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Abstract

This licentiate thesis focuses on clustered parametric models for estimation of line

spectra, when the spectral content of a signal source is assumed to exhibit some

form of grouping. Different from previous parametric approaches, which gen-

erally require explicit knowledge of the model orders, this thesis exploits sparse

modeling, where the orders are implicitly chosen. For line spectra, the non-linear

parametric model is approximated by a linear system, containing an overcom-

plete basis of candidate frequencies, called a dictionary, and a large set of linear

response variables that selects and weights the components in the dictionary. Fre-

quency estimates are obtained by solving a convex optimization program, where

the sum of squared residuals is minimized. To discourage overfitting and to infer

certain structure in the solution, different convex penalty functions are intro-

duced into the optimization. The cost trade-off between fit and penalty is set

by some user parameters, as to approximate the true number of spectral lines in

the signal, which implies that the response variable will be sparse, i.e., have few

non-zero elements. Thus, instead of explicit model orders, the orders are impli-

citly set by this trade-off. For grouped variables, the dictionary is customized,

and appropriate convex penalties selected, so that the solution becomes group

sparse, i.e., has few groups with non-zero variables. In an array of sensors, the

specific time-delays and attenuations will depend on the source and sensor posi-

tions. By modeling this, one may estimate the location of a source. In this thesis,

a novel joint location and grouped frequency estimator is proposed, which ex-

ploits sparse modeling for both spectral and spatial estimates, showing robustness

against sources with overlapping frequency content. For audio signals, this thesis

uses two different features for clustering. Pitch is a perceptual property of sound

that may be described by the harmonic model, i.e., by a group of spectral lines

at integer multiples of a fundamental frequency, which we estimate by exploiting

a novel adaptive total variation penalty. The other feature, chroma, is a concept

in musical theory, collecting pitches at powers of 2 from each other into groups.

Using a chroma dictionary, together with appropriate group sparse penalties, we

propose an automatic transcription of the chroma content of a signal.
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Introduction

These lines introduce a licentiate thesis in the wide and exciting field of signal

processing. It takes the perspective of statistical signal processing, especially that

of Kay (1993) [1] and Scharf (1991) [2], whose good practices hopefully will

shine through in the analysis, solution, and execution done here. In particular,

the problems raised share a strong connection to spectral estimation, and many

fundamental results are based upon the standard reference of Stocia and Moses

(2005) [3]. In line with this heritage, this thesis attempts to judge performance

from a statistical point of view, i.e., whether estimation procedures are good or

bad in terms of, e.g., efficiency, consistency, and bias. The methods presented in

this thesis are closely related mathematically. The basic underlying assumption is

the parametric sinusoidal model, where signals are assumed to be well modeled

as super-positioned complex sinusoids, having both linear and non-linear para-

meters, corrupted by some additive noise. Furthermore, the thesis is in particular

concerned with sinusoids that experience some form of natural grouping, or struc-

ture, and where interest lies in specifying properties of this structure. Grouping of

components often pose combinatorial issues, as the structural criteria may be im-

plicitly defined, or as groups may have overlapping components, which the thesis

will focus on solving using sparse modeling via convex optimization. Thereby,

explicit model orders may be set implicitly, by adding regularization on the para-

meters, and so alleviate the need of model order estimation, which is a difficult

problem necessary for parametric modeling. The main formulation and analysis

for sparse modeling derives from the work of Tibshirani (1996) [4], herein ex-

tended with a variety of criterions which enforce a certain structure. Experience

shows how grouped sinusoids can be used to describe the tonal part in acous-

tical signals, where the frequency components of an audio source often exhibit a

predetermined relationship, from which a cluster may be formed. One such pre-

determined relationship, commonly used in audio applications, is pitch, which

groups spectral content according to a model for human perception of sound.

Another method of grouping the spectral content is according to chroma, which

is a feature that is important in music information retrieval (MIR) applications.

Furthermore, this thesis will touch upon the field of array processing, where sig-

1



Introduction

nals are also attributed with some spatial information. In fact, many results in

spectral analysis may be used in array processing, and vice versa, as these fields

are highly related. To give some fundamental context for the papers of which this

thesis consists, some preliminaries from spectral analysis, sparse estimation, audio

analysis, and array processing will constitute the bulk of this introductory chapter.

Lastly, an overview of the papers in this thesis is given.

1 Preliminaries on estimating line spectra

This section will introduce some preliminary results for parametric estimation of

line spectra. For many applications, a periodic signal of interest may often be well

described by the sinusoidal model

y(t) = x(t) + e(t), x(t) =
K
∑

k=1

akei2pfk t (1)

where x(t) denotes the noise-free super-positioning of K sinusoidal components,

that are sampled in some form of additive noise, e(t), typically on a unit grid,

t = 0, . . . ,N − 1. For the k:th component, ak and fk ∈ [0, 1) denote the

complex-valued amplitude and the frequency, respectively. By forming the sample

vector

y =
[

y(0) . . . y(N − 1)
]T

(2)

the sinusoidal model (1) may be equivalently formulated as

y = x + e, x =

K
∑

k=1

wkak = Wa (3)

where the noise-free signal vector, x, and the noise vector, e, are defined similarly

to y. Thus, some simple algebraic manipulations allows the signal vector to be

compactly expressed as a matrix-vector multiplication, given that

W =
[

w1 . . . wK

]

(4)

wk =
[

ei2pfk1 . . . ei2pfk (N−1)
]T

(5)

a =
[

a1 . . . aK

]T
(6)

2



1. Preliminaries on estimating line spectra

The noise-free signal vector may therefore also be seen as a linear combination

of the columns in W, which represents each sinusoidal component, using the

complex weights in a. If K is known a priori, it may be convenient to view (3)

as a non-linear regression problem, where the spectral components at frequenciesY = {fk}K
k=1 are multiplied by the linear amplitudes. This formulation allows

the unknown parameters to be estimated using the well-known Least Squares (LS)

criterion, given by

{ŶLS, âLS

}

= arg minY,a
||y−Wa||22 (7)

i.e, as the arguments minimizing the sum of squared model residuals. A closed

form estimate of the amplitudes for a given selection of Y can be obtained by

solving the normal equations, i.e.,

âLS = W†y, W† ,
(

WH W
)−1

WH y (8)

which, if inserted into (7), gives the Non-Linear LS (NLS) criterionŶLS = arg maxY yH W
(

WH W
)−1

WH y. (9)

One may then, for instance, form the frequency estimates by maximizing the NLS

criteria over a K -dimensional grid. Furthermore, as is shown in, e.g., [5], the NLS

estimation errors ofY will have the asymptotic covariance matrix

Cov(Ŷ) =
6s2

N 3
diag

([

1
a2

1
. . . 1

a2
K

])

(10)

where diag(c) denotes a diagonal matrix the vector c along its diagonal. In the

case of white Gaussian noise, i.e., e ∼ N (0,s2I), the covariances in (10) reach

the Cramér-Rao Lower Bound (CRLB), as was shown in, e.g., [6], which gives

the lower bound for the covariance matrix of any unbiased estimator of Y. A

similar analysis can be done for âLS, showing that the NLS method provides a

statistically efficient estimate of the parametric line spectra. However, the NLS

criterion works poorly in practice for this problem, and the reason is twofold.

Firstly, (9) is highly multimodal and the global maximum is very sharp, and so,

to obtain the correct estimates, the maximization needs to be well initialized, as

well as evaluated over a sufficiently fine grid. Secondly, any two frequencies must

be sufficiently separated in order for the estimator to work properly. To see this,

3
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Figure 1: Absolute values of the complex function h(Df ), measuring the amount

of linear dependence between two Fourier vectors, spaced in frequency by Df .

The example illustrates the function for N = 64 samples, where orthogonality is

found at every n/N , n 6= 0.

consider the square matrix WH W in the middle of the NLS criterion, which

needs to be inverted. This matrix measures the linear dependence between the

components in W, and some simple calculations shows that its p, k element will

only depend on the difference in frequency [3, p. 160], i.e.,

{

WH W
}

p,k
= wH

p wk (11)

=

{

N fp = fk
ei2p(fk−fp) ei2pN (fk−fp)−1

ei2p(fk−fp)−1
fp 6= fk

(12)

, h(fk − fp) (13)

4



1. Preliminaries on estimating line spectra

where a special case is h(n/N ) = 0, for n = {n ∈ Z : n 6= 0}. An example of this

function can be seen in Figure 1, which shows the absolute values of the function

for N = 64. Thus, if two frequencies are too closely spaced, the columns of

W become linearly dependent, making the inversion and the estimation problem

ill-conditioned. In fact, under the quite restrictive assumption that all frequencies

in Y are spaced some non-zero distance apart, say n/N , WH W = N I and (9)

reduces toŶ = arg maxY ∣

∣

∣

∣WH y
∣

∣

∣

∣

2

2
, âLS =

1

N
WH y (14)

which is the sum of periodogram estimates in Y. Given this, some remarks the

performance of the periodogram for estimation of line spectra may be noted.

Remark 1: For a single sinusoid in white Gaussian noise, i.e., K = 1, the peri-

odogram is the ML estimator, as WH W = wH w = N . To obtain the estimate in

(14), one usually evaluates the periodogram on an oversampled DFT grid, i.e.,Y =

{ p

sN

}

p=0,...,sN−1
(15)

where s is the oversampling or super-resolution factor, and picking the largest peak

of the corresponding magnitude estimate

|â| = 1

N
|WH y| (16)

An example is shown in Figure 2, where a single sinusoid in white Gaussian noise

have been measured in N = 64 samples. A finely oversampled DFT estimate is

compared to the true frequencies and to the LS estimate for the correct frequency

(8). As can be seen from the figure, the peak of the DFT estimate coincides with

the true frequency and the LS amplitude estimate.

Remark 2: For K > 1, one usually proceeds in the same manner as for one

sinusoid. In the unlikely case that all frequencies are separated by at least 1/N
and lie exactly on the standard DFT grid, where s = 1, the periodogram would be

an efficient estimator, as WH W = N I and so (9) and (14) are equal. Otherwise,

when the frequencies lie off-grid, the periodogram is typically a reasonable, but

not an efficient, estimator [3, p. 161].

Remark 3: The resolution of the periodogram is limited, so that two sinsuoids

closely spaced in frequency are only likely to be resolved if that spacing is at least

5
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Figure 2: DFT amplitude estimates for K = 1 sinusoids in white Gaussian noise,

as compared to the true amplitudes, and the ML estimate for the correct fre-

quency.

1/N . If spaced finer, they will appear to coincide in the resulting spectral estim-

ate. An example of this is shown in Figure 3, where K = 5 sinusoids are measured

at N = 64 samples. Two of the sinusoids are spaced by 2
5N , i.e., being two grid-

points apart if having super-resolution s = 5, and are thus not resolved using the

oversampled DFT periodogram. However, if given the correct frequencies, the

LS estimates from (8) resolves the peaks very accurate. Thus, the problem resides

in finding the non-linear frequency parameters. Other commonly used paramet-

ric methods for frequency estimation with good statistical accuracy include the

HOYW, MUSIC, and ESPRIT methods [3, ch. 4].

Remark 4: Throughout the analysis in this section, the model order, K , is as-

sumed to be known, which is also a requirement for most parametric estimation

methods. However, in practice, the model order is typically unknown, which re-

6



2. Sparse estimation of line spectra
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Figure 3: The DFT amplitude estimates for K = 5 sinusoids in white Gaussian

noise, with two of them being spaced by 2
5N , as compared to the true amplitudes,

and the ML estimate for the correct frequencies.

quires an often difficult model order estimation procedure. In the next section,

a methodology for line spectra with super-resolution capabilities is introduced,

where explicit model orders are not required. This is the sparse modeling ap-

proach.

2 Sparse estimation of line spectra

In this section, a methodology for estimation of line spectra using sparse model-

ing is introduced. The main idea is quite simple, and may be put in a question:

Given an over-complete set of candidate basis functions for a certain type of sig-

nal, which is the sparsest possible subset of them to model it with? The solution,

which was first formalized in [4] using a statistical framework and convex ana-

7



Introduction

lysis, is termed the Least Absolute Shrinkage and Selection Operator (LASSO).

The LASSO solves an optimization problem where an LS cost is supplemented

by a penalty function to avoid overfitting, i.e., to prevent having a surplus of active

basis functions. The same idea goes under different acronyms, and is also referred

to as the Basis Pursuit De-Noising (BPDN) method [7]. It has been the constant

focal point of much research during the last decade and a half, and many prom-

inent researchers have worked on the theoretical properties, solution algorithms,

applications, and extensions of the method.

2.1 Promoting sparsity

A common application for the LASSO is the estimation of line spectra. In con-

trast with the NLS criteria in (9), which is non-linear, the LASSO formulation

enables an entirely linear estimation problem. It represents the non-linear fre-

quency parameters with an overcomplete set of candidate frequencies, each with

a linear amplitude parameter, and then promotes a solution where only a small

number of these amplitudes are non-zero. The LASSO solution is thus highly

accurate, and also circumvents the requirement of explicitly defining the model

order. To that end, let the K non-linear frequency parameters be represented by

P = sN ≫ K sinusoidal basis functions, chosen such that some of them may

well coincide with the true sinusoids. The problem thus reduces into finding the

most sparse representation of the linear amplitude parameters. In this thesis, the

approach is referred to as sparse modeling of sinusoids, as the sinusoidal signal is

modeled by a sparse representation of an oversampled DFT basis. Re-using the

same notation as in the previous section, let Y denote the candidate frequencies

of the s-times oversampled DFT grid, as given in (15). The noise-free signal in

(3) may thus be approximated by

x =

K
∑

k=1

wkak ≈
P
∑

p=1

wpap = WYa (17)

where WY denotes the over-complete sinusoidal base, and is also referred to

as the signal dictionary, as it constitutes all possible representations of the sig-

nal. From the dictionary, the signal should be well described using few sinusoidal

components, being commonly referred to as the atoms, i.e., the smallest building

blocks of the dictionary. For notational convenience, the subscript of the dic-

tionary is dropped. Thus, the LASSO for line spectra solves the optimization

8



2. Sparse estimation of line spectra
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Figure 4: A comparison of different penalty functions for a scalar input x. The ℓ0

penalty is the most sparsity-enforcing, as any deviation from zero adds cost. Only

the ℓ1 and ℓ2 functions are convex, whereof only the former enforces sparsity.

problem

minimize
a

1

2
||y−Wa||22 + Nl||a||1 (18)

where the sum of squared residuals cost function is extended by a sparsity-promoting

penalty-function, i.e., the ℓ1 norm of the amplitudes, which is multiplied by N
for scaling and a positive constant l. Thus, for every non-zero amplitude com-

ponent ap which helps to increase the fit in (18), a corresponding penalty Nl|ap|
is added to the cost, and so l trades off solution fit for sparsity. To illustrate why

the ℓ1 norm promotes sparsity, Figure 4 shows some suggestions of other possible

penalty functions, namely

9
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||a||0 =

P−1
∑

p=0

1{ap 6= 0} (ℓ0)

||a||q =





P−1
∑

p=0

|ap|q




1/q

(ℓq)

g(a) =
1

1 + c

P−1
∑

p=0

ln
(

1 + c|ap|
)

(log)

for q = {0.1, 1, 2}, and where c in (log) is a positive constant, which increases

the absolute slope close to zero. In the figure, c is set to 20. What is of interest,

is whether and how fast any deviation from zero adds a cost. The most sparsity-

promoting penalties are thus ℓ0, ℓq, for 0 < q < 1, and log. All of these are, how-

ever, non-convex, which strongly restrict their practical utility. For correctness,

note that ℓq, for q < 1, is not a proper norm. As a stark contrast, the ℓ2 penalty

does not promote sparsity, but rather the opposite, as a small deviation from zero

adds a relatively small penalty. Hence, being both convex and sparsity-promoting,

the ℓ1 is not an unintuitive choice of penalty. As a convex optimization problem,

the LASSO enjoys the attractive property that if a local minima is found, it is

also the global minima. From convex analysis, a necessary and sufficient condi-

tion for a solution to be optimal is that it fulfills the Karush-Kuhn-Tucker (KKT)

conditions. In this thesis, solutions are found using numerical methods that en-

sures KKT; for simpler problems, they may also be solved analytically. In the next

section, a closed form solution for the LASSO is derived using KKT, as it may

give a qualitative understanding of the effect of penalizing the LS problem, as

well as the effect of l. The cost function in (18) is a real scalar function, say g ,

which takes complex arguments, i.e., g : CP×1 → R. Instead of using complex

analysis, the problem may be formulated by considering the real and imaginary

parts of the arguments and dictionary separately, i.e., g : R2P×1 → R. Next,

the LASSO solution is derived for real-valued arguments, to which the omitted

complex-valued case is a simple, but notationally tedious, extension.

2.2 LASSO solution via KKT

Consider the real-valued case where a ∈ RP×1, and where W ∈ RN×P is a

dictionary with arbitrary atoms. The KKT conditions for the LASSO thus state

10



2. Sparse estimation of line spectra

that [8]

∂f

∂a
= −WT

(

y−Wa
)

+ Nlv = 0 (19)

vp =

{

ap

|ap|
∀ap 6= 0

∈ [−1, 1] ∀ap = 0
(20)

where v is the sub-gradient of the penalty function ||a||1. In order to solve (19)

and (20) for a, some additional notation is convenient. Define W−p and a−p as

the dictionary and the response variable where the p:th component is left out.

With some matrix algebra, (19) may be compactly expressed as

ap = ăp − lvp (21)

for p = 1, . . . ,P, where

ăp ,
1

N
wT

p

(

y−W−pa−p

)

(22)

denotes the unconstrained solution of ap, given a−p, and may be interpreted as the

linear dependence between the p:th dictionary component and the signal residual,

i.e., where the components in a−p have been removed from the original signal.

Furthermore, (21) can be used to show thatl ≥ |ăp| ∀ap = 0

|ap| = |ăp| − l ≥ 0 ∀ap 6= 0
(23)

which, together with some further manipulations, yields the closed form LASSO

solution as

âp =

(

1− l
∣

∣ăp

∣

∣

)

+

ăp (24)

for each component in a, where (c)+ returns c if positive, zero otherwise. This

solution fulfills the KKT conditions and yields the global optimum of (18). From

(24), the effect of l becomes clearly visible. Any l > 0 will induce a bias, which

for l < |ap| will be equal to −l, and for l ≥ |ap|, will be equal to −ăp, as the

LASSO solution will be zero. It also becomes clear why the ℓ1-norm promotes

sparsity, as it takes the non-sparse unconstrained solution and soft-thresholds it,

11
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Figure 5: The LASSO amplitude estimates for K = 5 well separated sinusoids in

white Gaussian noise. In comparison with a thresholded DFT estimate, âDFT−l.

such that small components become zero. For the special case when the dictionary

is orthogonal, i.e., WT W = N I, ăp does not depend on a−p, and will be simple

to calculate for all components. For line spectra, the orthogonality implies that

the LASSO solution is the equivalent of soft-thresholding the periodogram, as

W becomes the DFT matrix with s = 1. An example of this may be seen in

Figure 5, where five sinusoids, well-spaced by more than 1/N from each other,

are estimated using the LASSO with such an orthogonal dictionary, for N = 64.

For comparison, the DFT estimate thresholded with the bias, i.e., âDFT − l, is

shown, as to illustrate the soft-thresholding of the LASSO estimate.

2.3 Super-resolution and robust recovery

For non-orthogonal dictionaries, the LASSO solution is less easily interpreted,

as the parameters will have some degree of mutual dependence. This can be

12



2. Sparse estimation of line spectra

illustrated using (13), as

ăp =
1

N



wT
p y−

∑

q 6=p

wT
p wqaq



 (25)

=
1

N
wT

p y− 1

N

∑

q 6=p

h(fp − fq)aq (26)

Intuitively, consider two frequency components, fp and fp′ , that are very closely

spaced, such that h(fp − fp′) ≈ 1. If an estimate of ap′ reasonably well repres-

ents the true spectral energy in that component, then ăp becomes small, making

âp small. But the same also holds for ap′ if an estimate ap well represents the

true spectral energy, and so the LASSO instead seemingly arbitrarily divides mag-

nitude between highly coherent components. An example of this is seen in Figure

6, where the LASSO estimate for a dictionary with super-resolution s = 20 is

plotted. The two closely spaced sinusoids are resolved, but their respective mag-

nitude is divided between several dictionary elements. As a comparison, the ℓ2-

regularized estimate, i.e., the Tikhonov Regularization (TR) or ridge regression

estimate, is also plotted. The TR is a smoothing estimate used when the solution

of a linear system is not unique, and so solves

minimize
a

1

2
||y−Wa||22 + k||a||22 (27)

which has the closed form solution

âTR = (WH W + kI)−1WH y (28)

Note that the addition of kI makes the solution stable, and the larger k becomes,

the more âTR resembles a scaled version of the DFT estimate, which may also be

seen from the figure. In spite of the LASSO’s ambiguity in estimation of highly

coherent dictionary atoms, it will generally have good super-resolution perform-

ance, and will typically cope with resolutions upwards of 5 ≤ s ≤ 10 [9]. How-

ever, in terms of theoretical estimation guarantees, the results are quite pessimistic.

There are several different methods of assessing the suitability of a dictionary for

sparse estimation, which include the exact recovery coefficient (ERC) [10], the

13
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Figure 6: The LASSO, TR, and DFT amplitude estimates for K = 5 sinusoids

in white Gaussian noise, where two of them are spaced by 2/5N, as compared to

the true amplitudes.

spark [11], the two restricted isometry criteria (RIC)1 [12], and the two coher-

ence measures in [10] (cumulative coherence) and in [11] (mutual coherence). As

noted in [13], only the latter two can be readily calculated for an arbitrary dic-

tionary. Focusing on the mutual coherence, it is defined as the maximum linear

dependence present in the dictionary, which for line spectra becomesm(W) , max
fp 6=fq

1

N

∣

∣h(fp, fq)
∣

∣ (29)

for fp, fq ∈ Y. The theoretical implications for mutual coherence in line spectra

was examined in [14], where it is claimed that a sufficient condition for for robust

1The two RICs are the well-known restricted isometry property (RIP) and the restricted ortho-
gonality property (ROP), respectively.
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2. Sparse estimation of line spectra

recovery is that m ≤ √2 − 1. In contrast to practical observations this would

thus correspond to a minimal grid point spacing of approximately |fp − fq| ≥
2N/3, and so robust recovery in this sense is not possible for super-resolution

dictionaries, i.e., for s > 1. Except for super-resolution, another issue affecting

performance is off-grid effects. Re-examining Figure 5, it is apparent that the

LASSO does not robustly recover the correct number of frequency components,

i.e., ||â||0 6= K , even if an orthogonal dictionary is used. In spite of this, it has

been found that if choosing the largest peaks of the LASSO estimate, rather than

all non-zero parameters, sparse modeling works well for line spectra in practice

[9]. In addition, the estimation may be further improved by using the LASSO

estimates as an initial solution to the NLS method.

