
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Perspective Text Analysis: Tutorial to Vertex

Bierschenk, Inger; Bierschenk, Bernhard

2011

Link to publication

Citation for published version (APA):
Bierschenk, I., & Bierschenk, B. (2011). Perspective Text Analysis: Tutorial to Vertex. (Kognitionsvetenskaplig
forskning : Cognitive Science Research; Vol. 100). Copenhagen University & Lund University.
http://archive.org/details/studiesinconsciousness

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/24b1e7ca-d944-4296-955a-1bbc01bb5dfc
http://archive.org/details/studiesinconsciousness

Kognitionsvetenskaplig forskning – Cognitive Science Research, ISSN 0281-9864, 2011, 100

Copenhagen University & Lund University

1
 Correspondence and requests for materials should be addressed to Bernhard Bierschenk, Department of

Psychology at Lund University, Box 213, SE-221 00 Lund, Sweden. Additional information on theory and

method development may be found at the URL address http://www.sites.google.com/site/aaoaxiom/tutorials

Perspective Text Analysis

Tutorial to Vertex

Inger Bierschenk

Bernhard Bierschenk
1

Abstract The present work is based on the Kantian (AaO)-axiom and conceptualised as a

textbook. As scientific method in the true sense of the notion science, the Vertex version of

Perspective Text Analysis (PTA) represents a completely new approach to text-based studies.

The inter-lingual character of Vertex has been tested and established in the context of six

different languages, four belonging to the German family and two to the Roman family. The

actual presentation concerns the English version. Vertex comprises a strict measurement of

the textual angles, which are used for a non-linear description of the verbal flow, whose

evolutionary dynamics shapes a language space. The core of Vertex is introduced by means

of instructions to a stepwise procedure with the aim to guide the user in text processing,

string calculation, and geometric representation of the dimensions of intention and

orientation. The evolved textual shapes and their transformation into energy landscapes are

discussed in relation to their dynamics and terminological validity in communicating

conceptual information of societal significance.

Text as Organisation and Structure

Approaching Texts

A great majority of scientific text analyses is initiated on the basis of the researcher’s

assumptions of what should be expressed in a certain text within a certain area. In a broad

social science perspective there are as many methods of text analyses as there are projects or

fields of research, that is, methods with, for example social, psychological, economic and

political constraints. This is due to the fact that the researcher or research group develop their

own theories of the “structure” of a field. The work is aimed at affirming or, in the single

cases, rejecting this structure by the method used. A common name for a lot of such methods

is content analysis.

Each content analysis implies some kind of pre-defined classification scheme applied

on the text by an analyser with more or less reliable result. The entire coding process is time

consuming at least by larger text materials, and once performed it is hard to apply anew,

among other things because the analyser during processing quite simply is not able to keep in

mind the classifications made at an earlier stage. It is even more difficult to perfectly agree

with another analyser. Consequently, to this methodology is connected a stock of reliability

tests, which make the result a question of probabilities, in the statistical sense.

Since the 70’s and for several years we worked with great amounts of interview

materials (4000 pages!), consisting of answers to unbound questions (Bierschenk &

Bierschenk, 1976). We know what it means to develop coding rules and write a manual and

have all the rules and decisions tested for reliability between coders (I. Bierschenk, 1977).

With this experiential background we would like to state that the final result of all this effort

is the feeling of having learnt a lot about spontaneous text production and about different

processes involved in the various steps of analysis. But it became more and more difficult to

2 Inger Bierschenk & Bernhard Bierschenk

see how this layout or textual face could be capable of reflecting something internal, that is,

structure.

It is a known fact that linguists and social scientists are very different in their way of

approaching texts, at least traditionally seen. To a linguist, the text includes its context, while

to a social scientist, the context may imply the wider frame of interpretation, that is, the text is

included in the context. Somewhere within those borderlines the linguist and the social

scientist meet under a joint flag, namely the structure concept, which by both is conceived of

as an inner quality of the text, but which they try to capture by looking at the face, that is, the

organisation. As a consequence, the same basic idea lies behind content analysis and

semantics.

Text as Organisation

Typical of organisation is the definition of units and their interrelations, often

described in terms of levels. Identification and analysis is done by means of a rule system

departing from a base or kernel and associating the units into a certain order so that the

procedure of reaching complete overview will be as efficient as possible. Depending on which

complex relations the organisation stands for, the path from base to top may be more or less

linear. There are parallel orderings and intermediate levels, more or less important nodes to

pass. Sometimes decisions have to be made, for example, because some units may have the

same function but different labels or vice versa. Other units are just slot fillers in the building

and function as barriers. Common to organisations of various kind is that they are visual and

tactile, at least they have visual representatives making hidden parts easily reachable, for

example by reference and inference.

One consequence of the social science view on text as organisation is to regard the text

as part of a kind of context formed by a collocation of organisations, which we might call an

agency. Seen in this way one text and its agent is not an autonomous whole but is linked, let

be in arbitrary order, to an agency of texts, whose common denominator the analysis shall

detect. Seen in a narrower linguistic context the organisation is a grammatical sentence and its

parts. Some parts are main components, some subordinated. We are convinced that most

social scientists use the notion structure when they mean order and relations, just like linguists

have done since modern grammarians in the 1950’s proposed the description of a sentence as

syntactic structures.

How then can we explain the mixing up of organisation and structure? At least in

traditional linguistics a kernel is assumed from which expansions and transformations can be

observed. Transformation is a structural concept, but in sentence analysis it is used for

positional change (e.g., the passive construction). The idea to prove structural development

via syntactic transformation caused a flow of psycho-linguistic and psychological tests in the

60’s and 70’s. One hypothesis tested was whether the degree of transformation on the kernel

sentence could be associated with degree of difficulty in understanding, measured for example

as processing time in reading the sentence. This was not the case. To conclude –

organisational change cannot guarantee structural control whether the steering component is

text or not.

Text as Structure

We think that anyone who has some experience of an organisation knows that the

informal ways are much more important than every formal step or stair. In places which are

involving people there is also a dynamics whose operations are both rule-breaking and

unexpected. Connected to a dynamic functioning are, above all, open channels, the possibility

for positional change, and sensitivity to the spirit (or Geist). These streams in the system are

necessary for development to come about. As a whole, it seems though as if the best result

 Perspective Text Analysis: Tutorial to Vertex 3

would be gained if at least some positions were filled by certain key functions, which do not

change, in order to clarify the organisation’s pathways and goals, that is, position and function

support each other. So, the structure is only partly visible and often just by chance through

organisational keys. But since they are stable, we can get at the pulse, the movement, the

power without which the organisation is nothing more than an empty shell.

A text analysis whose fundamental governing concept is structure has to keep track of

the functions and channels through which the steering component (the source) is operating. In

several social science models we find the concept of actor, sometimes standing for individual

(in the sense of a single representative) or organisation. Typical of an actor is only

representation; function and position are not separated. It follows that the concept of role is

central in such a model. The same idea is to be found in the linguistic model. A so called

grammatical role builds on positional thinking (where position = role) and that the various

role representatives are similar in the sense of classification; they must be of the same type to

fit into the role. Quite natural, the analysis of a Gestalt is based on pre-required knowledge of

the scenarios, the frames for the roles (I. Bierschenk, 1984).

In a structure model a perspective has to be discerned such that the source and the

operator can be separated during the angular displacement process. This presupposes not only

representation but above all individuality. To make clear in what way a perspective is present

in a text, we have to replace actor by agent. Agent stands for an individual, autonomous way

of steering a process. Depending on what the process is about or where in the flow the

steering is visible, its source manifests itself in the most appropriate shape. Thus a sub

component or part may stand for a whole, which means that the whole in all its parts is not

known during processing. An important consequence of this model is that the agent function

is bound to the first position in a functional schema. A schema differs from a frame insofar as

any textual information may take the function of agent. In this way it is possible to control the

co-operation between the visible and non-visible or unknown, which the Perspective Text

Analysis (PTA) detects.

PTA uses the functionally bound position to detect whether it is being filled or not.

When filled, there are variables or visible representative agents. When empty, this means that

the agent hides, but at the same time it opens up a peep-hole to a space or, referring to our

earlier example, a channel, which elicits a flowing of information through the text, since in

that case the hidden unknown agent (X-agent) performs its government from another place.

Through the hole it can be detected.

The bound position becomes a window through which a text producer chooses to show

up or not, or through which a Geist may stream, impossible to grip in advance, but fully

developed and conceivable when it has reached the end. The variable agents, also termed

textual agents, have the function in common that they regulate the streams descending from

the X-agent. Any other similarities between them are not possible to state a priori. Thus it is

the functional use of the agent that paves the way for perspective information. The

relationship between textual agents, text producer and some spirit or super-ordinate idea does

not build on classes but on categories, in the Kantian sense.

PTA and Vertex

PTA has been presented since the 1980’s (e.g., B. Bierschenk, 1984, 1991, 1993; I.

Bierschenk, 1992, 1999, 2011a; B. Bierschenk & I. Bierschenk, 1993; B. Bierschenk, I.

