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Abstract 

A polyethylene plant model coded in Modelica and based on a nonlinear MPC model 

currently used at Borealis AB is considered for calibration. A case study of model 

calibration at steady-state for four different operating points are analysed, both when 

looking at one operating point separately, but also to calibrate several simultaneously. 

Both model parameters and reactor inputs are calibrated for true plant measurement 

data. To solve the parameter estimation problem, the JModelica.org platform is used, 

offering tools to express and solve calibration problems. Calibration was obtained with 

narrow confidence intervals and shows a potential to improve the model accuracy by 

changing the parameter values. The results will be used for dynamic optimisations of 

grade changes.
*
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1. Introduction 

Polyethylene manufacturers are facing a market that is constantly changing, which 

create a demand to move between different grades cost-efficiently by manipulating the 

feeding of raw materials to the reactors. An existing Borstar® polyethylene plant at 

Borealis AB that produces bimodal polyethylene will be considered. Bimodal 

polyethylene products are polymerised in three cascaded reactors, pre-polymerisation, 

loop and gas phase reactors (GPR). The first and smallest reactor is the pre-

polymerisation reactor, whose main purpose is to gently polymerise the surface of the 

catalyst particles since a fast reaction may damage the particles. In the subsequent loop 

reactor the first peak of the bimodal molecular weight distribution is formed. The last 

reactor in the chain, GPR, is a fluidised bed reactor wherein the second peak is mainly 

formed. 

  

Accurate modelling of advanced chemical reactors is a difficult task, which if successful 

may help to cut expenses of raw materials. This requires calibration of the model to 

make the differences to the real process dynamics as small as possible. The main 

purpose of the calibration is to obtain valid model parameters for a model suitable for 

optimisation of grade changes, which has previously shown promising results in 

(Larsson, Andersson et al. 2010). Calibration of the model at four different steady-state 

operating points is shown; both when looking at one operating point separately, but also 

to calibrate several simultaneously. 

                                                           
*Sponsored by Borealis AB and the Swedish Foundation of Strategic Research in the framework 

of Process Industry Centre at Lund University (PICLU).  
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2. Modelling Languages and Tools 

The modelling language used to express the mathematical model is Modelica, which is a 

high-level language for encoding of complex physical systems, supporting object-

oriented concepts such as classes, components and inheritance. In addition, textbook 

style declarative equations can be expressed. This modelling paradigm has significant 

advantages over the block-based paradigm in the context of physical modelling. In 

particular, acausal modelling systems do not require the user to solve for the derivatives 

of a mathematical model. Instead, differential and algebraic equations may be mixed, 

which then typically results in a differential algebraic equation (DAE).  

 

In order to strengthen the optimisation capabilities of Modelica, the Optimica extension 

has been proposed which adds a small number of constructs, enabling the user to 

conveniently specify optimisation problems based on Modelica models, see (Åkesson 

2008). The calibrations in this paper has been performed using JModelica.org, which is 

a Modelica-based open source platform targeted at dynamic optimisation, see (Åkesson, 

Bergdahl et al. 2009). Calibration in JModelica.org relies on an interior point algorithm, 

called IPOPT(Wächter and Biegler 2006). 

3. Mathematical Plant Model 

Modelling a series of reactors is a task including theoretical and empirical challenges. A 

resulting model of such work at Borealis AB for the Borstar® process is today used on-

site in a non-linear Model Predictive Control (MPC) software, OnSpot, see e.g. 

(Saarinen and Andersen 2003), which is the same model used in this paper. The model 

is described with more details in (Larsson, Andersson et al. 2010).  

 

Each reactor is modelled from material balances, where either the inflow comes from a 

previous reactor or a fresh feed, and outflows go to subsequent reactor, a bleed, recycle, 

or product outlet. The reactions are modelled using extended Arrhenius expressions, 

depending on temperature, pressure, reactant concentrations and catalyst activity. The 

catalyst activity varies throughout the reactor series and demands careful modelling. 

Some assumptions are made to simplify modelling. Firstly, the reactor pressures are 

controlled by outlet valves holding the pressures constant. It is also assumed that the 

polymer and the fluids are well mixed and the temperatures are uniform in the reactors. 

 

Inputs used in the model are measured flows of ethylene, hydrogen and propane, but 

also comonomer and catalyst flows. Several outputs are available including substance 

masses, mass ratios, mass flows, concentrations, pressures, densities, production rates 

and split factor. The model contains, apart from the mentioned equations additional 

algebraic equations. If the inputs and outputs of the model are denoted   and  , 

respectively, and the dynamic and algebraic variables are denoted   and  , the model 

can be written in the general non-linear differential algebraic equation (DAE) form 

  

   (     )

   (     )

     ̇         

 (1) 

in the optimisation problems. Here   denotes the    DAE variables. The parameters to 

calibrate are both the model parameters   and the inputs  , for which measurements are 

available.  