2.4 Choosing the level of regularization

The KKT conditions in section 2.2 give a qualitative understanding of the effect

of l. Thus, from (24), it is clear that any component p with an unconstrained

estimate |ăp| ≤ l will have the LASSO solution âp = 0. The choice of l can

be therefore be seen as an implicit choice of the model order. In its essence, l
should be chosen such that any noise peak in the residual spectra should be zero,

while any signal peak is still resolved. This is accomplished by setting l larger than

the largest noise peak, and lower than lowest signal peak. As a consequence, for

signals with very low SNR, where some of the noise peaks may be larger than the

signal peaks, the sparse modeling approach may either include noise peaks in, or

exclude signal peaks from, the estimates. Choosing l thus becomes very difficult,

and some compromise must be done. In this section, some different approaches

for setting the level of regularization will be presented, where the signal is assumed

to have a spectral representation where the signal resides above the noise floor. For

white Gaussian noise, the unconstrained LS estimate has the statistical properties

âLS ∼ N (a,s2(WH W)−1) (30)

and for a noise-only signal, i.e., K = 0, implying that a = 0, the LASSO solution

should also be â = 0. If s2 is known, this may be ensured with probability 1− a,

if l is chosen such thatl =

{l : Prob

(

max
p
|aLS,p| ≤ l) = (1− a)

}

(31)
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i.e., such that the magnitude of the largest LS parameter estimate is smaller thanl with probability 1 − a. For an orthogonal dictionary, i.e. P = N for line

spectra, the LS estimates become uncoupled, and (31) becomes equivalent to the

maximum of N independent and identically distributed variables, i.e.,l =

{l : Prob

(x ≤ l2Ns2

)N

= (1− a)

}

(32)

where x = ă2
p/(s2/N ) ∼ q2(1), as the square of a standard Gaussian random

variable is q2 distributed with one degree of freedom. Solving for l, one obtainsl = s√ 1

N
F−1x (

(1− a)1/P
)

(33)

where F−1x is the inverse of the q2 distribution function. In the examples of

this section, this approach was used, with a = 0.001. One may also think of

the solution in terms of dynamic range, especially if the noise level is very low.

Thus, one may decide upon a dynamic range of d (dB), such that if the signal is

normalized by its largest spectral line, the regularization becomesl =

√

10−d/10 (34)

which implies that the maximal dynamic range, i.e., difference in signal power

between two components, is |d| dB. For example, for d = 20 dB, this yieldsl = 0.1. Another approach, suggested in [15], is to evaluate the solution for

different levels of l, i.e., â(l), and thereafter evaluate the solutions by some model

order criteria. Of course, this requires solving the optimization problem several

times, increasing the computational burden. A way of circumventing this was

proposed in [16], which claims to (for real-valued signals) solve the entire solution

path of â(l) with the same computational complexity as if solving for a single l.

This is an interesting idea, although not further discussed herein.

3 Sparse estimation of grouped line spectra

A natural extension of the LASSO methodology is to account for a grouping or

clustering behavior of the dictionary atoms. Thus, a subset of dictionary atoms

may be assigned to a cluster which, if active, assumes that all atoms in the cluster

16



3. Sparse estimation of grouped line spectra

are active, i.e., has non-zero parameters. For spectral estimation, this may be the

case if a certain signal source contains multiple sinusoids, which share a prede-

termined relationship. Thus, the estimation procedure may be simplified into

only searching for a single frequency, e.g., the fundamental frequency of a pitch

signal, from which the frequencies of the other components may directly be ob-

tained. This has the statistical benefits of reducing the degrees of freedom, and

thus increasing the precision of the estimate. Another advantage of using sparse

modeling is that it alleviates the burden of precise model order knowledge. This

may be especially beneficial for grouped line spectra, where several groups are su-

perimposed in a signal. For such signals, a combinatorial issue of determining

which components belong to which group arise, to which sparse modeling is a

good remedy, as it only claims that the number of groups should be as few as

possible.

3.1 The Group LASSO

The principal methodology for grouping of dictionary atoms, introduced in [17],

is called the Group LASSO, and is a simple extension of the LASSO to where

clusters are pre-defined; to show this, a slight change of notation is required.

Therefore, letY =

{

{y(fp, ℓ)
}

ℓ=1,...,Lp

}

p=1,...,P
(35)

be the set of candidate frequencies represented in the dictionary, divided into

P groups of Lp atoms in each, and where y(f , ℓ) is a known function of the

fundamental frequency, f , and the ℓ:th component. In the same manner, let the

dictionary W be structured into P sub-dictionaries, each consisting of Lp atoms,

such that

W =
[

W1 . . . WP

]

(36)

Wp =
[

wp,1 . . . wp,Lp

]

(37)

wp,ℓ =
[

ei2py(fp,ℓ)1 . . . ei2py(fp ,ℓ)(N−1)
]T

(38)

where Wp is the sub-dictionary corresponding to the candidate fundamental fre-

quency fp. Furthermore, let a be structured similarly, i.e.,

a =
[

a1 . . . aP

]T
(39)

ap =
[

ap,1
T . . . ap,Lp

T
]T

. (40)
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The Group LASSO may thus be defined as the solution to the convex optimiza-

tion problem

minimize
a

1

2
||y−Wa||22 + Nl P

∑

p=1

√

Lp||ap||2 (41)

where instead of using the ℓ1-norm for the entire variable vector, the group sparse

penalty is the equivalent of taking the ℓ1-norm on a vector consisting of ℓ2-norms

for each group. This implies that sparsity is enforced for the entire group, whereas

no sparsity is imposed for the components within a group. The Group LASSO is

also a convex optimization problem, and to obtain a qualitative understanding of

the effect of the penalty and of l, a closed form solution is derived using the KKT

conditions, which state (for the real-valued case) that

∂f

∂ap
= −WT

p

(

y−Wa
)

+ Nl√Lpup = 0, ∀ap (42)

up =

{

ap

||ap||2
∀ap 6= 0

∈ {[u : ||u||2 ≤ 1} ∀ap = 0
(43)

where up is the sub-gradient of the group sparse penalty. Similar to the LASSO,

let W−p, a−p denote the dictionary and the variable vector where the p:th group

is left out. With some linear algebra, (42) is equal to

(WT
p Wp)ap = (WT

p Wp)ăp − l√LpN up (44)

where, similarly to (22), ăp denotes the unconstrained solution;

ăp , (WT
p Wp)−1WT

p

(

y−W−pa−p

)

(45)

Using some matrix algebra, one obtains

ap =

(

WT
p Wp +

l√LpN

||ap||2
I

)−1

(WT
p Wp)ăp (46)

In this form, a solution of the Group LASSO is quite difficult to obtain, as ap also

occurs in the right hand side of the equation. However, if assuming that the sub-

dictionary for the p:th group is orthogonal, i.e., WT
p Wp = N I, one may show
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3. Sparse estimation of grouped line spectra

that l√Lp ≥ ||ăp||2 ∀ap = 0 (47)

||ap||2 = ||ăp||2 − l√Lp ≥ 0 ∀ap 6= 0 (48)

which, if inserted into (46), yields the closed form solution for the Group LASSO

as

âp =

(

1−
l√Lp

||ăp||2

)

+

ăp (49)

and therefore also fulfills the KKT conditions. Thus, it becomes apparent that the

Group LASSO does not promote sparsity within groups, for each component. It

instead makes the solution group-wise sparse, by soft-thresholding all compon-

ents in proportion to the ℓ2 norm of the group, putting the entire group to zero

if ||ăp||2 ≤ l√Lp. Lastly, for the Group LASSO, some remarks may be noted:

Remark 1: The purpose of
√

Lp is to make l for the Group LASSO comparable

in dimension to that of the LASSO, as, e.g., if ăp,1 = · · · = ăp,Lp = a, then

||ap||2 =
√

Lp|a| and the entire group is set to zero if |a| ≤ l. It is also worth

noting that, for L1 = · · · = LP = 1, the regular LASSO is obtained.

Remark 2: For the Group LASSO, recovery guarantees can be formulated in a

manner similar to the LASSO, as in, e.g., [18, 19], but shows a similar degree

pessimism. In its essence, robust recovery, in the sense of only allowing non-zero

groups for the true spectral lines, is only possible if WT W = N I. However, in

practice, the Group LASSO is quite robust to coherency both in, and between,

groups.

Remark 3: The closed-form solution of the LASSO with complex-valued vari-

ables, i.e., a ∈ CP×1, is obtained using the Group LASSO. By modeling the real

and imaginary parts of the variables separately in a real-valued response variable, a

group sparse penalty must be used to ensure the correct sparsity structure, where

{Re(ap), Im(ap)} defines the p:th group.

3.2 Other variations on the LASSO

One may customize the penalty functions in order to address a specific sparse

structure, to which there exist a multitude of different approaches, some of which
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will be described here. In general, all of them solve a convex optimization problem

on the form

minimize
a

1

2
||y−Wa||22 + N

∑

j∈J

gj(a, lj) (50)

where gj denotes the j:th penalty function, enforcing a certain sparsity structure,

with lj denoting its corresponding regularization parameter, which weights the

importance between the sparsity promoted by gj and the model fit. What sep-

arates different methods, is this which functions that are included in the set J .

In [20], Simon et al. introduce the Sparse Group LASSO (SGL), in which the rep-

resentation of the signal, a, may have sparsity also within groups. Such a sparsity

pattern is enforced by combining (18) and (41), thereby regularizing the solution

with two penalty functions, i.e.,

g =

{ l1||a||1, l2

∑P
p=1

√

Lp||ap||2
}

(51)

Another variation is the Generalized LASSO, introduced in [21], which use a

penalty function on the form

g =
{ l||Da||1

}

(52)

where D is a linear transformation matrix, such that the ℓ1-norm is imposed on

a linear combination of the components in a. A popular choice of D is the first-

order difference matrix, defined as

D =













1 −1 0 . . . 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0

0 . . . 0 1 −1













(53)

which yields the difference between every two adjacent parameters. Commonly,

this function is used in combination with the standard ℓ1-norm, i.e.,

g =

{ l1||a||1, l2

∑P
p=2 |ap − ap−1|

}

(54)

where a is indexed for the normal LASSO, i.e., as in (17)-(18). This method

is called the Sparse Fused LASSO (SFL), introduced in [22]. The SFL has a
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3. Sparse estimation of grouped line spectra

grouping effect, where if adjacent dictionary components have similar energy,

they are fused into groups without a pre-defined structure. Simultaneously, if

components are too weak, they are soft-thresholded to zero. Thus, SFL enforces

both grouping and sparsity.

3.3 Choosing the levels of regularization

As detailed in section 2.4, the level of sparsity is implicitly selected by setting thel-parameter. Similarly to the LASSO, the solution of the Group LASSO for the

p:th group is set to zero if ||ăp|| ≤ l√Lp. An expression similar to (33) may

thus be derived for the Group LASSO. If the power of the noise is unknown, as it

most often is, one may also examine the unconstrained solution ăp, or an approx-

imation of it, and thereafter set l larger than the perceived grouped noise floor.

Alternatively, the idea of dynamic range, described earlier for the LASSO, can

also be applied for the group LASSO. Calculating the solution path â(l) over an

interval of different l:s, and thereafter choosing the best according to some model

order criteria, is also a viable approach [17]. However, as the number of penalty

functions increase, so does the complexity in choosing the levels of regularization.

Not only does the total penalty cost need to balance the model fit, but each of

the penalties also needs to be weighed against each other, as to find the sought

sparsity pattern. A standard method for tuning the sparse penalty parameters is

to use cross-validation, but for most purposes, this is impractical, as the computa-

tional complexity would be very high. However, there are some simple heuristics

which makes the tuning process quite manageable. One approach which usually

works well is to tune lj for the j:th penalty independently of the other penalties,

using some of the methods previously described. However, as the penalties are

added together, the total level of regularization will be too high, which might re-

move components in the signal, if the amount of headroom above the noise level

is small. Another approach is to tune one penalty at a time, in a prioritized order.

For instance, with the SGL, one may tune the group penalty first, as to find the

appropriate number of blocks. Then, one may tune the ℓ1 penalty to find the ap-

propriate sparsity pattern within the active groups. In practice, when the signal is

much stronger than the noise, the solution is often quite insensitive to the choice

of l.
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4 Solving convex programs

A major reason why the optimization problems described in this thesis are cast as

convex, besides from the favorable theoretical properties described above, is that

there exists a solid framework for finding numerical solutions to convex problems.

Using the methodology of disciplined convex programming described in [23],

the corresponding software package, CVX [24], makes implementation very ap-

proachable. Thus, new prototype methods, with novel penalty functions that

infer certain structure on the solution, may be experimented with in a straightfor-

ward manner. CVX uses commonly available interior point methods such as Se-

DuMi [25] and SDPT3 [26], for instance, to find solutions which approximately

fulfill the KKT conditions of the corresponding convex problem. However, CVX

is in general too computationally burdensome for practical estimation of the op-

timization problems considered in this thesis, to which there exist some alternative

implementations. For the LASSO-type of problems, two such approaches are the

ADMM framework used in [27], and the Least Angle RegreSsion (LARS) [16],

where the latter uses a Cyclic Coordinate Descent (CCD) approach. The meth-

ods described in this paper are efficiently implemented using the ADMM, which

the next subsection describes in more detail.

4.1 Outline of the ADMM

In general, ADMM solves problems of the form

minimize
z

f1(z) + f2(Gz) (55)

where f1(·) and f2(·) are closed, proper, and convex functions, and G is a known

matrix. By introducing the new variable u = Gz, and adding this condition

to the optimization problem, the ADMM approach is to iterate between solving

for z, while keeping u constant, and vice versa. The problem (55) may thus be

equivalently expressed as [27]

minimize
z

f1(z) + f2(u) +
m
2
||Gz− u||22 (56)

subject to Gz− u = 0

for any smoothing parameter m, as the penalty term disappears when the con-

straint is fulfilled. To solve this convex program, the augmented Lagrangian for
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the scaled form ADMM [27, p. 15] is formed as

Lm(z,u, d) = f1(z) + f2(u) +
r
2
||Gz− u + d||22 (57)

where d denotes the scaled dual variable. At iteration (k + 1), the parameters are

obtained by solving

z(k+1)
= arg min

z
Lm(z,u(k), d(k)) (58)

u(k+1)
= arg min

u
Lm(z(k+1),u, d(k)) (59)

and then updating the scaled version dual variable as

d(k+1)
= d(k+1) − m(Gz(k+1) − u(k+1)) (60)

Clearly, using the ADMM optimization scheme is worthwhile when (58)-(59) are

such that they may be carried out much easier than the original problem in (55).

For the LASSO, this is precisely the case, as will be shown in the next section.

4.2 LASSO via ADMM

To solve the LASSO using an ADMM approach, consider an augmented optim-

ization problem equivalent to the one in (18), i.e.,

minimize
a,b

1

2
||y−Wa||22 + Nl||b||1 + m

2
||a− b||22 (61)

subject to a− b = 0

to which the augmented Lagrangian for the scaled form ADMM may be expressed

as

Lm(a, b, d) =
1

2
||y−Wa||22 + Nl||b||1 + m

2
||a− b + d||22 (62)

such that d denotes the scaled dual variable. To find the expressions which min-

imize (62) with respect to a and b, similar to (58) and (59), one must differantiate

the Langrangian, set the derivative to zero, and solve for the current variable at

iteration k + 1. For a, this yields an expression similar to the TR estimate in (28),

i.e.,

a(k+1)
=
(

WH W + mI
)−1

(

WH y + m(b(k) − d(k)
))

(63)
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For b, the Lagrangian is non-differentiable, due to the ℓ1 penalty. However, notice

that that the two terms which depend on b resembles a simplified version of the

LASSO, where the parameters in bp, p = 1, . . . ,P are uncoupled, and may thus

be obtained using the closed-form expression

b(k+1)
p =

(

1− Nlm|b̆(k+1)
p |

)

+

b̆(k+1)
p )

|b̆(k+1)
p |

(64)

where

b̆(k+1)
p = a(k+1)

p + d (k)
p (65)

is formed from the p:th elements of the vectors a(k+1) and d(k), respectively. Fi-

nally the dual variable is updated as in (60), with G = I, z = a, and u = b.

5 Preliminaries for selected applications

This thesis deals with two specific applications for sparse modeling, namely audio

and array processing. In this section, some preliminary assumptions from both of

these topics are presented, which are then treated in greater detail in the later part

of the thesis.

5.1 Parametric Modeling of Audio

In modern audio processing, one primarily deals with the digital representation of

sound waves, i.e., longitudinal waves where a medium2 is compressed and decom-

pressed. The bulk of research over the last decades has been focused on speech

processing, as to fill the emerging need of solutions for digital communication

(see, e.g., [28], and the references therein) However, in more recent years, much

research in audio processing has also been devoted to musical signals, quite un-

surprisingly, given the large role of digital media in everyday life (for an overview,

see, e.g., [29]). Combined, the two fields of speech and music processing are for-

midably vast, and they cannot possibly be given any form of justice in merely a

few pages. Instead, some brief excerpts are given, as to give some context to the

methods of which this thesis consist. For both fields, given the nature of sound,

2Sounds in air are typically recorded using microphones, but sounds in water are also often
considered, which are then recorded by hydrophones.
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signals are periodic and, for our purposes, their spectral representations are highly

relevant. Many audio signals are well described as narrowband, i.e., the spectral

energy is largely limited to a few very limited intervals on the frequency axis. As a

result, parametric estimation using the sinusoidal model is often a good approach

to quantifying the properties of speech and music. A common model used for

voiced speech and tonal music is the harmonic model, or pitch model, which is

of the form [30]

y(t) = x(t) + e(t), x(t) =
L
∑

ℓ=1

aℓe
i2pf ℓt (66)

for a single pitch. Measured in some form of additive noise, e(t), the pitch sig-

nal, x(t), consists of a group of complex-valued3 sinusoids, whose relation are

described, using the notation from section 3, asy(f , ℓ) = f ℓ, ℓ ∈ L (67)

where the frequency components are thus equally spaced, by f , on the frequency

axis, for all indices of ℓ in an index set L. Typically, a pitch is defined by its

fundamental frequency, i.e., y(f , 1) = f , and the individual sinusoids are referred

to as its harmonics. A common misconception is that the fundamental is always

the lowest frequency in the pitch, which is obviously only true if 1 ∈ L. This is,

however, not always the case, as some harmonics may be missing, including the

fundamental. Instead, it is in most cases better to view the fundamental frequency

as the smallest distance between two adjacent harmonics in a pitch group. Thus,

if a certain pitch f has the following set of harmonics,

L = {2, 4, 6, 8, . . . , 2L} (68)

it may preferably be seen as a pitch with fundamental frequency f ′ = 2f , and

corrsponding set L′ = {1, 2, 3, 4, . . . ,L} of harmonics. As there might be ambi-

guities as how to chose f and L, such as, e.g., the example given above, the basic

assumption, which is extensively used in the thesis, is that the spectral envelope

of the pitch should be smooth [31], i.e., that adjacent harmonics should be of

3Naturally, audio signals are not complex-valued. However, by using the analytic representation

of the real-valued signals, both analysis and estimation may be greatly simplified. This is mainly
because real-valued signals contain two spectral lines for every frequency f present in the signal,
located at ±f , where the negative component is removed in the analytic signal.
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comparable magnitude. This is obviously not the case for the pitch described in

(68), as its uneven harmonics have zero magnitude. Promoting such smoothness

to avoid ambiguity is one of the objectives of paper A. Another common property

for harmonic audio signals, in particular for some musical instruments, is a slight,

but systematic, deviation from even distances between harmonics. This is referred

to as inharmonicity, which for stringed instruments may be well described asy(f , ℓ) = f ℓ
√

1 + ℓ2B, ℓ ∈ L (69)

where B is called the inharmonicity coefficient, specific to each string; typically

B ∈ [10−5, 10−3] [32]. Another feature of audio, highly related to pitch and

especially used in musical contexts, is chroma. Chroma is the representation of

the fundamental frequency frequency on a cyclical scale. To that end, consider

the chroma parameter c ∈ [0, 1), to which the corresponding fundamental fre-

quencies may be expressed as

f = fbase2
c+m, ∀m ∈ Z (70)

where m is referred to the octave, and where fb is a tuning or offset frequency,

defining the specific location of a chroma in frequency. This implies that the linear

frequency scale collapses into a cyclic chroma scale, as all fundamental frequencies

which fulfill (70), for some integer o, belong to the same chroma, i.e., if f ∈ c,
then

f ′ ∈ c ⇒ f ′ ∈
{

. . . ,
f

8
,

f

4
,

1

2
, f , 2f , 4f , 8f , 16f , . . .

}

(71)

and all fundamentals in a chroma are thus related by some power of 2. One bene-

fit of the chroma representation is that it groups together pitches that have largely

overlapping frequency content, which makes chroma estimation much less am-

biguous than pitch estimation. In music, the chroma representation is a common

grouping criterion, as all pitches in a chroma are perceived as similar by human

hearing [29]. In the Western musicological system, for instance, the chroma in-

terval is discretized into twelve semitones, uniformly spaced on [0, 1), i.e.,

c ∈
{

0,
1

12
,

2

12
, . . . ,

11

12

}

(72)

In paper D, the chroma model for Western music is used with sparse modeling to

form estimates, cruder than pitch but more robust, of the spectral components of

an audio signal.
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5.2 Spatial modeling of sinusoids

In the field of array processing, a common objective is to locate signal emitting

sources by measuring their emissions over an array of sensors. The emitted energy

may be of various types, e.g., acoustic or electromagnetic, to which different cor-

responding types of sensors are used. In this section, some basic results for source

localization is given as to facilitate a bit of background for the methods presented

in paper B and C. In general, the objective may be put as finding the distribu-

tion of energy in the spatial domain. If assuming that all sensors have the same

gain, the signal model for the impinging source signal at the m:th sensor may be

expressed as

ym(t) = x(t − tm) + em(t) (73)

where tm is the source-sensor time-delay with respect to some reference point,

such that the source signal x(t) is at each sensor delayed with respect to the specific

geometry of the array. Consider that x(t) follows the sinusoidal signal model in

(1). As such a signal is formed by a sum of narrowband components, the time-

delay in (73) may typically be well modeled as a phase offset in each component,

exponentially proportional to its frequency, i.e.,

ym(t) =
K
∑

k=1

akei2pfk (t−tm)
+ em(t) (74)

which for the sample vector is equivalent to

ym =

K
∑

k=1

wkake−i2pfktm + em, (75)

using the same notation as in Section 1, but where (·)m denotes the m:th sensor.

