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Abstract: We present the open-source software framework in JModelica.org for numerically
solving large-scale dynamic optimization problems. The framework solves problems whose
dynamic systems are described in Modelica, an open modeling language supported by
several different tools. The framework implements a numerical method based on direct local
collocation, of which the details are presented. The implementation uses the open-source
third-party software package CasADi to construct the nonlinear program in order to
efficiently obtain derivative information using algorithmic differentiation. The framework
is interfaced with the numerical optimizers IPOPT and WORHP for finding local optima
of the optimization problem after discretization. We provide an illustrative example based
on the Van der Pol oscillator of how the framework is used. We also present results for an
industrially relevant problem regarding optimal control of a distillation column.
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1. Introduction

The application of optimization to large-scale dynamic systems has become more common in both
industry and academia during the last decades. Dynamic Optimization Problems (DOP) occur in many
different fields and contexts, including optimal control, parameter and state estimation, and design
optimization. Examples of applications are minimization of material and energy consumption during
set point transitions in power plants [1] and chemical processes [2], controlling kites for wind power
generation [3], and estimating occupancy and ambient air flow in buildings [4].

The applications are diverse and occur in both online and offline settings. Online optimal control
is usually done in the form of Model Predictive Control (MPC) and online state estimation based on
dynamic optimization is usually done in the form of Moving Horizon Estimation (MHE) [5]. Offline
applications include finding optimal trajectories, which can be used either as a reference during manual
control or as reference trajectories combined with online feedback to handle deviations due to model
uncertainty and disturbances.

JModelica.org [6,7] is a tool targeting model-based analysis of large-scale dynamic systems, in
particular dynamic optimization. It uses the modeling language Modelica [8] to describe system
dynamics, and the optimization formulation is done with the use of the Modelica language extension
Optimica [9]. Unlike most other tools for dynamic optimization, the use of Modelica allows the user to
create their dynamic system models using a dedicated and modern modeling language, instead of relying
on standard imperative programming languages that are ill-suited for advanced system modeling. It also
makes the model implementation tool-independent, since there are a wide range of tools that support the
Modelica language.

This paper presents the newest generation of algorithms in JModelica.org for solving DOPs and the
surrounding framework. The toolchain starts with the JModelica.org compiler, which processes the
Modelica and Optimica code and performs symbolic transformations. The compiler then creates a
symbolic representation of the DOP using CasADi (see Section 3.3.1). This representation is used to
transcribe the problem into a nonlinear program (NLP) using direct local collocation. Finally, the NLP is
solved using IPOPT [10] or WORHP [11]. The needed first- and second-order derivatives are provided
by CasADi’s algorithmic differentiation.

The outline of the paper is as follows. Section 2 presents the class of problems that the framework
aims to solve and common methods for treating this kind of problem. Section 3 presents other available
tools that target the same kind of problem, and also the software and languages used to implement
the framework in JModelica.org. Section 4 provides the details of how the framework discretizes the
infinite-dimensional optimization problem using direct collocation. Section 5 discusses considerations
that are needed to employ direct collocation in practice and also additional features available in the
framework. Section 6 presents the implementation of the framework. Section 7 presents an example on
how to solve a simple optimal control problem based on the Van der Pol oscillator using the framework.
It also presents results obtained for an industrially relevant example of control of a distillation column.
Finally, Section 8 summarizes the paper and discusses future work.
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Regarding notation, scalars and scalar-valued functions are denoted by regular italic letters x. Vectors
and vector-valued functions are denoted by bold italic letters x, and component k of x is denoted by xk.
The integer interval from a ∈ Z to b ∈ Z (inclusive) is denoted by [a..b].

2. Dynamic Optimization

In this section, we will give a description of the class of problems that the framework aims to solve.
We consider optimization problems that involve a dynamic system with some degrees of freedom,
typically time-varying control signals or time-invariant parameters. These problems are typically
infinite-dimensional and their numerical solution consequently involves a discretization of the system
dynamics. We restrict ourselves to problems with finite (but not necessarily fixed) time horizons and
systems described by differential-algebraic equation (DAE) systems. We also provide an overview of the
most widely used methods for numerically solving DOPs.

2.1. Problem Formulation

We consider systems whose dynamics are described by an implicit DAE system. Specifically, we
consider DAE systems of the form

F(t, ẋ(t), x(t), y(t),u(t), p) = 0

where t ∈ [t0, t f ] is the sole independent variable: time, x : [t0, t f ] → Rnx is the differential variable,
y : [t0, t f ] → Rny is the algebraic variable, u : [t0, t f ] → Rnu is the control variable, and p ∈ Rnp is the
vector of parameters to be optimized—that is, the free parameters. For now we also assume that the
DAE system is of most index one, meaning that the Jacobian of F is nonsingular with respect to ẋ and
y. We will comment on the treatment of high-index DAE systems in Section 3.3.2.

Initial conditions are also given on an implicit form; that is,

F0(t0, ẋ(t0), x(t0), y(t0),u(t0), p) = 0

For ease of notation, we compose the time-dependent variables into a single variable z; that is,

z(t) := (ẋ(t), x(t), y(t),u(t)) ∈ Rnz

where nz := 2 · nx + ny + nu. The system dynamics are thus fully described by

F(t, z(t), p) = 0, ∀t ∈ [t0, t f ]

F0(t0, z(t0), p) = 0
(1)

where
F : [t0, t f ] × Rnz × Rnp → Rnx+ny , F0 : [t0, t f ] × Rnz × Rnp → Rnx

The initial conditions are assumed to be consistent with the DAE system, meaning that they provide
sufficient information to solve for the initial state. The domains of F and F0 can be further restricted by
the introduction of variable bounds, as discussed below. We do not consider systems that have integer
variables or time delays.
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The problem considered throughout the paper is to

minimize φ(t0, t f , zT , p) +

∫ t f

t0
L(t, z(t), zT , p) dt (2a)

with respect to x : [t0, t f ]→ Rnx , y : [t0, t f ]→ Rny , u : [t0, t f ]→ Rnu

t0 ∈ R, t f ∈ R, p ∈ Rnp

subject to F(t, z(t), p) = 0, F0(t0, z(t0), p) = 0 (2b)

zL ≤ z(t) ≤ zU , pL ≤ p ≤ pU (2c)

ge(t0, t f , t, z(t), zT , p) = 0, gi(t0, t f , t, z(t), zT , p) ≤ 0 (2d)

Ge(t0, t f , zT , p) = 0, Gi(t0, t f , zT , p) ≤ 0 (2e)

∀t ∈ [t0, t f ]

We will now discuss the concepts and notation used in Equation (2). The time horizon endpoints t0

and t f may be either free or fixed. Equation (1) has been introduced as a constraint in Equation (2b).
Consequently, the optimization variables are not only those generating degrees of freedom (u, p, t0,
and t f ), but also the system variables x (which inherently determines ẋ) and y. Note that solving the
initial equations for the initial state will be done as a part of solving the optimization problem, which for
example enables the treatment of problems where the initial state is unknown.