Bierschenk & H. Helmersson, 1996). The experiences made by a number of users form the

background to the methodological progress (I. Bierschenk, 2011b). Version Vertex comprises

a strict measurement of angular displacements, which are used for non-linear description of a

language flow, visualized as language spaces (B. Bierschenk, 2001, 2005; I. Bierschenk & B.

Bierschenk, 2004, 2011). The geometrical essentials are outlined in B. Bierschenk (2011).

4 Inger Bierschenk & Bernhard Bierschenk

Text Processing

You are now invited to follow a procedure, which will show what happens to a text

when processed with the Vertex system. The procedures have been divided into fifteen steps

under the following main elements: (1) Text processing, (2) Calculation, (3) Geometric

representation, and (4) Naming (transformation and extraction of terms). Furthermore, the

tutorial is based on eighteen tables and four figures.

The comprehensive significance of a text of any length or any subsection of it relates

to its style of timing and spacing. Moreover, a style reflects the degree of implicitness or

depth of a text. First of all you have to acquaint yourself with the piece of text that you will be

handling in your exercises. The following text portion has been taken from research materials,

handed in by two doctoral students of Economics and Business Administration:

Just think of the common attitude today, and that does not go for local government employees only, most people

think I have got my salary, why should I bother to come up with ideas as to how the local authority could save

money, I do not care a damn. It is the same reasoning here.

A community official stands for the verbal production. Hence, it is quite authentic and has the

typical verbal characteristics that can be expected from interviews. Distinctive of the

presented paragraph is partly the absence of any frame factor, partly the softness in the

moulding of particular points of view as well as the points of observation. Moreover,

independent of the length of a text, e.g., one sentence of length or more, a text represents

always wholeness. Now, you are invited to closely follow the coding procedure.

Step 1: Transposition

As a first measure, we will guide you through the working procedures stepwise.

Hence, in order to transpose text it is important to set up a table. The result of this practise

should look like the layout of Table 1.

Table 1

Transposition

Row Text Row Text Row Text Row Text

1 [.] 18 government 35 to 52 not

2 * 19 employees 36 come 53 care

3 Just 20 only 37 up 54 a

4 think 21 , 38 with 55 damn

5 of 22 most 39 ideas 56 .

6 the 23 people 40 as 57 *

7 common 24 think 41 to 58 It

8 attitude 25 I 42 how 59 is

9 today 26 have 43 the 60 the

10 , 27 got 44 local 61 same

11 and 28 my 45 authority 62 reasoning

12 that 29 salary 46 could 63 here

13 does 30 , 47 save 64 .

14 not 31 why 48 money 65 [*]

15 go 32 should 49 ,

16 for 33 I 50 I

17 local 34 bother 51 do

 Perspective Text Analysis: Tutorial to Vertex 5

Transposition means that you have to change the layout of the clause. Thereby you put

the text on its end. If transposition is taken as a measure for an anticipated algorithmic

processing of produced textual elements, processing strings of graphemes can be made

operational by searching between two sentence markers or between two clause markers.

As you can see in Table 1, each word gets its own row and also each punctuation

mark. In addition, you have to mark the beginning and end of the text with [.] when such a

punctuation mark is not naturally present. Within these end points there are in-between

borders, which you mark with a starter (*) if there is no naturally present marker, e.g., (,). If

the text would not continue at row 57, you would have to insert end of text (. [*]).

The transposed text has now been expanded with 4 rows, that is, 2 at the start ([.]*…),

1 at the beginning of the second sentence (* It…) and 1 at the very end (. [*]), which is

signalling the end of text, since no further strings are following. Hence, the text is now

transposed to 65 numbered rows. Each row is filled with strings of graphemes, some consist

of just one grapheme, e.g. (,) and (I), others with several. In the following, when we talk about

what is contained in the rows, we talk about strings.

Step 2: Dictionary Coding

Next step will be to identify strings that you are able to recognise as being part of the

English dictionary. These a priori classified markers are listed in our empirical dictionary

which you can inspect in Table 2.

Table 2

Generation of an empirical dictionary

1
Marker of Sentence of 1

st
 degree (Sentence Marker, SM)

2
Marker of Sentence of 2

nd
 degree (Clause Marker, CM)

When you have identified the lexical strings, you need to tag them with a code, which you

will have to use in identifying all the unidentified strings, which will be identified by the

algorithmic coding in Step 4 below. You find the Code system in Table 3. The codes

comprise a system with two-digit numbers in the interval from 00 to 90.

Verb (40) Prep (60) Prep (70) Prep (80)
2
Clause (01)

1
Sentence (00)

think of with for and .

does to that

go ,

have why

got as

should how

bother

come

could

save

do

care

is

reasoning

6 Inger Bierschenk & Bernhard Bierschenk

Table 3

Code system

Identification Symbol Description Code

Sentence Marker [.] Technical insertion of a period 00

Clause Marker that Naturally occurring Clause Marker 01

Agent AX Contextual or conditional restrictions 10

Agent AX Experiential specifications 20

Agent A Explicit 30

Agent * Implicit and unconditional 30

Verb  Nucleus of kernel-sentence 40

Objective O p0=Without Pointer and explicit 50

Objective * p0=Without Pointer and implicit 50

on-Objective - p1=Pointer on 60

with-Objective - p2=Pointer with 70

for-Objective - p3=Pointer for 80

Phrase - Verbless strings following a Clause Marker 90

Technical [*] Insertion before a closing period 01

Sentence Marker . Naturally occurring Sentence Marker 00

The Code system has been developed by B. Bierschenk and I. Bierschenk and was introduced

in 1976. The codes allow for the denotation of direction by tens and for the denotation of the

organisationally bound orientation by units. Meanings and marks will be clear to you as the

coding goes on. The insertion of technical markers (*) is made on the place where a functional

clause is implicit (as illustrated under Step 3).

Comment: The system recognises four types of markers, namely (1) Sentence Markers (SM),

(2) Clause markers (CM), (3) Prepositions (types on, with, and for), and also (4) Verbs.

Now we hope that you have a coding sheet, e.g., an Excel-sheet, in front of you, which you

can easily expand horizontally and vertically as you go on. Expand with two columns before

the strings to make space for row numbering and the codes. Mark the previously introduced

clause with the respective code on the row to the left of the text as shown in Table 4.

Comment: Punctuation marks are the sentence markers (. ? !) and the clause markers (, ; : -).

Other clause markers are function words, as e.g. conjunctions. Note that there is a difference

between the employed (inflected verb form) and the employees (noun form). The system

requires that you code the basic sense and turn inflected forms (i.e. verbs and participles) into

verbs. Thus the form reasoning is a verb irrespective of whether it may be a noun as well.

This principle has consequences in the coding, since the verb is the key string to identify the

unity clause.

Begin with looking up and identify the lexical strings. When you are ready you should have

35 coded strings. The empty slots will be filled with codes through the algorithmic

processing. In the continued process you will see that there might be more clauses (the term is

Functional Clause) than denoted by the clause markers, just depending on the verb

identification. The solution to the complete dictionary coding is given in Table 4.

 Perspective Text Analysis: Tutorial to Vertex 7

Table 4

Dictionary coding

Step 3: Coding of the Implicit Functional Clause

To make sure that the continued coding will be correct you have to identify all

functional clauses, even those which are not marked so far. This is the kernel:

Agent + Verb + Objective

This principle is given as a template in Table 5.

Table 5

Implicit functional clause

A functional clause shall have a verb (only one !) and one or more strings

before and after it. If no strings are present before or after, you insert a

dummy (*) to mark the missing string, which at a later stage will be

substituted with specific information. The table illustrates how a compound

verb expression expands to form two functional clauses: As soon as there is a

verb there must be a clause marker between this verb and the next following,

and also there has to be a place for an Agent position.

The processing must begin at the very end of the clause or text and

must work its way upward to the very beginning of the paragraph. Hence its

last sentence marker is always the initialising period. The necessity of this

Row Code String Row Code String Row Code String

1 00 [.] 23 - people 45 - authority

2 01 * 24 40 think 46 40 could

3 - Just 25 - I 47 40 save

4 40 think 26 40 have 48 - money

5 60 of 27 40 got 49 01 ,

6 - the 28 - my 50 - I

7 - common 29 - salary 51 40 do

8 - attitude 30 01 , 52 - not

9 - today 31 01 why 53 40 care

10 01 , 32 40 should 54 - a

11 01 and 33 - I 55 - damn

12 01 that 34 40 bother 56 00 .

13 40 does 35 60 to 57 01 *

14 - not 36 40 come 58 It

14 40 go 37 - up 59 40 is

16 80 for 38 70 with 60 - the

17 - local 39 - ideas 61 - same

18 - government 40 01 as 62 40 reasoning

19 - employees 41 60 to 63 - here

20 - only 42 01 how 64 00 .

21 01 , 43 - the 65 01 [.]