By column-wise stacking the sample vectors for all sensors, i.e.,

Y =
[

y1 . . . yM

]

(76)

the signal model for the entire array may be expressed as

Y =

K
∑

k=1

wkakzT
+ E = W diag(a)ZT

+ E (77)
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Figure 7: Principle sketch of a far-field point-source, which from j emit planar

wavefronts, that are impinging on a ULA, with equidistant sensor spacing d .

where W and a are defined as in Section 1, where E is the noise matrix defined

similarly to (76), and where

Z =
[

z1 . . . zK

]

(78)

zk =
[

e−i2pfkt1 . . . e−i2pfktM
]T

(79)

denote the phase offset for each sinusoidal component in each sensor, which de-

pend on both the frequency and the time-delay. The time-delays are inherently

related to both the source position and the geometry of the array, whose relation

may be modeled by imposing some assumptions on the source, and the array,

respectively. Two assumptions, which are very common for localization in array

processing, are

• The source is a point source in the far-field, i.e., the source is at an infin-

ite distance from the sensor array. This implies that the impinging signal

wavefronts are essentially planar, so that a source’s location solely depends

on its Direction-Of-Arrival (DOA).

• The sensors are positioned as a Uniform Linear Array (ULA), meaning that

they are equidistantly placed on a line. This implies that the positions will

be defined to a 2-D space of locations, described by DOA and distance.
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6. Outline of the papers in this thesis

Figure 7 illustrates these two assumptions, where the DOA is denoted as the 1-D

angular deviation from the array’s normal, denoted j ∈ [−p, p]. Note that the

ULA will not discriminate between a source impinging from the front or from

the back of the array. From these assumptions, time-delays may thus be expressed

as a function of DOA, i.e.,tm =
d sin(j)

c
(m− 1) (80)

where d and c is the sensor distance, and the wave propagation speed, respectively.

Therefore, (79) may be equivalently expressed as

zk =

[

1 e−i2pfk
d sin(j)

c . . . e−i2pfk
d sin(j)

c
(M−1)

]T
(81)

where
∣

∣

∣

∣

fk
d sin(j)

c

∣

∣

∣

∣

≤ 1

2
⇒ d ≤ c

2fk
(82)

should be fulfilled as to guarantee that aliasing effects are avoided. For the far-field

source and ULA case, zk may thus be seen as a uniformly sampled spatial DFT

vector. These preliminaries are utilized in paper C, where (74) is used to form

a joint frequency and DOA estimator for the pitch model (66), when multiple

pitches are impinging on an array of sensors, possibly from different locations. In

paper B, the preliminaries presented herein are extended, and a joint multi-pitch

and location estimator is proposed, for sources which are near-field rather than

far-field, and when the array’s geometry is arbitrary rather than uniformly linear.

6 Outline of the papers in this thesis

This section briefly summarizes the papers of which this thesis consist, together

with information of where they have been published or submitted.

Paper A: An Adaptive Penalty Approach to Multi-pitch Estimation

In paper A, we propose a novel adaptive penalty approach to estimate the para-

meters in the multi-pitch model with the use of sparse modeling. We examine

the PEBS/PEBS-TV methods introduced in [33], which formulate the problem
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as a SGL, in which difficulties arise for pitch candidates at half of the true funda-

mental frequency (halflings). In PEBS-TV, an additional penalty function, based

on the total variation cost, is introduced, which is shown to migitate such issues.

However, this method requires tuning three regularization parameters, which we

circumvent in this paper by using the adaptive approach, where a total variation

penalty is efficiently utilized, which enables us to drop the group-LASSO penalty

altogether. The method may thus be seen as solving a series of convex problems,

where each is a SFL, having two tuning parameters. The strength of using total

variation penalty compared to block-sparsity is that total variation promotes solu-

tions which have smooth parameter envelopes, which discourages halflings, as

they will have every other amplitude equal to zero. The method is shown to work

well for highly coherent dictionaries, and even outperforms the method in [33].

The work in paper A has been published in part as

Ted Kronvall, Filip Elvander, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson,

”An Adaptive Penalty Approach to Multi-pitch Estimation”. 23rd European
Signal Processing Conference, Nice, France, August 31 - September 4, 2015.

Paper B: Sparse Localization of Harmonic Audio Sources

In paper B, we use a two-step procedure to form joint estimates of pitches and

near- or far-field locations from measurements on an arbitrary, but calibrated,

sensor array. In the first step, a SGL generalized for array signals is used to find

the active pitches. Then, for estimated pitch, another variation on the SGL is

used on the estimated parameters, which contain information of both TDOA

and signal attenuation. This information is consequently exploited to form loca-

tion estimates, which may be more than one for each pitch. The implications of

using the sparse modeling approach is interesting, as it facilitates an opportunity

to position sources despite of reverberation effects, which usually are detrimental

to localization. The performance of the proposed method is validated using both

synthetic and real recorded signals, showing promising results.

The work in paper B has been published/submitted in part as

Stefan Ingi Adalbjörnsson, Ted Kronvall, Simon Burgess, Kalle Åström,

and Andreas Jakobsson, ”Sparse Localization of Harmonic Audio Sources”.

Submitted to IEEE Transactions on Audio, Speech, and Language Processing.

30



6. Outline of the papers in this thesis

Ted Kronvall, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson, ”Joint

DOA and Multi-pitch Estimation using Block Sparsity”, 39th IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, Florence,

Italy, May 4-9, 2014.

Paper C: Joint DOA and Multi-pitch Estimation via Block Sparse Dic-
tionary Learning

In paper C, we introduce a dictionary learning approach of estimating the joint

pitch and DOA estimates for an unknown number of pitch signals impinging

on a ULA. The method builds on the spatial pitch model in paper B, but where

each pitch source may only originate from a single direction. As the two paramet-

ers, frequency and DOA, are non-linear and intertwined in the signal model, the

linearization with the Group-LASSO is not straight-forward. Instead, the DOA

may be seen as phase offset, different for each sensor according to the specific

array geometry, that may be learned using the dictionary learning framework, re-

miniscent to [34]. Thus, the method alternates between estimating the pitches

present in the signal, using an extension of the SGL for array signals, and between

learning the phase offset parameters governed by the DOA. The estimating pro-

cedures solves a series of convex problems, where each iteration improves the joint

pitch and DOA estimate, until convergence.

The work in paper C has been published in part as

Ted Kronvall, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson, ”Joint

DOA and Multi-pitch Estimation via Block Sparse Dictionary Learning”,

22nd European Signal Processing Conference, Lisbon, Portugal, September

1-5, 2014.

Paper D: Sparse Chroma Estimation for Harmonic Audio

In paper D, we take a different approach to the pitch estimation problem. Instead

of focusing on estimating the parameter group of a specific pitch, we form groups

of all pitches that belong to the same chroma group, which is all pitches that

are at some power of 2 from each other. The chroma is a concept from musical

theory, and transcribing a piece of audio with respect to its chroma content is a

pre-processing step that is done for a variety of different MIR applications. In

this paper, we propose a solution where we use a combination of group-sparsity
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and total variation, such that the group-sparsity promotes solutions where few

chroma blocks are active, and where total variation discourages misclassifications

due to musical harmony, as the chroma groups have some partly overlapping fre-

quency components. The method is numerically evaluated for a synthetic violin

signal, which is known to be well modeled with grouped sinusoids, and indicates

a preferred performance for transcription purposes. In this paper, we also allow

the amplitude of each component to vary over time, which is modeled using a

spline basis, where the number of spline knots are chosen according to prefer-

ence. As this approach increases the number of parameters proportional to the

number of knots, the method is especially suitable for longer sequences of data,

where, for audio signals longer than 40 ms, the signal exhibits a large degree of

non-stationarity. The approach may also be beneficial for sounds that are very

transient, or for capturing the onset of a signal. We show that for a recorded

violin signal, the proposed method estimates the signal envelope more accurately

than for constant amplitudes, although at a higher computational cost.

The work in paper D has been published in part as

Ted Kronvall, Maria Juhlin, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson,

”Sparse Chroma Estimation for Harmonic Audio”, 40th International Con-
ference on Acoustics, Speech, and Signal Processing, Brisbane, Australia, April

19-24, 2015.

Maria Juhlin, Ted Kronvall, Johan Swärd, and Andreas Jakobsson, ”Sparse

Chroma Estimation for Harmonic Non-stationary Audio”, 23rd European
Signal Processing Conference, Nice, France, August 31 - September 4, 2015.

Stefan Ingi Adalbjörnsson, Johan Swärd, Ted Kronvall, and Andreas Jakobsson,

“A Sparse Approach for Estimation of Amplitude Modulated Sinusoids”,

The Asilomar Conference on Signals, Systems, and Computers, Asilomar, USA,

November 2-5, 2014.
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Abstract

This work treats multi-pitch estimation, and in particular the common misclassi-

fication issue wherein the pitch at half of the true fundamental frequency, here re-

ferred to as a sub-octave, is chosen instead of the true pitch. Extending on current

methods which use an extension of the Group LASSO for pitch estimation, this

work introduces an adaptive total variation penalty, which both enforce group-

and block sparsity, and deal with errors due to sub-octaves. The method is shown

to outperform current state-of-the-art sparse methods, where the model orders are

unknown, while also requiring fewer tuning parameters than these. The method

is also shown to outperform several conventional pitch estimation methods, even

when these are virtued with oracle model orders.

Key words: multi-pitch estimation, block sparsity, adaptive sparse penalty, total

variation, ADMM
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1 Introduction

Pitch estimation, i.e., estimating the fundamental frequency of a group of har-

monically related sinusoids, is a problem arising in a variety of fields, not least

in audio processing. For example, correctly determining the pitches present in

a signal is a fundamental building block in many music information retrieval

applications, such as automatic music transcription and genre classification [1].

However, pitch estimation for multi-pitch signals is a difficult problem, and al-

though notable efforts have been made to find reliable multi-pitch estimators, (see

e.g. [2]), most of the currently available methods which use the harmonic struc-

ture depend on a priori model order information, i.e., knowing the number of

pitches present, as well as the number of harmonic overtones for each pitch. Such

information is in general notoriously difficult to obtain. Our approach is instead

to solve the problem in a group sparse modeling framework, which allows us to

avoid making explicit assumptions on the number of pitches, nor the number of

harmonics. Instead, the number of components in the signal is chosen implicitly,

by the setting of some tuning parameters. These tuning parameters determine

how appropriate a given pitch candidate is to be present in the signal and may be

set using some simple heuristics, or by using cross-validation.The sparse modeling

approach has earlier been used for audio (see, e.g., [3]), and specifically for sinus-

oidal components in [4]. We extend on these works by exploiting the harmonic

structure of the signals in a block sparse framework, where each block represents

a candidate pitch. A similar method was introduced in [5], where block sparsity

was enforced using block-norms, penalizing the number of active pitches. As the

block-norm penalty, under some circumstances, cannot distinguish a true pitch

from its sub-octave, i.e., the pitch with half of the true fundamental frequency, the

method is also complemented by a total variation penalty, which is shown to solve

such issues. Total variation penalties are often applied in image analysis to obtain

block-wise smooth image reconstructions (see, e.g., [6]). For audio data, one can

similarly assume that signals often are block-wise smooth, as the harmonics of a

pitch are expected to be of comparable magnitude [7]. Enforcing this feature will

specifically deal with octave errors (due to present sub-octaves), as, in the noise

free case, only every other harmonic of the sub-octave will have non-zero power.

In this paper, we show that a total variation penalty, in itself, is enough to enforce

a block sparse solution, if utilized efficiently. More specifically, by making the

penalty function adaptive, we may improve upon the convex approximation used

in [5], allowing us to drop the block-norm penalty altogether, and so reduce the
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number of tuning parameters. In some estimation scenarios, e.g., when estimat-

ing chroma using the approach in [8], this would simplify the tuning procedure

significantly. Furthermore, we show that the proposed method performs compar-

ably to that of [5], albeit with the notable improvement of requiring fewer tuning

parameters. The method operates by solving a series of convex optimization prob-

lems, and as this class of problems generally are computationally cumbersome to

solve, we present an efficient algorithm based on the alternating directions method

of multipliers (ADMM); we refer to e.g. [9] for further details of the ADMM.

2 Multi-pitch signal model

Consider a complex-valued1 signal consisting of K pitches, where the kth pitch is

constituted by a set of Lk harmonically related sinusoids, defined by the compon-

ent having the lowest frequency wk, such that

x(t) =
K
∑

k=1

Lk
∑

ℓ=1

ak,ℓe
iwkℓt (1)

for t = 1, . . . ,N , where wkℓ is the frequency of the ℓth harmonic in the kth

pitch, and with ak,l denoting its magnitude and phase. The occurrence of such

harmonic signals is often in combination with non-sinusoidal components, such

as for instance, colored broadband noise or non-stationary impulses. In the scope

of this work, we only treat the narrowband components of the signal, although

noting that audio signals often also contain other features of notable perceptual

importance such as the signal’s timbre. In general, selecting model orders in (8) is

a daunting task, with both the number of sources, K , and the number of harmon-

ics in each of these sources, Lk, being unknown, as well as often being structured

such that different sources may have spectrally overlapping overtones. In order

to remedy this, we propose a relaxation of the model onto a predefined grid of

P ≫ K candidate fundamentals, each having Lmax ≥ maxk Lk, harmonics. Here,

we chose the candidates so numerous and so finely spaced that the approximation

x(t) ≈
P
∑

p=1

Lmax
∑

ℓ=1

ap,ℓe
iwpℓt (2)

1For notational simplicity and computational efficiency, we here use the discrete-time analytical
signal formed from the measured (real-valued) signal.
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holds sufficiently well. We are only interested in such approximations where few,

ideally K , of the fundamentals will have non-zero power, and so steps must be

taken to ensure this sparse behavior of the to be estimated amplitudes ap,l . This

approach may be seen as a sparse linear regression problem reminiscent of [4] and

has been thoroughly examined in the context of pitch estimation in, e.g., [5, 10,

11]. For notational convenience, we define the set of all amplitude parameters to

be estimated asY = {Yw1 , . . . ,YwP} (3)Ywk
= {ak,1, . . . , ak,Lmax} (4)

where, as described above, most ak,ℓ in Y will be zero. It should be noted that

the sparse pattern of Y will be group-wise, so that if a pitch with fundamental

frequency wp is not present, then neither will any of its harmonics, i.e.,Ywp = 0 .

Furthermore, when a pitch is present, we may expect that not all Lmax harmonics

will be non-zero, but only the actual Lk ones. For candidate pitches at fractions

of the present pitch, there will be a partial fit of its harmonics, which may render

misclassification, which is a cause for errors, which occurs when a present pitch

at wk may be perfectly modeled by a pitch at wk/2 if Lmax ≥ 2Lk, where then

every other harmonic, i.e., ℓ = 2, 4, 6, . . . , 2Lk, are non-zero and the others equal

to zero. To take these attributes into account and to avoid misclassifications, we

propose the iterative approach detailed in the next section.

3 Block-sparse estimation using the total variation pen-

alty

Considering a measured time-frame of the sought signal, we expect it to be cor-

rupted by noise and perhaps other non-sinusoidal structure, i.e., y(t) = x(t)+e(t),
where e(t) is such an additive broadband noise. In order to estimate the parameter

setY, one often strives to minimize the squared residual cost function

g1(Y) =
1

2

N
∑

t=1

∣

∣

∣

∣

∣

∣

y(t)−
P
∑

p=1

Lmax
∑

ℓ=1

ap,ℓe
iwpℓt

∣

∣

∣

∣

∣

∣

2

(5)

where | · | denotes the absolute value. However, this function will not enforce

said sparsity. As requiring exactly sparse solutions leads to combinatorially infeas-

ible optimization problems, we herein adopt a convex modeling approach using
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3. Block-sparse estimation using the total variation penalty

a number of convex cost functions. To discourage spurious harmonics, we intro-

duce a constraint on the ℓ1-norm ofY by

g2(Y) =

P
∑

p=1

Lmax
∑

ℓ=1

|ap,ℓ| (6)

which is a convex approximation of the ℓ0 penalty. Parameter estimation using a

weighted sum of g1 and g2 is widely used in the literature, being referred to as the

lasso [12]. Taking the block-wise sparse behavior described above into account,

we further introduce

g3(Y) =

P
∑

p=1

√

√

√

√

Lmax
∑

ℓ=1

a2
p,ℓ (7)

which also is a convex function. The inner sum corresponds to the ℓ2-norm, and

does not enforce sparsity within each pitch, whereas instead the outer sum, cor-

responding to the ℓ1-norm, enforces sparsity between pitches. Thereby, adding

the g3(Y) constraint will penalize the number of non-zero pitches. However, if

we for some p have 2Lp ≤ Lmax, the above penalties have no way of discriminat-

ing between the correct pitch candidate wp and the spurious sub-octave candidatewp/2. However, as the sub-octave will only contribute to the harmonic signal at

every other frequency in its block, one may reduce the risk of such a misclassific-

ation by further adding the penalty

ğ4(Y) =

PLmax−1
∑

q=1

∣

∣

∣

∣

|aq+1| − |aq|
∣

∣

∣

∣

(8)

where the reparametrization is q = (p − 1)Lmax + ℓ, which would add a cost

to blocks where there are notable magnitude variations between neighboring har-

monics. Regrettably, (8) is not convex, but a simple convex approximation would

be g̃4, detailed as

g̃4(Y) =

PLmax−1
∑

q=1

|aq+1 − aq| (9)
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which would be a good approximation of (8) if all the harmonics had the same

phase. Clearly, this may not be the case, resulting in that the penalty in (9) would

also penalize the correct candidate. An illustration of this is found by consider-

ing the worst-case scenario, when all the adjacent harmonics are completely out

of phase and have the same magnitudes, i.e., ap,ℓ+1 = ap,ℓe
ip with magnitude

|ap,ℓ| = r, for ℓ = 1, . . . ,Lp − 1. Then, the penalty in (9) will yield a cost of

g̃4(Ywp) = 2rLp rather than the desired ğ4(Ywp) = 2r. The cost may also be

compared with that of (6), which is g2(Ywp) = rLp, suggesting that this would

add a relatively large penalty. More interestingly, for the sub-octave candidate, the

cost will be just as large, i.e. if wp′ = wp/2, then g̃4(Ywp′
) = 2rLp provided that

Lmax ≥ 2Lp, thereby offering no possibility of discriminating between the true

pitch and its sub-octave. Obviously, such a worst case scenario is just as unlikely

as having all harmonics same-phased, if assuming that the phases are evenly dis-

tributed on [0, 2p). Instead, the g̃4 penalty of the true pitch will be slightly smaller

than its sub-octave, on average, and together with (7), the scale tips in favour of

the true pitch, as shown in [5]. We may thus conclude that the combination of

g3 and g̃4 provides a block sparse solution where sub-octaves are usually discour-

aged. However, it should be noted that such a solution requires the tuning of two

functions to control the block sparsity. In this work, we propose to simplify the

described algorithm by improving the approximation in (9), by using an adaptive

penalty approach. In order to do so, let fk,ℓ denote the phase of the component

with frequency wk,ℓ and collect these phases in the parameter setF = {Fw1 , . . . ,FwP} (10)Fwk
= {fk,1, . . . ,fk,Lmax} (11)

The penalty function in (9) may then be modified to

g4(Y,F) =

PLmax
∑

q=1

|aq+1e−fq+1 − aqe−fq | (12)

thus penalizing only differences in magnitude. In order to do so, the phases fk,ℓ

need to be estimated as the arguments of the latest available amplitude estimates

ak,ℓ. As a result, (12) yields an improved approximation of (8), avoiding the issues

of (9) described above, and also promotes a block sparse solution. And so, the

block-norm penalty function g3 may be omitted, which simplifies the algorithm

44



3. Block-sparse estimation using the total variation penalty

noticeably. Thus, we form the parameter estimates by solvingŶ = arg minY ∑

j=1,2

ljgj(Y) + l4g4(Y,F) (13)

where l1 = 1, and where li, for i = 2, 4, are user-defined regularization paramet-

ers that weigh the importance of each penalty function and the residual cost. To

form the convex criteria and to facilitate the implementation, consider the signal

expressed in matrix notation as

y =
[

y(1) ... y(N )
]T

(14)

=

P
∑

p=0

Wp ap + e , Wa + e (15)

where
W =

[

W1 . . . WP

]

(16)

Wp =
[

z1 . . . zLmax
]

(17)

zp =
[

eiwp1 . . . eiwpN
]T

(18)

a =
[

aT
1 . . . aT

P

]T
(19)

ap =
[

ap,1 . . . ap,Lmax

]T
(20)

The dictionary matrix W is constructed of P horizontally stacked blocks, or dic-

tionary atoms Wp, where each is a matrix with Lmax columns and N rows. In

order to obtain an acceptable approximation of (8), the problem must be solved

iteratively, where the last solution is used to improve the next. To pursue an even

sparser solution, a re-weighting procedure is simultaneously used for g2, similar

to that in [13]. The solution is thus found at the k-th iteration by solving

â(k)
= arg min

a

∑

j=1,2,4

gj(H
(k)
j a, lj) (21)

where H(k)
1 = W, H(k)

2 = diag
(

1/(‖∗‖ â(k−1)
1 + e)),

H(k)
4 = F diag(arg

(

â(k−1)
)

)−1, and with

g1(H(k)
1 a, 1) =

1

2
||y−Wa||22 (22)
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Algorithm 1 The proposed PEBSI-Lite algorithm

1: initialize k := 0, H(0)
4 = F, and

a(0) = zsave = dsave = 0PLmax×1

2: repeat {adaptive penalty scheme}
3: initialize ℓ := 0, u(2)(0) = a(k),

z(0) = zsave, and d(0) = dsave

4: repeat {ADMM scheme}
5: z(ℓ) =

(

G(k)H G(k)
)−1

G(k)H
(

u(ℓ) + d(ℓ)
)

6: u(1)(ℓ+ 1)

=
y−m(H1z(ℓ+1)−d(1)(ℓ))

1+m
7: u(2)(ℓ+ 1)

= T
(

H2z(ℓ+ 1)− d(2)(ℓ), l2m )
8: u(3)(ℓ+ 1)

= T
(

H(k)
4 z(ℓ+ 1)− d(3)(ℓ), l4m )

9: d(ℓ+ 1)

= d(ℓ)−
(

G(k)z(ℓ+ 1)− u(ℓ+ 1)
)

10: ℓ← ℓ+ 1

11: until convergence

12: store a(k) = u(2)(end), zsave = z(end), and

dsave = d(end)

13: update H(k+1)
4 = Fdiag

(

arg
(

a(k)
))−1

14: k ← k + 1

15: until convergence

g2(H(k)
2 a, l2) = l2

∣

∣

∣

∣

∣

∣
H(k)

2 a
∣

∣

∣

∣

∣

∣

1
(23)

g4(H(k)
4 a, l4) = l4

∣

∣

∣

∣

∣

∣H
(k)
4 a
∣

∣

∣

∣

∣

∣

1
(24)

where diag(·) denotes a diagonal matrix, arg(·) is the element-wise complex ar-

gument, and e ≪ 1. Also, I denotes the identity matrix, and F is a first or-

der difference matrix, having elements F{n, n} = 1, F{n, n + 1} = −1, for

n = 1, . . . ,PLmax − 1, and zeros everywhere else. As intended, the minimiz-

ation in (21) is convex, and may be solved using one of many convex solvers

publicly available, such as, for instance, the interior point methods SeDuMi [14]
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or SDPT3 [9]. These are, however, quite computationally burdensome and will

scale poorly with increased data length and larger grid. Instead, we here propose

an efficient implementation using ADMM. In brief, ADMM is a method where

the original problem is split into two or more subproblems, using a number of

auxiliary variables, which are solved independently in an iterative fashion. The

problem in (21) may be implemented in a similar manner as was done [6], thus

requiring only two tuning parameters, l2 and l4. The proposed method com-

pares to PEBS and PEBS-TV introduced in [5] as improving upon the former,

and requiring less tuning than the latter. We therefore term the proposed method

PEBSI-Lite. An outline of its implementation is given in Algorithm 1 where

z,u, d are the introduced auxiliary variables, m is an inner convergence variable,

and

G(k)
=

[

HT
1 , H(k)T

2 , H(k)T
4

]T
(25)

u =
[

u(1)T , u(2)T , u(3)T
]T

(26)

d =
[

d(1)T , d(2)T , d(3)T
]T

(27)

T
(

x, x) = max(|x| − x, 0)

max(|x| − x, 0) + x ⊙ x (28)

such that the solution is given as â = z(ℓend) at iteration kend.