Equation (2a) is the objective and is a Bolza functional—as is typical for optimal control
problems ([12] Section 3.3) but general enough to cover other problems of interest, such as parameter
estimation—where φ is called the Mayer term and L is called the Lagrange integrand. A more standard
form for the Mayer term would be φ(t f , z(t f ), p), but here we work with a generalized form. The essence
of the generalization is that instead of depending on only the terminal state, it depends on the state
at a finite, arbitrary number of time points within the time horizon. This gives rise to the notion of
timed variables, which we denote by zT , which we define by first denoting the needed time points by
T1,T2, . . . ,TnT , where nT ∈ Z is the number of such time points. These time points must be equal
to a convex combination of t0 and t f ; that is, for all j there must exist a fixed θ j ∈ [0, 1] such that
T j = (1 − θ j)t0 + θ jt f . For problems with a fixed time horizon, this simply means that Ti ∈ [t0, t f ]. For
problems with a free time horizon, this means that the location of the time points depend on the optimal
t0 and t f . We then let

zT := (z(T1), z(T2), . . . , z(TnT )) ∈ RnT ·nz (3)

The standard Mayer term only involves the single time point T1 = t f . One application of the
generalized Mayer term is the formulation of parameter estimation problems, where there typically is
measurement data for the system outputs at discrete time points, which is used to penalize the deviation
of the model output from the data values at these points. An alternative approach in this case is to
interpolate the measurement data to form a continuous-time measurement trajectory. This trajectory can
then instead be used to form a Lagrange integrand which penalizes the deviation of the model output
from the measurements. The occurrence of the timed variables zT is not restricted to the Mayer term.
The timed variables can also be used in the Lagrange integrand and the constraints, as discussed below.
A more common (and also more general) approach to treating timed variables is by introducing multiple
phases ([13] Section 3.7), which we do not consider further in this paper.
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Equation (2c) is variable bounds, which are enforced during the entire time horizon [t0, t f ],
where zL ∈ [−∞,∞]nz and pL ∈ [−∞,∞]np are the lower bounds and zU ∈ [−∞,∞]nz and
pU ∈ [−∞,∞]np are the upper bounds. The constraints Equation (2d) are path constraints, which are
generalizations of the variable bounds. They are separated from the variable bounds, since the bounds
can be treated more efficiently by many numerical algorithms. For example, an interior-point algorithm
will ensure that the bounds are satisfied even during iteration, thus restricting the domains of the NLP
functions. Finally, Equation (2e) is point constraints. These are similar to the path constraints, with the
difference being that they are only enforced at specific time points, rather than during the entire time
horizon. The time points T j that were used to generalize the Mayer term are also used to formulate the
point constraints. The path constraints may also depend on the timed variables. The number of time
points nT is thus not only the number of time points involved in the Mayer term, but also includes the
number of time points needed to formulate the Lagrange term as well as the path and point constraints.

The objective functions φ and L, the DAE system and initial condition residuals F and F0, the path
constraint functions ge and gi as well as the point constraint functions Ge and Gi must all be twice
continuously differentiable with respect to the arguments that correspond to any of DOP variables. For
example, F must be twice continuously differentiable with respect to its second argument, corresponding
to the system variables z, but not with respect to its first argument, corresponding to the explicit
time dependence. These continuity requirements are needed to apply techniques based on Newton’s
method to find a solution to first-order optimality conditions. Equations (2c)–(2e) are optional, whereas
Equations (2a) and (2b) are necessary to get a sensible DOP (although Equation (2a) can be removed
to obtain a feasibility problem). No assumptions of linearity or convexity are made. The problem will
thus in general be nonconvex and we will not endeavor to find a global optimum. We will instead use
first-order necessary optimality conditions to find a local optimum.

2.2. Numerical Methods

There are many approaches to numerically solving DOPs, which stem from the theory of optimal
control. The earliest methods date back to the 1950s and are based on Bellman’s dynamic programming,
of which a modern description can be found in for example [14]. The main result on dynamic
programming for continuous-time systems is the Hamilton-Jacobi-Bellman equation, which is a
nonlinear partial differential equation. The dynamic programming framework is theoretically appealing,
due to providing sufficient conditions for global optimality and state feedback laws. However, in practice
it suffers from the curse of dimensionality: The dimension of the partial differential equation increases
with the dimension of the system state. Numerical methods based on dynamic programming are thus
only computationally tractable for small-scale problems.

The most widely used numerical techniques for optimal control today are instead based on first-order
necessary conditions for local optimality. Surveys of these are available in for example [15,16] and an
overview is illustrated in Figure 1. They can be categorized according to their respective answers to two
questions; when to discretize the system dynamics corresponding to Equation (1), and how to discretize
them? There are essentially two answers to the first question, which have lead to the two categories
of indirect and direct methods. Indirect methods start by establishing the optimality conditions, and



Processes 2015, 3 476

then discretize the resulting differential equations to find a numerical solution. Direct methods instead
first discretize the dynamics and then establish the optimality conditions. Indirect methods are based on
calculus of variations and Pontryagin’s maximum principle, which provide optimality conditions in the
form of boundary value problems. Standard numerical methods for boundary value problems can then
be employed to solve the problem numerically. Direct methods instead reduce the DOP to an NLP by
discretization. The optimality conditions are then given by the Karush-Kuhn-Tucker (KKT) conditions.

Figure 1. Numerical methods for dynamic optimization. Indirect methods establish
optimality conditions first and then discretize the differential equations, whereas direct
methods first discretize and then optimize. Both categories of methods use essentially the
same discretization techniques, of which the most common ones are single shooting, multiple
shooting, and collocation.