22 - most 44 - local

Code Function

01 *

30 *

40 Verb

50 *

01 *

30 *

40 Verb

50 *

01 *

8 Inger Bierschenk & Bernhard Bierschenk

kind of processing has been determined empirically (B. Bierschenk & I. Bierschenk, 1986a,

b). To demonstrate the principle of a bottom up processing we start with the dictionary coding

of Table 4 above as a basis. You can follow the process via Table 6 in Step 4. Here, you can

observe how functional clauses are working. We will now guide you through the algorithmic

coding by using the patterns of Table 6 and comment on the solutions.

Table 6

Algorithmic coding

Step 4: Algorithmic Coding

Concerning the algorithmic coding, again, our suggestion is that you use an Excel-

sheet, in which you can add empty rows and columns gradually, which will be required as the

coding proceeds.

(1) Starting at the bottom of Table 6, you find the string (here) before you reach the verb,

which is an Objective of the p0-type and which you tag with code 50. So, what you do now is

to expand with two more rows. Closest to the verb you mark the place (row 81) for the Agent

Row Code String Row Code String Row Code String

1 00 [.] 30 30 * 59 40 could

2 01 * 31 40 have 60 50 *

3 30 Just 32 50 * 61 01 *

4 40 think 33 01 * 62 30 *

5 60 of 34 30 * 63 40 save

6 60 the 35 40 got 64 50 money

7 60 common 36 50 my 65 01 ,

8 60 attitude 37 50 salary 66 30 I

9 60 today 38 01 , 67 40 do

10 01 , 39 01 why 68 50 not

11 01 and 40 30 * 69 01 *

12 01 that 41 40 should 70 30 *

13 30 * 42 50 I 71 40 care

14 40 does 43 01 * 72 50 a

15 50 not 44 30 * 73 50 damn

16 01 * 45 40 bother 74 00 .

17 30 * 46 50 * 75 01 *

18 40 go 47 01(60) to 76 30 It

19 80 for 48 30 * 77 40 is

20 80 local 49 40 come 78 50 the

21 80 government 50 50 up 79 50 same

22 80 employees 51 70 with 80 01 *

23 80 only 52 70 ideas 81 30 *

24 01 , 53 01 as 82 40 reasoning

25 30 most 54 01 (60) to 83 50 here

26 30 people 55 01 how 84 00 .

27 40 think 56 30 the 85 01 [*]

28 50 I 57 30 local

29 01 * 58 30 authority

 Perspective Text Analysis: Tutorial to Vertex 9

with (*) and give it code 30. The next row (80) above shall be marked with a clause marker

(*) and be given the code 01. It is illustrative as to the verb code (on row 82) and how the last

sentence is expanding because of missing explicitness in the string sequencing. In the first

place (reasoning) is a verb and not a noun. Thus the sentence has two verbs, which means two

functional clauses. The pattern to have in mind for the processing of this implicitness is the

one just presented in Table 5.

(2) The next functional clause is explicit, which means that (the same) on row (78-79) are

Objective strings of the 50-type and (It) on row 76 is a 30-type string.

(3) Taking a step upwards, you find two 50-strings (a damn) but not easily an Agent string,

because the verb (do) on row 67 takes the string (not) as its 50-string (row 68). What to do?

Well, again you have to mark an expansion with (*) on row 69 for implicit clause, and,

following the pattern, likewise an Agent dummy (row 70) together with its code.

(4) Next step is to do a full process coding of the implicit functional clause. Because, look at

what comes into view! Remember the pattern: Two verbs (rows 59 and 63) in a sequence

means three empty rows for the A-dummy, a clause marker, and O-dummy in this order

upwards. Now, you can complete the coding around the two verbs, and then take a step

further upwards.

(5) You find here on row 54 the p1-pointer, (to), between the two clause markers (as and

how). Thus in the first coding step, this pointer got the lexical code (60). But in this

connection, (pattern 01+60+01), it is neutralised and gets the marker code (01) in the second

step.

(6) In connection with (come) on row 49 you find a p2-pointer (with) which is steering the

following string, i.e. give code (70) to both. The Objective part is differentiated, such that (up)

is an ordinary p0-type. Further there is an implicit Agent (row 48), so following the kernel you

have to insert an Agent dummy. This step has as consequence that the pointer on row 47 is

refunctionalised to clause marker in the position close to the verb (pattern 60+*+40).

(7) The verb (bother) has an indicator of the p0-type (row 46), which you treat as before.

Since it is missing the A-code on row 44 you have to expand and do the correct coding.

(8) Above the next verb (should) there is an Agent missing (row 40), which you must insert,

but a 50-code on row 42 is explicit. The coding is complete when you have marked the

implicit clause, i.e. insertion of clause marker (01) between (I) and A-dummy (row 43).

(9) Think over and do the coding for the sequence around the verbs (got) (row 35) and (have)

(row 31) as an exercise. The have-clause is totally implicit, so do what you have to do. The

got-clause is partly explicit and must also be completed. This sequence has now been

expanded with five rows, right?

(10) Before you step up to the next implicit clause, you pass a completely explicit clause (the

verb think). The only addition you need to introduce is a clause marker (row 29).

(11) Now you step up to the verb (go) on row 18, where you see on row19 an example of the

p3-pointer, i.e., an 80-type of Objective. As usual you expand with codes for clause marker

and Agent above the verb (rows 16-17).

10 Inger Bierschenk & Bernhard Bierschenk

(12) Likewise for Agent on row 13 in connection to (does) you need to insert a Agent dummy.

(13) Finally there is on row 5 a p1-pointer of the (60) type to the verb (think). When you have

processed the last 30-code, the coding is complete.

At this point you have learnt how the functional clause is marked and how the text is

expanded because of missing explicitness in the string sequencing. Moreover, it has been

necessary to insert a number of dummies for implicit A- and O-strings around the verb, which

shall be used in making visible the perspective of the text. The coded text now consists of 85

rows. You will proceed by working with a number of functional clauses, which will be called

Block, and displacement procedures.

Step 5: Block Coding and Supplementation

In this phase you will be able to acquaint yourself with block coding and displacement

procedures. For this step you will need two extra columns, preferably to the right of the

strings. You see the design below in Table 7. The first concerns the blocks. The other column

you need is for the bookkeeping of the displacements. Each clause marker at the upper border

of an AaO unit indicates a block. Please number the blocks from the beginning of the text and

insert the digits in the reserved column just in front of the clause marker or first string of the

clause. If two or more clause markers are following each other, you insert the block number in

front of the first clause marker.

As you can see in Table 7, the number of blocks (B) is 15. They are important when it

comes to computing the copies needed for the replacement of dummies. The assignment of

copies to dummies will follow this principle:

A-dummy gets its copy from above, O-dummy from below.

In case the A-dummy is preceded by clause border (CM), the copy of the preceding 30-string

is taken. If it is preceded by sentence border (SM), the copies of both 30- and 50- (60/ 70/ 80)

strings are taken. At the beginning of text or paragraph there are no immediately preceding

strings, and this circumstance is, according to Table 3, denoted by the variable (X). The

supplement for the O-dummy is always picked up by copying the following A- and O-strings.

But in this case the sentence border is not to be crossed. End of sentence has the function of

end of text, which replaces the O-dummy with the variable (Y). As a consequence, the

dummies to be displaced are observed in positions with specified surrounded strings.

In looking at the coded text, we can observe that the strings can be described by means

of patterns with and without dummy-markers (*). Thus the first A-case of Table 7 is an

explicit A-string followed by a verb, which indicates the pattern (word + verb). Block 2

contains an A-dummy to be supplemented. This Agent is preceded by three clause markers

and followed by the verb. Thus the pattern for this case is (CM + * + verb), which means that

its copy is to be taken from Block 1, namely the explicit string [Just].

The O-pattern in the first block is of the p1-type (Verb+60-prep+Word), i.e. verb

followed by the preposition of, which is a case of the p1-type, plus strings. In Block 3, like the

preceding one, you identify the case for (CM+*+Verb), which requires a further Agent

displacement, which is resulting in a deeper embedding [[Just]] of the copied string, while the

O-case is a preposition case of the p3-type, i.e. (80-prep+Word).

Before we continue with calculations, it is important to remember that the text consists

of strings, which will be used when it comes to denote the final results, as demonstrated in the

Excursus chapter. Step 6 will show you how patterns just described are formalized into a

system of messengers and connected to the clocking mode of a string (B. Bierschenk, 2001).

 Perspective Text Analysis: Tutorial to Vertex 11

Table 7
Block coding and supplementation

Step 6: Identification and Assignment of Messengers

Messengers are emerging at the second level of pattern processing. It follows that

messengers are second order patterns, which are characterised by local properties.