4 Numerical results

In order to examine the performance of the proposed estimator, we evaluate it

using a simulated dual-pitch signal, measured in white Gaussian noise at different

Signal-to-Noise Ratios (SNR), ranging from −5 dB to 20 dB in steps of 5 dB. At

each level of SNR, 200 Monte Carlo simulations are performed, each simulation

generating a signal with fundamental frequencies [600, 730] Hz. To reflect the

performance in presence of off-grid effects, the fundamental frequencies are ran-

domly chosen at each simulation uniformly ±d/2 from the chosen frequencies,

where d is the grid point spacing. The phases of the harmonics in each pitch

are chosen uniformly on [0, 2p), whereas all have unit magnitude. The signal is

sampled at fs = 48 kHz on a time frame of 10 ms, yielding N = 480 samples per

frame. As a result, the pitches are spaced by just over fs/N , which is the resolution

limit of the periodogram. This is also seen in Figure 1, illustrating the resolution
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Figure 1: The periodogram estimate and the true signal amplitudes for one of the

realizations studied in Figure 2, for SNR = −5 dB

of the periodogram as well as the frequencies of the harmonics, at SNR = −5 dB.

From the figure, it may be concluded that the signal contains more than one har-

monic source, as the observed peaks are not harmonically related. Furthermore,

it is clear that the fundamental frequencies are not separated by the periodogram,

indicating that any pitch estimation algorithm based on the periodogram would

suffer notable difficulties. In order to form our estimates, we begin by using

a coarse dictionary with candidate pitches uniformly distributed on the interval

[280, 1500] Hz, thus also including wp/2 and 2wp for both pitches. The coarse

resolution is d = 10 Hz, i.e., still a super-resolution of 1/10N . After estimation

on this grid, a zooming step is taken where a new grid with spacing d/10 is laid

±2d around each pitch having non-zero power. This zooming approach is taken

for the proposed method, as well as for PEBS and PEBS-TV. Comparisons are also

made with the ANLS, ORTH, and the harmonic Capon estimators, which have
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Figure 2: Percentage of estimated pitches where both fundamental frequencies lie

at most 2 Hz, or d/5 = 1/50N , from the ground truth, plotted as a function of

SNR. Here, the pitches have [5, 6] harmonics, respectively, and Lmax = 10.

been given the oracle model orders (see [15] for more details on these methods).

The simulation and estimation procedure is performed for two cases; one where

the number of harmonics Lk are set to [5, 6] and one where Lk are set to [10, 11].

In the former case, we set Lmax = 10 and in the latter we set Lmax = 20, i.e.

well above the true number of harmonics. Figures 2 and 3 show the percentage

of pitch estimates where both lie within ±2 Hz from the true values for the six

compared methods, for the case of [5, 6] and [10, 11] harmonics, respectively. As

is clear from the figures, the proposed method performs as well, or better, than the

PEBS-TV algorithm, although requiring fewer tuning parameters. In this setting,

PEBS performs poorly, as the generous choices of Lmax allows it to ambiguously

pick the sub-octave, as predicted.

49



Paper A

−5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

P
er

ce
nt

ag
e 

w
ith

in
 

±2
 H

z 
(%

)

 

 

PEBSI−Lite
PEBS−TV
PEBS
ORTH
ANLS
Capon

Figure 3: Percentage of estimated pitches where both fundamental frequencies lie

at most 2 Hz, or d/5 = 1/50N , from the ground truth, plotted as a function of

SNR. Here, the pitches have [10, 11] harmonics, respectively, and Lmax = 20.
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Sparse Localization of
Harmonic Audio Sources

Stefan Ingi Adalbjörnsson, Ted Kronvall, Simon Burgess,
Kalle Åström, and Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this paper, we propose a novel method for estimating the locations of near-

and/or far-field harmonic audio sources impinging on an arbitrary, but calibrated,

sensor array. Using a joint pitch and location estimation formed in two steps, we

first estimate the fundamental frequencies and complex amplitudes under a si-

nusoidal model assumption, whereafter the location of each source is found by

utilizing both the difference in phase and the relative attenuation of the mag-

nitude estimates. As audio recordings often consist of multi-pitch signals exhib-

iting some degree of reverberation, where both the number of pitches and the

source locations are unknown, we propose to use sparse heuristics to avoid the ne-

cessity of detailed a priori assumptions on the spectral and spatial model orders.

The method’s performance is evaluated using both simulated and measured audio

data, with the former showing that the proposed method achieves near-optimal

performance, whereas the latter confirms the method’s feasibility when used with

real recordings.

Key words: Multi-pitch estimation, near-field and far-field localization, TDOA,

block sparsity, convex optimization, ADMM, non-convex sparsity
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1 Introduction

Sound localization has been a topic of interest in a wide range of applications for

centuries, and is well known to be a difficult problem, especially in a reverber-

ating room environment (see, e.g., [1–7], and the references therein). Typically,

a source is located in relation to an array of sensors by exploiting the time delay

between sensors for when they receive its emitted signal. In the literature, this is

referred to as either time of arrival (TOA) estimation, if the time of signal emis-

sion is known, or otherwise time difference of arrival (TDOA) estimation, where

only the relative time delays are used. Common techniques for delay estimation

include different variations on cross-correlation or canonical correlation analysis

(CCA), which then allows the sources to be located in a second step using tri- och

multi-lateration (see, e.g., [8]). Such estimates may also be further improved by

matching the relative received signal gains to a model for signal attenuation. If

the source is far from the sensor array, i.e., in the far-field, its range may not be

determined due to the lack of curvature of the impinging sound pressure wave-

front, which is then approximately planar, making the range estimation problem

ill-posed. The scope is then restricted to determining the direction of arrival

(DOA) of the source relative to the sensor array for the 2-D case, or determining

azimuth and elevation angles for a 3-D scenario. Historically, such methods are

not restricted to sound, but are commonly used, in e.g., military applications,

with electromagnetic signals (see, e.g., [9–11]). Perhaps, partly due to differences

in application for near-field and far-field techniques, these problems are often

treated separately. In this work, and for our purposes with audio signals, the two

problems may indifferently be treated together. A common issue with correlation-

based techniques is that of reverberation. Although often described in a temporal

sense as a filter for each sensor through which the signal is convoluted [12], it

may also be analyzed using a spatial formulation. In principle, reverberation oc-

curs when the original source signal is received together with a number of reflec-

tions of it, which are both time delayed and dislocated in space with respect to

the original. Localization in reverberant environments is still very much an open

topic, although several correlation-based approaches exist which shows some de-

gree of robustness (see, e.g., [2]). By assuming a temporal and spectral parametric

structure on the received signals, localization may be improved by jointly form-

ing estimates of location together with the parameters of such structures. This

is quite common for audio signals such as voiced speech [12], and many forms

of harmonic audio sources, such as stringed, wind, and pitched percussion in-
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struments [13], which typically have lots of structure. At a glance, the spectral

distribution of energy for such signals is typically broadband, but further analysis

shows that it is in fact dominantly multi-narrowband, and may be well described

using the harmonic model, i.e., as a sum of harmonically related sinusoids [14].

Under this assumption, a source’s difference in delay and attenuation when re-

ceived at the different sensors translates into phase shifted and magnitude scaled

versions of the original signal. Exploiting this, joint estimation of the DOA and

the pitch frequency has been addressed, such as in [15–17], wherein the authors

consider the estimation of the DOA of a single harmonic sound source using a

uniform linear array (ULA) of receiver sensor, typically assuming oracle know-

ledge of the number of harmonic signals in the sound source. Here, we extend on

these works, albeit with some generalizations. We are allowing for an unknown

number of near- or far-field harmonic sources, each having an unknown num-

ber of harmonics, to impinge on an arbitrary, but calibrated, sensor array, in the

presence of some degree of reverberation. This feat is attempted through the use

of a sparse recovery framework, which avoids making explicit assumptions on the

number of harmonic signals, i.e., the number of pitches, as well as for the number

of source locations for each pitch. Instead, only an implicit constraint which con-

trols a lower threshold for acceptable source power is needed, which may typically

be set using some simple heuristics. Sparse recovery frameworks have in earlier

works been found to allow high quality estimates for sinusoidal signals; typical

examples include [18–21], wherein the sparse signal reconstruction from noisy

observations were accomplished with the by now well-known sparse least squares

(LS) technique. More recently, the technique has been extended to the case of har-

monically related audio signals [22, 23]. Using the techniques introduced there,

we propose a two-step procedure, first creating a dictionary of candidate pitches

to model the harmonic components of the sources, without taking the locations

of the sources into account, and then, in a second step, a dictionary of possible

locations, including simultaneously near- and far-field locations, to model the ob-

served phase differences, as well as the relative attenuations, of the magnitudes of

each sinusoidal component. In terms of computational complexity, the estimation

problem in each of the two steps is convex, which thus guarantees convergence,

and may be solved using a second order cone (SOC) program. As this is typically

quite costly, we introduce a computationally efficient implementation based on

the alternating direction method of multipliers (ADMM), which makes the pro-

posed method very managable in an off-line estimation procedure. The remainder
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of this paper is organized as follows: in the next section, we present the assumed

signal model and discuss the imposed restrictions on the sensor array. Then, in

section 3, we present the proposed pitch and localization estimator. Section 4

accounts for the ADMM-based implementation, followed in section 5 with an

evaluation of the presented technique using both simulated and measured audio

signals. Finally, we conclude on our work in section 6.

2 Spatial pitch signal model

In this work, we restrict our attention to the localization of complex-valued1

harmonically related audio signals, consisting of K̃ distinct sources, xk(t), for

k = 1, . . . , K̃ . Each source is thus assume to consist of Lk harmonically related

sinusoids, such that it may be detailed as (see also [14])

xk(t) =

Lk
∑

ℓ=1

ak,ℓe
jwkℓt (1)

where wk = 2pfk/fs is the normalized fundamental frequency, with sampling

frequency fs, and with ak,l denoting the complex amplitude of the ℓ:th harmonic.

2.1 Multi-sensor characteristics in near-field environments

When a source signal impinges on a sensor array, it is both delayed and attenuated,

such that at sensor m it may be expressed as

xk,m(t) ,
dk,1

dk,m
xk(t − tk,m) (2)

where dk,m denotes the sensor-source distance, i.e.,

dk,m = ‖sk − rm‖2 (3)

with sk and rm denoting the location coordinates of the k:th source and the m:th

sensor, respectively, and ‖·‖2 the Euclidean norm. Thus, (2) accounts for the

approximative attenuation of the signal when propogating in space, according to

the free-space path loss model. Furthermore, tk,m denotes the propagation delay,

1Clearly, the measured audio sources will be real-valued, but to simplify notation and in order
to reduce complexity, we will here initially compute the discrete-time analytic signal versions of the
measured signals, whereafter all processing is done on these signals (see also [14, 24]).
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Figure 1: Illustration of a two sensor scenario, with spherical wavefronts propagat-

ing from the source. The dashed line shows the scaled TDOA of the second sensor

with respect to the first sensor, i.e., t2.

i.e., the TDOA, relative to a selected reference sensor, say m = 1, so thattk,m = c−1
(

dk,m − dk,1

)

(4)

for m = 1, . . . ,M , where tk,1 , 0, with c denoting the propagation velocity. An

illustration of this is shown in Figure 1, for the case of a single source and two

sensors. When recording audio, we often obtain multi-pitch signals of the type

x(t) =
K̃
∑

k=1

xk(t) (5)

which may be either a single source in the physical environment emitting mul-

tiple pitch signals, such as an instrument playing a chord, or multiple sources in

the physical environment each emitting a single pitch, such as multiple speakers
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talking at the same time from different locations. We may also receive a com-

bination of these two types. Without loss of generality, we will hereafter term

a source as a spatio-temporal object which has a unique combination of funda-

mental frequency and location. Two sources may thus have the same fundamental

frequency or the same location in space, although not both. This has rather large

implications when considering reverberation, where we, apart from the original

source, also receive a large number of reflections of it, each reflection having highly

similar spectral content, albeit differently attenuated and delayed, i.e., having dif-

ferent magnitudes and phases. All reflections will thus be modeled as separate

sources, which implies that under such a model assumption K̃ generally becomes

very large. If not seen as separate sources, however, the localization of the original

source will become biased by the interference caused from its reflections. To see

this, consider for example a sinusoid with frequency w, magnitude a1, and phasef1, measured in superimposition with its S − 1 reverberating reflections, having

magnitudes a2, . . . , aS , and phases f2, . . . ,fS . For the mth sensor, the measured

(noise-free) signal becomes

xm(t) =
S
∑

s=1

ase
−j(wt+fs) , be−j(w0t+y) (6)

i.e., a single sinusoid with magnitude b ∈ R+ and phase y ∈ [−p, p), generally

being different from the original source. Thus, if trying to estimate the TDOA

using phase estimates without taking all reflections into account, for instance by

using a correlation-based measure, then only the biased phase, y, would be ob-

tained. However, separation of all reflections for all fundamental frequencies is

a quite difficult problem, and in this work, we propose to split the estimation

procedure into two subproblems. In the first, we find the present fundamental

frequencies, and then for each of these we separate the original source(s) from its

reflections. To that end, consider K ≤ K̃ as the number of unique fundamentals.

The noisy signal measured at sensor m may thus be expressed as

ym(t) =
K
∑

k=1

Lk
∑

ℓ=1

bk,ℓ,mejwkℓt + em(t) (7)

where the TDOA and attenuation of all Sk reflections of the k:th pitch, for over-

tone ℓ and sensor m, is gathered in the complex amplitude of the signal, bk,ℓ,m
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using (2) in the same manner as in (6), i.e.,

bk,ℓ,m =

Sk
∑

s=1

ak,ℓ,s
dk,1,s

dk,m,s
e−jwkℓtk,m,s (8)

where ak,ℓ,s, dk,m,s, and tk,m,s denote the amplitude, the distance to the mth sensor,

and the TDOA for the sth reflection, respectively. Thus, as K̃ =
∑K

k=1 Sk, the

estimation procedure first finds the K active fundamentals, whereafter for each

one, the original source is separated from its reflections. This approach offers great

simplification in contrast to decoupling all K̃ sources simultaneously. To simplify

presentation, and without loss of generality, we will here restrict our attention to

the case when all sources and signals are restricted to a 2-D plane, i.e., s ∈ R2 and

r ∈ R2.

2.2 Avoiding spatial aliasing in arbitrary array geometries

In the literature, keeping below half wavelength sensor spacing is generally pre-

ferred to avoid spatial aliasing, although some methods of circumventing this have

been published, see e.g. [25]. In this work, we assume a calibrated, although ar-

bitrary, sensor array, without requiring it to satisfy the pairwise half wavelength

spacing. We will therefore briefly examine the spatial aliasing effect in the near-

field environment, which is the phase difference ambiguity between sensors, res-

ulting when the solution may map to several feasible source locations. To that

end, consider a reverberation-free, delayed, and attenuated complex amplitude

from a single sinusoidal signal, b. Naturally,

bm =
d1

dm
ae−jwtm =

d1

dm
ae−j(wtm+k2p) (9)

and thus the mapping between phase and TDOA is ambiguous for any k ∈ Z.

Considering a given TDOA, and by combining (3) and (4), one will note that

any source s located on a half-space of an hyperbolic curve, i.e.,tmc = ‖s− rm‖2 − ‖s− r1‖2 (10)

is a feasible location. To obtain a unique solution, we add additional sensors, and

we may thus form new sensor pairs yielding new hyperbolas, where the feasible

solution set will be restricted by the intersection of these curves. Ambiguity may
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Figure 2: TDOA hyperbolas representing all feasible locations of a single source

received by three sensors. As ||r2 − r1|| > l/2, spatial aliasing yields another

hyperbola of feasible locations. And yet, in this case, there exists only one inter-

section between the hyperbolas and so the estimate may still be obtained unam-

biguously.

arise when, for each sensor pair, there exist another TDOA (and thus another k)

which fulfills (9), giving rise to an additional hyperbolic curve of feasible points,

also intersecting the hyperbolas for other sensor pairs. To identify such ambiguous

cases, we first show that a feasible TDOA is restricted to an interval. Using the

triangle inequality,

|tmc| =
∣

∣

∣
‖s− rm‖2 − ‖s− r1‖2

∣

∣

∣
≤ ‖rm − r1‖2 (11)

it is directly implied that the TDOA must satisfytmc ∈
[

−‖rm − r1‖2 , ‖rm − r1‖2

]

(12)
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i.e., is restricted by the sensor-sensor distance. And so, using (9), an estimate of

arg b ∈ [−p, p] will map to any TDOAtmc =
l arg b

2p + lk ∈
[

−‖rm − r1‖2 , ‖rm − r1‖2

]

(13)

where k ∈ Z, and l = 2pc/w is the wavelength of the signal. Therefore, if

the sensors are spaced by less than l/2, the feasible tm is unique, and there is

no ambiguity in the resulting estimates. If instead some sensors are spaced further

apart than l/2, then, for all such sensor pairs, there will be more than one feasible

TDOA, thereby yielding as many hyperbolas indicating feasible source locations,

with a minimum distance of l/2 apart. Our main argument to relax the halv

wavelength spacing limit is that, when using sufficiently many sensors, the feasible

source locations are restricted to the intersection of many hyperbolas, which will,

with a high probability, yield a unique solution. Consider an example illustrated

in Figure 2, where a single source emits a 1000 Hz signal, which is recorded

by three sensors. As shown in the figure, between sensors one and three, which

are less than l/2 apart, the source gives a single TDOA and a corresponding

hyperbola, where the source may be located. Between sensors one and two, which

are spaced by more than l/2 apart, a second TDOA is feasible, l/c apart from

the true one, also fulfilling (13). However, as shown in the figure, the combined

hyperbolas coincide in only a single feasible location, thus still allowing for an

unambiguous estimate of the source location. Furthermore, for pitch signals, each

overtone will yield a separate set of hyperbolas, which all must intersect to the

same location, which further helps to avoid ambiguity. Modeling the attenuation

between sensors also helps to avoid ambiguity. Examining the magnitude of the

the complex amplitude in (9), we find that

|bm| =
d1

dm
|a| (14)

for each pair, consisting of the first and the m:th microphone, which limits s to lie

on a circle. Using the same arguments as above, a feasible source location in terms

of attenuation is thus the intersection of circles for all microphone pairs, and

will further contribute to avoid spatial aliasing. Even if, despite of intersecting

the feasible solutions for all harmonics in terms of both delay and attenuation,

ambiguities still remain, then as more sensors are added to the array the set of

possible locations quickly becomes small, and a unique solution generally exists,
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even if not guaranteed. We thus deem that the imposed restriction on the array’s

geometry is mild.

3 Joint estimation of pitch and location

We proceed to detail the proposed two-step procedure to form reliable estimates

of both the pitches and locations of the sources impinging on the array, without

assuming detailed model knowledge of either the number of sources, K , the num-

ber of overtones for each source, Lk, the number of reflections experienced due to

a possibly reverberant environment, Sk, or requiring knowledge about if sources

are far- or near-field. In the first step, the magnitudes, phases, fundamental fre-

quencies, and model orders of the present pitches are estimated, whereas, in the

second step, the phase estimates are used to find the locations of these sources.