Both direct and indirect approaches discretize differential equations, and the same discretization
methods are commonly used for both approaches. The most common methods belong to one of two
families: shooting and collocation. The simplest form of shooting is single shooting, which parametrizes
the control—explicitly for the direct method and implicitly by the maximum principle and costate initial
values for the indirect method—and then numerically integrates to t f and iteratively updates the control
based on sensitivities. The numerical robustness of single shooting can be improved by dividing the
time horizon into subintervals. Single shooting is then applied within each subinterval, by introducing
the subinterval boundary values as variables and imposing linking constraints between the subintervals.
This is called multiple shooting, which essentially decouple the dynamics between the subintervals.

The second family of discretization methods is collocation. These methods simultaneously
discretize the differential equations over the entire time horizon using implicit Runge-Kutta methods.
Consequently, they do not rely on external numerical integrators, because after the full discretization
of the differential equations the optimality conditions are reduced to an algebraic root finding problem.
Collocation methods can be either local, where the time horizon is divided into elements and low-order
polynomials are used to approximate the trajectories within each element, or global, where a single
high-order polynomial is used over the entire time horizon.

Shooting methods (especially single shooting) lead to optimization problems with few variables
but highly nonlinear functions—due to their internalization of the differential equations and numerical
integrators—whereas simultaneous methods lead to problems with less severe nonlinearities but many
variables. Indirect methods need good initial guesses of the costates and also identification of the
switching structure of inequality constraints, both of which require proficiency in the maximum principle
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for all but the most simple problems. Single shooting suffers from the numerical sensitivity discussed
above. Thus, direct multiple shooting and direct collocation appear to be the most suitable methods to
be used in a high-level framework for large-scale dynamic optimization. JModelica.org uses a method
based on direct collocation, which is presented in Section 4.

3. Related Software and Languages

In this section we first give an overview of modern tools that are available for dynamic optimization.
We then discuss the software and languages used in the dynamic optimization framework in
JModelica.org.

3.1. Tools for Dynamic Optimization

One approach to solving Equation (2) numerically is to manually discretize the dynamics and then
encode the discretized problem in an algebraic modeling language for optimization. Mature examples
of such are AMPL [17] and GAMS [18], whereas Pyomo [19] is a modern example. A more convenient
approach is to use a tool tailored for dynamic optimization in which the DOP can be formulated in
its natural, undiscretized form. The tool then handles the details of the discretization. An important
dichotomy of such tools is whether they use existing general-purpose programming languages, such as
MATLAB or C++, or dedicated modeling languages to describe the system dynamics. Some noteworthy
examples of modern dynamic optimization tools of the former category are ACADO Toolkit [20] and
PROPT [21]. ACADO Toolkit is an open-source, self-contained C++ package for dynamic optimization.
It primarily uses direct multiple shooting and is designed for implementation of online MPC or MHE
on embedded hardware. PROPT is a commercial package for MATLAB based on TOMLAB [22] using
direct global collocation. It supports a wide range of optimization problems, including problems with
multiple phases and integer variables.

Component-based modeling of large-scale, complex dynamical systems benefits greatly from the
expressiveness offered by dedicated dynamic modeling languages. It also decouples the modeling
process from the computational aspects, allowing the same model implementation to be used for multiple
purposes, such as simulation and optimal control. Examples of modern dynamic optimization tools that
utilize a dedicated language for modeling are APMonitor [23], gPROMS [24], and JModelica.org [6].
APMonitor is freely available and uses its own modeling language and direct local collocation. It has a
tight and user-friendly integration between simulation, estimation, and control of dynamic systems, both
dynamically and in steady state. It offers interfaces to Python, MATLAB and web browsers. gPROMS
is a large family of commercial products for model-based chemical engineering, which are based on
gPROMS’s powerful object-oriented modeling language. While not its primary focus, it has capabilities
for dynamic optimization using shooting algorithms.
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3.2. Modelica and Optimica

JModelica.org uses Modelica [8] to describe the dynamic system model. Modelica is an
object-oriented language targeting modeling of heterogeneous physical systems. It is based on a
declarative equation-based paradigm designed for both textual and graphical modeling. Accordingly,
there is no need to manually solve the equations for the derivatives, which is common in block-based
modeling formalisms. Modular modeling is extensively supported by defining acausal physical ports
for elementary components, building systems by hierarchical aggregation of subsystems, and managing
model variants by replacing some parts of the model by others that share the same physical interface.

Modelica is a non-proprietary language supported by several tools. It features an open standard library
of physical components in a wide range of engineering domains, including thermodynamics, mechanics,
electronics, and control. There is also a large number of other model libraries available, both freely and
commercially, developed by academia and industry.

Modelica is designed mainly with simulation-based analysis in mind, and thus lacks native support for
optimization formulations. To accommodate the need for formulation of DOPs based on Modelica code,
the language extension Optimica [9] was developed and integrated with JModelica.org. Optimica defines
new syntax and semantics for specifying constraints and an objective. Optimica was previously used
only in JModelica.org but has since also been adopted by OpenModelica [25] to solve optimal control
problems described in Modelica using direct multiple shooting or collocation. Optimica also served as a
basis for IDOS [26], an online environment for solving a wide variety of optimal control problems using
different techniques. Optimization has started to gain traction within the Modelica community and there
are ongoing efforts within MODRIO [27] to standardize DOP formulations based on Modelica.

Modelica is used in the presented framework for two main reasons: First, it gives the user access to
a powerful modeling language, which is important for large-scale, component-based system modeling.
Second, it allows existing Modelica models to be reused for dynamic optimization. However, since
typical Modelica models are intended for high-fidelity simulation, they are often too complex in terms
of size or lack of differentiability for optimization purposes out-of-the-box.

3.3. Software Used to Implement Framework

JModelica.org integrates many different software packages. In this section, we present the most
important ones, especially those that are prominent in the dynamic optimization framework.

3.3.1. CasADi

To solve Equation (2), we will employ direct local collocation to transcribe the problem into an NLP.
A local optimum to the NLP will be found by solving the first-order KKT conditions, using iterative
techniques based on Newton’s method. This requires first- and second-order derivatives of the NLP cost
and constraint functions with respect to the NLP variables. The framework uses CasADi to obtain these.

CasADi [28] (Computer algebra system with Automatic Differentaion) is a low-level tool for
efficiently computing derivatives using AD and is tailored for dynamic optimization. Once a symbolic
representation of an NLP has been created using CasADi primitives, the needed derivatives are efficiently
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and conveniently obtained and sparsity patterns are preserved. CasADi also offers interfaces to numerical
optimization solvers, allowing for seamless integration with for example IPOPT and WORHP.

