xn = ∇Q(Xn) · [γn F(Xn)+ R]

≥ 0− |∇Q(Xn)| c
′n−2

and (3.2) follows by picking c2 ≥ c′ supx∈N |∇Q(x)|. The process {Xn} of (1.1) satisfies (3.1)
because |∆Xn| is bounded from above by n−1. Finally, to see (3.3), note that |∇Q| ≥ ε > 0
on any closed set disjoint from ∂∆, and also that on such a set P(ψn = e j ) is bounded from
below for any elementary basis vector e j ; the lower bound on the second moment of ∆Q(Xn)

follows. �

Proposition 3.3 now follows from a more general result:

Proposition 3.6. Let {Xn}, Q, N ⊆ N ′ and the exit time σ from N be defined as in the proof
of Proposition 3.3 and satisfy (3.1)–(3.3), with constants c1, c2 and c4 appearing there and the
bound c3 on the Hessian determinant of Q on N ′. Assume further that there is an N0 such that
for n ≥ N0, Xn ∈ N ⇒ Xn+1 ∈ N ′. Then

P [σ = ∞ and Q(Xn)→ 0] = 0.

Remark. Proposition 3.3 follows by applying this to a countable cover of Z(Q) \ Z0(Q) by
compact sets.

Proof. The structure of the proof mimics the nonconvergence proofs of [8,9,2]. We show that
the incremental quadratic variation of the process {Q(Xn)} is of order at least n−2; this is (3.7).
Then we show that conditional on any past at time n, the probability is bounded away from zero
that the process {Q(Xn)} wanders away from zero by at least a constant multiple of n−1/2 (this
is Lemma 3.7) and that the subsequent probability of never returning much nearer to zero is also
bounded from below (this is Lemma 3.8).
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To begin in earnest, we fix ε > 0 and N ≥ N0 also satisfying

N ≥
16(c2 + c1c3)

2

c2
4

. (3.6)

Let τ := inf{k ≥ N : |Q(Xk)| ≥ εk−1/2
}. Suppose that N ≤ n ≤ σ ∧ τ . From the Taylor

estimate

|Q(x + y)− Q(x)−∇Q(x) · y| ≤ C |y|2,

where C is an upper bound on the Hessian determinant for Q on the ball of radius |y| about x ,
we see that

En∆(Q(Xn)
2) = En2Q(Xn)∆Q(Xn)+ En(∆Q(Xn))

2

≥ 2Q(Xn)∇Q(Xn) · En∆Xn − 2c3 Q(Xn)En|∆Xn|
2
+ En|∆Q(Xn)|

2

≥ [−2Q(Xn)(c2 + c3c1)+ c4] n−2.

By (3.6), we have n−1/2
≤ c4/(4(c2 + c1c3)). Hence

En∆(Q(Xn)
2) ≥

c4

2
n−2. (3.7)

Lemma 3.7. If ε is taken to equal c4/2 in the definition of τ , then Pn(τ ∧ σ <∞) ≥ 1/2.

Proof. For any m ≥ n it is clear that |Q(Xm∧τ∧σ )| ≤ εn−1/2. Thus,

εn−1
≥ En Q(Xm∧τ∧σ )

2

≥ En

[
Q(Xm∧τ∧σ )

2
− Q(Xn)

2
]

=

m−1∑
k=n

En∆(Q(Xk)
2)1k<τ∧σ

≥

m=1∑
k=n

c4n−2Pn(σ ∧ τ > k)

≥
c4

2
(n−1
− m−1)Pn(σ ∧ τ = ∞).

Letting m →∞ we conclude that ε ≤ c4/2 implies P(τ ∧ σ = ∞) ≤ 1/2. �

Lemma 3.8. There is an N0 and a c5 > 0 such that for all n ≥ N0,

Pn

(
σ <∞ or for all m ≥ n, |Q(Xm)| ≥

c4

5
n−1/2

)
≥ c5

whenever |Q(Xn)| ≥ (c4/2)n−1/2.

Let us now see that Lemmas 3.7 and 3.8 prove Proposition 3.6. Let N be any closed ball in the
interior of ∆ and let N ′ be any convex neighborhood of N whose closure is still in the interior
of ∆. For n ≥ N0, we have

Pn [σ = ∞ and Q(Xn)→ 0] ≤
1
2
+

1
2
(1− c5) < 1.



386 R. Argiento et al. / Stochastic Processes and their Applications 119 (2009) 373–390

But Pn(A)→ 1A almost surely for any event A ∈ σ(
⋃

n Fn). Thus

Pn [σ = ∞ and Q(Xn)→ 0]→ 1

almost surely on the event {σ = ∞ and Q(Xn)→ 0}, and it follows that the probability of this
event is zero. It remains to prove Lemma 3.8.