There are many parameters to calibrate in the model. Most parameters are kinetic 

parameters in reaction and catalyst deactivation rates, but also controlling parameters 
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affecting flows, pressures and levels. In this paper five parameters are chosen, namely 

( ) a settling leg parameter in the loop    , (  ) a reference value for the fluidised bed 

level in the GPR    , (   )-( ) pre-exponential factors in the Arrhenius equations for 

ethylene and hydrogen in the loop and butylene in the GPR,    ,     and    . The 

settling legs are designed to transport the slurry to the next reactor, and its parameter 

rules the solid ratio of the reactor outflow. 

 

The nominal model is calibrated in an ad hoc manner using process know-how, 

experiments and/or by trial and error. This is satisfactory for a model when used in a 

model predictive controller that can correct any discrepancies between actual and 

estimated output measurements by updating states or parameters. However, in offline 

grade change optimisation, there is no corrector, and model errors will immediately be 

penalised by taking unrealistic optimal paths, and therefore calibration is necessary.  

4. Process Model Calibration 

A grade change is accomplished by transferring the process from producing a product A 

to producing another product B, denoted transfer A-B. In the sessions between grade 

changes, where the process operates in steady-state, four data sets for the transfers A-B 

and C-D have been averaged and measurement noise covariance have been computed. 

The scaled measurements  ̂ and their standard deviations   for some of the outputs can 

be seen in Table 1. The outputs are divided into input and state measurements, denoted 

 ̂  and  ̂  with 12 and 13 values respectively. Reactor hold-up masses are denoted     

and molar fractions    , where the indexing   denotes the components propane ( ), 

hydrogen ( ) , ethylene ( ), butylene ( ) and nitrogen ( ) while   denotes pre-

polymerisation ( ), loop ( ) and GPR ( ) reactors. 

 

Table 1. Measurements ( ̂) and standard deviations (σ) for all data sets together with calibrated 

model outputs    and 95% confidence interval for all inputs   . Above the dots are 4 of 12 inputs 

shown and below 4 of the 13 states. All values are scaled to measurements of data set A. 

 

 

     ̂ 

A 

(σ) 

    

     

  

     ̂ 

B 

(σ) 

    

     

  

     ̂ 

C 

(σ) 

    

     

  

     ̂ 

D 

(σ) 

    

     

  

    

     

AB-A 

    

     

AB-B 

    1.00  

(0.002) 

1.00± 

0.002 

0.97  

(0.002) 

0.97± 

0.003 

0.97  

(0.002) 

0.97± 

0.002 

0.97  

(0.001) 

0.97± 

0.002 

0.98± 

0.004 

0.99± 

0.005 

    1.00  

(0.041) 

1.00± 

0.047 

2.51  

(0.052) 

2.51± 

0.060 

3.54  

(0.043) 

3.53± 

0.050 

3.67  

(0.050) 

3.67± 

0.058 

1.01± 

0.060 

2.47± 

0.097 

    1.00  

(0.005) 

0.83± 

0.004 

0.89  

(0.004) 

0.79± 

0.003 

1.31  

(0.006) 

1.05± 

0.004 

1.25  

(0.005) 

0.97± 

0.003 

0.83± 

0.005 

0.78± 

0.004 

    1.00  

(0.015) 

0.99± 

0.017 

1.18  

(0.016) 

1.17± 

0.018 

0.78  

(0.009) 

0.77± 

0.011 

0.70  

(0.006) 

0.69± 

0.006 

0.97± 

0.029 

1.19± 

0.032 

  … … … … … … … … … … 

    
1.00  

(0.011) 

1.02 1.00  

(0.014) 

1.03 1.37  

(0.008) 

1.37 1.37  

(0.011) 

1.41 0.95 1.08 

    1.00  

(0.033) 

1.02 1.19  

(0.015) 

1.24 1.27  

(0.009) 

1.28 1.43  

(0.008) 

1.48 1.05 1.20 

    1.00  

(0.032) 

1.02 1.04  

(0.013) 

1.06 0.53  

(0.008) 

0.54 0.41  

(0.002) 

0.42 1.05 1.03 

    1.00  

(0.031) 

1.10 0.82  

(0.008) 

0.97 0.92  

(0.013) 

1.08 0.76  

(0.005) 

0.89 1.10 0.97 
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The calibration of the system (1) is formulated as an optimisation problem 

 

   
   

          
   

( ̂    
  )   ( ̂    

  )  ( ̂    
  )   ( ̂    

  ) 

                 ( 
       )    

                   
 ̇   
  

    ( 
 )       

    (  ) 

(2) 

where ° denotes a steady-state solution for the system and the weighting matrices    

and    is defined accordingly as diagonal matrices scaled with corresponding 

measurements as   ̂⁄  
.  