CasADi utilizes two different graph representations for symbolic expressions. The first is a
scalar representation, called SX, where all atomic operations are scalar-valued, as is typical for AD
tools. The second is a sparse matrix representation, MX, where all atomic operations instead are
multiple-input, multiple-output, and matrix-valued. The MX representation is more general and allows
for efficient—especially in terms of memory—representation of high-level operations, such as matrix
multiplication and function calls. On the other hand, the SX representation offers faster computations by
reducing overhead and performing additional symbolical simplifications.

A prototypical integration between CasADi and JModelica.org was first initiated in [29] and further
developed in [30]. Previously, the integration relied on the JModelica.org compiler generating XML
code symbolically describing the DOP. The XML code was then imported by CasADi and used to create
a symbolic representation using CasADi primitives. The integration between JModelica.org and CasADi
has since been redesigned and is now handled by CasADi Interface, as described below.

3.3.2. The JModelica.org Compiler

The JModelica.org compiler [31] is implemented in the compiler construction framework
JastAdd [32]. JastAdd is an extension to Java and focuses on modular extensible compiler construction
by aspect orientation. The compiler process is illustrated in Figure 2. The compiler first creates an
internal representation of the Modelica and Optimica code in the form of an abstract syntax tree (AST).
The AST is then used to perform standard compiler operations such as name and type analysis, but also
Modelica-specific operations as described below.

Figure 2. The compilation process in JModelica.org for DOPs. The process starts with
the user-provided Modelica and Optimica code and ends with a symbolic representation of
the DOP in CasADi Interface, which serves as an interface between dynamic optimization
algorithms and the Modelica and Optimica code.

Modelica is intended for object-oriented component-based modeling, resulting in hierarchical models.
To get a representation of the model that is closer to a DAE system, one of the first steps, called flattening,
is to resolve the class inheritance and instantiation in the model to arrive at a flat representation of the
model. The flat representation essentially consists of only variable declarations and equations. Before
the DAE system is interfaced with a numerical solver, various symbolic transformations are performed
on it, such as alias elimination and index reduction. Component-based modeling often gives rise to
many equations of the form x = ±y due to conservation laws, which are trivial to solve analytically.
This process is called alias elimination. For DAE systems of index greater than 1, index reduction is
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performed using the dummy derivative method [33]. This allows for the treatment of high-index systems
within the framework without having to worry about the numerical challenges that they often pose, such
as drift or method order reduction.

Once all the symbolic transformations have been performed on the DAE system, it is coupled with
the DOP formulation in the Optimica code. Note that although index reduction is performed on the DAE
system, high-index path constraints Equation (2d) and bounds Equation (2c) are not index reduced by
the compiler. The AST is then used to transfer the optimization problem to CasADi Interface by creating
CasADi objects.

CasADi Interface [34] is a C++ package that enables the symbolic creation of DOPs using CasADi.
It serves as an interface between DOPs formulated using Modelica and Optimica and the optimization
algorithms that can be used to solve them. When using CasADi Interface, the JModelica.org compiler
creates CasADi expressions for the DOP, effectively mapping the Modelica and Optimica languages onto
CasADi constructs, which then can be used to obtain the derivative information that is typically needed
by numerical optimizers. While CasADi Interface is designed with Modelica and Optimica in mind,
there is nothing in it that is inherently dependent on these languages. It could thus potentially serve as
an interface to other modeling languages as well.

3.3.3. Nonlinear Programming and Linear Solvers

To numerically solve the NLP arising from applying direct local collocation to Equation (2),
JModelica.org uses third-party solvers. JModelica.org supports the use of IPOPT [10] and WORHP [11],
through CasADi’s NLP solver interface. IPOPT is a primal-dual interior-point method and WORHP
is an active set sequential quadratic programming method utilizing an interior-point method to solve
the intermediate quadratic programs. Both solvers are designed for large-scale and sparse nonlinear
programs. IPOPT is open source, whereas WORHP is commercial but offers free academic licenses.
Both solvers need to solve a linear equation system in each iteration and utilize external sparse linear
solvers for this purpose. Both IPOPT and WORHP have interfaces to the open-source linear solver
MUMPS, and also the commercial HSL library [35], which offers free academic licenses, among others.

4. Direct Local Collocation

In this section, we formulate the mathematical description for the discretization procedure that is
used to solve Equation (2) and implemented in the framework. The discretization is based on local direct
collocation as described in [13,36]. The fundamental idea is to discretize the differential equations using
finite differences, thus transforming the infinite-dimensional DOP into a finite-dimensional NLP. The
discretization scheme is based on collocation methods, which are special cases of implicit Runge-Kutta
methods and are also commonly used for numerical solution of DAE and stiff ODE systems [37].



Processes 2015, 3 481

4.1. Collocation Polynomials

The optimization time horizon is divided into ne elements. Let hi denote the length of element i,
which has been normalized so that the sum of all element lengths is one. This normalization facilitates
the solution of problems with free endpoints by keeping the normalized element lengths constant and
instead varying t0 and t f . The time is normalized in element i according to

t̃i(τ) := ti−1 + hi · (t f − t0) · τ, ∀τ ∈ [0, 1], ∀i ∈ [1..ne] (4)

where τ is the normalized time, t̃i(τ) is the corresponding unnormalized time, and ti is the mesh
point (right boundary) of element i. This normalization enables a treatment of the below interpolation
conditions that is homogeneous across elements.

Within element i the time-dependent system variable z is approximated using a polynomial in the
local time τ denoted by

zi = (ẋi, xi, yi,ui) : [0, 1]→ Rnz

which is called the collocation polynomial for that element. The collocation polynomials are formed by
choosing nc collocation points, which in this work are restricted to be the same for all elements. We
use Lagrange interpolation polynomials to represent the collocation polynomials, using the collocation
points as interpolation points. Let τk ∈ [0, 1] denote collocation point k ∈ [1..nc], and let
zi,k = (ẋi,k, xi,k, yi,k,ui,k) ∈ Rnz denote the value of zi(τk).