Let F =

{

{

bk,ℓ,m

}

ℓ=1,...,Lk
m=1,...,M

,wk,Lk

}

k=1,...,K

(15)

denote the set of unknown parameters to be determined in the first step. Min-

imizing the squared model residual in (7), an estimate of F may thus be formed

as F̂ = arg minF N
∑

t=1

M
∑

m=1

∣

∣

∣

∣

∣

ym(t)−
K
∑

k=1

Lk
∑

ℓ=1

bk,ℓ,mejwkℓt

∣

∣

∣

∣

∣

2

(16)

Clearly, given the dimensionality of the problem, and the required model order

estimation steps in order to determine K and Lk, this is a non-trivial problem,

and needs to be modified to allow for an efficient solution, as is detailed below.

Moving over to the second step, where the found magnitude and phase estimates,

b̂k,l,m, are exploited to form estimates of the source locations, letYk =

{

{

ak,ℓ,s

}

ℓ=1,...,Lk
, ss

}

s=1,...,Sk

(17)

be the amplitudes and coordinates for a present fundamental frequency k. The

locations may be determined by minimizing the squared model residual in (8),

i.e., Ŷk = arg minYk

L̂k
∑

ℓ=1

M
∑

m=1

∣

∣

∣

∣

∣

b̂k,ℓ,m −
Sk
∑

s=1

ak,ℓ,sd
−1
k,m,se

−jwkℓtk,m,s

∣

∣

∣

∣

∣

2

(18)
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where tk,m,s and dk,m,s are functions of the location ss, as defined in (3) and (4). As

before, this minimization is also non-trivial, requiring an estimate of Sk, and also

needs to be modified to allow for a reasonably efficient solution. In the following,

we will elaborate on the proposed modifications of the above minimizations. In

order to do so, we first extend the sparse pitch estimation algorithm presented in

[22, 23] to allow for multiple measurement vectors. In the second minimization,

we then introduce a similar sparsity pattern to solve the localization problem. We

begin by examining the extended pitch estimation algorithm.

3.1 Step 1: Sparse pitch estimation

Define the measurement matrix

Y =
[

y(1) . . . y(N )
]T

(19)

where

y(t) =
[

y0(t) . . . yM−1(t)
]T

(20)

denotes a sensor snapshot for each time point t = 1, . . . ,N , with (·)T being the

transpose. The measurements may then be concisely expressed as

Y =

K
∑

k=1

WkBk + E (21)

where E denotes the combined noise term constructed similar to Y, and

Wk =

[

w1
k . . . w

Lk
k

]

(22)

wk =
[

ejwk . . . ejwkN
]T

(23)

Bk =
[

bk,1 . . . bk,Lk

]T
(24)

bk,ℓ =
[

bk,ℓ,1 . . . bk,ℓ,M

]T
(25)

Reminiscent to the sparse estimation framework proposed in [18], we form an

extended dictionary of feasible fundamental frequencies, w1, . . . ,wP , where P ≫
K , being chosen so large that K of these will reasonably well coincide with the

true pitches in the signal. In the same manner, the number of harmonics of each
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pitch is extended to an arbitrary upper level, say Lmax, for all dictionary elements.

The signal model may thus be expressed as

Y =

P
∑

p=1

WpBk + E = WB+ E (26)

where the block dictionary matrices are formed by stacking the matrices such that

W =
[

W1 . . . WP

]

(27)

B =
[

BT
1 . . . BT

P

]T
(28)

Note from (11) that if the element (ℓ, r) of the matrix Bk is non-zero, the fre-

quency ℓwk is present in the signal at sensor r. Furthermore, since we assume

all sensors to receive essentially the same signal, although time-delayed, one may

assume that for a harmonic signal, the rows off a non-zero Bk will either be non-

zero, implying that the harmonic ℓ is present in the pitch, or zero, if the harmonic

is missing. An appropriate criterion, that promotes a combination of model to

data fit and the sparsity pattern just described, may thus be formed as

minimize
B

{

1

2
‖Y−WB‖2

F + l P
∑

p=1

Lp
∑

ℓ=1

∥

∥bp,ℓ

∥

∥

2

+

P
∑

p=1

gp

∥

∥Bp

∥

∥

F

}

(29)

where two different kinds of group sparsities are imposed, and with ‖·‖F denoting

the Frobenius norm. This can be seen to be a generalization of the sparse group

lasso to the multiple measurement case (see also [23, 26]). Here, the double sum

of 2-norms in the second entry of the minimization should enforce sparsity in the

solution in the rows of B, and ideally only have as many non-zero rows as there

are sinusoids in the signal. The third entry makes the solution (matrix) block

sparse over the candidate pitches, penalizing the number of pitches with non-zero

magnitude in the signal, ideally making them as many as there are pitches in the

signal, i.e., K . Given an optimal point, B̂, the number of pitches is thus estim-

ated as the number of non-zero matrices B̂k, and, for each pitch, the number of

harmonics, Lk, is estimated as the number of non-zero rows. The user parameters
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3. Joint estimation of pitch and locationl,gp ∈ R+ weighs the fit of the solution to its vector and matrix sparsity, respect-

ively. It is well known (see, e.g., [27]) that the amplitudes in the sparse estimate

will be increasingly biased towards zero as sparse regularizers are increased. As

we here intend to use both the estimated phases and the magnitudes, we propose

to refine the amplitude estimates using a reweighting scheme similar to the one

presented in [28]. This is accomplished by iteratively solving (29), such that at

iteration j + 1, one updatesg(j+1)
p =

g(0)
p

∣

∣

∣

∣

∣

∣B̂
(j)
p

∣

∣

∣

∣

∣

∣

F
+ e (30)

where B̂
(j)
p is block p of the optimal point for iteration j, and all g(0)

p are set to

be equal in the first iteration. As a result, the block matrices, B̂
(j)
p , which have

a small Frobenius norm at iteration j will be penalized harder in the next step,

whereas the ones that have a larger Frobenius norm will be penalized less, and as

a result reducing the bias. The resulting algorithm can be seen as a sequence of

iterative convex programs to approximate the concave log(
∑P

p=1 g(0)
p

∥

∥Bp

∥

∥

F
+ e)

penalty function [29], where e is chosen as a small number to avoid numerical

difficulties. The introduction of the reweighting yields sparser estimates due to

the introduction of the log penalty [28, 30], and the resulting technique may be

viewed as an alternative to using an information criterion (as was done in [23], to

avoid spurious peaks caused by the signal model and data miss-match).

It is worth noting that as we are here focusing on localization, we have selected

to use a somewhat simplistic audio model that ignores several important features

in harmonic audio signals, such as issues of inharmonicities, pitch halvings and

doublings, and of the commonly occurring forms of amplitude modulation ex-

hibited by most audio sources (see also [14]). Clearly, the used model could be

refined reminiscent to models such as the one used in [23,31], introducing a total

variation penalty to each column of B, and/or using an uncertainty volume to

allow for inharmonicity. However, for localization purposes, these issues are of

less concern, as halvings/doublings and/or amplitude modulations will not affect

the below localization procedure more than marginally. Inharmonicity is more

pressing, but we have in our numerical studies found that given the size of the

calibration errors, the inharmonicity is not affecting the solution significantly,

and in the interest of reducing the complexity, we have here opted to exclude this

aspect from the estimator.
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As for the selection of the tuning parameters, one may use, for example, cross

validation techniques, although it may be noted that, in high SNR cases, one can

often get good results by simply inspecting the periodogram and by then setting

the tuning parameters appropriately (see also [23] for a further discussion on this

issue). Furthermore, we note that in the case of different noise variances at each

sensor in the array, the Frobenius norm in the first entry of the minimization

criterion may be replaced with a weighed Frobenius norm. Finally, we note that

non-Gaussian noise distributions can also be used as long as the negative log-

likelihood is convex.

3.2 Step 2: Sparse localization

According to the signal model (7), B̂ will inherently contain the TDOA and

attenuation for all reflections of any fundamental frequency present in the signal,

which enables a range of post-processing steps to, for instance, estimate position,

track, and/or calibrate the sensors. Here, we limit our attention to estimating the

source positions. Let B̂ denote the solution obtained from minimizing (29), and

consider a scenario where the sources are well separated in their pitch frequencies,

and, initially, suffering from negligible reverberation, implying that S1 = . . . =
SP = 1. Then, the minimization in (18) may be seen as a generalization of the

time-varying amplitude modulation problem examined in [32] (see also [11]) to

the case of several realizations of the same signal, sampled at irregular time points,

and with a different initial phase for each realization. Reminiscent to the solution

presented in [11, p. 186], one may thus find the source locations, for far-field

signals, for every pitch p with non-zero amplitudes in Bp, as

ŝp = arg max
sp

Lp
∑

ℓ=1

∣

∣

∣

∣

∣

M
∑

m=1

b̂2
p,ℓ,me−j2wpℓtp,ℓ,m

∣

∣

∣

∣

∣

2

(31)

where the TDOAs tp,ℓ,m are found as a function of the source location sp, using

(4). This minimization may be well approximated by 1-D searches over range

and DOA (or over range, azimuth, and elevation in the 3-D case). Considering

also reverberating room environments, wherein each of the pitches may appear as

originating from many different locations, the minimization needs to be extended

to allow for varying number of reflections, Sk. To allow for such reflections, we

proceed to model every non-zero amplitude block from the pitch estimation step
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as

Bk =

Sk
∑

s=1

diag
(

ak,s

)

Uk,s + Ek (32)

with diag(x) denoting a diagonal matrix with the vector x along its diagonal, Ek

the combined noise term constructed in the same manner as Bk, and

Uk,s =

[

u1
k,s . . . u

L̂k
k,s

]

(33)

uk,s =

[

e
jwktk,1,s

1 . . . e
jwktk,M,s

dk,M,s/dk,m,s

]T
(34)

ak,s =

[

ak,1,s . . . ak,L̂k,s

]T
(35)

where tk,m,s and dk,m,s are related to the source location as given by (3) and (4),

respecively. Analogously to the above procedure for the pitch estimation, we then

extend the dictionary of feasible source locations for the kth source, s1, . . . , sSk
,

onto a grid of Q ≫ Sk candidate locations sq, for q = 1, . . . ,Q, with Q chosen

large enough to allow some of the introduced dictionary elements to coincide, or

closely so, with the true source locations in the signal. Clearly, this may force Q
to be very large. Striving to keep the size of the dictionary as small as possible, we

consider grid points in polar coordinates, with equal resolution for all considered

DOAs, and linearly spaced grid points over the distance in each DOA. Thus, we

get a denser grid in the close proximity to the sensor array, where the resolution

capacity is highest, and then a less and less dense grid for sources further away

from the array. Finally, to also allow for far-field sources, one may include one

dictionary element for each direction at an infinite range, for which, naturally,

the attenuation effect may be disregarded, i.e., dk,m,s , 1 for all sensors. Thus,

we may estimate the source locations for the k:th pitch using a sparse modelling

framework as

minimize
ak,1,...,ak,Q

{

1

2

∥

∥

∥

∥

∥

∥

Bk −
Q
∑

q=1

diag ak,qUk,q

∥

∥

∥

∥

∥

∥

2

F

+

Q
∑

q=1

kq

∥

∥ak,q

∥

∥

2
+ r Q

∑

q=1

∥

∥ak,q

∥

∥

1

}

(36)
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where, again, two types of sparsity is imposed on the solution. The 2-norm pen-

alty term imposes sparsity to the blocks ak,q, i.e., penalizing the number of source

locations present in the signal. Furthermore, the 1-norm term penalizes the num-

ber of harmonics, to allow for cases when some sources may have missing har-

monics. Thus, here the number of sources is estimated as the number of nonzero

blocks in an optimal point and any zero elements within a block corresponding

to a missing harmonic. Here, kq, r ∈ R+ are tuning parameters, controlling the

amount of sparsity and the weight between sparsity in pitches and in harmonics,

respectively, whereas the factor r is only used if two sources share the same fun-

damental frequency but differ in which harmonics are present. Finally, kq may

be updated in the same manner as described in section III.A. As shown in the

following section, the optimization problem in (29) and (36) are equivalent, so

these tuning parameters may be set in a similar fashion.

4 Efficient implementation

It is worth noting that both the minimization in (29) and (36) are convex, as the

tuning parameters are non-negative and all the functions are convex. Their solu-

tions may thus be found using standard convex minimization techniques, e.g.,

using CVX [33,34], SeDuMi [35], or SDPT3 [36]. Regrettably, such solvers will

scale poorly both with increasing data length, the use of a finer grid for the fun-

damental frequencies, and with the number of sensors. Furthermore, such imple-

mentations are unable to utilize the full structure of the minimization, and may, as

a result, be computationally cumbersome in practical situations. To alleviate this,

we proceed to formulate a novel ADMM re-formulation of the minimizations,

offering efficient and fast implementations of both minimizations. For complete-

ness and to introduce our notation, we briefly review the main steps involved in

an ADMM (we refer the reader to [37, 38] for further details on the ADMM).

Considering the convex optimization problem

minimize
z

f (z) + g(z) (37)

where z ∈ Rp is the optimization variable, with f (·) and g(·) being convex func-

tions. Introducing the auxiliary variable, u (37) may be equivalently be expressed

as

minimize
z,u

f (z) + g(u) subject to z− u = 0 (38)
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4. Efficient implementation

Algorithm 1 The ADMM algorithm

1: Initiate z = z0,u = u0, and k = 0

2: repeat

3: zk+1 = argmin
z

f (z) + m
2 ||z− uk − dk||22

4: uk+1 = argmin
u

g(u) + m
2 ||zk+1 − u− dk||22

5: dk+1 = dk − (zk+1 − uk+1)

6: k ← k + 1

7: until convergence

since at any feasible point z = u. Under the assumption that there is no dual-

ity gap, which is true for the here considered minimizations, one may solve the

optimization problem via the dual function defined as the infimum of the aug-

mented Lagrangian, with respect to x and z, i.e., (see also [37])

Lm(z,u, d) = f (z) + g(u) + dT (z− u) +
m
2
||z− u||22

The ADMM does this by iteratively maximizing the dual function such that at

step k + 1, one minimizes the Lagrangian for one of the variables, while holding

the other fixed at its most recent value, i.e.,

zk+1 = arg min
z

Lm (z,uk, dk) (39)

uk+1 = arg min
u

Lm (zk+1,uk, dk

)

(40)

Finally, one updates the dual variable by taking a gradient ascent step to maximize

the dual function, resulting in

d̃k+1 = d̃k − m(zk+1 − d̃k+1

)

(41)

where m is the dual variable step size. The general ADMM steps are summarized

in Algorithm 1, using the scaled version of the dual variable dk = d̃/m, which

is more convenient for implementation. Thus, in cases when steps 3 and 4 of

Algorithm 1 may be carried out more efficiently than for the original problem,

the ADMM may be useful to form an efficient implementation of the considered

minimization.
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It may be noted that the minimizations in (29) and (36) are rather similar,

both containing an affine function in a Frobenius norm, as well as a sum of the

norm of different subset of the variable. In fact, by using the vec operation,

i.e., vectorization, both minimizations may be shown to be equivalent with the

problem

minimize
z

{

1

2
‖y− Az‖2

2 + g P
∑

k=1

‖zk‖2

+ d P
∑

k=1

Gk
∑

g=1

∥

∥zk,g

∥

∥

2

}

(42)

where the complex variable z is given as

z =
[

zT
1 . . . zT

P

]T
(43)

zk =

[

zT
k,1 . . . zT

k,Gk

]T
(44)

where each zk and zk,g denote complex vectors with Gk and O elements, respect-

ively. For the minimization in (29), this implies that

y = vec(Y) (45)

z = vec(B) (46)

A = I⊗W (47)

where ⊗ and I denote the Kronecker product and an M-dimensional identity

matrix, respectively, with Gk being equal to the number of harmonics, Lk, and O
equals the number of sensors, M . Similarly, for the minimization in (36),

y = vec(Bp) (48)

z = ak (49)

A = Ṽk (50)

where

ak =

[

aT
k,1 . . . aT

k,Q

]T
(51)

Ṽk =
[

Ṽk,1 . . . Ṽk,Q

]

(52)
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and Vk,q = Uk,q ⊗ I, with Ṽk,q being formed by removing all columns from Vk,q

that correspond to zeros in the vector vec(diag(ak,q)), and Gk being equal to Lk

and O equals 1. Thus, we can formulate an ADMM solution for (42) that solves

both problem (29) and (36). To that end, defining

f (z) =
1

2
‖y− Az‖2

2 (53)

g(u) = g P
∑

k=1

‖uk‖2 + d P
∑

k=1

Qk
∑

g=1

∥

∥uk,g

∥

∥

2
(54)

yields a quadratic problem in step 3 in Algorithm 1, with a closed form solution

given by

zk+1 =
(mI + AH A

)−1
(m (uk − dk) + AH y

)

with (·)H denoting the Hermitian transpose, whereas in step 4, by solving the

sub-differential equations (see [23] for further details), one obtains

uk+1 = S
o
(

S
i
(

zk − dk, k/m) , d/m) (55)

where the shrinkage operators So and S
i are defined using the vector shrinkage

operator S, defined for any vector v and positive scalar x such that

S(v, x) = v
(

1− x/||v||2)+ (56)

where (·)+ is the positive part of the scalar, and

S(z, x)o
=
[

S
T (z1, x) . . . S

T (zP , x)
]T

(57)

S(z, x)i
=
[

S
T (z1,1, x) . . . S

T (z1,G1, x) . . .

S
T (zP,1, x) . . . S

T (zP,GP , x)
]T

(58)

The resulting algorithm is here termed the Harmonic Audio LOcalization using

block sparsity (HALO) estimator.

5 Numerical comparisons

We proceed to examine the performance of the proposed estimator using both

synthetic and measured audio signals, initially examining the performance using
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Figure 3: The PWL and RMSE for a single-pitch signal as compared with the

optimal performance of an estimator reaching the CRB.

simulated audio signals. In the first examples, we limit ourselves to the case of

letting a far-field signal impinge on a ULA. Figure 3 shows the percentage within

limits (PWL), defined as the ratio of pitch estimates within a limit of ±0.1 Hz

from the true pitch, and the root mean square error (RMSE) of the DOA, defined

as

RMSEj =

√

√

√

√

1

nK

K
∑

k=1

n
∑

i=1

(ĵk,i − jk

)2
(59)

where n denotes the number of Monte Carlo (MC) simulation estimates, and

K the number of pitches in the signal, for the resulting estimates. For compar-

ison, we use the Cramér-Rao lower bound (CRB), the NLS estimator, and the

Sub approach (see [15] for further details on these methods and for the corres-

ponding CRB). These results have been obtained using n = 250 MC simulations

of a single pitch signal, with w1 = 220 Hz and L1 = 7 harmonics, impinging

from j1 = −30◦, where both the NLS and the Sub estimators have been al-
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Figure 4: The PWL and RMSE for a multi-pitch signal with two pitches, as

compared to the corresponding CRB.

lowed perfect a priori knowledge of both the number of sources and their number

of harmonics, whereas the proposed method is allowed no such knowledge. As

is clear from the figures, the HALO method offers a preferable performance as

compared to the Sub estimator, and only marginally worse than the NLS estim-

ator, in spite of both the latter being allowed perfect model orders information.

Here, the number of sensors in the array was M = 5 and we used 20 ms of data

sampled at fs = 8820 Hz, i.e., N = 176 samples. Furthermore, c = 343 m/s and

d = c/fs ≈ 0.0389 m. We proceed to consider the case of multi-pitch signals

impinging on the array. Measuring as in the single-pitch case, we now form a

multi-pitch signal with two pitches and fundamental frequencies {150, 220} Hz

containing {6, 7} harmonics, coming from j1 = −30◦. Figure 3 shows the

RMSE and PWL estimates, as obtained using 250 MC simulations, clearly show-

ing that the HALO estimator is able to reach close to optimal performance also in

this case. Here, no comparison is made with the NLS and Sub estimators of [15]

as these are restricted to the single-pitch case. Throughout these evaluations, we

have used Lmax = 15. Also, as the resulting estimates were found to be appropri-
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Figure 5: The two-source and eight-sensor layout in 2-D. The position of each

sensor, shown in the plot with carthesian coordinates as rm = [x, y], was obtained

in an a priori calibration step.

ately sparse when using only the convex penalties, and no reweighing steps were

used. We next proceed to examine real measured signals. The measurements were

made in an anechoic chamber, approximately 4 × 4 × 3 meters in size, with the

sensors and speakers located as shown in Figures 5 and 7. Two speakers were

placed at locations (in polar coordinates) s1 = [j1,R1] = [115.03◦, 1.15 m] and

s2 = [j2,R2] = [−74.53◦, 1.33 m], with respect to the central microphone,

respectively. The positions of the sensors were determined by placing them to-

gether with the sources, using the acoustic method detailed in [39]. This is done

by calibrating the sensors with a single moving source, using a correlation-based

methodology. The positions were also confirmed via a computer vision approach

were the positions were found by taking several photos and reconstructing the

environment. The maximum deviation in position between these methods was
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Figure 6: Time-domain data (lined) and estimated signal reconstruction (dotted)

for the 6:th sensor (top two) and 8:th sensor (bottom two), for two different

signals. The left two subfigures display a voice signal saying the phonetic ’a’ in

’why’, while the right two subfigures display a violin signal.

less than 1 cm. As the spatial impulse responses of the microphones were deemed

to be reasonably omni-directional, as well as roughly the same for all the micro-

phones, no further calibration of the sensor gains were performed. The positions

were then projected onto a 2-D plane using principal component analysis. In or-

der to illustrate the HALO estimator’s ability to handle an environment with the

same pitch signal originating from different sources, as a much simplified proof

of concept for a reverberating room environment, we examine a case with two

sources playing the same signal content. Both sources plays a (TIMIT) recording

of a female voice saying ’Why were you away a year, Roy?’, timing the source’s

playback so that the recording at each microphone sounds slightly echoic. The
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Figure 7: A photo showing the experimental setup in the anechoic chamber, where

eight sensors are used to record two coherent sources.

eight microphones all record at a sample rate of fs = 96 kHz. The data is then di-

vided into time frames of 10 ms, i.e., N = 960 samples, which allow each frame

to be well modelled as being stationary. Examining a part of the speech that is

voiced, arbitrarily selected as the frame starting 380 ms into the recording, about

when the voice is saying the voiced phonetic sound ’a’ in ’why’, Figure 4 show the

signal measured at the 6th and 8th microphone, respectively, together with the

reconstructed signal obtained from the pitch estimation step in HALO, obtained

as

Ŷ = WB̂ (60)

using the resulting model orders and estimates. The estimator indicate that the

signal contains a single pitch at ŵ/2p = 193.5 Hz, having L̂ = 12 overtones. As

is clear from the figures, the estimator is well able to model the measured signal

in spite of the presence of the reverberation. Comparing the figures, one may also

note the time shift between the sensors, due to the additional time-delay for the
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Figure 8: The experimental setup in the anechoic chamber, showing the sensor

and loudspeaker locations, the considered dictionary grid, as well as the resulting

estimated as obtained by the proposed algorithm.

wavefront traveling between them, corresponding to a linear combination of the

two sources, each with their particular TDOA and attenuation. It should also be

noted that the signals are not simply time-shifted versions of each other due to the

room environment and the attenuation of the signal when propagating in space

(which would thus create problems for an estimator based on the cross-correlation

between the sensors). The same situation is illustrated in left two subfigures in

Figure 4, showing the results when the signal source is replaced with that of a

part of a (SQAM) violin signal. Again, the estimator can be seen to be able to

well model the impinging signals, which is estimated as being a single pitch with

the fundamental frequency ŵ/2p = 198.0 Hz, containing L̂ = 14 harmonics.