Consequently, local properties communicate the steering and control conditions of the

Row Cod

e

String B Supplement
Row Code String B

Supplement

1 00 [.] 43 01 * 8

2 01 * 1 44 30 * B7=most people

3 30 Just 45 40 bother

4 40 think

46 50 *
B9=most people+up+ideas

+the local authority+money

5 60 of 47 01(60) to 9

6 60 the 48 30 * B8=most people

7 60 common 49 40 come

8 60 attitude 50 50 up

9 60 today 51 70 with

10 01 , 2 52 70 ideas

11 01 and 53 01 as 10

12 01 that 54 01(60) to

13 30 * B1=Just 55 01 how

14 40 does 56 30 the

15 50 not 57 30 local

16 01 * 3 58 30 authority

17 30 * B2=Just 59 40 could

18 40 go 60 50 * B11=the local authority+money

19 80 for 61 01 * 11

20 80 local

62 30 *
B10=as to how the local

authority

21 80
govern

ment

63 40 save

22 80 employees 64 50 money

23 80 only 65 01 , 12

24 01 , 4 66 30 I

25 30 most 67 40 do

26 30 people 68 50 not

27 40 think 69 01 * 13

28 50 I 70 30 * B12=I

29 01 * 5 71 40 care

30 30 * B4=most people 72 50 a

31 40 have 73 50 damn

32 50 *
B6=most

people+I
74 00 .

33 01 * 6 75 01 * 14

34 30 * B5=most people 76 30 It

35 40 got 77 40 is

36 50 my 78 50 the

37 50 salary 79 50 same

38 01 , 7 80 01 * 15

39 01 why 81 30 * B14=It

40 30 * B6=most people 82 40 reasoning

41 40 should 83 50 here

42 50 I 84 00 .

 85 01 [*]

12 Inger Bierschenk & Bernhard Bierschenk

functional clause. Step 6 means coding the blocks by tagging the condition which is steering

the clocking case. The validity of the clocking assumption is based on the hypothesis that

distance is a function of rotational acceleration and that spinors have the capacity to carry the

rotation of segments of varying complexity. Since any phase transition from virtual to

material states results in a decrease in symmetry and since spinors offer an efficient notation

in the form of directed numbers (Hestenes, 1986/1993, pp. 11-12, 51), they can be used to

control broken symmetries and to establish prismatic textual surfaces. Furthermore, the

measurement in Radians (Rad) in Table 8 is given by [arc  = 2(i/360)] and [arc  =

2(i/360)]. Hestenes (p. 75) emphasises that the exponential function and its series

expansion requires that angle is measured in radians.

As column name in Table 9 below you may use Messenger (M). The (M) assignment

will be done by using the messengers given in Table 8. As you can read out from the table,

each side of the verb has 9 messengers and consequently 9 basic steering and control

conditions, which are all inclusive. Each messenger has been empirically defined and verified

experimentally. Which case is applicable has been marked with the notion (A1-A9) for the

messengers of the Agent and (O1-O9) for messengers of the Objective.

Table 8

Empirically defined messengers

SMp= at the beginning of a paragraph; SMs= at the beginning of a sentence;

In the coding procedure, the dummy symbol is substituted with *

The first A-case is of the A5-type, which matches the pattern ([.]*Word+) of Block 1, which

means sentence starting with a technical sentence marker plus a technical clause marker

followed by one or more strings, which are followed by a verb. Thus mark the case with A5

and put the tag on the clause marker. It corresponds to a string rotation before the verb ().

The assignment has been supplemented with the proper clocking mode of the

messengers for illustrative purposes. This illustration should make the connection between the

empirically defined messengers of Table 8 and the rotation dynamics completely clear.

You may for example compare the A-string of Block 1 with the one in Block 2, where

it is a dummy, preceded by three clause markers and followed by a verb. This pattern

corresponds to case A8, thus the first clause marker of the second block should be tagged with

A8, which signals an exceedingly different clocking mode. The O-pattern in the first block is

of the O6-type, i.e. verb followed by a preposition case of p1-type plus strings. Now you tag

the pattern with O6, which you put on the verb string. In the next step it will be clear that the

rotation of the verb is calculated as part of the O-field. In Block 2 you find an O-pattern which

corresponds to the first pattern in the first block (+word), namely an explicit string

connected to the verb. Mark the pattern with O5.

 Left-hand Side of FC Rad
1
 Right-hand Side of FC Rad

1

A = before the Verb i/2 O = after the Verb i/2

1 SMp+A+ 0 1 +O+SM 0

2 SM+CM+A+ 0.785 2 +O+CM+Phrase+CM 0.785

3 CM+Phrase+ 1.57 3 +Prep+O+SM 1.57

4 CM+Prep+Word+ 2.36 4 +Prep+O+...+CM 2.36

5 Word+ 3.14 5 +Word 3.14

6 Word+Prep+ 3.87 6 +On-prep+Word 3.87

7 Word+Prep+…+ 4.71 7 +With-prep+Word 4.71

8 CM+A+ 5.50 8 +For-prep+Word 5.50

9 SMs+A+ 6.28 9 +O+CM 6.28

 Perspective Text Analysis: Tutorial to Vertex 13

Table 9
Assignment of messengers

Row Code String B M Row Code String B M

1 00 [.] 44 30 *

2 01 * 1 A5 45 40 bother O9

3 30 Just 46 50 *

4 40 think O6 47 01(60) to 9

5 60 of 48 30 * A8

6 60 the 49 40 come O5

7 60 common 50 50 up

8 60 attitude 51 70 with O7

9 60 today 52 70 ideas

10 01 , 2 A8 53 01 as 10 A5

11 01 and 54 01(60) to

12 01 that 55 01 how

13 30 * 56 30 the

14 40 does O5 57 30 local

15 50 not 58 30 authority

16 01 * 3 A8 59 40 could O9

17 30 * 60 50 *

18 40 go O8 61 01 * 11 A8

19 80 for 62 30 *

20 80 local 63 40 save O5

21 80 government 64 50 money

22 80 employees 65 01 , 12 A5

23 80 only 66 30 I

24 01 * 4 A5 67 40 do O5

25 30 most 68 50 not

26 30 people 69 01 * 13 A8

27 40 think O5 70 30 *

28 50 I 71 40 care O5

29 01 * 5 A8 72 50 A

30 30 * 73 50 damn

31 30 have O9 74 00 .

32 50 * 75 01 * 14 A5

33 01 * 6 A8 76 30 It

34 30 * 77 40 is O5

35 40 got O5 78 50 the

36 50 my 79 50 same

37 50 salary 80 01 * 15 A8

38 01 , 7 A8 81 30 *

39 01 why 82 40 reasoning O5

40 30 * 83 50 here

41 40 should O5 84 00 .

42 50 I 85 01 [*]

43 01 * 8 A8

14 Inger Bierschenk & Bernhard Bierschenk

In Block 3, like the preceding one, you identify case A8, while the O-case is a

preposition case of p3-type, i.e. O8. In Block 4 there is an A5 and an O5 pattern, and after it a

new A8. The O-case in Block 5 can be identified as a verb followed by dummy and clause

marker, which is denoted O9. Next block starts with another A8, which you now know the

pattern of. As to the Object case of Block 6, it is of the O5 type consisting of several strings

after the verb. You can see how the nesting of strings gives a series of implicit (structurally

present) Agents; Blocks 7, 8, and 9 all take the A8. Block 7 further has an O5, as also Block 9

(up). As Object case of Block 8 you mark O9 because of the dummy.

In Block 9 we can identify a pattern with preposition of the p2-type and string, i.e. O7,

which you mark at the pointer position. Block 10 takes an A5 and an O9, the following an A8

and an O5. A5 and O5, the typical explicit clause pattern, comes next. In Block 13 we have an

(*A) and thus an A8 plus an explicit 50 code, O5. Now the last sentence runs automatically,

beginning with A5, O5, and ending with A8, O5.

Calculation

Step 7: String Rotation

Once again, identified displacements can be updated and the changes in the winding of

strings can be related to componential pairing. In computing the dynamics of developing

mono- or multi-layered composites, involved super-string rotations have to be carried out in

agreement with the patterns of winding super-strings, given in Table 10.

Table 10

Patterns of winding super-strings

With reference to the given pattern of winding

super-strings, it implies the application of the

following rules:

(1) The winding (W) of the virtual string is taken as basis (W=1/1). Every layered segment of

this string is treated as an expression of the resonating property of a super-string. Since it is an

expression of the string’s contextual circumstances, its surface oriented curling plays a

complementary role.

(2) The curling is accounted for by adding (+) the fraction of (W=1/10). The curling value is

based on the observation that no more than ten words are making up a particular super-string.

This value is added to the basic winding value of the string.

(3) In addition, the valve fraction is computed as (W=1/100). This fraction is multiplied with

the number of participating graphemes. Geometrically conceived, they have a share in the

development of a particular super-string.

By means of Table 11, you will learn how to decide upon the rotational speed of the strings

and their acceleration. The calculation of the string rotations will be done by using the radians

given in Table 8. You are now going to start calculation as illustrated in Table 11. We take the

last sentence as our example because of the processing of dummies. The string It takes the

value 0.314 (string within component) + (0.0314*2) (grapheme within string), which gives

the value (=0.3768). To this value you add the base value of the component (A5=3.14).