Since the differential variable x needs to be continuous on [t0, t f ], we introduce an additional
interpolation point at the start of each element for the corresponding collocation polynomials, denoted
by τ0 := 0. We thus get the collocation polynomials

xi(τ) =

nc∑
k=0

xi,k · ˜̀k(τ), yi(τ) =

nc∑
k=1

yi,k · `k(τ), ui(τ) =

nc∑
k=1

ui,k · `k(τ), ∀i ∈ [1..ne] (5)

where ˜̀k and `k are the Lagrange basis polynomials, respectively with and without the additional
interpolation point τ0. The basis polynomials are defined as

˜̀k(τ) :=
∏

l∈[0..nc]\{k}

τ − τl

τk − τl
, ∀k ∈ [0..nc]

`k(τ) :=
∏

l∈[1..nc]\{k}

τ − τl

τk − τl
, ∀k ∈ [1..nc]

Note that the basis polynomials are the same for all elements, due to the normalized time. These basis
polynomials satisfy

`k(τ j) =

1, if j = k

0, if j , k

The collocation polynomials are thus parametrized by the values zi,k = zi(τk).
In order to obtain the collocation polynomial for the differential variable derivative ẋ in element i,

the collocation polynomial xi is differentiated with respect to time. Using Equations (4) and (5), and the
chain rule, we obtain

ẋi(τ) =
dxi

dt̃i
(τ) =

dτ
dt̃i
·

dxi

dτ
(τ) =

1
hi · (t f − t0)

·

nc∑
k=0

xi,k ·
d ˜̀k

dτ
(τ) (6)
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There are different schemes for choosing the collocation points τk, with different numerical properties,
in particular regarding stability and order of convergence. The most common ones are called Gauss,
Radau and Lobatto collocation [37]. The framework in JModelica.org has support for Radau and Gauss
points. For the sake of brevity, we will in the next subsection present a transcription based on Radau
collocation. The Radau collocation scheme always places a collocation point at the end of each element,
and the rest are chosen in a manner that maximizes numerical accuracy.

4.2. Transcription of the Dynamic Optimization Problem

In this section Equation (2) is transcribed into an NLP, using the collocation polynomials constructed
above. The optimization domain of functions on [t0, t f ], which is infinite-dimensional, is thus reduced to
a domain of finite dimension by approximating the trajectory z by a piecewise polynomial function.

As decision variables in the NLP we choose the system variable values in the collocation points,
zi,k, the differential variable values at the start of each element, xi,0, the free parameters, p, the initial
condition values, z1,0 := z(t0), and t0 and t f if they are free. We thus let

Z := (z1,0, z1,1, z1,2, . . . , z1,nc ,

x2,0, z2,1, z2,2, . . . , z2,nc ,

x3,0, z3,1, z3,2, . . . , z3,nc ,

...,

xne,0, zne,1, zne,2, . . . , zne,nc ,

p, t0, t f ) ∈ RnZ

be the vector containing all the NLP variables, where

nZ = (1 + ne · nc) · nz + (ne − 1) · nx + np + 2

Note that the actual order of the variables in the implemented framework is different to allow contiguous
access for efficiency reasons ([38] Section 5.2.2). With Radau collocation and the above choice of
optimization variables, the transcription of Equation (2) results in the NLP

minimize φ(t0, t f , z̃T , p) +

ne∑
i=1

hi · (t f − t0) ·
nc∑

k=1

ωk · L
(
ti,k, zi,k, z̃T , p

)
(7a)

with respect to Z ∈ RnZ

subject to F(ti,k, zi,k, p) = 0, F0(t0, z1,0 p) = 0 (7b)

u1,0 −

nc∑
k=1

u1,k · `k(0) = 0 (7c)

zL ≤ zi,k ≤ zU , pL ≤ p ≤ pU (7d)

ge(t0, t f , ti,k, zi,k, z̃T , p) = 0, gi(t0, t f , ti,k, zi,k, z̃T , p) ≤ 0 (7e)

Ge(t0, t f , z̃T , p) = 0, Gi(t0, t f , z̃T , p) ≤ 0 (7f)

∀(i, k) ∈ {(1, 0)} ∪ ([1..ne] × [1..nc])
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ẋ j,l =
1

h j · (t f − t0)
·

nc∑
m=0

x j,m ·
d ˜̀m

dτ
(τl), ∀( j, l) ∈ [1..ne] × [1..nc] (7g)

xn,nc = xn+1,0, ∀n ∈ [1..ne − 1] (7h)

where ti,k := t̃i(τk) denotes the unnormalized collocation point k in element i. The rest of the concepts
and notation used in Equation (7) will be discussed below.

There are two approaches in the treatment of the timed variables zT during the transcription. The first
is to approximate z(T j) by the value of its corresponding collocation polynomial, that is, zi(τ(T j)). A less
general approach is to assume that every time point T j coincides with some collocation point ti,k; that is,
there exists a map Γ : [1..nT ] → [1..ne] × [1..nc] such that T j = tΓ( j). We can then proceed to transcribe
zT , defined by Equation (3), into

z̃T :=
[
zΓ(1) zΓ(2) . . . zΓ(nT )

]
The former approach is more general, as it does not assume the existence of Γ. It is also more

user-friendly, since it does not force the user to align the element mesh with the time points T j. On the
other hand, the latter approach is more efficient for large nT , which is typical for parameter estimation
problems. The two approaches also have distinct numerical properties, which are outside the scope of
this paper to analyze. Henceforth we adopt the latter approach, which assumes the existence of Γ.

Due to the assumed existence of Γ, the Mayer term of the Bolza functional is straightforward to
transcribe as

φ(t0, t f , zT , p) →
= φ(t0, t f , z̃T , p)

where a →
= b denotes that b, which belongs to Equation (7), is the corresponding transcription of a,

which belongs to Equation (2). The transcription of the Lagrange term is more involved and utilizes
Gauss-Radau quadrature within each element:∫ t f

t0
L(t, z(t), zT , p) dt =

ne∑
i=1

∫ ti

ti−1

L(t, z(t), zT , p) dt

≈

ne∑
i=1

hi · (t f − t0) ·
nc∑

k=1

ωk · L
(
ti,k, z(ti,k), zT , p

) →
=

ne∑
i=1

hi · (t f − t0) ·
nc∑

k=1

ωk · L
(
ti,k, zi,k, z̃T , p

)
where the quadrature weights ωk are given by

ωk :=
∫ 1

0
`k(τ) dτ

Equation (2a) is thus transcribed into Equation (7a).
The essence of direct collocation is in the transcription of the system dynamics in Equation (2b).