Let φ(x) := φλ(x) := x + λx2 and let Q̃(x) := φ(Q(x)). First, we establish that there is a
λ > 0 such that Q̃(Xn) is a submartingale when Q ≥ 0 and n ≥ N0.

En∆Q̃(Xn) = En∆Q(Xn)+ λEn∆(Q(Xn)
2)

≥ ∇Q(Xn) · En∆Xn − c3En|∆Xn|
2
+ λ

c4

2
n−2.

Choosing λ ≥ (2/c4)(c2 + c1c3) then yields a submartingale when Q(Xn) ≥ 0.
Next, let Mn + An denote the Doob decomposition, of {Q̃(Xn)}; in other words, {Mn} is

a martingale and An is predictable and increasing. An upper bound on |φ′λ(Q(x))| is c7 :=

1+ 2λ sup |Q| = 1+ 2λ. From the definition of Q, we see that |∇Q| ≤ 1. It follows from these
two facts that

|Q̃(x + y)− Q̃(x)|

|y|
≤ 1+ 2λ.

It is now easy to estimate that

En(∆Mn)
2
≤ En(∆Q̃(Xn))

2

≤

(
sup
|Q̃(x + y)− Q̃(x)|

|y|

)
En|∆Xn|

2

≤ c1c7n−2 sup
dQ̃

dQ
.

We conclude that there is a constant c6 > 0 such that En(∆Mn)
2
≤ c6n−2 and consequently

En(Mn+m − Mn)
2
≤ c6n−1 (3.8)

for all m ≥ 0 on the event {Q(Xn) ≥ 0}.
For any a, n, V > 0 and any martingale {Mk} satisfying Mn ≥ a and supm En(Mn+m −

Mn)
2
≤ V , there holds an inequality

P
(

inf
m

Mn+m ≤
a

2

)
≤

4V

4V + a2 .

To see this, let τ = inf{k ≥ n : Mk ≤ a/2} and let p := Pn(τ <∞). Then

V ≥ p
(a

2

)2
+ (1− p)En (M∞ − Mn | τ = ∞)

2
≥ p

(a

2

)2
+ (1− p)

(
p(a/2)
1− p

)2

which is equivalent to p ≤ 4V/(4V + a2). It follows, with a = c4
2 n−1/2 and V = c6n−1, that

Pn

(
inf
k≥n

Mk ≤
c4

4
n−1/2

)
≤ c5 :=

4c6

4c6 + (1/4)c2
4

.

But Mk ≤ Q̃(Xk) for k ≥ n, so Q(Xk) ≤ (c4/5)n−1/2 implies Q̃(Xk) ≤ (c4/4)n−1/2 for
n ≥ N0, which implies Mk ≤ (c4/4)n−1/2. Thus the conclusion of the lemma is established
in the positive case, Q(Xn) ≥ (c4/2)n−1/2. An entirely analogous computation shows that
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Q(Xn)− λQ(Xn)
2 is a supermartingale when Q(Xn) ≤ 0, and the conclusion follows as well in

the negative case, that is, the case Q(Xn) ≥ (c4/2)n−1/2. The lemma is established, and along
with it, Proposition 3.3. �

Proof of Proposition 3.4. The following lemma compares an urn process to a Pólya urn,
deducing from the known properties of Pólya’s urn that the compared urn satisfies an inequality.
The proof is easy and consumes space only in order to spell out certain couplings. �

Lemma 3.9. Suppose an urn has balls of two colors, white and black. Suppose that the number
of balls increases by precisely 1 at each time step, and denote the number of white balls at time
n by Wn and the number of black balls by Bn . Let Xn := Wn/(Wn + Bn) denote the fraction of
white balls at time n and let Fn denote the σ -field of information up to time n. Suppose further
that there is some 0 < p < 1 such that the fraction of white balls is always attracted toward p:

(P(Xn+1 > Xn | Fn)− Xn) · (p − Xn) ≥ 0.

Then the limiting fraction limn→∞ Xn almost surely exists and is strictly between zero and one.

Proof. Let τN := inf{k ≥ N : Xk ≤ p} be the first time after N that the fraction of white balls
drops below p. The process {Xk∧τN : k ≥ N } is a bounded supermartingale, hence converges
almost surely. Let {(W ′k, B ′k) : k ≥ N } be a Pólya urn process coupled to {(Wk, Bk)} as follows.
Let (W ′N , B ′N ) = (WN , BN ). We will verify inductively that Xk ≤ X ′k := W ′k/(W

′

k + B ′k)
for all k ≤ τN . If k < τN and Wk+1 − Wk = 1 then let W ′k+1 = W ′k + 1. If k < τN and
Wk+1 = Wk then let Yk+1 be a Bernoulli random variable independent of everything else with
P(Yk+1 = 0 | Fk) = (1 − X ′k)/(1 − Xk), which is nonnegative. Let W ′k+1 = Wk + Yk+1. The
construction guarantees that X ′k+1 ≥ Xk+1, completing the induction, and it is easy to see that
P(W ′k+1 > Wk) = X ′k , so that {X ′k : N ≤ k ≤ τN } is a Pólya urn process.