In order to examine the location estimation, we construct a 2-D grid of feasible

locations, chosen such that the space is discretized into 1008 points, consisting
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of 72 directions between [−180◦, 180◦), spaced every 5◦, where each direction

allows for ranges R ∈ [0.7, 2] m, spaced 10 cm apart. The resulting grid is shown

in Figure 8, which is roughly covering the entirety of the anechoic chamber. To

also allow for far-field sources, a range of R =∞ is also added to the grid for each

direction, which we have chosen to illustrate by the outer circle in Figure 8. For

these far-field grid points, the time-delays are instead computed as (see also [9])tm =

min
z
‖rm − ℓ(z)‖2

c
(61)

for a location z on the line ℓ(·), which is perpendicular to the DOA and goes

through r1. The figure also shows the locations for the sensors and the sound

sources, as well as the estimated locations, as obtained by the second step of the

HALO estimator (the estimated locations were identical for both audio record-

ings). The errors in position were 5 cm in range for each source, where a bias,

overestimating the range, accounts for almost all of the error. On the other hand,

as shown in the figure, the angles of the sources j were accurately estimated. The

overestimation of the range may to a large extent likely be explained by poor scal-

ing when calibrating the array. One may note that, for localization in 3-D, the size

of the dictionary will increase significantly as compared to the 2-D case used for

numerical illustration in this paper. For the case above, if also the elevation angle

is to be considered, having the same resolution as for the azimuth, this would

yield a dictionary of 72 576 atoms. Although much larger, a sparse modeling

systems of this size is by no mean impractical to work with. Also, our investiga-

tions show that a less dense location grid may be used, whereafter a zooming step

can be taken. Finally, we illustrate the algorithm’s performance using MC simu-

lations, using simulated sources, one near- and one far-field source, detailed withw = [200, 270] Hz, L = [15, 14] harmonics, impinging from j = [110◦,−70◦]

at R = [1.3,∞] m, respectively. The sensors are placed as a uniform circular

array, with 7 sensor placed evenly at a 0.5 m radius, together with a sensor being

placed in the center of the array. First, we examine the position estimates using

a coarse spacing for the possible sources, spaced by 11 cm in angle for all anglesj ∈ [−180◦, 180◦), and spaced by 10 cm in range, at R ∈ [0.7, 3] m. In each

MC simulation, the true location of each source was offset by a (uniformly distrib-

uted) range offset of plus minus one half the grid spacing. In all simulations, we

ensured that neither of the sources were placed on a dictionary grid point. Figure

9 shows the PWL for the angle and range estimates, where the limit is chosen to

80



5. Numerical comparisons

5 10 15 20 25
0.8

0.85

0.9

0.95

1

P
W

L 
θ

SNR [dB]

 

 

5 10 15 20 25
0.8

0.85

0.9

0.95

1

P
W

L 
ra

ng
e

SNR [dB]

 

 

HALO θ
1

HALO θ
2

HALO R
1

Figure 9: The PWL ratio for the angle and range estimates when using a coarsely

spaced grid, indicating the ratio of estimates that are within ±10 cm in range,

and ±5◦ in angle.

be the same as the grid spacing, i.e., the ratio of estimates that are within ±10 cm

in range, and ±5◦ in angle. As seen from the figure, the both the range and the

DOA of the sources are well determined, indicating that even with the use of a

coarse grid, one is able to obtain reliable estimates. Proceeding to instead using a

fine grid, the coarse estimates may then be refined by zooming in the grid over the

found locations. Using a dictionary of the same size as the coarse grid, although

centered around the found estimates, yields a resolution of ±5 mm in range and

±0.25◦ in angle. Figure 10 shows the resulting RMSE for the angle and pitch

estimates on the finer grid, as compared to the CRB (given in the Appendix). As

can be seen from the figure, the RMSE (and the corresponding CRB) of the far-

field source is somewhat lower than the near-field source, although both sources
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Figure 10: The RMSE for the angle and range estimates when using a finely

spaced grid, indicating the ratio of estimates that are within ±5 mm in range,

and ±0.25◦ in angle.

are well estimated, yielding a performance close to being optimal. The slight

offset from the CRB is deemed to be largely due to a small bias in the final estim-

ates, resulting from the smoothness of the approximative cost function resulting

from the additive convex constraints. As is clear from the above presentation, the

HALO estimate exploits the harmonic structure in the received audio signals to

position the sources, using the pitch estimates to form a sparse estimate over a

wide range of feasible positions. Obviously, most audio signals are not harmonic

at all times, and the estimator should thus be used in combination with a track-

ing technique, possibly using a methodology reminiscent to the one presented

in [40, 41]. In such a tracking scheme, the estimated pitch amplitudes should be

used as an indicator for the reliability of the obtained positioning, yielding poor

or maybe even erroneous positioning for unvoiced or non-harmonic audio sig-
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nals, whereas reasonably accurate positions may be expected for more harmonic

signals.

6 Conclusions

In this paper, we have presented an efficient sparse modeling approach for loc-

alizing harmonic audio sources using a calibrated sensor array. Assuming that

each harmonic components in each pitch can only come from one source, the

localization estimate is based on the phase and attenuation information for all

of the harmonics jointly. The resulting model phases and attenuation will then

depend on the source location. By using sparse modeling, the method inherently

estimates both the number of sources, the number of harmonics in each source,

as well as the extent of a possibly occurring reverberation. The effectiveness of the

resulting algorithm is shown using both simulated and measured audio sources.
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8 Appendix: The Cramér-Rao lower bound

In this appendix, we briefly summarize the Cramér-Rao lower bound (CRB) for

the examined localization problem. As is well known, under the assumption of

complex circularly symmetric Gaussian distributed noise, the Slepian-Bangs for-

mula yields [11, p. 382]

[

P−1
cr

]

ij
= trace

[G−1G′
iG−1G′

j

]

+ 2R
[m′H

i G−1m′
j

]

(62)

where R denotes the real part of a complex scalar, G the covariance matrix of

the noise process, and m is the deterministic signal component, with G′
i and m′

i
denoting the derivative of G and m with respect to element i of the parameter

vector, respectively. For the case of uncorrelated noise with a known variance s2,
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this simplifies to

[

P−1
cr

]

ij
= 2R

[m′H
i m′

j

]

/s2 (63)

Using the assumed signal model as measured at sensor m, stacking the the observa-

tions as in (2), and then using the vec operator on the resulting matrix results, one

obtains the m function needed for the CRB calculations. Here, the parameters to

be estimated areD =

{

{

ak,ℓ,fk,ℓ

}

ℓ=1,...,Lk
,wk,js,k,Rs,k

}

s=1,...,S
k=1,...,K

(64)

Clearly, the resulting function may easily be derivated with respect to the mag-

nitude, frequency and phase parameters. However, since the location parameter,js,k and Rs,k, enter into the expression in a complicated manner depending on

the sensor geometry, the corresponding derivatives are not straight forward for

an arbitrary array. For this reason, for the considered array geometries, we here

simply approximate the resulting expressions using numerically differentiated ex-

pressions.
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Joint DOA and Multi-Pitch Estimation
via Block Sparse Dictionary Learning

Ted Kronvall, Stefan Ingi Adalbjörnsson,
and Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this paper, we introduce a novel sparse method for joint estimation of the dir-

ection of arrivals (DOAs) and pitches of a set of multi-pitch signals impinging on

a sensor array. Extending on earlier approaches, we formulate a novel dictionary

learning framework from which an estimate is formed without making assump-

tions on the model orders. The proposed method alternatively uses a block sparse

approach to estimate the pitches, using an alternating direction method of multi-

pliers framework, and alternatively a nonlinear least squares approach to estimate

the DOAs. The preferable performance of the proposed algorithm, as compared

to earlier methods, is shown using numerical examples.

Keywords: multi-pitch estimation, block sparsity, dictionary learning, ADMM,

direction-of-arrival.
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1 Introduction

The estimation of fundamental frequencies, or pitches, of harmonically related,

and often acoustic, signals is a common problem occurring in various forms of ap-

plications, and perhaps most notably so in audio processing (see, e.g., [1] and the

references therein). Due to the importance of such applications, there have been

notable contributions on pitch estimation for signals containing both single and

multiple pitches (see e.g., [2–5]). By using an array of several sensors, one may

exploit the relative time-delay information at the different sensors to determine

the location of the impinging sound sources. Commonly, existing techniques, as

the ones in, e.g., [6–8], make strong a priori assumptions on the model structure

of the impinging signals, such as the number of pitches, as well as the number

of harmonics in each pitch. Alternatively, model order information criterias may

be used to determine the appropriate model order, such as in [9, 10], or by ap-

plying an optimal filtering approach reminiscent to the one proposed in [11].

In this work, we extend on the method presented in [5], and propose a novel

joint DOA and pitch estimation technique, formed by using a novel sparse sig-

nal reconstruction framework. The technique is reminiscent to the one presented

in [12], wherein the solution space is expanded to a large dictionary of candid-

ate fundamental frequencies, from where a small number of pitches which have

the best fit to the data are chosen. As the data is measured with several sensors,

where each has a phase offset according the specific geometry of the array and

the location of the sound source, both the pitches and the sensor phases must be

estimated jointly. Such a joint estimation typically requires solving a non-convex

optimization problem. Herein, we avoid this difficult by applying a dictionary

learning technique, reminiscent to the ones presented in [13, 14]. We thereby

split the problem into two subproblems, allowing for an iterative refinement of

the pitch estimates, formed using an alternating direction method of multipliers

(ADMM) framework, and of the DOA estimates, using a nonlinear least squares

(NLS) formulation. The method allows for the estimation of the DOAs and

pitches from multi-pitch signals originating from one or more locations, without

having to know the number of sources, pitches, or their respective number of har-

monics. Our claims are illustrated using numerical simulations of audio signals,

comparing the achieved performance to other recent estimators.
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2. Pitch-DOA signal model

2 Pitch-DOA signal model

Consider K complex-valued and harmonically related acoustic signals impinging

on an array of sensors, corrupted by additive noise and interference, such that the

signal measured at the mth sensor may be well modelled as [6, 15]

ym(t) =
K
∑

k=1

Lk
∑

ℓ=1

cmdk,ℓe
jwkℓ(t+tk,m)

+ em(t) (1)

where dk,l is the complex-valued amplitude of the ℓth harmonic of the kth pitch,

whereas Lk and wk are the number of harmonics and the pitch of the kth signal

source, respectively. Furthermore, let em(t) denote the additive noise term, cm

the sensor gain, and tk,m the time-of-arrival for the kth signal source. Define the

measurement matrix

Y =
[

y(1) . . . y(N )
]T

(2)

where, at each time point, n = 1, . . . ,N , the data snapshot is found as

y(t) =
[

y0(t) . . . yM−1(t)
]T

with (·)T denoting the transpose. Then, (2) may be concisely expressed as

Y =

K
∑

k=1

Wkdiag(dk)Fk(tk)C + E (3)

where E denotes the combined noise term constructed in the same manner as Y,

and

Wk =

[

wk . . . w
Lk
k

]

(4)

wk =
[

ejwk . . . ejwkN
]T

(5)

dk =
[

dk,1 . . . dk,Lk

]T
(6)

Fk(tk) =











ejwktk,1 . . . ejwktk,M

ejwk2tk,1 . . . ejwk2tk,M

...
. . .

...

ejwkLktk,1 . . . ejwkLktk,M











(7)
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Paper C tk =
[ tk,1 . . . tk,M

]T
(8)

C = diag
([

c1 . . . cM

])

(9)

such that diag(·) is a diagonal matrix. One may note that Wk, for k = 1, . . . ,K ,

consists of stacked Fourier vectors, for each harmonic of a pitch in the temporal

domain, whereas Fk consists of stacked Fourier vectors (or array transfer vectors)

in the spatial domain with respect to the time-of-arrivals, tk, repeated for each

pitch k and its Lk harmonics. We proceed to reformulating the problem in (3)

using a sparse estimation framework, reminiscent to the one presented in [12],

extending the representation of the K pitches onto a large dictionary of P can-

didate fundamental frequencies, w1, . . . ,wP , where P ≫ K , chosen so large that

K of these will reasonably well coincide with the true pitches in the signal. In

the same fashion, the number of harmonics of each pitch, Lp, is extended to an

arbitrary upper level, say Lmax, for all dictionary elements, p = 1, . . . ,P. One

can, without loss of generality, assume C = I, i.e., that the data measurement

matrix has been preconditioned to account for different gain at different sensors.

The signal model may thus be expressed as

Y =

P
∑

p=1

Wpdiag(dk)Fp(tp) + E (10)

= W diag(d)F(t) + E (11)

where the block dictionary matrices are formed by stacking the matrices such that

W =
[

W1 . . . WP

]

(12)

F(t) =
[

F1(t1)T . . . FP(tP)T
]T

(13)

where W ∈ CN×PLmax , F(t) ∈ CPLmax×M , and

d =
[

d1
T . . . dP

T
]T

(14)t =
[ t1 . . . tP

]T
(15)

with d ∈ CPLmax×1 and t ∈ RP×M . The resulting signal formulation provides

a more structured framework than the one presented in [15], separating the

complex-valued amplitudes, d, and the sensor offsets in F(t). If the sensor array

is assumed to be a uniform linear array (ULA), the time-of-arrivals may be related

to the corresponding DOA as [9]tk,m = (m− 1)d sin(jk)g−1 (16)
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with d,g, and j denoting the uniform distance between sensors, the wave propaga-

tion velocity, and the DOA respectively. The P ×M time-of-arrivals may thus be

expressed as a function of the set of DOAsj =
[ j1 . . . jP

]T
(17)

In the interest of notational simplicity, we hereafter use only the dependency ofj instead of t(j). For other array geometries, one may replace (16) with another

function mapping from directionality or location to the time-of-arrival.

3 Dictionary learning approach

In order to form the estimate of the unknown DOAs and pitches, we formulate

the estimates as the solution to a group sparse minimization reminiscent to the

scheme presented in [5], such that

minimizej,d 1

2

∥

∥

∥
Y−W diag(d)F(j)

∥

∥

∥

2

F

+ lm P
∑

p=1

‖dk‖2 + l(1− m)‖d‖1 (18)

where block sparsity is imposed on d, such that the number of pitches, as well

as the number of harmonics within each pitch, are sparse. Here, we set l > 0

as a parameter weighting the degree of sparsity to the fit of the solution, whilem ∈ [0 , 1] prioritizes between sparsity and block sparsity. In order to simplify the

minimization, one may formulate (18) equivalently as

minimizej,d 1

2

M
∑

m=1

∥

∥

∥
ym −W diag

(

f m(j)
)

d
∥

∥

∥

2

2

+ lm P
∑

p=1

‖dk‖2 + l(1− m)‖d‖1 (19)

such that the minimization is formed by summing the squared residual errors

sensor by sensor, where f m(·) is the mth column of F(·), and where we have used

that diag
(

f m(j)
)

d = diag(d) f m(j). However, solving (19) is a hard problem,

as f (·) is a non-convex function of j, as is its product with d. On the other
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Algorithm 1 The IAPEBS algorithm

1: Initiate d(0) by taking steps 4-11 for data y1 only.

2: Set k = 0

3: repeat {Dictionary learning scheme}
4: Take NLS step j(k+1)

= argminj q(j, d(k))

5: Initiate u(0) = d(k), z(0) = z(save), i = 0

6: repeat {ADMM scheme}
7: z(i+1) = argmin

z
Lk(z,u(i), d(i))

8: u(i+1) = argmin
u

Lk(z(i+1),u, d(i))

9: x(i+1) = x(i) − (z(i+1) − u(i+1))

10: i ← i + 1

11: until convergence

12: Set d(k+1) = u(end), and z(save) = z(end)

13: k ← k + 1

14: until convergence

hand, for a fixed j, the minimization is the ordinary LASSO with block sparsity

for complex sinusoids (see, e.g., [16]), where W diag
(

f m(j)
)

may be seen as

a phase-shifted dictionary at sensor m with respect to the corresponding DOA.

Adopting a dictionary learning framework reminiscent to the one used in [13,14],

the problem is split in two sub-problems. In the first, we fix the DOAs, and

(19) may be solved via one of the freely available interior point solvers, such as

SeDuMi [17] and SDPT3 [18]. However, such solvers will typically scale poorly

with increasing data length, the use of a finer grid of candidate pitches, and/or the

number of sensors. Such methods may thus in many cases be computationally

cumbersome, and we here introduce an efficient ADMM-based formulation of

(19). To do so, one splits the objective function into two parts, where we let

one contain the squared residual error, and the second the sparsity constraints,

whereafter an auxiliary variable is introduced, such that

minimize
z,u

g1(z) + g2(u) subj. to z− u = 0 (20)

since only z = u is a feasible point, and where

98



3. Dictionary learning approach

g1(z) =
1

2

M
∑

m=1

∥

∥

∥ym −W diag
(

f m(j)
)

z
∥

∥

∥

2

2
(21)

g2(u) = lm P
∑

p=1

‖uk‖2 + l(1− m)‖u‖1 (22)

are convex functions. Under the assumption that there is no duality gap, which,

for a fixed j, is true for (18), one may solve the optimization problem via the

dual function, defined as the infimum of the augmented Lagrangian with respect

to z and u, i.e., [19]

Lk(z,u, x) = g1(z) + g2(u) + xT (z− u) +
k
2
||z − u||22

where x is the dual variable. The ADMM method solves this iteratively by, at

step i + 1, minimizing the Lagrangian for one primal variable while holding the

other fixed at its previous value, and then updating the dual variable by taking a

gradient ascent step and maximizing the dual function, i.e.,

z(i+1)
= arg min

z
Lk(z,u(i), d(i)) (23)

u(i+1)
= arg min

u
Lk(z(i+1),u, d(i)) (24)

x̃(i+1)
= x̃(i) − k(z(i+1) − x̃(i+1)) (25)

where k is the step size for maximizing the dual function, and x̃ = x/k is the

scaled version of the dual variable, which is more convenient for implementation

(see [19] for further details on these aspects). The function in (23), which is

quadratic, can be solved in closed form as

z(i+1)
=

(

M
∑

m=1

W̃
H
mW̃m + kIPLmax

)−1

×
(

M
∑

m=1

W̃
H
m ym + u(i)

+ x(i)

)

(26)

where W̃m = W diag
(

f m(j)
)

denotes the phase-shifted dictionary at sensor

m. The function in (23), i.e., the primal variable for the sparsity constraints, is
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Figure 1: Level curves for the function in (28), for a multi pitch signal containing

two pitches, both originating from −30◦.

obtained by solving sub-differential equations, yielding

u(i+1)
= h

(

h′
(

z(i+1) − x(i), lm) , l(1− m)
)

(27)

where h
(

b, x) = b
(

1− x/ ‖∗‖ b2

)+
, for a vector b and a positive scalar x,

with (·)+ denoting the identity function for finite values and zero otherwise, and

h′(·) defined similarly but operate element-wise on b (see also [5]). The resulting

estimate of d(k) is then inserted into the second subproblem of the dictionary

learning scheme, i.e.,

q(j, d(k)) =
1

2

∥

∥

∥Y−W diag(d(k))F(j)
∥

∥

∥

2

F
(28)

which is minimized for j, and is equivalent to performing a dictionary learn-

ing update to the phase-shifted dictionary, W̃m, which was used in the ADMM
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procedure, i.e., (20)-(27). Figure 1 illustrates the cost function in (28) after a

few dictionary learning iterations of the proposed algorithm, showing that al-

though the cost function will not be convex, it is unimodal for DOAs in the

range [−90, 90]◦ and may thus be easily solved using a few iterations of, for in-

stance, Newton-Raphson’s method. To summarize, an algorithm outline of the

proposed metod is stated in Algorithm 1, where it may be noted that the inner

ADMM scheme takes fewer and fewer steps at every iteration of the outer dic-

tionary learning scheme, until convergence is reached and only a single ADMM

step is taken. The sparsity parameter l is chosen with cross validation in a similar

fashion as performed in [20], but the estimates are rather unsensitive with respect

to this choice. The proposed method requires estimating a total of PLmax + M
parameters, which is considerably fewer than the recent sparse method presented

in [15], which required estimating PLmaxM parameters.

4 Numerical results

We proceed to illustrate the performance of our proposed method, as compared

to other recent methods, using synthetic audio signals. As the fundamental fre-

quencies are estimated on a discrete dictionary grid, comparison is made using

a percentage within limits (PWL) metric, defined as the ratio of pitch estimates

within a range of ±1/4 Hz from the true values. For DOA comparison, the total

root mean square error (RMSE) is used for all sources, defined as

RMSEj =

√

√

√

√

1

nK

K
∑

k=1

n
∑

i=1

(ĵk,i − jk

)2
(29)

where n is the number of Monte Carlo (MC) simulation estimates, and K is the

number of pitches in the signal. Figure 2 shows the PWL of the fundamental

frequency, as well as the RMSE for the DOA, for a signal containing a single

pitch with f1 = 220 Hz and L1 = 7 harmonics, impinging on a 5-sensor ULA

from direction j1 = −30◦. These results have been computed using 250 MC

simulations, assuming a sampling frequency of fs = 8820 Hz, a sound wave

propagation velocity of g = 324.3 m/s, and a sensor spacing of d = g/fs =

3.84 cm. The sensor gains may be obtained from a covariance matrix estimate

on the measurement matrix Y, but are, in these simulations and without loss of

generality, set to c1 = · · · = cM = 1. The figures show the performance for
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Figure 2: The PWL and RMSE for a single-pitch signal as compared with the

optimal performance of an estimator reaching the CRB.

growing signal-to-noise ratios (SNRs), defined as

SNR = 10 · log

(

Psignal

Pnoise

)

(dB) (30)

As is clear from the figure, the proposed method, here termed the iterative array

DOA and pitch estimator using block sparsity (IAPEBS), performs similarly to the

recently proposed APEBS estimator [15], and the NLS-based estimator proposed

in [6], achieving a performance close to the Cramér-Rao Lower Bound (CRLB).