Instead of enforcing the DAE system for all times t ∈ [t0, t f ], it is only enforced at the collocation points.
Thus

F(t, z(t), p) = 0, ∀t ∈ [t0, t f ]
→
= F(ti,k, zi,k, p) = 0, ∀i ∈ [1..ne], ∀k ∈ [1..nc]
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Due to the introduction of the NLP variable z1,0, the initial conditions in Equation (2b) are seemingly
straightforward to transcribe into F0(t0, z1,0, p) = 0. However, this introduces an additional degree
of freedom due to u1,0, which is governed by neither the DAE system nor the initial conditions in
Equation (7b). Rather, since u1,0 is not used to parametrize the collocation polynomial u1, its value
is already determined by the collocation point values u1,k. The transcription of the initial conditions
thus also gives rise to the extrapolation constraint in Equation (7c). Furthermore, the implicit initial
equations need to be solved in conjunction with the DAE system at the start time t0, which is why most
of the constraints are not only enforced at the collocation points (i, k) ∈ [1..ne] × [1..nc], but also at the
start point (i, k) = (1, 0).

In the same approximative manner that we only enforced the DAE system at the collocation points,
the bounds in Equation (2c) and path constraints in Equation (2d) are straightforwardly transcribed
into Equations (7d) and (7e), respectively. Due to the assumed existence of Γ, the point constraints
in Equation (2e) can be transcribed into Equation (7f).

To preserve the inherent coupling of x and ẋ, which is implicit in the dynamic setting, we enforce
Equation (6) at all the collocation points, giving us the additional constraints in Equation (7g). These are
not enforced at the start time t0, where the differential variable derivative ẋ instead is determined by the
DAE system and initial conditions. Finally, to get a continuous trajectory for the differential variable x,
we add the constraints in Equation (7h).

An NLP has the general form

minimize f (x)

with respect to x ∈ Rnx

subject to xL ≤ x ≤ xU

g(x) = 0

h(x) ≤ 0

which Equation (7) is a special case of. By solving the NLP in Equation (7), we may obtain an
approximate local optimum to the DOP in Equation (2).

The presented transcription is specialized for Radau collocation. The adaption to Gauss collocation
only requires a few additional points of consideration, due to the lack of collocation points at the
mesh points. On the other hand, Lobatto collocation requires a more extensive modification of
the collocation polynomial construction in Section 4.1 to account for the overdetermination that
occurs by having both DAE and continuity constraints for the differential variables at the start of each
element ([39] Appendix A).

5. Practical Aspects and Additional Features

Further considerations are needed to successfully employ direct collocation methods to
challenging problems.
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5.1. Initialization

Solving large-scale nonconvex optimization problems requires accurate initial guesses of the solution
to the problem for several reasons. The initial guess must lie within the method’s region of convergence,
meaning that it is sufficiently close to a local optimum, in order for the solver to succeed. Also, for
problems with lots of local minima, the initial guess must lie in a desirable region, in order for a desirable
local minimum to be found. Finally, automatic numerical scaling of the optimization problem is often
done based on the initial guess, as discussed in Section 5.2. This achieves good scaling in the vicinity of
the initial guess, but as the solver moves away from the initial guess, the scaling may deteriorate because
of nonlinearities.

Many problems can not be solved without user-specified initial guesses. Traditional ways of doing this
for DOPs is to provide initial guesses for the time-dependent DOP variables as simple functions of time,
such as constant or affine, or to generate an initial guess based on the solution of a related but simpler
optimization problem, by for example using simpler model components. Constant initial guesses can
be set for every DOP variable in the implemented framework by use of the Optimica variable attribute
initialGuess. However, for problems with thousands of DOP variables, manually providing an initial
guess for every one is tedious and potentially challenging. A more convenient approach is available in
the framework by instead generating initial guess trajectories for all of the DOP variables by means of
simulation. By only providing initial guesses for the degrees of freedom—that is, u, p, t0 and t f —the
system can then be simulated to generate initial guesses for all of the variables. This also has the added
benefit of generating initial guesses in the form of complete trajectories, rather than constant values,
which may be highly beneficial.

5.2. Problem Scaling

The performance of numerical optimizers relies on the problem being reasonably well scaled
numerically. Poor scaling can cause decreased convergence rates or even divergence. There are many
approaches to scaling problems, all with the goal of achieving unitary magnitude for relevant quantities,
such as variables, functions, and condition numbers ([13] Section 1.16). There is no way to achieve
perfect scaling, so the procedure is based on heuristics. For direct collocation, scaling techniques can be
applied either directly to the NLP in Equation (7), or to the original DOP in Equation (2) (which then
will propagate to the NLP during the transcription).

The scaling procedure can largely be automated, based on user-specified variable bounds and initial
guesses. The automated scaling in the implemented framework focuses on variable scaling, that is, it
exchanges the NLP variable Z j for the scaled variable Z̃ j according to Z j = d jZ̃ j + e j. By an appropriate
choice of d j and e j, the new variable Z̃ j will have magnitude one. There are three strategies available
in the framework for choosing d j and e j, with the possibility of applying different strategies for each
individual DOP variable.

Time-Invariant Linear Scaling: The first one is time-invariant linear scaling, which is applied on the
level of the dynamic problem in Equation (2), by setting e j = 0 and d j to the nominal value of the DOP
variable corresponding to Z j. This nominal value is defined either by the absolute value of the nominal
attribute of the DOP variable, which typically is set by the user, or computed based on the initial guess.
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If the initial guess is given as a trajectory, the nominal value is chosen as the maximum absolute value
of the trajectory over time. Otherwise, the nominal value is simply the absolute value of the constant
initial guess.

Time-Invariant Affine Scaling: The second strategy is also applied on the level of Equation (2) and
requires an initial guesses in the form of a trajectory for the corresponding DOP variable. The idea is to
choose d j and e j such that the scaled trajectory has a minimum value of 0 and a maximum value of 1.
Let Zmax

j and Zmin
j denote the maximum and minimum value, respectively, for the initial guess trajectory

of the DOP variable corresponding to Z j. The scaling factors are then chosen as

d j = Zmax
j − Zmin

j , e j = Zmin
j

Time-Variant Linear Scaling: The third and final strategy is applied on the level of the NLP. It
simply sets e j = 0 and d j to be the absolute value of the initial guess for Z j. It is thus only different from
the time-invariant linear scaling when initial guesses for the DOP variables are provided in the form of
trajectories rather than constant values.

Additional caution is needed in the choice of d j for all of the strategies, since d j = 0 does not work
and values relatively close to zero are prone to make matters worse unless chosen with great care. The
framework attempts to detect these cases and fall back to more conservative scaling strategies for the
problematic variables.