Your computing should give you the sum (=3.5168). In the same way you are going to

calculate O5. Please notice, that you always assign the sentence marker to the nearest

preceding component and the clause markers (i.e., the clause openers) to the nearest following

Pattern Property Magnitude

Messenger Virtual Basic Value (W=1/1)

+Word Physical Curling Value (W1/10)

+Grapheme Material Valve Value (W=1/100)

 Perspective Text Analysis: Tutorial to Vertex 15

component. The sentence is a good illustration of how to compute implicit strings. Because of

the verb reasoning extra rows are added containing clause marker and (*A), which trigger the

pattern A8.

Table 11

String rotation

Row Code String M Sum Row Code String M Sum

1 00 [.] 44 30 * -3.90607

2 01 * A5 45 40 bother O9

3 30 Just 3.5796 46 50 * -11.4004

4 40 think 47 01(60) to A8

5 60 of O6 48 30 * -5.59128

6 60 the 49 40 come O5

7 60 common 50 50 up 3.9564

8 60 attitude 51 70 with O7

9 60 today 7.3143 52 70 ideas 6.0759

10 01 , A8 53 01 as A5

11 01 and 54 01(60) to

12 01 that 55 01 how

13 30 * 5.093017 56 30 the

14 40 does O5 57 30 local

15 50 not 3.9878 58 30 authority 4.3424

16 01 * A8 59 40 could O9

17 30 * 0.965102 60 50 * 0.467059

18 40 go O8 61 01 * A8

19 80 for 62 30 * 3.1002877

20 80 local 63 40 save O5

21 80 government 64 50 money 4.0506

22 80 employees 65 01 , A5

23 80 only 10.12 66 30 I 3.8308

24 01 * A5 67 40 do O5

25 30 most 68 50 not 3.925

26 30 people 4.4274 69 01 * A8

27 40 think O5 70 30 * 3.542757

28 50 I 3.9564 71 40 care O5

29 01 * A8 72 50 a

30 30 * 3.395861 73 50 damn

31 40 have O9 74 00 . 4.71

32 50 * -1.73949 75 01 * A5

33 01 * A8 76 30 It 3.5168

34 30 * 1.050653 77 40 is O5

35 40 got O5 78 50 the

36 50 my 79 50 same 4.3646

37 50 salary 4.4274 80 01 * A8

38 01 , A8 81 30 * 3.624687

39 01 why 82 40 reasoning O5

40 30 * -0.025445 83 50 here

41 40 should O5 84 00 . 4.5216

42 50 I 3.9878 85 01 [*]

43 01 * A8

16 Inger Bierschenk & Bernhard Bierschenk

As you already know, the value of the Agent of the preceding block (30) is displaced

and inserted in the 30-slot of the second block. For example, an arrow between the two

envisioned gliding plans (B. Bierschenk, 2001, p. 4) makes evident, that the clocking initiates

displacements, which imply that the Agent becomes shaded. You may control the complexity

and the complete calculation of the string rotations by inspecting Table 11. Thereby you can

notice how certain blocks, for example Blocks 7-9 on the rows 48 to 72 leave holes, which

form fading path for the Agent as well as sinking path for the Objective.

After having completed this procedure you have made all preparations required for a

3D-presentation. In the next step, you will be working with setting up the necessary matrices.

We suppose that you are familiar with the idea that a text may be represented in a 3D mode, a

step which you are to prepare in the following.

Step 8: Strand Rotation

On the basis of the summed values of the composites of Table 11 you will see how

strands are forming.

Table 12

Strand rotation

Strands are the expression of systematised

sums and become the entries in Table 12,

which is based on the parameters (1) Interval,

(2) Number of variables [A=()] and [O=()]

per interval, and (3) Rotations (radians).

Table 12 contains the complete solution to

the strand rotations. It is suitable to construct

the table with the values of (A) and (O) in a

parallel manner. As you can see you need 5

columns. In the set-up of the table the A-O

unit is still central. All A-O pairs in the text

are registered in the first column. By now

you have also seen that there are sometimes

more than one object in a clause, so therefore

the pairs are 16 instead of 15 (number of

blocks).

As you may have noticed, the number of intervals in this text is 6 but the number of A-O pairs

varies. For example, in the fifth interval there are two -variables but only one shaded -

variable. Hence, the fifth column denotes the serial order of the pairs within an interval.

Geometric Representation

Step 9: Developed Textual Spaces

In this step you will have to transfer the strands to some suitable graph program. (We

have used SigmaPlot, Version 11). You are asked to construct one graph for each component.

The order between variables within intervals (column 5 of Table 12) should be transferred to

the x-axis and the number of intervals to the y-axis. The value of the component governs the

development on the z-axis. The way the graphs are shaped after the data have been transferred

to a typical SigmaPlot arrangement can be viewed in Figure 1.

Pair Rad Rad Interval Case

Number -strand -strand Number Number

1 3.5796 7.3143 1 1

2 5.093017 3.9878 2 1

3 0.965102 10.12 2 2

4 4.4274 3.9564 3 1

5 3.395861 -1.73949 3 2

6 1.050653 4.4274 3 3

7 -0.025445 3.9878 4 1

8 -3.90607 -11.4004 4 2

9 -5.59128 3.9564 4 3

10 -5.59128 6.0759 4 4

11 4.3424 0.467059 4 5

12 3.102877 4.0506 4 6

13 3.8308 3.925 5 1

14 3.542757 4.71 5 2

15 3.5168 4.3646 6 1

16 3.624687 4.5216 6 2

 Perspective Text Analysis: Tutorial to Vertex 17

Figure 1 Unfolded spaces

-20

-15

-10

-5

0

5

10

15

20

1

2

3

4

5

6

1
2

3
4

5

F
lo

w
 d

y
n
a
m

ic
s
 (

in
 R

a
d
)


-v

ar
ia

bl
es

Intervals

Intention

-20

-10

0

10

20

30

40

1

2

3

4

5

6

1
2

3
4

5

F
lo

w
 d

y
n
a
m

ic
s
 (

in
 R

a
d
)


-v

ar
ia

bl
es

Intervals

Orientation

18 Inger Bierschenk & Bernhard Bierschenk

Comment: A first comment to the shapes has to do with the fact that the transference of data

from the table has been made from the left, like in ordinary reading. The reason for this way

of working is simply that it seems most natural. It implies that reading the textual

development out of the graphs has to start from the right instead.

Now you can begin familiarise yourself with the text the way it looks when it has been

transformed into a graphical form and become similar to a waving fabric. In another

connection we have named theses shapes texture, which seems to be a fitting term.

The Intention (A) component emerges with a dynamic watered shape (values

fluctuating between (~+0.96 and ~+5.09) during the first three intervals. This movement is

followed by a basin-like formation due to the first five cases of the fourth interval (lowest

value is ~-5.59). Finally the texture smoothly moves up to the end (~+3.62).

The Orientation (O) component starts with a value around (~+7.31) in the first case of

the first interval, which is pictured in the stretched edge in the lower right corner. At the

second case of the second interval the highest value (~+10.12) can be seen as the texture starts

going in waves. From the second case of the fourth interval the movement dives to (~-11.40),

which is marked by the bowl-shape in the middle of the graph. A fairly deep fold is formed by

the end of the same interval before it smoothly ends up in (~+4.52) at the edge of the bowl.

Comment on (A) and (O): It may be worthwhile commenting on (A) and (O) as unity. We

would like to point out to you the complementary shapes of the graphs. Where there is

dynamic movement in the Agent in the beginning, the development of the Objective is flat

and where there is a sudden depth in the Objective, the Agent is shaded in several cases in a

row. Thus, the fourth interval carries the focus of the text producer, i.e. the perspective.

Until now we have demonstrated that the open sphere of a language space is controlled by the

displacement function, which means that this function is working in the direction of growing

string-vectors. However, with respect to the viscous-elastic properties, determining the

magnitude of shearing and straining, the function controls also rolling vectors, which can be

observed to emerge in hyperbolic spaces. Hence, the effect of deformation becomes manifest

through multi-layered entanglements, which are refracted through imperfect [AaO] units. For

that reason, growing must be equated with rotational differences, which are the result of

differences in energy, originally invested into perfect [AaO] units and the energy fused into

imperfect units. Even more important is that this kind of differences appears at the

thermodynamic level as waves, which relate to various forms of rotational acceleration.

Quite another question is what happens when the purpose is to get at the concentrated

energy the text producer has invested. That will be our focus from step 10 on.

Step 10: Ordering of Variables within Intervals

The developed space of the text and the dynamics characteristic of the verbal flow

show a picture of the text seen through a number of cooperating external measures. Quite

naturally, the external measures cannot give an image of the internal properties of the text, i.e.

the origin of the textual dynamics. We can name these properties with notions like pressure or

focus. Thus it is a matter of concentration in the sense of energy consumption. A measure on

the concentrated textual energy is based on a function for the way the text becomes folded and

concentrated around certain places. To be able to discover such operator values we need a

principle for grouping of variables, which means that the variables carry higher information

values. This is another kind of values than the ones that give rise to the rotation.