The subspace-based method (Sub), also introduced in [6], is found to yield a

somewhat lower performance. Figure 3 shows the corresponding performance

for a multi-pitch signal consisting of two pitches, with [w1,w2] = [150, 220]
Hz, and with [L1,L2] = [7, 6] harmonics, impinging from directions [j1,j2] =
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Figure 3: The PWL and RMSE for a multi-pitch signal with two pitches, as

compared to the corresponding CRB.

[−30,−30]◦. As the NLS and Sub estimators only allow for single pitch signals,

the figure only shows the performance of IAPEBS, as compared with APEBS and

the corresponding CRB. As is clear from the figures, the IAPEBS estimator yields

highly accurate parameter estimates, almost reaching the CRBs, notably improv-

ing the achievable performance as compared to the APEBS estimator, which de-

couples the estimation into first estimating the pitches, whereafter the DOAs are

determined in a second step. This should be compared with the here proposed

iterative estimation scheme, which enables a better joint estimation of pitch and

DOA.
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Sparse Modeling of Chroma Features
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Abstract

This work treats the estimation of chroma features for harmonic audio signals

using a sparse reconstruction framework. Chroma has been used for decades as

a key tool in audio analysis, and is typically formed using a periodogram-based

approach that maps the fundamental frequency of a musical tone to its corres-

ponding chroma. Such an approach often leads to problems with tone ambigu-

ity, which we adress via sparse modeling, allowing us to appropriately penalize

ambiguous estimates while taking the harmonic structure of tonal audio into ac-

count. Furthermore, we also allow for signals to have time-varying envelopes.

Using a spline-based amplitude modulation of the chroma dictionary, the presen-

ted estimator is able to model longer frames than what is conventional for audio,

as well as to model highly time-localized signals, and signals containing sudden

bursts, such as trumpet or trombone signals. Thus, we may retain more signal

information as compared to alternative methods. The performance of the pro-

posed methods is evaluated by analyzing average estimation errors for synthetic

signals, as compared to the Cramér-Rao lower bound, and by visual inspection

for estimates of real instrument signals, showing strong visual clarity, as compared

to other commonly used methods.

Keywords: Chroma, multi-pitch estimation, sparse modeling, amplitude

modulation, block sparsity, ADMM
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1 Introduction

Music is an art-form that people have enjoyed for millennia. Perhaps music is even

enjoyed more today, as the development of personalized computers and smart

telephones have enabled ubiquitous music listening, automatic identification of

songs, or even the chance for anyone to be a self-made DJ. When listening, learn-

ing, composing, mixing, and identifying music, there are a number of musical

features one may utilize (see, e.g. [1]). One of the fundamental building blocks in

music, the musical note, is a periodic sound, typically characterized by its pitch,

timbre, intensity, and duration. For transcription purposes, i.e., to separate one

tone from another, pitch serves as the common descriptor. From a conventional

perspective, pitch is measured on an ordinal scale, at which a pitch is humanly

perceived as either higher, lower, or the same as another pitch. However, from

a perspective of scientific audio analysis, pitches are quantified using an interval

scale, in which its spectral distribution of energy is modeled. A single pitch may

be seen as a superposition of several narrowband spectral peaks, which are approx-

imately integer multiples of a fundamental frequency. Thus, we refer to the group

of frequencies as the pitch, and to each frequency component as the harmonic,

or, alternatively, as the partial harmonic. As to the fundamental frequency, it is

either the lowest partial, or, if that partial is missing, the smallest spectral distance

between adjacent partials. The number of harmonics in a certain pitch, as well as

the relative power between these, varies greatly between different sounds, as well

as over time. Identifying pitches in a way similar to our human perception has

proved to be a difficult estimation problem. Partly, this difficulty is due to coin-

ciding frequency components between certain pitches. For instance, two pitches,

where one has exactly twice the fundamental frequency of the other, are referred

to as being octave equivalent, as the relative distance by a factor of two is called

an octave. These will typically share a large number of partials, often making an

estimation procedure ambiguous between octaves. To further complicate matters,

other pairs of pitches may also have many coinciding partials, and these are typ-

ically found together in audio, an aspect which is referred to as harmony, since

they are perceptually pleasant to hear [2]. Jointly estimating several pitches in

a signal, i.e., multi-pitch estimation, has been thoroughly examined in the liter-

ature (see e.g., [3–5], and the references therein). However, separating intricate

combinations of frequency components into multiple pitches often proves diffi-

cult, even if the harmonic structure of each musical tone is taken into account.

Typically, issues arise when the complexity of the audio signal increases, such that
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there are simultaneously two or more pitches with overlapping spectral content

present, for instance played by two or more instruments. In the Western musi-

cological system, the frequency interval corresponding to an octave is discretized

into twelve intervals, called semi-tones. By gathering all pitches with octave equi-

valence to their respective semi-tone, these form twelve groups of pitches, called

chroma. As octave equivalent pitches share a large number of harmonics, the no-

tion of chroma is thus a method for grouping together those pitches which are

perceived as most similar. Therefore, chroma features are widely used in applica-

tions such as cover song detection, transcription, and recommender systems (see,

e.g. [6–8]). Most methods for chroma estimation begin by obtaining estimates

of the pitches in a signal, which are then mapped into their respective chroma.

Some of these take the harmonic structure into account, and others do not. The

commonly used method by Ellis [9] is formed via a time-smoothed version of

the Short-Time Fourier Transform (STFT), whereas the CP and CENS methods

by Müller and Ewert [10] use a filterbank approach. The method in [11] uses

a sparse methodology, and the method in [12] uses a non-negative least squares

approach. Neither of these take the harmonic structure of pitches into account.

Other approaches instead allow for the harmonic structure, such as the method

presented in [13], which uses a comb filtering technique, and the method in [14],

in which post-processing on the periodogram is performed. Most existing meth-

ods have in common that their estimates are not directly formed from the actual

data, but rather on a representation of these measurements, such as, for instance,

using the STFT or the magnitude of the periodogram. Herein, we propose to es-

timate the chroma using a sparse model reconstruction framework, where explicit

model orders are not required. The estimate is found as the solution to a con-

vex optimization problem, where the solution is obtained as a linear combination

of an over-complete chroma-based set of Fourier basis functions. Overfitting is

avoided by introducing convex penalties promoting solutions having the sought

chroma structure. The model orders are thus set implicitly, using tuning para-

meters which may be obtained using cross-validation, or by utilizing some simple

heuristics. In this paper, we generalize upon the work in [5], taking into account

the chroma structure, as well as allowing the frequency components to have time-

varying amplitudes. The proposed extension increases robustness, as it allows

for highly non-stationary signals, or signals with sudden bursts, like trumpets,

whose nature may easily be misinterpreted when using ordinary chroma selection

techniques. As in [15], the extended model uses a spline basis to detail the time-
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varying envelope of the signal, thereby enabling the amplitudes to evolve smoothly

with time. The theoretical performance of the proposed estimator is verified using

synthetic signals, which are compared to the Cramér-Rao Lower Bound (CRLB),

which we here present for the chroma signal model. The practical use of the pro-

posed estimator is illustrated using some excerpts from a recorded trumpet signal,

showing an increased visual performance, as compared to some typical reference

methods.

2 The chroma signal model

A sound signal typically contains a broad band of frequency content. However,

for tonal audio, it is well-known that a predominant part of the spectral energy

is confined to a small number of frequency locations. Let y(f , ℓ) denote the

function which describes the frequency of the ℓ:th component. If this function is

known, the entire group of components, or partials, representing a musical tone

may be described by their fundamental frequency, f . Many oscillating sources,

such as, for instance, the human vocal tract and stringed, or wind, instruments,

emit tonal audio where the partials are integer multiples of the fundamental, i.e.,y(f , ℓ) = f ℓ, ℓ ∈ L ⊆ N (1)

where L denotes the index set of partials present in the signal. However, for an

arbitrary L, the definition in (1) is not sufficient to uniquely describe a pitch, as

the set of frequencies may map to infinitely many combinations of f and L. For

example, for any n ∈ N, the two pitchesy = {y(f , ℓ) : f ∈ R, ℓ ∈ L ⊆ N} (2)y′
=

{y(f ′, ℓ′) : f ′
=

f

n
, ℓ′ ∈ L′ = {nℓ : ℓ ∈ L}

}

(3)

have identical frequency components. Therefore, some constraints need to be

imposed on L. A common assumption for pitches is spectral smoothness of the

harmonics, i.e., that adjacent harmonics should be of comparable magnitude [16].

This implies that L typically has few missing harmonics, and that n is as small as

possible. However, in some signals, the first harmonic might be missing, so rather

than defining the pitch as the signal’s smallest frequency component, we define

the fundamental frequency more rigorously. If the set of frequencies in a pitch
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may be described by (2), then for any n ∈ Q, the fundamental frequency is the

largest f ′ = f /n which fulfill (3), i.e., which ensures that L′ = {nℓ, ℓ ∈ L} ⊆ N.

The index set therefore plays a vital role in the definition of the pitch frequency.

Furthermore, because of the harmonic structure, many different pitches will have

coinciding partials. To illustrate this, consider two pitchesy = {y(f , ℓ) : f ∈ R, ℓ ∈ {1, 2, . . . ,L}} (4)y′
=

{y(f ′, ℓ′) : f ′
=

f

n
, ℓ′ ∈ {1, 2, . . . , nL}

}

(5)

which consist of all harmonics from ℓ = 1 up to L and nL, respectively. Here,

n may be a rational number, as long as (5) is fulfilled. Indeed, both pitches

are unique according to our definition. Still, they will share a large number of

harmonics, in fact L of them, as y forms a perfect subset of y′, i.e., y ∈ y′, and

they will also, as sounds, be perceived as being similar, especially if n is small. This

motivates the introduction of chromas, which are also referred to as pitch classes.

The chroma, which means ’color’ in greek, is the collection of pitches which are

an integer number of octaves apart, meaning that n in (5) fulfills

n = 2−m,m ∈ Z (6)

with m ∈ N denoting the octave, which implies that n ∈ Q. The fundamental

frequency may thus be modeled in terms of its chroma, c̃, and its octave, m, as

(see also, e.g., [1])

f = fb 2c̃+m (7)

where c̃ ∈ [0, 1) and fb denote the chroma class and a base (tuning) frequency,

respectively. Using this formulation, the parametric pitch model presented in [17]

may be extended into a parametric chroma model. Thus, the frequency peaks in

a complex-valued1 noise-free musical tone may be modeled as

x(t) =
L
∑

ℓ=1

aℓ(t)e
i2pfb2c̃+mℓt (8)

for a time-frame t = 1, ...,N , where aℓ(t) denotes the complex-valued amplitude

of the ℓ:th harmonic, which may be either constant over the time-frame, or may

1In order to simplify notation, we here examine the discrete-time analytic signal version (see,
e.g., [3, 18]) of the measured audio signal.
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vary slowly. Here, c̃, m, and L denote the chroma, octave, and the number of

sinusoids of the tone, respectively. It may be noted that the data is thus modeled

in the time domain, as this is shown to render more efficient estimates than using

the magnitude STFT [3]. In most Western music, there are twelve chroma classes,

defined as the twelve semitones

C ,C#,D,D#,E, F , F#,G,G#,A,A#, and B (9)

and the concatenation of a chroma with its octave number, e.g., A4, denotes a

musical tone. Here, two adjacent semitones are relatively spaced by 21/12. Thus,

the chroma parameter c̃ is discretized into twelve values, uniformly spaced on

[0, 1), i.e.,

c̃ ∈
{

0,
1

12
,

2

12
. . . ,

11

12

}

(10)

The tuning parameter fb often varies somewhat amongst musicians, but a com-

mon standard sets ’A4’ to 440 Hz [19]. This corresponds to c̃ = 9/12, and

m = 4, yielding the (normalized) tuning frequency

fb =
440

fs
2−(9/12+4) (11)

where fs denotes the sampling frequency. Our auditory system does not only

perceive tones with these chroma as being distinctly different from each other,

but also as equally spaced, which gives credit to the idea that our hearing is log-

tempered. Furthermore, coinciding harmonics are not restricted to pitches within

the same chroma, as pitches in different chromas may yield coinciding harmon-

ics. For instance, for n = 3/2 ≈ 27/12, the two pitches in our example will

have many coinciding partials; two such tones are referred to as fifths. Fifths are

thus spaced by approximately seven semitones and are commonly used together

in musical compositions, as the overlapping spectral content is often deemed per-

ceptually pleasant. Thus, if assuming that a polyphonic audio signal consists of

K superimposed musical tones, the signal may be well modeled as

y(t) = x(t) + e(t) (12)

where

x(t) =
K
∑

k=1

Lk
∑

ℓ=1

ak,ℓ(t)e
i2pfb2ck+mk ℓt (13)
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with the subscript k denoting the parameter of the k:th tone, and where e(t)

is some form of additive noise. As (13) only models the sinusoidal part of the

signal y(t), any other features, such as, e.g., the timbre, will, without any loss

of generality, be modeled as a part of the noise. In this work, the amplitude is

allowed to be either constant, i.e., ak,ℓ(t) = ak,l ,∀(k, ℓ), or slowly varying within

each considered time-frame of N samples. Reminiscent to the approach in [15],

we model the amplitude’s time-varying nature using a spline basis with uniformly

spaced knots (see, e.g., [20, p. 151]), i.e., such that the amplitudes in the time-

frame follow a superposition of R B-spline bases,

ak,ℓ(t) =
R
∑

r=1

gr(t)sk,ℓ,r (14)

where the r:th spline base is weighted by an unknown complex amplitude, sk,ℓ,r .

3 Sparse chroma modeling and estimation

One way of estimating the unknown parameters in (13) may be to form the es-

timate as the one minimizing the (possibly weighted) squared estimation resid-

uals, e.g., by using the non-linear least squares (NLS) algorithm. However, such

an estimate requires precise knowledge about the model orders, something which

generally is unknown. Such model orders are typically difficult to estimate for

multi-pitch signals, as both the number of pitches and the number of harmon-

ics in each pitch must then be determined. Furthermore, even if the true model

orders are known, the NLS estimate will still require solving a multidimensional

minimization over a typically multimodal cost function, thus necessitating an ac-

curate search initialization [21]. On the other hand, if one tries to estimate the

tonal content using, for instance, a periodogram-based approach, where the spec-

tral peaks are estimated without taking the chroma structure into account, and

thereafter grouping together the resulting estimates, this yields an involved com-

binatorial problem, as a number of frequency components typically belong in sev-

eral tones, due to harmony. Instead, in this work, we construct an estimator based

on the assumption that any given frequency component will be part of an ordered

group of harmonic frequencies, i.e., a pitch. To achieve this, we propose to use

a sparse modeling approach, reminiscent of the one presented in [5], where the

non-linear model in (13) is replaced by a linear approximation of it, consisting of

a highly overdetermined linear system, where the number of non-zero parameters
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in the sought solution should be few, i.e., the solution should be sparse. Thereby,

one may take the spectral structure of musical tones into account, while circum-

venting the need for explicitly estimating the model orders. Thus, consider the

linear approximation

x(t) ≈ x̃(t) =
11
∑

c=0

Mmax
∑

m=Mmin

Lmax
∑

ℓ=1

ac,m,ℓe
i2pfbℓt2

(c/12+m)
(15)

where x̃(t) denotes the signal model representing the chromas in the Western

musicological system, as described in (9)-(10). By denoting the twelve semitones

using c = 12c̃, ordered as in (9), (15) includes all candidate tones within a range

of octaves, from Mmin to Mmax. Furthermore, Lmax denotes the maximal number

of harmonics considered, and ac,m,ℓ the (complex-valued) amplitude for the ℓ:th
harmonic in the m:th octave of pitch class c. From this approximation, it is clear

that the spectral content is discretized into Q = 12(Mmax −Mmin)Lmax feasible

frequencies, grouped into pitches of the same chroma. Also, as noted above, many

of the harmonics between tones typically coincide, and it is therefore insufficient

to simply map individual frequencies to a chroma, as they will likely map to

several other chromas as well. To illustrate the sought sparsity structure of the

solution, letY =

{

{ac,m,1, . . . , ac,m,Lmax}m=Mmin,...,Mmax

}

c=0,...,11
(16)

be the set of linear amplitude parameters for all possible frequencies in the over-

complete model. As the set Y is much larger than the actual solution set, most

amplitudes, ac,m,ℓ, in (16) should be equal to zero, i.e., Y should be sparse. If,

for instance, only the key C#5 is played, then all amplitudes, except a1,5,ℓ, for

those ℓ present in this tone, should be zero. To measure the fit of the selected and

estimated non-zero parameters, one may examine the minimum of the squared

model residuals, by solving

minimizeY N
∑

t=1

∣

∣

∣y(t)− x̃Y(t)
∣

∣

∣

2
(17)

However, such a minimization will not promote the sought sparsity structure,

and we therefore impose constraints to ensure a more desirable sparsity structure.

In principle, we will do so by adding penalties to (17), reminiscent to the ones
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used in [22–24], which add cost to non-desirable solutions that violate the sought

sparsity pattern. The use of these will be somewhat different depending on if the

amplitudes are allowed to vary or not; in the next two sections, we will deal with

the two approaches separately.

3.1 Promoting sparsity when the amplitudes are constant

We proceed by first detailing the proposed chroma estimation procedure for the

case without amplitude modulation. To simplify the exposition, consider the

signal model in (15) for the entire time-frame expression on vector form as

y =
[

y(1) ... y(N )
]T

(18)

=

11
∑

c=0

Wc ac + e , Wa + e (19)

where (·)T denotes the transpose, and where

W =
[

W0 . . . W11

]T
(20)

Wc =
[

Wc,Mmin . . . Wc,Mmax

]T
(21)

Wc,m =
[

w1
c,m . . . wLmax

c,m

]T
(22)

wc,m =

[

ei2p2(c/12+m)
. . . ei2pN 2(c/12+m)

]T
(23)

denote the dictionary of candidate tones and their partials, respectively. Also, let

a =
[

aT
c . . . aT

c

]T
(24)

ac =
[

aT
c,Mmin

. . . aT
c,Mmax

]T
(25)

ac,m =
[

ac,m,1 . . . ac,m,Lmax

]T
(26)

denote the linear amplitude parameters, Y, of the over-complete dictionary on

vector form. Thus, the blocks-within-blocks dictionary, W ∈ CN×Q , consists of

twelve blocks of candidate chroma, such that each chroma is a block of (Mmax −
Mmin) octave equivalent pitches, where each of these, in turn, consists of a block of

Lmax Fourier vectors. Our proposed method obtains the sought sparsity structure
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by minimizing

||y−Wa||22 + l2||a||1 + l3

11
∑

c=0

||ac||2 + l4||Fa||1 (27)

where li, for i = 2, 3, 4, denotes the user-defined sparse regularizers which weigh

the importance between the different terms in (27), and where F ∈ C(Q−1)×Q

denotes the first order difference matrix, having elements Fi,i = 1 and Fi,i+1 =

−1 for i = 1, . . . ,Q − 1, and zeros elsewhere. The first term in (27) penalizes

the distance between the model and the measured signal, whereas the second

term governs the overall sparsity of the amplitudes, thus forcing small values of a

to be zero, affecting all indices equally. The third term is a group sparsity penalty,

promoting sparsity between chromas, thereby countering the contributions from

other chromas with partially overlapping spectral content. The last term in (27) is

a total variation penalty which will penalize non-zero amplitudes at wrong octaves

within the chroma, so that they will be efficiently clustered.

3.2 Promoting sparsity while allowing for time-varying amplitudes

To also allow for time-varying amplitudes, one has to consider some additions

as well as some alterations to the earlier described method. Firstly, to allow for

amplitude modulation, one has to extend the original problem with an additional

parameter dimension. Using (14), the amplitudes’ time-varying nature may be

expressed on vector form as

ak,l =

R
∑

r=1

gr sr,k,l = Gsk,l (28)

so that the amplitude vector, ak,l , is a linear combination of the gr ∈ RN×1,

for r = 1, . . . ,R, spline basis vectors, and where sr,k,l denotes the corresponding

complex amplitude at spline point r of the l :th harmonic for the k:th pitch, and

with

ak,l =
[

ak,l (1) ak,l (2) · · · ak,l (N )
]T

(29)

sk,l =
[

s1,k,l s2,k,l · · · sR,k,l
]T

(30)G =
[ g1 g2 · · · gR

]

(31)
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Using this formulation, the signal model for the time dependent amplitude be-

comes

y =

Mmax
∑

m=Mmin

11
∑

c=0

diag(GSc,mWT
c,m), (32)

where

Sc,m =
[

sc,m,1 · · · sc,m,Lmax

]

(33)

sc,m,l =
[

s1,c,m,l · · · sR,c,m,l

]T
(34)

As a result, the sought chroma features of the considered signal frame may be

found as the parameters minimizing

minimize
S0,Mmin

···S11,Mmax

1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y−
11
∑

c=0

Mmax
∑

m=Mmin

diag(GSc,mWT
c,m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

(35)

where y denotes the vector containing the measured signal. To promote a sparse

solution, one may rewrite and extend (35) as

minimize
SP

1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y−
P
∑

p=0

diag(GSpW
T
p )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

(36)

+ l2

P
∑

p=0

Lmax
∑

l=1

∣

∣

∣

∣sp,l

∣

∣

∣

∣

2
+ l3

11
∑

c=0

∣

∣

∣

∣

∣

∣S̃c

∣

∣

∣

∣

∣

∣

F
(37)

where the reparametrization from c,m to p is p = 12(m − Mmin) + c, with P
denoting the total number of chroma-octave pairs in the dictionary, and with

S̃c =
[

Sc,Mmin · · · Sc,Mmax

]

(38)

The first term in (37) measures the distance between the signal model and the

measured data, the second term in (37) has the effect of setting columns in sp,l

with small l2-norm to zero, whereas the third term promotes the sparsity of the

resulting chroma estimate.
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4 Efficient implementations

The optimization problems in (27) and (37) are convex, and may thus be solved

using one of the many freely available interior point methods, such as, e.g., Se-

DuMi [25] and SDPT3 [26]. However, these methods typically scale poorly with

increasing data lengths or with increasing dictionary sizes. To allow for a more ef-

ficient implementation, we here propose an implementation based on the Altern-

ating Direction Method of Multipliers (ADMM), splitting the optimization into

two or more simpler optimizations, which are then solved iteratively. Depending

on the complexity of these sub-problems, the ADMM in general reaches a good

approximate solution very fast, while thereafter converging more slowly to a really

accurate solution [27]. For sparse modeling, this becomes evident as the ADMM

converges quickly to the correct set of non-zero variables, while convergence to

the correct relative amplitudes requires some further iterations. For the constant

amplitude case in (27), the generalized ADMM (for more than two functions) is

used, reminiscent to the approach proposed in [28]; this case is detailed in the

following.