The default scaling strategy is the time-invariant linear scaling, regardless of the form of the initial
guess. It is preferred over the time-invariant affine scaling for its simplicity and over the time-variant
linear scaling because the time-variant scaling requires more accurate initial guesses than typically are
available in order to work better and is also more computationally expensive.

As mentioned before it is not only the variables that need to be scaled, but also other quantities,
primarily the constraints. Unlike variable scaling, numerical optimizers (including IPOPT and WORHP)
usually implement their own strategies for constraint scaling, most of which are also based on the
user-provided initial guess. Rather than attempt to improve upon these (which is possible by exploiting
the dynamic structure of the problem ([13] Section 4.8)), the framework relies on external solvers to
perform constraint scaling.

5.3. Discretization Verification

When employing direct collocation, the number of elements ne, collocation points nc, and the element
lengths hi need to be chosen. While methods exist for automating these choices by taking discretization
error into account, either by repeatedly solving the problem and updating the discretization [40] or
introducing the element lengths as NLP variables and bounds or penalties on the discretization error
estimate [41], these are computationally expensive and may not be tractable. The framework thus forces
the user to choose the discretization and fixing it a priori.

This means that, unlike when using shooting methods, the collocation discretization needs to be
assessed. An efficient way of doing this is to after the optimization use the optimal u and p to simulate
the system, using numerical integrators with adaptive step length, and verify that the simulation does
not significantly differ from the trajectories obtained from the optimization. It is then important to
keep in mind that the simulation should be performed using the collocation polynomials ui, rather than
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for example linearly interpolating the collocation points ui,k, for increased accuracy and also that the
interpolated values may not satisfy the input bounds.

5.4. Control Discretization

Sometimes further restrictions on the control variable u are desirable in the DOP in Equation (2), in
particular constraining it to be piecewise constant. This is necessary to for example take into account
that modern controllers usually are digital, which is especially important when using MPC, where the
input signals are kept constant between each sample. This is supported in the framework by optionally
enforcing ui to be constant for all i and also possibly equal to ui+1 for some i; that is, only allowing
changes in the control at a user-specified subset of the element boundaries. It is then also possible to add
additional penalties or constraints on the difference in the control values between the element boundaries.
This corresponds to penalizing or constraining the control signal derivative in the case that the control is
not enforced to be piecewise constant.

5.5. Algorithmic Differentiation Graphs

Using the framework to solve large-scale problems is computationally expensive, both in terms of
memory and computation time. The most memory is usually used during the computation of the Hessian
of the NLP Lagrangian by CasADi’s algorithmic differentiation, which often requires memory in the
order of gigabytes. If the problem is particularly ill-conditioned numerically, the memory needed by the
linear solver to solve the KKT system in each NLP iteration may exceed that which is needed to compute
the Hessian. The framework implements collocation based on either CasADi’s SX or MX graphs (see
Section 3.3.1), or a mixture of both, allowing the user to conveniently perform a trade-off between
memory use and execution time by choosing which graph types to use. The mixture employs SX graphs
to build up the expressions for the constraints and objective in the DOP in Equation (2), which then are
used to construct MX graphs for the NLP in Equation (7) by function calls in each collocation point.

6. Implementation

The presented collocation framework is implemented in Python and distributed with
JModelica.org [42] under the GNU General Public License. All user interaction takes place in
Python, and is centered around the Python interface to CasADi Interface, which serves as a three-way
interface between the user, the DOP, and the collocation framework. An overview is illustrated in
Figure 3, which begins where the compilation toolchain ends, see Figure 2. After the JModelica.org
compiler has transferred the DOP to CasADi Interface, the user can modify it using Python and CasADi,
for incorporating constructs that are more conveniently scripted rather than encoded in Modelica
and Optimica.
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Figure 3. The framework surrounding the implemented collocation framework in
JModelica.org. The framework starts with a representation of the DOP in CasADi Interface
generated by the compiler. The DOP is then discretized by the collocation framework into
an NLP, which is solved by either IPOPT or WORHP.

The user can then call upon the collocation framework to solve the DOP, which will transcribe it
into an NLP and then solve it using either IPOPT or WORHP, as decided by the user. The user
provides options to the collocation framework using a dictionary-like class, specifying things such
as discretization scheme, which NLP and linear solver to use, and additional features such as those
presented in Section 5. The NLP and linear solver options are also provided directly to the collocation
framework. The communication with these solvers is handled by the collocation framework through
CasADi’s NLP solver interface, so the user never has to interact with these solvers directly.

The result is stored in a textual format compliant with Dymola [43], one of the most prominent
Modelica tools, which is loaded into Python, allowing for convenient extraction of the trajectories. The
complete procedure is demonstrated in Section 7.1. Because the hardest part of non-convex optimization
is usually to find a suitable initial guess, it is important that initial guesses can be conveniently provided
from different sources. To this end, the same result format is used to provide initial guesses, making
it convenient to provide initial guesses in the form of optimization or simulation results generated by
JModelica.org or Dymola. There have been efforts within the Modelica community to standardize the
result format [44]. The usefulness of the implemented framework would be increased if these were to
come to fruition.

7. Examples

In this section, we present two examples of how the framework can be used. The first example is
a simple optimal control problem based on the Van der Pol oscillator, for which we present the full
code used to solve the problem to demonstrate how the framework is used. The second example is
optimal control of a large-scale model of a distillation column, which demonstrates the capabilities and
performance of the framework. The presented results have been generated using revision [6606] of
JModelica.org and IPOPT 3.11.8 with the linear solver MA27. The code used for the second example is
lengthy and thus not reproduced in this paper, but it is distributed together with JModelica.org and can
be found in pyjmi.examples.distillation4_opt.