 Perspective Text Analysis: Tutorial to Vertex 19

With the point of departure in binary groups (G*), suggested by Connes (1994),

numeric structures can be detected and made manifest. Connes’ operator () function leads to

remarkably simple measurements of leaves, branches and trees, which take into consideration

coordinative interactions so that even small leaf can contribute to a determination of the

appearance of a tree-structure.

At every moment the numerical value of the () function is half the difference

between the effects of a reference value, resisting or non-resisting an operator value, which is

taken as basis for fusion. By applying the operator (/2) to the fusion processes, certain

magnitudes become united. Since the procedure is using the two-fold matrix, the operator

value is inserted in the upper left cell, while the contrasting reference value is to be found in

the bottom right cell. The remaining cells are filled with zeros. In this way, the fusion

algorithm identifies these cells with identity copies.

Thus, generating pairs implies that the values are enveloped by operations that are

closing all open sets. Since this procedure is connected with Heisenberg’s uncertainty

principle (Greene, 1999, p. 424), it is, according to Mackenzie (1997), sufficient for

generating the space of the entire standard model of elementary particle interaction. Hence,

the attractors are resulting from [T=CC], which constitutes the workspace. It follows that

the concentration space must develop on two simple connection (C) matrices.

To summarise, the fusion algorithm works with a connection matrix, based on the

association of two discrete points. It was noted that the algorithm has the obvious power of

changing either point into the other. Since Connes’ fusion operator works with only two

points and their alter-egos, it means, according to Mackenzie (1997) that the algorithm is

producing the extraordinary condition, namely that space can be represented with a pair of

numbers on with classical arithmetic operations can be performed despite the fact that every

point is twinned with an indistinguishable alter-ego. Therefore, the prominent aspect of

progressive processing of a trace [T] is definable and constitutes an efficient folding of strings

into complicated tree-structures. Finally, the relation expressed through the trace is the natural

foundation of functional identity.

Now you need to set up a table again, one for each component and with two columns

each. The sets should look like the groupings of the A- and O-components which are

presented in Tables 13 and 14. You start from Table 12, which contains the Intervals. For

each variable you create a row, and also for each marker of interval (punctuation mark, as

defined in the Comment on p. 6). You have now one column for variable within interval and

one for the value (radian). As soon as you find a value that exceeds the critical value you sort

it out but save it for later use. When you have processed the entire text example and generated

the solutions to the tables, they should look like Tables 13 and 14.

When you have finished this step you have for example got Table (13) with close

values of the order (4, 5), (11, 12), (13, 14), (15, 16). All other values, namely (3, 6, 7, 8, 9,

10), have been sorted out for the present. For practical purpose, make space at the end of the

table for these kinds of variables. In the same way, you will be able to set up Table 14 which

gives you access to the grouping in the O-component.

The observed organisation implies that all differences should stay under the critical

value of (0 >  < 1) in order for two values to form the basis for a groupoid. In this step you

will compare the values within an interval with the critical value. If the mean value of a pair-

wise grouping does not exceed the critical value, the value remains and is compared with the

next value downwards in the table.

In the next step you will use the differences between radians within intervals to

generate a transformation process out of the grouping, and emerging is a new kind of

conservation principle.

20 Inger Bierschenk & Bernhard Bierschenk

Table 13
Grouping in the A-component

Variable Radian

No -strand

.

1 3.579600

,

2 5.093017

3

,

4 4.427400

5 3.395861

6

,

7

8

9

10

11 4.3424

12 3.102877

,

13 3.830800

14 3.542757

.

15 3.516800

16 3.624687

.

3 0.965102

,

6 1.050653

,

7 -0.025445

8 -3.90607

9 -5.59128

10 -5.59128

Comment: The introduced Zipper mechanism (B. Bierschenk, 2002) takes into account the

time aspect of the acceleration, i.e. the dependency between variables that have been

produced close to each other. Thus, according to this algorithm, the grouping is valid within

the interval. Not until the interval is processed you may cross the border. In this way you

eliminate universality, which would not be in line with the evolutionary theory behind the

method. This principle will be developed further in the next section.

 Perspective Text Analysis: Tutorial to Vertex 21

Table 14
Grouping in the O-component

Variable Radian

No -strand

.

1

,

2 3.987800

3

,

4 3.956400

5

6 4.427400

,

7 3.989700

8

9 3.956400

10

11

12 4.0506

,

13 3.9250

14 4.7100

.

15 4.3646

16 4.5216

.

11 0.467059

,

5 -1.739490

,

1 7.314300

,

10 6.0759

,

3 10.120000

,

8 -11.4004

Step 11: Dimensioning of Time Dependent Nets

The convention you should use for generating a net is a coordinate system with a

gradient of 45 degrees (rhombic form). You will need either paper and pencil or a drawing

program that can set up the coordinates, as shown in Figure 2, because this gives you the best

overview. The best position to start at is the upper left corner of the rhomb from where you

can expand the net. For sure, you will get an approximate estimate of the size of the needed

22 Inger Bierschenk & Bernhard Bierschenk

net through the number of variables and dummies. But this is not enough. You must also give

space for the possibility of closing them in a ring. You will soon realise that there are some

construction principles you need to pay attention to.

Now continue by transferring the inmost bracket in the constructed tree (Step 10) into

the approximated net. To number the dimensionality of the net, you had better start at the

upper left corner and assign to the edge the value (0). The same start value applies for the

upper line. Next position at the left dimension (vertical) thus will be (0:1). The left-right

dynamics requires a further dimension (horizontal), which means that the first upper position

gets the value (1:0). In order to determine the nesting in the O-component, you need to

construct a new net like that of Figure 2.

To determine what the nesting looks like for the O-component you need to determine

the time dependence between the variables of the binary groups (groupoids) within the

periodic mesh system. For example you insert the value for (D) at the position (1:0) and the

value for variable (2) at the position (0:1). Thereafter you need to transform the established

bracket by marking their grouping with curved lines, ending in the node (T1), which will

occupy position (1:1). The value for (4) at position (0:2) and the value for variable (6) at

position (0:3) are generating the node (T2) at position (1:3). After that are the curved lines

binding together point attractors, which attract the variables, with state attractors, which carry

the singularities of the transformation. The transformation must take the form of a swallow’s

tail. If you do not manage to realise this form, you have made some mistake somewhere in the

transformation process.

To repeat: with the given example, you have been able to notice that the construction

begins in the second interval, because it contains the nearest distance between any two

rotation values within the period. (T2) is the root of the concentration process. After you have

established the first singularities, you need to transit the border backwards to the first interval

in order to reach the variable (2). Since this interval contains only one variable, but you need

two for a groupoid to form, you retreat to the alter-ego (dummy) of the variable and mark it

with the zero value. It follows that the singularity (T1) is summing up the value of the

groupoid. At this stage you are in the position to link (T2) backwards to the first singularity

(T1). This link is stretching into the second dimension, where you now can establish the third

singularity (T3) at the position (2:3).

When you are ready with this second net, you have created two separate mesh

systems, which now will be the basis for representing the fusion dynamics in forming energy

concentrations in folded landscapes. As you may have realised, you mark a terminal for each

and every variable and dummy. All terminals are to be found at the edges of a net. In

conclusion, in the linking process you are asked to generate the singularities forwards and

bind the resulting nodes backwards. The following principles should facilitate your work:

No line may cross one and the same cell twice

A line may not cross itself

The generated path must approximate the form of a ring

In the process you take the closeness in space and time among the point and state attractors

into account. In looking at O-Mesh (Fig. 3) you will see that the alter-ego, when present, is

mirroring the value of the variable of a groupoid. The construction of the A-Mesh (Fig. 2)

does not differ from the principles just described. The most striking property of a net is the

number of empty places. No net can consist of more than 74 % filled places (Wales, 2003, p.

12). Therefore, it is quite natural that you find holes in it, which lead to irregularities. And

these are crucial for the upcoming analysis.

 Perspective Text Analysis: Tutorial to Vertex 23

 D

 1

 T1

 D

 11

 2

 T19 10

 T2

 4 9

 T20

 5 T18 8

 T21

 T3

 T4 T17

 T5 T16

 T7 7

 12 T6 T15

 T9

 13 T14 D

 T13

 T8 6

 14 T11

 15 T12 D

 T10

 16

 3

 17

 D

Figure 2 A-mesh

24 Inger Bierschenk & Bernhard Bierschenk

 2 D

 4 T1

 6

 8

 7 T2 D

 T22

 T3 3

 9 T23

 D

 D T4 T21 T20

 T6

 12 T19

 T7 T17

 T5 T18

 T9

 T8 10

 13 T11 T15

 T16 D

 14

 T10

 15 1

 T14

 16 T13 D

 T12

 D

 5

 11

 D

Figure 3 O-mesh

 Perspective Text Analysis: Tutorial to Vertex 25

For assessing the meaning of the emergent state attractors of the Figures 2 and 3, it is

essential to conceive the development of their ecological import as result of changes in their

degree of complexity. Thus, coupling configurations, related to neighbourhood, prevent

ambiguity, because time-dependent coupling, speed and reversible covalent interface

smoothness are generating novel fitness conditions. This novelty is the result of the described

connection dynamics, which is superior when compared to the functional architecture of

classical clustering algorithms. Before that, though, you have to take step 12.