 

An investigation of two calibration cases follows where the first is a calibration of each 

data set separately while the second case looks at simultaneously calibration of data sets 

A and B, called AB. When one model instance is calibrated the degrees of freedom is 

     , where    and    is the number of inputs and parameters respectively. For 

calibration of two model instances simultaneously, the degrees of freedom is       . 

 

In order to assess the quality of the parameter estimates, confidence regions have been 

computed. An 1-α marginal confidence interval means that there is 1-α probability that 

the true parameter is within the estimated interval, which is derived from the parameter 

Jacobian that is obtained at steady-state as 

   
  

  
 

  

  
 

  

  
 (

  

  
)
    

  
  (3) 

The standard deviations σ of the measured outputs are needed to compute the 

covariance matrix    (     )   where    is the diagonal weighting matrix with each 

output weighted with     . Now, the standard deviation of the parameters can be 

estimated by    √    ( ) and henceforth a parameter 1-α marginal confidence 

interval can be estimated with 

           
    (  ⁄     ) (4) 

where      is Student’ T-distribution (Englezos and Kalogerakis 2001).  

 

4.1. Case 1 – Calibration based on a single data set 

The calibration results for A, B, C, D are shown in Table 1 and Table 2. When 

comparing model output   to the output measurements a good agreement is noticed for 

the pre-polymerisation reactor. This is 

probably because there are only input 

signals in the objective function, while 

there are bigger differences in the loop 

and GPR reactors, where a trade-off 

between input signals and states 

prevails. The calibration of     and     

is better than     for all calibrations 

because they are directly affected by 

their respective kinetic parameter     

and    . In addition,     which are 

directly affected by     is nicely fitted. 

Table 3 shows how the optimal cost is 

distributed between inputs and states, 

Table 2. The calibrated parameters    with a 95% 

confidence interval for all calibrations. All values 

are scaled to the original parameter values. 

 A B C D AB 

    
1.02± 

0.030 

1.18± 

0.033 

0.90± 

0.014 

0.91± 

0.015 

1.21± 

0.025 

    
0.99± 

0.095 

0.95± 

0.043 

0.73± 

0.018 

0.68± 

0.019 

1.00± 

0.051 

    
1.43± 

0.248 

1.76± 

0.119 

1.31± 

0.058 

1.41± 

0.065 

1.60± 

0.163 

    
0.88± 

0.068 

0.83± 

0.026 

0.68± 

0.023 

0.78± 

0.018 

0.86± 

0.040 

    
1.29± 

0.119 

1.17± 

0.041 

1.53± 

0.071 

1.78± 

0.033 

1.22± 

0.040 
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where the inputs part is much smaller for all calibrations. This is probably due to the 

fact that inputs are easier to calibrate than for instance concentrations that depend on the 

other components.  

 

4.2. Case 2 – Calibration of multiple data sets simultaneously 

When comparing the single data set calibrations A and B to the calibration of multiple 

data sets AB-A and AB-B, in Table 1, all optimised output values have good agreement. 

The parameters         and     in Table 2 shows calibrated values in between those of 

the single calibrations for A and B, while     and     values lies somewhat above, 

probably due to model non-linearity. The total 

optimal cost of A, B and AB is 1.12, 0.97 and 

2.46. The sum of the optimal costs in A and B 

(2.09) is as expected less than that of AB 

because the number of freedoms are higher 

when separately calibrated, because   can 

obtain different values.  

5. Summary and Conclusions 

The paper shows an application of calibrating a Modelica model, of an existing 

Borstar® plant used at Borealis AB, with the Optimica extension in JModelica.org 

platform. The calibration results show a huge reduction of the optimal cost compared to 

that obtained with nominal parameter values and the model accuracy could be improved 

by applying the calibrated parameters. It also shows narrow confidence intervals both 

for parameters and inputs which is comparable to the standard deviation of the 

measurements. A comparison between the optimised parameters for the different data 

sets shows that at least    ,     and     have values distinctly different from the 

nominal parameter values (1) and a parameter adjustment should be beneficial for the 

model accuracy at all studied operating points. Some measurements have not equally 

good agreement, which may be explained by model errors or measurement sensors of 

various qualities, which need to be followed up. More work is to be done in the future 

by extending the model to also consider the recycle part of the plant, including 

distillation towers. Also, there are more parameter sets to examine and a single value 

decomposition analysis of the model parameters to additional investigate their 

identifiability, remains to be done. While the focus is to optimise grade transitions, it 

would be interesting to make an offline calibration on dynamic data for different cases.  
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Table 3. The part of objective function 

that is   and   for all calibration sets. 

 A B C D AB 

   10% 7% 20% 20% 9% 

   90% 93% 80% 80% 91% 