4.1 Chroma estimation with constant amplitudes via ADMM

The ADMM considers convex optimization problem which can be expressed as

the sum of two convex functions by separating the variable into two parts

minimize
z,u

f (z) + g(u) subject to u− Gz = 0 (39)

whereafter the augmented Lagrangian, i.e.,

Lr(z,u, d) = f (z) + g(u) +
r
2
||Gz− u + d||22 (40)

can be used to find a solution to the original problem by iteratively solving

z(ℓ+ 1) = arg min
z

Lr(z,u(ℓ), d(ℓ)) (41)

u(ℓ+ 1) = arg min
u

Lr(z(ℓ+ 1),u, d(ℓ)) (42)

d(ℓ+ 1) = Gz(ℓ+ 1)− u(ℓ+ 1) + d(ℓ) (43)

To cast (27) in this framework we use the generalization idea proposed in [27]

to extend the ADMM to problems with more than two convex function. This is
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done by assuming that f = 0, and defining g as the sum of the functions in the

original problem, i.e.,

minimize
u

3
∑

i=1

gi(Hiu) (44)

with H1 = W, H2 = I, H3 = F, and

g1(Wu) = ||y−Wu||22 (45)

g2(u) = l2||u||1 + l3

11
∑

c=0

||uc||2 (46)

g3(Fu) = l4||Fu||1 (47)

The augmented Lagrangian of (27) is

L(z,u, d) = g1(u1) + g2(u2) + g3(u3) +
m
2
||Wz− u1 − d1||22 (48)

+
m
2
||z− u2 − d2||22 +

m
2
||Fz− u3 − d3||22

where

u =
[

uT
1 uT

2 uT
3

]T
(49)

d =
[

dT
1 dT

2 dT
3

]T
(50)

denote the additional variables used to rewrite the optimization problem, and the

dual variables, respectively. Thus, for the ℓ:th iteration,

z(ℓ+ 1) = arg min
z

L(z,u(ℓ), d(ℓ)) (51)

which has the solution

z(ℓ+ 1) =
(

GH G
)−1

GH (u(ℓ) + d(ℓ)) (52)

where

G =
[

WT I FT
]T

(53)
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For u1,

u1(ℓ+ 1) = arg min
u1

L(z(ℓ+ 1),u1, d1(ℓ)) (54)

which may be solved as

u1(ℓ+ 1) =
y + m (Wz(ℓ+ 1)− d1(ℓ))

1 + m (55)

For the remaining variables,

u2(ℓ+ 1) = arg min
u2

L (z(ℓ+ 1),u2, d2(ℓ)) (56)

u3(ℓ+ 1) = arg min
u3

L(z(ℓ+ 1),u3, d3(ℓ)) (57)

which have the solutions (see, e.g., [29])

u2(ℓ+ 1) = T

(

t

(

z(ℓ+ 1)− d2(ℓ),
l2m ) ,

l3

√
(M)m√(12)

)

(58)

u3(ℓ+ 1) = t

(

Fz(ℓ+ 1)− d3(ℓ),
l3

√
(M)m√(12)

)

(59)

where the shrinkage mappings T(·) and t(·) are defined as

t(x, k) =
xk

|xk|
max

(

|xk| − k, 0
)

, for all elements in x (60)

T(x, k) =
x

||x||2
max

(

||x||2 − k, 0
)

(61)

The augmented dual variable is updated as

d(ℓ+ 1) = d(ℓ)− (Gz(ℓ+ 1)− u(ℓ+ 1)) (62)

The final chroma estimate is then found as setting â = z(ℓfinal). The resulting

estimator is termed Chroma Estimation using Block Sparsity (CEBS). A summary

of CEBS is shown in Algorithm 1.
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Algorithm 1 The proposed CEBS algorithm

1: Initiate z = z(0),u = u(0), d = d(0), and ℓ = 0

2: repeat

3: z(ℓ+ 1) is updated as (52)

4: u1(ℓ+ 1) is updated as (55)

5: u2(ℓ+ 1) is updated as (58)

6: u3(ℓ+ 1) is updated as (59)

7: d(ℓ+ 1) is updated as (62)

8: until convergence

4.2 Chroma estimation with amplitude modulation via ADMM

After the addition of amplitude modulation to the signal model, the problem is

still convex, and we make use, once again, of the ADMM formulation, remin-

iscent to the approach proposed in [27]. The derivation becomes some what

different to that in the previous section, since the amplitude modulated chroma

model is more intricate. Denoting S =
[

S1 · · · SP

]

, (37) may be rewritten

as

minimize
X ,Z

f (X) + g(Z) subject to X− Z = 0 (63)

where

f (X) =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y−
P
∑

p=1

diag(GXpWp)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

g(Z) = l P
∑

p=1

Lmax
∑

l=1

‖zp,l‖2 + g 11
∑

c=0

‖Zc||F

(64)

with X and Z having the same structure as S. It is worth noting that the ADMM

separates the sought variable into two unknown variables, here denoted X and Z,

enabling the original problem to be decomposed into easier sub-problems. These

are in turn solved iteratively until convergence. The augmented Lagrangian of

(63) becomes

Lr(X,Z,D) = f (X) + g(Z) +
r
2
||X− Z + D||22 (65)
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where D represents the scaled dual variable (see also [27]), which allows (65) to

be solved iteratively as

X(ℓ+ 1) = arg min
X

Lr(X,Z(ℓ),D(ℓ)) (66)

Z(ℓ+ 1) = arg min
Z

Lr(X(ℓ+ 1),Z,D(ℓ)) (67)

D(ℓ+ 1) = X(ℓ+ 1)− Z(ℓ+ 1) + D(ℓ) (68)

at the ℓ:th iteration. To solve (66), one differentiates f (X) + r
2 ||X− Z + D||22

with respect to Xp and sets the result equal to zero, which yields

−
N
∑

n=1

y(n)G(n, ·)H Wp(·, n)H
+

r
2

(Xp − Zp + Dp)

+

P
∑

u=1

N
∑

n=1

G(n, ·)HG(n, ·)XuWu(·, n)Wp(·, n)H
= 0

By stacking all columns in X on top of each other, this may be represented as

N
∑

n=1

a(p, n)H y(n) +
r
2

(zp − dp) =

N
∑

n=1

P
∑

u=1

a(p, n)H a(u, n)xu +
r
2

xp (69)

where

a(u, n) = Wu(·, n)T ⊗ G(n, ·) (70)

xu = vec(Xu) (71)

zu = vec(Zu) (72)

du = vec(Du) (73)

with ⊗ denoting the Kronecker product, and Wu(·, n) and G(n, ·) denoting the

n:th column in Wu and the n:th row G, respectively. Let

A(p, u) =

N
∑

n=1

a(p, n)H a(u, n) (74)

ỹ(p) =

N
∑

n=1

a(p, n)H y(n) (75)
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Algorithm 2 The proposed CEAMS algorithm

1: Initiate X = X(0),Z = Z(0),D = D(0), and ℓ = 0

2: repeat

3: X(ℓ+ 1) = (AH A +
r
2I)−1AH Ỹ

4: Z(ℓ+ 1) = T (T(Xp(ℓ+ 1) + Dp(ℓ), b/r), a/r), ∀p
5: D(ℓ+ 1) = X(ℓ+ 1)− Z(ℓ+ 1) + D(ℓ)
6: ℓ← ℓ+ 1

7: until convergence

Ỹ =
[

ỹ(1) · · · ỹ(P)
]T

(76)

A =







A(1, 1) · · · A(1,P)
...

. . .
...

A(P, 1) · · · A(P,P)






(77)

This yields the proposed algorithm, which is summarized in Algorithm 2, where

T(·) is defined as in (60), and T (·) is defined as

T (X, k) =
X

||X||F
max

(

||X||F − k, 0
)

(78)

and is interpreted column wise, with T (·) operating over each part of Xp + Dp

that corresponds to S̃c̃. We term the resulting algorithm the Chroma Estimation

of Amplitude Modulated Signals (CEAMS) method.

5 Numerical results

We proceed to examine the performance of the proposed estimators as a function

of the Signal-to-Noise Ratio (SNR), measured in dB, defined as

SNR = 20 log10

sxse
(79)

where sx and se denote the power of the noise-free signal and the noise, respect-

ively. As noted, the noise signal is here considered to consist of both the actual

background noise and of any non-harmonic components in the recording. There-

fore, in the case of strong formants, inharmonicity, or other musical features not

127



Paper D

−100 −80 −60 −40 −20 0 20
0

0.2

0.4

0.6

0.8

1

←m = 0
←m = 1

←m = 2
←m = 3

←m = 4
←m = 5

←m = 6
←m = 7

←m = 8

SNR [dB]

P
W

L

(a)

−100 −80 −60 −40 −20 0 20
0

0.2

0.4

0.6

0.8

1

←δ = 1/2
←δ = 1/4

←δ = 1/8
←δ = 1/16

←δ = 1/32
←δ = 1/64

SNR [dB]

P
W

L

(b)

Figure 1: Percentage of estimates within c ± 1/2 from the true tone, when using

twelve chromas, corresponding to the twelve semi-tones. Here, (a) is evaluated for

the note C at different octaves, m, whereas (b) is evaluated for the note C3 when

c ∈ [0, 12) is discretized into 6/d points. For both, N = 1024 and fs = 20 KHz

(which equals a signal of approximately 51 ms).

modeled in this work, this signal might be quite strong. To examine the statist-

ical limitations of chroma estimates, we initially examine the estimation limits,

as obtained by the CRLB, which is derived in the appendix. As chroma is con-

ventionally not considered a continuous variable, but rather as a number of grid

points corresponding to some musicological system, we examine the achievable

performance using the percentage-within-limits (PWL). This measures the num-

ber of estimates which are expected to fall within some pre-defined limit from the

true value, i.e., c ± d. For d = 1/2, this corresponds to the probability of obtain-

ing estimates within the correct semi-tone, as c = 0, . . . , 11. For d = 1/4, the

PWL instead determines the likelihood of correctly estimating each quarter tone,

and so forth. Figure 1(a) illustrates the performance of C notes at octaves m = 0

through m = 8, illustrating how the estimation problem becomes more difficult

as the frequencies move closer to zero. The note is here formed from N = 1024

samples of a three-harmonic single pitch signal, measured at fs = 20 KHz, which

corresponds to a signal of approximately 51 ms. As can be seen from the fig-

ure, the PWL will reach 100% for the lowest note, i.e., being the most difficult

estimation problem, at an SNR of approximately 0 dB. Figure 1(b) further il-

lustrates the estimation limit for half tones up to the 64th tones, for a C3 tone,

again reaching a perfect PWL at an SNR of approximately 0 dB, even for the
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Figure 2: Percentage of estimates within c ± 1/2 from the true tone, when using

twelve chromas. Here, (a) is evaluated for the note C3, for different data lengths,

using fs = 20 KHz, which implies a signal of N/fs seconds, i.e., being (from the

left) approximately 205 ms, 102 ms, 51 ms, 26 ms, 13 ms, 6 ms, and 3 ms. In

(b), the estimated PWL for the CEBS estimator is compared to the CRLB for the

C0 note, using N = 1024.

64th tone. Figure 2(a) similarly illustrates the estimation bounds as a function of

the data length for the C3 note, using d = 1/2. All three figures thus indicate

that one may expect a statistically efficient estimator to have no problems in cor-

rectly estimating the chromas, even in cases of SNR being significantly lower than

expected for most audio recordings. However, due to the introduced penalties

in the proposed estimators, one cannot expect these to be statistically efficient,

even if the noise signal was a white sequence. This as the penalties will introduce

an estimation bias, that although minor for most cases, will prevent the estimat-

ors to reach the CRLB. This is illustrated in Figure 2(b), showing the estimated

PWL for the CEBS estimator, as obtained using 1000 Monte Carlo simulations,

as compared to the corresponding CRLB. As may be seen in the figure, the actu-

ally achieved performance is, as expected, somewhat worse than predicted by the

CRLB, although the latter gives a good indication of the achievable performance.

Next, we proceed to examine the clarity of the proposed estimates, as compared

to the (publicly available) estimators in [9,10], using two audio signals from [30],

namely a two channel FM-violin playing a middle C scale (all tones from C4

to C5), and a C-major chord, both in equal temperament, sampled at fs = 22
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KHz, mixed to a single channel using the method detailed in [10]. Figure 3 il-

lustrate the resulting log-chromagrams for the Ellis, the Müller and Ewert, and

the CEBS estimators. We have here divided the signal in segments of length

N = 1024 samples (about 46 ms), having an overlap of 50%. For CEBS, we setl2 = 0.05, l3 = 2.3, and l4 = 0.1, for the chord, and l2 = 0.05, l3 = 4, andl4 = 0.1 for the scale, which are chosen using a simple heuristics from the FFT

(see, e.g., [5]). The tuning frequency is here set to fbase = 440, and results remain

quite unchanged at ±3 Hz. As can be seen in the figures, the CEBS estimator

yields a preferable estimate, suffering from noticeably less leakage and spurious

estimates. Continuing, we examine the performance of the proposed estimators

using a concert C-scale played by a trumpet acquired from [31], i.e., a highly

non-stationary signal. Figure illustrates the resulting chromagrams, as obtained

using the estimators in [10], [9], the CEBS estimator and the CEAMS estimator,

respectively. For the CEAMS, we use l = 0.3 and g = 193, a window length

of 1024 samples, a sampling frequency of 22050 Hz, Lmax = 9 overtones, and

9 spline points. As is clear from the figure, both the estimators in [9, 10] suffer

from apparent problems in choosing the correct chroma-bin for the scale. The

CEBS estimate is notably cleaner, but still suffers from some spurious chroma

features due to the inharmonicity of the signal. These spurious peaks have almost

completely vanished in the CEAMS estimate. Here, we have used the same basic

settings for CEBS as for CEAMS, and with l2 = 0.05, l3 = 3 and l4 = 0.1 (in

setting these parameters, we have taken care to find the best possible setting for

CEBS). It may be noted that the G in the scale is not detected by any method.

This is because the fundamental frequency found in those time frames is 808 Hz,

which is slightly closer to G#5 than to G5, using concert tuning. To illustrate

the difference in time-localization between CEBS and CEAMS, Figure show the

3-D chromagrams, where it once again can be noted that CEBS fails to identify

the chroma-bin at G#. Moreover, one may note the spurious peaks produced in

CEBS, compared to the rest of the chromagram. This is in contrast to CEAMS,

where none of the above mentioned behavior is present. Finally, we examine

how well the proposed estimators capture the actual signal dynamics, by studying

the envelopes of the reconstructed signals, formed from the respective estimates.

Figure 6 illustrates how the amplitude modulation introduced in the CEAMS

estimator has an advantage over the CEBS estimator. The CEAMS estimator

captures both the shape and magnitude of the true signal envelope, whereas the

CEBS estimator captures the shape reasonably, but fails to capture the amplitude.
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Figure 3: The performance for the (a,b) Ellis’s method, (c,d) the Müller and Ewert

method, and (e,f ) the proposed CEBS algorithm, when evaluated on a C-chord

(left), and a C-scale (right).
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Figure 4: The figures above display the chromagrams for the trumpet scale, ob-

tained using (a) Ellis’s method, (b) the Müller and Ewert method, (c) CEBS, and

(d) CEAMS.

6 Conclusions

In this article, we have presented two new methods for chroma estimation based

on a sparse modeling reconstruction framework. The first method, CEBS, is de-

signed to handle stationary time signals, and uses a fixed amplitude dictionary to

model the measured signal. The method was further extended to also allow for

time-varying signals, using a a spline-base model to capture the time-localization

of the signal; the resulting estimator was termed the CEAMS method. The per-

formance of the proposed estimators are compared both to the CRLB, presented

herein for the problem at hand, as well as to two well-known chroma estimators

using both real audio signals. It was found that the proposed estimators offer

132



7. Appendix: The Cramér-Rao lower bound

a notable performance gain as compared to the comparable methods, with the

CEAMS method being the better at capturing both the time-varying nature of

the signal and the overall signal envelope.

7 Appendix: The Cramér-Rao lower bound

In this appendix, we present the Cramér-Rao Lower Bound (CRLB) for the

chroma estimation problem. The signal in (15) may be equivalently be expressed

as

x(t) =
K
∑

k=1

Mk
∑

m=1

Lk
∑

l=1

ack,m,l e
j(2pfblt2me(ln(2)ck/12)

+fck,m,l ) (80)

where Mk and Lk denote the highest octave and the highest harmonic for chroma

class k, respectively. The the unknown parameters of the model arej = [ck, ack ,1,1,fck,1,1 · · · ack,m,l ,fck,m,l , ck+1, ack+1 ,1,1,fck+1,1,1 · · · ] (81)

The variance of the k:th parameter, jk, will thus be bound as

var(jk) ≥ [B(j)]k,k (82)

where B(j) denotes the CRLB matrix. Let

x̂(j) =
[

x̂(0,j) · · · x̂(N − 1,j)
]T

(83)

Assuming that the noise is independent of the parameters to be estimated, as well

as having a Gaussian distribution with covariance matrix Q, the Slepian-Bangs

formula yields (see, e.g., [32, 33])

B−1(j) = 2 Re
{∂x̂H (j)

∂j Q−1 ∂x̂(j)

∂jT

}

(84)

Introducenck,m,l = 2pfblt2m ln(2)

12
eln (2)ck/12ack,m,l (85)
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(a) (b)

Figure 5: The chromagrams with time localization for the (a) CEBS and (b)

CEAMS methods.

and form the partial derivatives with respect to the parameters as

∂x(t,j)

∂j =













∑Mk
m=1

∑Lk

l=1 jnck,m,l e
j(2pfblt2me(ln(2)ck/12)

+fck,m,l )

ej(2pfblt2me(ln(2)ck/12)
+fck,m,l )

jack,m,l e
j(2pfblt2me(ln(2)ck/12)

+fck ,m,l )

...













(86)

Making the further assumption that the noise is white, i.e., Q = s2I, the CRLB

matrix may be written as

B−1(j) =
2s2

C (87)

where C is defined as

C = Re
{∂x̂H (j)

∂j ∂x̂(j)

∂jT

}

(88)

Next, defineqk =

[∂x̂(0,j)

∂ck
· · · ∂x̂(N − 1,j)

∂ck

]T
(89)Yck,m,l =





∂x̂(0,j)
∂ack ,m,l

· · · ∂x̂(N−1,j)
∂ack ,m,l

∂x̂(0,j)
∂fck,m,l

· · · ∂x̂(0,j)
∂fck,m,l
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Figure 6: The figure above displays the time envelopes for the original signal

(black) and the reconstructed signals.

Then, using
∑P

p=1 =
∑Mk

m=1

∑Lk

l=1,

C1,1 =











qH
1 q1 qH

1 Y1,1 qH
1 Y1,2 · · · qH

1 Y1,PYH
1,1q1 YH

1,1Y1,1 YH
1,1Y1,2 · · · YH

1,1Y1,P
...

...
. . .

. . .
...YH

1,Pq1 YH
1,PY1,1 YH

1,PY1,2 · · · YH
1,PY1,P











(91)

and, analogously,

C2,1 =











qH
2 q1 qH

2 Y1,1 qH
2 Y1,2 · · · qH

2 Y1,PYH
2,1q1 YH

2,1Y1,1 YH
2,1Y1,2 · · · YH

2,1Y1,P
...

...
. . .

. . .
...YH

2,Pq1 YH
2,PY2,1 YH

2,PY2,2 · · · YH
2,PY1,P











(92)
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Thus,

C = Re





























C1,1 C1,2 C1,3 · · · C1,k

C2,1 C2,2 C2,3 · · · C2,k
...

...
. . .

. . .
...

Ck,1 Ck,2 Ck,3 · · · Ck,k





























(93)

with

Re{qH
k qk} =

Mk
∑

m=1

Lk
∑

l=1

a2
ck,m,l (2p 2mfbl ln(2)

12 eln(2)ck/12)2

6/ (N (N + 1)(2N + 1))

Re{YH
ck ,m,lYck,m,l} =

[

N 0

0 Na2
ck ,m,l

]

(94)

Re{Yck ,m,l ,qk} =
[

0

a2
ck ,m,l2pfbl2m ln(2)

12 eln(2)ck/12 N (N−1)
2

]

(95)

Re{Yk,m,l ,Yk,m,r} = 0 for l 6= r (96)

If there is a spectral overlap between the chroma groups, and/or when the octaves

considered have overlapping harmonics, the matrices Ck,r , with k 6= r will have

non-zero entries. However, for the case considered herein, using 12 distinct

chroma classes and only one tone, the following simplifications may be made:

Re{qkqr} = 0 for k 6= r (97)

Re{Yk,p,Yk,q} ≈ 0 (98)

Re{Yk,qr} ≈ 0, (99)

implying that C will be a block-diagonal matrix, with all off diagonal blocks being

zero, such that

C−1
= Re















































C−1
1,1 0 0 · · · 0

0 C−1
2,2 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . .

...

0 0 0 · · · C−1
k,k
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Partitioning the matrix Ck,k as

Ck,k =

[

c dH

d E

]

(101)

where c is a constant, d is a vector, and E is a diagonal matrix, one may use the

matrix inversion lemma to form the inverse matrix [C−1
k,k ]1,1 as

[C−1
k,k ]1,1 = (c − dH E−1d)−1 (102)

yielding the bound

var(ck) ≥ 6s2

∑Mk
m=1

∑Lk

l=1(ack,m,l2pfbl2m ln(2)
12 eln(2)ck/12)2N (N − 1)2

(103)
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