Besides the examples discussed in this section, the framework has also been used by both academia
and industry to for example estimate kinetic parameters in atomic layer deposition reactors [45], identify
models for heating and ventilation in buildings [46] and applying them for MPC [47], optimal control of
combined cycle power plants [1,48], and optimal vehicle maneuvers [49].
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7.1. Van der Pol Oscillator

The Van der Pol oscillator is a second-order, nonlinear, explicit, ordinary differential equation with a
single input, described by

ẋ1(t) =
(
1 − x2

2(t)
)

x1(t) − x2(t) + u(t)

ẋ2(t) = x1(t)
(8)

The problem we will solve is to drive the state from (0, 1) towards the origin using a quadratic Lagrange
cost on the state and input on a fixed time horizon going from t0 = 0 to t f = 10

minimize
∫ 10

0

(
x2

1(t) + x2
2(t) + ru2(t)

)
dt

subject to ẋ1(t) =
(
1 − x2

2(t)
)

x1(t) − x2(t) + u(t)

ẋ2(t) = x1(t)

x1(0) = 0, x2(0) = 1

(9)

This can be encoded in Modelica and Optimica as follows, where we first define the model VDP
describing Equation (8). The model is then used to formulate Equation (9) by inheriting it and adding
the time horizon, Lagrange cost and input bound on top of it.

vdp.mop

model VDP

Real x1(start=0, fixed=true);

Real x2(start=1, fixed=true);

input Real u;

equation

der(x1) = (1-x2^2)*x1 - x2 + u;

der(x2) = x1;

end VDP;

optimization VDP_DOP(finalTime=10, objectiveIntegrand=x1^2 + x2^2 + r*u^2)

parameter Real r = 1;

extends VDP(u(max=0.8));

end VDP_DOP;

This code can then be used to solve the problem using the Python and JModelica.org code below. We
first import the compilation methods from JModelica.org, and then compile and simulate the model to
generate an initial guess. By not specifying the input values, it defaults to zero, which is sufficient for
this simple problem. Next we compile the dynamic optimization problem and solve it for r ∈ {0.1, 1, 10}
after setting some solver options. Finally, we simulate the model again, but this time with the different
optimal inputs to verify the discretization as discussed in Section 5.3. The obtained trajectories are
shown in Figure 4. The plots have been generated using matplotlib [50].
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vdp.py

# Import JModelica.org methods

from pymodelica import compile_fmu

from pyfmi import load_fmu

from pyjmi import transfer_optimization_problem

# Compile and simulate model

fmu = compile_fmu('VDP', 'vdp.mop')

model = load_fmu(fmu)

sim_res = model.simulate(final_time=10.)

# Compile DOP and transfer to CasADi Interface

dop = transfer_optimization_problem('VDP_DOP', 'vdp.mop')

# Set solver options

opts = dop.optimize_options()

opts['n_e'] = 100 # Number of elements

opts['init_traj'] = sim_res # Initial guess trajectories

opts['IPOPT_options']['linear_solver'] = "ma27" # IPOPT's linear solver

# Solve for different values of r

for r in [0.1, 1.0, 10.0]:

dop.set('r', r)

dop_res = dop.optimize(options=opts)

# Simulate with optimal inputs to verify discretization

model = load_fmu(fmu)

sim_res = model.simulate(final_time=10., input=dop_res.get_opt_input(),

options={'CVode_options': {'rtol': 1e-6}})
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Optimal Van der Pol oscillator control

Figure 4. Optimal control of the Van der Pol oscillator. The initial state is (0, 1) and the
objective is a quadratic penalty on the state and input.



Processes 2015, 3 491

This example demonstrates the flexibility and modularity of the framework. The modeling process
is cleanly separated from the solution procedure and the same model is conveniently used to simulate
the system to generate initial guess trajectories, solve the optimal control problem, and finally verify
the fixed-step collocation discretization by simulating the optimal input. It also shows the interactivity
offered by Python scripting, which allows us to easily solve and modify the problem formulation
repeatedly in an interactive manner. The small step to setting up an MPC loop is readily envisioned.

7.2. Distillation Column

The second example is optimal control of a binary distillation column, which separates methanol from
n-propanol and has 40 trays. The model was developed in [51] and the Modelica implementation was
based on the implementation in [52]. The model is a nonlinear, implicit, DAE system of index one with
125 differential variables and 1000 algebraic variables. The state variables are the temperatures, molar
vapor fluxes, and liquid methanol concentrations of each tray, the reboiler, and the condenser.

The control objective is to have a high purity of the distillate and product streams, which is achieved
by following a specified constant temperature in two intermediary trays, number 14 and 28, despite
disturbances. The system has two inputs: Reboiler heat input Q [◦C] and reflux flow rate Lvol [l/h].
There are positivity bounds on the flux out of the condenser and reboiler, which are algebraic variables.
These bounds put implicit upper limits on the two system inputs.

The considered scenario is a short reflux breakdown during steady state, where the reflux flow rate
is reduced by nearly 90% for 5 minutes, causing the system to drift from the desired steady state. The
objective is to steer back to the desired steady state after the breakdown, using quadratic costs on the
deviation of the two tray temperatures and input signals from the high-purity steady state.

The problem is discretized using 50 elements with 3 collocation points per element over a horizon
of length 5000 seconds, resulting in an NLP with 195,000 variables. The initial guess is constructed by
simulating the system with constant input values equal to the reference values. The obtained solution is
shown in Figure 5. The entire optimization process, including compilation of the Modelica and Optimica
code and construction of AD graphs, takes 87 seconds. 50 of these seconds are spent solving the problem
in IPOPT, which solves the problem in 21 iterations. Out of these 50 seconds, 3 seconds are spent
evaluating NLP functions and their derivatives by CasADi, and most of the remaining time is spent
solving the KKT system in each iteration by MA27. These timings are obtained using pure SX graphs,
which uses 1.8 gibibytes of memory. If a mixture of SX and MX graphs are instead used—as discussed in
Section 6—the duration of the entire optimization process is increased from 87 seconds to 200 seconds.
Most of the additional time is needed in the evaluation of the NLP functions and derivatives. On the
other hand, the memory use is decreased from 1.8 gibibytes to 1.1 gibibytes.
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Optimal distillation column control

Figure 5. Control of a distillation column after a reflux breakdown. The vertical dashed
lines mark the end of the breakdown, after which the optimal control starts. The horizontal
dashed lines mark the reference values, which is the steady state before breakdown.

8. Conclusions

We have presented the dynamic optimization framework in the open-source platform JModelica.org.
The framework solves problems formulated using the modeling language Modelica and its extension
Optimica. The framework implements a method based on direct local collocation, of which the details
have been discussed based on the Radau scheme. The implementation uses CasADi to construct the
nonlinear program in order to efficiently obtain derivative information using algorithmic differentiation,
and also to get convenient access to state-of-the-art nonlinear programming numerical solvers. The use
of the framework has been demonstrated on a simple optimal control problem. The performance of the
framework has also been evaluated on an industrially relevant model of a distillation column.

Potential extensions to the framework are to complement the direct collocation method with a multiple
shooting method, and also to extend the mathematical class of supported problems. Developments
planned for the immediate future are to extend the symbolical processing of the dynamic optimization
problem to decrease the number of equations solved numerically, as discussed in [53].
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