Complete the definition by letting {X ′k} evolve independently as a Pólya urn process once
k ≥ τN . It is well known that X ′k converges almost surely and that the conditional law of
X ′∞ := limk→∞ Xk given F N is a beta distribution, β(WN , BN ). For later use, we remark that
beta distributions satisfy the estimate

P (|β(xn, (1− x)n)− x | > δ) ≤ c1e−c2nδ (3.9)

uniformly for x in a compact sub-interval of (0, 1) Since the beta distribution has no atom at 1,
we see that limk→∞ Xk is strictly less than 1 on the event {τN = ∞}. An entirely analogous
argument with τN replaced by σN := inf{k ≥ N : Xk ≥ p} shows that limk→∞ Xk is strictly
greater than 0 on the event {σN = ∞}. Taking the union over N shows that limk→∞ Xk exists on
the event {(Xk− p)(Xk+1− p) < 0 finitely often} and is strictly between zero and one. The proof
of the lemma will therefore be finished once we show that Xk → p on the event that Xk − p
changes sign infinitely often.

Let G(N , ε) denote the event that X N−1 < p < X N and there exists k ∈ [N , τN ] such that
Xk > p + ε. Let H(N , ε) denote the event that X N−1 > p > X N and there exists k ∈ [N , σN ]

such that Xk < p + ε. It suffices to show that for every ε > 0, the sums
∑
∞

N=1 P(G(N , ε)) and∑
∞

N=1 P(H(N , ε)) are finite; for then by Borel–Cantelli, these occur finitely often, implying
p− ε ≤ lim inf Xk ≤ lim sup Xk ≤ p+ ε on the event that Xk − p changes sign infinitely often;
since ε is arbitrary, this suffices. Recall the Pólya urn coupled to {Xk : N ≤ k ≤ τN }. On the
event G(N , ε), either X ′∞ ≥ ε/2 or X ′∞ − Xρ ≤ −ε/2 where ρ ≥ k is the least m ≥ N such
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that S′m ≥ ε. The conditional distribution of X ′∞ − Xρ given Fρ is β(W ′ρ, B ′ρ). Hence

P(G(N , ε)) ≤ E1X N−1<p<X N P
(
β(WN , BN ) ≥

ε

2

)
+E1ρ<∞P

(
β(W ′ρ, B ′ρ) ≤ −

ε

2

)
. (3.10)

Combining this with the estimate (3.9) establishes summability of P(G(N , ε)). An entirely
analogous argument establishes summability of P(H(N , ε)), finishing the proof of the
lemma. �

Proof of Proposition 3.4. Color the urn process {Vn}, by coloring balls of types 1A and 1B
white and coloring balls of type 2A and 2B black. Let τk := inf{k : Tn = k} denote the times
of increase of {Tn}. We let Wk := V (τk, 1, A) + V (τk, 2, B) denote the number of white balls
at time τk and Bk := V (τk, 2, A)+ V (τk, 1, B) denote the number of black balls. We claim that
the urn process {(Wk, Bk)} satisfies the hypotheses of Lemma 3.9 with p = 1/2. To verify this,
let (x1A, x1B, x2A, x2B) denote Xτn and write P(Xn+1 > Xn | Fn)− Xn as Num/Den where

Num =
x2

1A

(x1A + x1B)(x1A + x2A)
+

x2
1B

(x1A + x1B)(x2B + x1B)
;

Den = Num+
x2

2A

(x2B + x2A)(x1A + x2A)
+

x2
2B

(x2B + x1A)(x2B + x1B)
.

Simplifying and using x1A + x1B + x2A + x2B = 1 shows that

P(Xn+1 > Xn | Fn)− Xn = −

(
x1,A + x1,B − x2,A − x2,B

)
Q2(

x1,A + x1,B + x2,A + x2,B
) (

Q2 + D
) ,

where, as before, D denotes the common denominator (2.8). This is clearly nonpositive when
x1A + x1B ≥ x2A + x2B . This is the same condition as x1A + x1B ≥ 1/2, so the claim is proved.

