Temperature Control of the ESS Phase Reference Line

Olofsson, Björn; Bernhardsson, Bo; Zeng, Rihua; Andersson, Pontus

2017

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Introduction and Background

Fig. 1: Phase reference line of copper (left), heating cables and temperature sensors attached (middle), and insulation applied (right).

- Phase reference signals for all accelerating components along the 600 [m] linear accelerator.
- Radio-frequency (RF) wave in a rigid coaxial line made of copper.

Fig. 2: Block diagram of the process dynamics (left) and schematics of phase reference line cross section with insulation (right).

- Feedback control used for temperature stabilization of the line within the requirements.
- Models of the heat dynamics developed and simulated using both analytic and numerical solutions of the partial differential equation for heat diffusion \(\nabla \cdot (k \nabla T) + Q = \rho c T \).
- Inputs and disturbances: Ambient air \(T_{\text{air}} \), heat by controller \(u \), and RF heat losses \(Q_{\text{RF}} \).

Simulation Results

Fig. 3: Stationary temperature in cross section with heat losses in conductors (left) and time & radial temperature dependence (right).

Prototype Setup at Lund University

Fig. 4: A 4.5 [m] prototype with two directional couplers was setup and used for controller development and experimental evaluation.

Experimental Results

Fig. 5: Control architecture for temperature stabilization with controllers in EPICS (also monitoring and supervision functions).

- Dynamic models used for designing PID controllers for temperature zones along the phase reference line. Pole placement gives the parameters \((K, T_i, T_d) \) in the control law:

\[
\begin{align*}
\dot{e}(t) &= K e(t) + \frac{1}{T_i} \int_0^t e(\tau)d\tau + \frac{1}{T_d} \frac{d}{dt} \int_0^t e(\tau)d\tau,
\end{align*}
\]

- Control architecture based on RTD Pt100 temperature sensors, heating cables, A/D and D/A converters, solid-state relays for power control. Beckhoff EtherCAT modules for I/O or Eurotherm Mini8 controller for both I/O and controller execution.

Conclusions

- A prototype control system for temperature stabilization of the ESS phase reference line.
- Observed control error variations with respect to the calibrated temperature (also for out-of-loop temperature sensors) clearly within \(\max_{x,t} |T(x, t) - T_{\text{cal}}(x)| \leq 0.1 \text{ [deg C]} \).

Control Design

Fig. 6: Sensor placement on phase reference line (upper) and experimental results from prototype setup (lower left and right).

- Ambient air temperature was increased with an element with variable power level, while the feedback control system adjusted the power level in the heating cables to keep the temperature of the phase reference line stable (one temperature zone for prototype setup).
- The reference value for the control system was chosen as \(T_{\text{ref}} = 30 \text{ [deg C]} \) in the experiment.
- All temperature measurements within \(T_{\text{cal}} \pm 0.1 \text{ [deg C]} \) during the experiment, where \(T_{\text{cal}} \) is the temperature at the particular measurement point at the start of the experiment.
- Temperature of the directional couplers remarkably stable, even though controlled using the same PID controller loop as the rigid coaxial line sections.

Prototype Setup at Lund University

Fig. 3: Stationary temperature in cross section with heat losses in conductors (left) and time & radial temperature dependence (right).

- Requirement: \(\max_{x,t} |T(x, t) - T_{\text{cal}}(x)| \leq 0.1 \text{ [deg C]} \) for 600 [m] phase reference line.

Prototype Setup at Lund University

Fig. 4: A 4.5 [m] prototype with two directional couplers was setup and used for controller development and experimental evaluation.