Step 12: Transfer of Coordinate Systems to Tables

Your next task is to transfer the net construction to table form. As you can notice in

the Tables 15 and 16, you have to insert values for the empty places as well, i.e. (0). A zero

rotation has the same effect in the table as a filler value. The necessary means will be one

column for the nodes of the point and state attractors (Coordinates) and one for the empirical

values (Radians).

Further, all intersections are not occupied by nodes, and the nodes are not evenly

distributed over the net. On the other hand, you can also see that the configurations of the O-

and A-components are surprisingly similar. The small variability that you may notice is of no

import for the moment.

Table 15

Grid of the A-component

C Rad C Rad C Rad C Rad C Rad

00 0 10 0 20 0 30 -5.59128 40 0

01 3.5796 11 3.5796 21 0 31 -5.59128 41 0

02 0 12 0 22 0 32 -15.08863 42 0

03 5.093017 13 5.093017 23 0 33 25.357856 43 0

04 4.4274 14 0 24 0 34 0 44 0

05 3.395861 15 7.823261 25 12.916278 35 16.495878 45 0

06 0 16 0 26 0 36 23.94115 46 31.314712

07 0 17 0 27 7.445277 37 0 47 7.373557

08 0 18 4.3424 28 3.102877 38 3.8308 48 3.542757

C Rad C Rad C Rad C Rad

50 -5.59128 60 -3.90607 70 0 80 0

51 -9.49735 61 0 71 0 81 0

52 0 62 40.446486 72 -0.025445 82 -0.025445

53 0 63 0 73 0 83 0

54 0 64 40.471931 74 1.05063 84 1.05063

55 0 65 39.421301 75 0 85 0

56 0 66 38.456199 76 0.965102 86 0.965102

57 0 67 7.141487 77 0 87 0

58 3.5168 68 3.624687 78 0 88 0

26 Inger Bierschenk & Bernhard Bierschenk

Table 16

Grid of the O-component

Step 13: Folding Landscapes

When you transfer the nodes and their values to a graph program (SigmaPlot, 2008, p.

148) you can see that the nodes refer to three dimensions, where the variables define the

dimension (X), i.e., (x1, x2, x3). The second dimension (Y), i.e., (y1, y1, y1,…, y3) represents

the layers and the third (Z) gives the values of the variables in running order. Even for this

step you are advised to use a suitable graph program. When you have finished the transfer of

your data, the program will ask you to specify the type of graph you prefer. The most

appropriate is to choose 3D Mesh Plot according to Figure 4.

A folded landscape can be characterised from many perspectives. One is to regard the

way in which they form into hills, mountains and valleys, i.e. from a natural geographic view.

If you look at them like this, a simple description may offer itself:

The folded A-landscape depicts in the foreground a few concentrations, mainly under

zero line. But on its right-hand side, it shows the formation of foothills with two peaks. A

sloping formation is visible in the background, while three mountain peaks of equal height

rise at the left-hand side.

The O-landscape shows in the foreground two deep valleys cutting into a mountain

massif. Hence, a varied formation appears under the zero line. Further to the left emerges a

mountain crest in front of a prolonged and narrow valley. Finally, another crest dominates the

background. The O-landscape gives a more buckled and diverse impression than the A-

landscape, which is more distinct.

C Rad C Rad C Rad C Rad C Rad

00 0 10 0 20 0 30 0 40 -11.4004

01 3.9887 11 3.9887 21 0 31 0 41 -11.4004

02 3.9564 12 0 22 0 32 0 42 52.727859

03 4.4274 13 8.3838 23 12.3725 33 0 43 0

04 3.9897 14 0 24 0 34 0 44 0

05 3.9564 15 7.9461 25 11.9967 35 24.3692 45 0

06 0 16 0 26 0 36 33.5042 46 41.89904

07 4.0506 17 4.0506 27 8.635 37 0 47 8.8862

08 0 18 3.9250 28 4.71 38 4.364 48 4.5216

C Rad C Rad C Rad C Rad

50 0 60 10.12 70 0 80 0

51 0 61 10.12 71 0 81 0

52 64.128859 62 0 72 6.0759 82 6.0759

53 54.008259 63 13.3902 73 0 83 0

54 0 64 0 74 7.3143 84 7.3143

55 40.618059 65 0 75 0 85 0

56 0 66 -1.272341 76 -1.7394 86 -1.7394

57 0 67 0.467059 77 0 87 0

58 0 68 0.467059 78 0 88 0

 Perspective Text Analysis: Tutorial to Vertex 27

-20

0

20

40

60

80

0
1

2
3

4
5

6
7

8

0
1

234567

F
u
s
io

n
 d

y
n
a
m

ic
s
 (

in
 R

a
d
)

S
tr
ai

n

Shear

Orientation

-20

-10

0

10

20

30

40

50

0
1

2
3

4
5

6
7

8

0
1

234567

F
u
s
io

n
 d

y
n
a
m

ic
s
 (

in
 R

a
d
)

S
tr
ai

n
Shear

Intention

Mood

Untangibleness

Antagonism

Reluctance

Prejudice

Untangibleness
Offensiveness

Stiff-necked

Irresponsiveness

Figure 4 Folded spaces

28 Inger Bierschenk & Bernhard Bierschenk

Another description is the one that the land surveyors have, e.g. when measuring

distance between various elevations in a landscape. Just like people do when they face an

unknown landscape, you may, if you wish, specify various measuring points. Each

topological point in the landscape is unambiguously defined through the nodes in the ground

matrices of Figure 2 and Figure 3, which you are familiar with by now. If you use the unique

denotations, it is easy for you to characterise the highest point, e. g. with (T21), whose value is

(~+64.13), the lowest point with (T22), whose value is (~-11.40), and the end point of the

process, which is to be found at (T23=~+52.73). In this way unique points of reference will

govern the continued discussion.

So far you have certainly observed that some information based on graphemes has not

been used. Then, you may also understand that this analysis deviates markedly from all other

more or less known text analysis methods. For sure you could stop the process here, just like

other mountain climbers have done before several peaks in Himalaya (K…). But if you want

to give name to (T…) and consequently some kind of meaning, you should go back to the

surface of the text, because that is where the structure of the text is anchored, no doubt.

Excursus

Step 14: Naming the Singularities

 For this process you are invited to follow on a supplementary and advanced study of

the process of generating termini, starting with step 14. If you go back to Figure 4 you can see

the result of the transformation process. You may get some feeling for the way in which the

recommended procedure works with an example from Table 17.

You bind an O-string to the respective point attractor (edge value), which is the first

step of this process. In the O-component you have for example the variable (4), which you

connect to the string (I). Previously the curved line from the variable to the Singularity (T2)

had indicated that this string should be transformed to something else, which however no

longer has any physical existence. For this reason you must take into account the second

curved line, oriented towards (T2). Since it connects variable (6) you need to get hold of the

associated textual string, namely (my salary).

If the latter shall have any influence on the former it must result in something

transformed (i.e., something new). Preliminary, you may settle on Security as the best

approximation. Of course you may feel free to find an alternative description, which can catch

the strength of this transforming step. However you reason, the result should be virtual, i.e.

have no longer any direct correspondence with the physical context.

Step 15: Extraction of Descriptors

This step concerns the A-component and requires that you extract proper termini,

which can describe the nodes of the A-mesh. The procedure of Table 18 will help you: You

begin looking for the starting variable, which is a dummy (D) and follow the path to (1) you

get to the singularity (TA1). In order to find the corresponding path in the (O) mesh you switch

to (1) and follow the path to (D).

Immediately before the (D), you will find the terminus for the description (TO16),

which is Inclination. Thus (TA1) gets Inclination as its descriptor. In continuing, you transit

from (D) to (2) of the other groupoid, which guides you towards (TA2). Then you switch to

the (O) mesh and follow the path of the corresponding (2) to (D). Thereby you have come in

the position to extract the proper description for (TA2). Just before this terminal (D) you find

(TO1) and extract its terminus Denial as proper description of (TA1).