Lemma 3.9 now allows us to conclude that (V (n, 1, A) + V (n, 1, B))/Tn converges to a
nonzero value. The process {Vn : n ≥ 0} is invariant under transposing the first and fourth
coordinates, as also under transposing the second and third coordinates. We conclude that the
four quantities

V (n, 1, A)+ V (n, 1, B)

Tn
,

V (n, 1, A)+ V (n, 2, A)

Tn
, (3.11)

V (n, 2, B)+ V (n, 2, A)

Tn
,

V (n, 2, B)+ V (n, 1, B)

Tn

all converge almost surely to nonzero values.
Combining this with Proposition 3.2, we see that there is almost surely a pair of numbers

a, b ∈ (0, 1) such that the limit set of Vn is contained in the set

Ξa,b :=

{
x := (x1A, x1B, x2A, x2B) ∈ ∆ : L(x) ∈

{
0,

1
16

}
and

x1A + x1B = a and x1A + x2A = b

}
.

When a = b = 1/2, the set Ξa,b consists of the three points (1/2, 0, 0, 1/2), (0, 1/2, 1/2, 0) and
(1/4, 1/4, 1/4, 1/4). In any other case, the set {x1A + x1B = a, x1A + x2A = b} in the simplex
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∆ is a line segment parallel to (1,−1,−1, 1), and can never intersect {Q = 0} in more than one
point, hence the set Ξa,b consists of at most one point. Almost sure convergence of Vn follows.

On Z0(Q), one of the four quantities x1A + x1B, x1A + x2A, x2B + x2A, x2B + x1B always
vanishes; according to (3.11), the law of limn→∞ Vn must therefore give zero probability to
the set Z0(Q), establishing the final conclusion of the proposition, and finishing the proof of
Theorem 1.1. �

4. Discussion

We have analyzed what we consider to be the simplest nontrivial model of a coordination
game. There are a number of natural extensions to the model, all of which raise interesting
questions and none of which has been rigorously analyzed. A list of extensions for which we
have both simulations and heuristics (via an ODE) but no rigorous analyses is as follows: states
not equally probable; number of states, signals or acts greater than two (the problems differ
depending on which of the numbers is greatest); more than two agents interacting in a signaling
network. We consider these in turn.

Suppose we have 2 states, 2 acts and 3 signals. Do we still get efficient signaling? Does one
signal fall out of use so that we end up with essentially a 2 signal system, or does one signal
comes to stand for one state and the other two persist as synonyms for the other state? Heuristics
and simulations suggest that synonyms form, with no signal falling out of use. Suppose we have
3 states, 3 acts and 2 signals. There is now an informational bottleneck and efficient signaling
is right only 2/3 of the time. Again efficiency could be achieved in different ways. It appears
that one signal is shared between two states, rather than one state being left without a signal.
Moving beyond two agents, suppose that there are two senders and one receiver. There are 4
states, but each sender only observes the correct member of a partition. Sender 1 observes the
partition {{1, 2}, {3, 4}} and Sender 2 observes the partition {{1, 3}, {2, 4}}. Each sender has 2
signals and the receiver has 4 acts, each paying off in exactly one state, and in that case everyone
is reinforced. On the other hand we can have one sender and two receivers. The sender observes
one of 4 states, and sends one of 2 signals to each receiver. The receivers each choose one of two
acts, and the pair of acts chosen must be right for the state for everyone to be reinforced. We can
have a chain, where the sender observes one of 2 states, sends one of 2 signals to an intermediary
and the intermediary sends one of 2 signals to the receiver. The receiver must do one of two acts,
and if it is right for the state all get reinforced. Simulations suggest that in each of the models
described in this paragraph, individuals always learn to signal.

However, even simpler variations may introduce new complexity. With 3 states, 3 signals and
3 acts, there is a new class of equilibria of partial information transfer, which combines bot-
tlenecks and synonyms. For example, the sender always sends signal 1 in states 1 and 2 and
mixes between signals 2 and 3 in state 3. The receiver always does acts 3 when getting signals
2 and 3, and mixes between acts 1 and 2 when getting signal 1. Simulations suggest that rein-
forcement sometimes converges to such equilibria and sometimes to signaling systems. The slow
convergence of such systems to equilibrium behavior casts some doubt on whether these mixed
equilibria are in fact possible (cf. [13, Theorem 1.2] and the remark following; see also [11]).

Problem. Determine whether mixed equilibria are possible in the case of 3 states, 3 signals and
3 acts.

Finally, if we lift the assumption that states are equiprobable, simulations suggest that even in the
2 state, 2 signal, 2 act case it is possible for reinforcement to converge to a state where the receiver
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ignores the signal and always chooses the act that is right for the most probable state. In these
cases, recovery of almost sure convergence to efficient signaling may require some perturbation
of the learning dynamics.
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