 Perspective Text Analysis: Tutorial to Vertex 29

Table 17

Transformation of the β-variables

Node Value Transformation Node Value Transformation

D 0 T12 0.467059 Dissonance

2 3.9887 not D 0

T1 3.9887 Denial 5 -1.73949 most people+I

4 3.9564 I T13 -1.73949 Mood

6 4.4274 my salary T12 0.467059 Dissonance

T2 8.3838 Security T13 -1.73949 Mood

T1 3.9878 Denial T14 -1.272431 Adverseness

T2 8.3838 Security T11 41.89904 Resentment

T3 12.3725 Self-sufficiency T14 -1.272431 Adverseness

7 3.9897 I T15 40.618059 Antagonism

9 3.9564 up D 0

T4 7.9461 Proposing 1 7.3143 of the common attitude

today

D 0 T16 7.3143 Inclination

12 4.0506 money D 0

T5 4.0506 Income 10 6.0759 ideas

T4 7.9461 Proposing T17 6.0759 Conception

T5 4.0506 Income T16 7.3143 Inclination

T6 11.9967 Negotiation T17 6.0759 Conception

T3 12.3725 Self-sufficiency T18 13.3902 Prejudice

T6 11.9967 Negotiation T15 40.618059 Antagonism

T7 24.3692 Want for

Nothing

T18 13.3902 Prejudice

13 3.925 not T19 54.008259 Offensiveness

14 4.71 a damn D 0

T8 8.635 Spite 3 10.12 for the local government

employees only

T7 24.3692 Want for

Nothing

T20 10.12 Trend

T8 8.635 Spite T19 54.008259 Offensiveness

T9 33.0042 Reluctance T20 10.12 Trend

15 4.3646 the same T21 64.128859 Untangibleness

16 4.5216 here D 0

T10 8.8862 Sameness 11 -11.4004 the local authority+money

T9 33.0042 Reluctance T22 -11.4004 Irresponsiveness

T10 8.8862 Sameness T20 64.128859 Untangibleness

T11 41.89904 Resentment T22 -11.4004 Irresponsiveness

D 0 T23 52.727859 Stiff-necked

11 0.467059 as how the local

authority+money

30 Inger Bierschenk & Bernhard Bierschenk

Table 18

Extraction of the termini from the O-mesh

A-component O-component Terms/Names Fusion

Pendulum Destination Extract Value

T1: D  1 TO16 Inclination 3.5796

T2: D  2 TO1 Denial 5.093017

T3: 4  5 TO13 Mood 7.823261

T4: TA3  TA2 TO2 Security 12.916278

T5: TA4  TA1 TO3 Self-sufficiency 16.495878

T6: 11  12 TO8 Spite 7.445277

T7: TA6  TA5 TO5 Income 23.94115

T8: 13  14 TO8 Spite 7.141487

T9: TA8  TA7 TO9 Reluctance 31.314712

T10: 15  16 TO10 Sameness 7.141487

T11: TA10  TA9 TO11 Resentment 38.456199

T12: D 3 TO20 Untangibleness 0.965102

T13: TA12  TA11 TO15 Antagonism 49.421301

T14: D  6 TO2 Security 1.05063

T15: TA14  TA13 TO13 Mood 40.471931

T16: D  7 TO4 Proposing -0.025445

T17: TA16  TA15 TO19 Trend 40.446486

T18: 8  9 TO22 Irresponsiveness -9.49735

T19: D  11 TO12 Dissonance -5.59128

T20: TA19  TA18 TO18 Prejudice -15.08863

T21: TA21  TA17 TO18 Prejudice 25.357856

In continuing, you transit from (4) to (5) of the third groupoid, which guides you towards

(TA3). Then you switch to the (O) mesh and follow the path of the corresponding (4) to (5).

This is a very long swing, which is resulting in the extraction of (TO13). Hence Mood is the

proper descriptor of (TA3). The next shown pendulum swing starts with (TA3) and then transits

over to (TA2), which is a closed loop and is therefore leading to the Singularity (TO2).

Since (TO2) is the terminus just before (TO3) you extract as the proper name for (TA4).

You may finalise the emerging sub tree with the path of (TA5), which starts in (TA4) and ends

in (TA1). Consequently, you begin the path with (TO4) and follow the swing, round the edge of

(TO7) over to variable (TO1), which leads you to the Singularity (TO3) which is Self-

sufficiency. Hence the proper descriptor for (TA5) is the terminus Self-sufficiency. In this way

you continue the extraction process until the whole (A) mesh has got its terminological

description. You find the solution to the entire mesh in Table 18.

Comment: Finally, it is worthwhile to remember that the AaO axiom stipulates that the Agent

must get its description through the Objective, an axiom which has been validated empirically

by the completion of this step.

 Perspective Text Analysis: Tutorial to Vertex 31

References

Bierschenk, B. (1984). Steering mechanisms for knowability. Cognitive Science Research, 1.

Lund University. (ERIC. ED 264 246)

Bierschenk, B. (1991). The schema axiom as foundation of a theory for measurement and

representation of consciousness. Cognitive Science Research, 38. Lund University.

(ED 338 650)

Bierschenk, B. (1993). The fundamentals of perspective text analysis. Cognitive Science

Research, 45. Lund University.

Bierschenk, B. (2001). Geometric foundation and quantification of the flow in a verbal

expression. Cognitive Science Research, 81. Copenhagen University & Lund

University. (ED 459 193)

Bierschenk, B. (2002). Real time imaging of the rotation mechanism producing interview-

based language spaces. Cognitive Science Research, 83. Copenhagen University &

Lund University. (ED 465 812)

Bierschenk, B. (2005). Differentiated limits for knowability. Cognitive Science Research, 97.

Copenhagen University & Lund University.

Bierschenk, B. (2011). Functional text geometry: The essentials of Perspective Text Analysis.

Cognitive Science Research, 101. Copenhagen University & Lund University. (Lund

University: Open Access)

Bierschenk, B., & Bierschenk, I. (1976). Computer-based content analysis. (Studia

Psychologica et Paedagogica, 32) Lund: Gleerup.

Bierschenk, B., & Bierschenk, I. (1986a). Concept formulation. Part II. Measurement of

formulation processes. Cognitive Science Research, 11. Lund University. (ED 275

160)

Bierschenk, B., & Bierschenk, I (1986b). Concept formulation: Part III. Analysis of mentality.

Cognitive Science Research, 12. Lund University. (ED 275 161)

Bierschenk, B., & Bierschenk, I. (1993) Perspektivische Textanalyse [Perspective Text

Analysis]. In: E. Roth (Ed.), Sozialwissenschaftliche Methoden [Social Science

Methods] (pp.175-203). München: Oldenbourg Verlag. (In German)

Bierschenk, B., & Bierschenk, I. (2011, July). Functional text geometry (1-5). [On-line].

Available: http://www.sites.google.com/site/aaoaxiom/tutorials

Bierschenk, B., Bierschenk, I., & Helmersson, H. (1996). Die Ökologie des Sprachraums

[The ecology of the language space]. In: W. Bos, & C. Tarnai (Eds.),

Computerunterstützte Inhaltsanalyse in den Empirischen Sozialwissenschaften.

Theorie - Anwendung - Software [Computer aided content analysis in the empirical

social sciences. Theory - Application - Software] (pp. 11-31). München: Waxmann.

(In German)

Bierschenk, I. (1977). Datorbaserad innehållsanalys: Kodningsmanual [Computer-based

content analysis: Coding manual]. Pedagogisk dokumentation, 52. Lund University,

Malmö: Department of Educational and Psychological Research.

Bierschenk, I. (1984). The schematism of natural language. Cognitive Science Research, 2.

Lund University. Also published in O. Togeby (Ed.), Papers from the 8
th

Scandinavian Conference of Linguistics (pp. 73-78).

Bierschenk, I. (1992). An excursion into the ecological co-ordinates of language space.

Cognitive Science Research, 43. Lund University, Department of Psychology.

Bierschenk, I. (1999). The essence of text. A dialogue on Perspective Text Analysis.

Cognitive Science Research, 70. Copenhagen University & Lund University. (ERIC,

ED 430 053)

32 Inger Bierschenk & Bernhard Bierschenk

Bierschenk, I. (2011a). Ett ekologiskt perspektiv på språk och textanalys. [An ecological

perspective on language and text analysis]. Cognitive Science Research, 98.

Copenhagen University & Lund University. (In Swedish) (Lund University: Open

Access).

Bierschenk, I. (2011b). Applications of perspective text analysis. A thematic overview.

Cognitive Science Research, 99. Copenhagen University & Lund University. (Lund

University: Open Access).

Bierschenk, I., & Bierschenk, B. (2004). Diagnose der Leistungsheterogenität durch die

Perspektivische Textanalyse: VERTEX [Diagnosing heterogeneity in achievement

through the Perspective Text Analysis: VERTEX]. In: W. Bos, Lankes, E.-M.,

Plaßmeier, N., & Schwippert, K. (Eds.), Heterogenität: Eine Herausforderung an die

empirische Bildungsforschung [Heterogeneity: A Challenge to the empirical research

in education] (pp. 16-28). Münster: Waxmann. (In German)

Connes, A. (1994). Noncommutative geometry. New York: Academic Press.

Greene, B. (1999). The elegant universe. Superstrings, hidden dimensions, and the quest for

the ultimate theory. New York: W. W. Norton & Company.

Hestenes, D. (1986/1993). New foundations for classical mechanics. Dordrecht: Kluwer

Academic.

Mackenzie, D. (1997). Through the looking glass. In arithmetic 5 and 7 can be added in any

order to yield 12. When order does matter, you have entered the strange, disorientating

world of noncommutativity. The Sciences, 37(3), 32-37.

SigmaPlot (2008). Exact graphs for exact science. User’s manual (Version 11). Chicago:

SPSS Inc.

Wales, D. J. (2003). Energy landscapes. With applications to clusters, biomolecules and

glasses. Cambridge: Cambridge University Press.

Accepted September 5, 2011

