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Preface

This report contains the student papers describing the projects in the 2017 course Projects in
Automatic Control (FRTN40). The course is given annually by the Department of Automatic
Control, Lund University, during the second half of the fall semester, with the possibility of
projects starting at other times upon agreement. It is an advanced level course, giving 7.5
ECTS credits. The main purpose of the course is to consolidate and develop the students’
knowledge through a practical project. Each project contains several of the elements typical
for an automatic control project, such as modelling, identification, analysis, synthesis and
computer implementation. For further information, see the course home page https://www.
control.lth.se/FRTN4@/ or the course syllabus (Swedish) https://kurser.lth.se/
kursplaner/17_18/FRTN40.html. The course receives an annual participant evaluation,
which can be found at https://www.ceq.1lth.se.

Each project is completed by a student group, typically comprising three to four in-
dividuals, under the supervision of a PhD student or teacher from the department. As an
alternative to projects proposed by the department, it is possible for individual groups to
propose their own projects. Apart from completing the project itself, the course provides
training in technical writing, through the writing of the papers compiled into this report. Par-
ticipants are also provided opportunities to strengthen their oral presentation skills through
two feedback seminars and a final presentation. They also serve as peer reviewers for each
other’s work.

During 2017, student prizes were handed out within the categories “Best control engi-
neering” and “Best paper, documentation and presentation”. The “Best control engineering”
prize went to Andreas Abramsson, Emil Waraeus, Rijad Alisic and Sififfo Sonko for Quad-
copter with Artificial Intelligence, and the “Best paper, documentation and presentation”
prize went to Henrik Fryklund, Lucas Lindén, Johan Lindqvist and Martin Sollenberg for
Balancing Suitcase.

We would like to thank all participants and supervisors of the 2017 edition of the course
for their enthusiasm and hard work leading up to this report. It is our hope and belief that the
course has provided new knowledge and skills, which we hope will be of use in the future
careers of the participants.

Lund, January 2017
Kristian Soltesz
Anton Cervin
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Abstract—Robot control with visual sensor inputs can be used
in a wide variety of applications. This project aims to get a small
robot arm to catch a thrown ball. The ball position is found using
a colour based object detection algorithm and a computer vision
system maps the position from 2D to 3D. The ball trajectory is
estimated using a discrete Kalman filter, and the arm-trajectory
is calculated using the FABRIK method, which gives good servo
angles as long as the impact point is in reach of the robot. The
object detection is fast enough for a good update rate and works
good for nice looking scenes. However the ball, which is orange, is
often confused with beige skin colours which gives unpredictable
ball positions. The robot system has tight real-time constraints
which have influenced the software design greatly. The system is
written with low coupling and each module is running on separate
threads, speeding up the computations considerably. The ball
catching robot system will need further development in order
to be functional. Right now the ball catching robot arm is not
connected to the image analysis. A more distinctive coloured ball
should be used and some kind of outlier rejection should be
implemented in the trajectory estimation. There are also some
strange behaviours in the FABRIK algorithm when it tries to set
a position that is out of reach which will have to be handled.

I. INTRODUCTION

Object catching using image analysis has applications
within many different fields. Everything from automating
apple picking to advanced industrial assembly line robots
and real-time tracking of objects. This project was aimed
at catching a ball thrown by a human using real-time robot
control and image analysis. Since this project is multidis-
ciplinary it leads to innovation and knowledge development
within automatic control as well as image analysis, computer
vision, mathematics, real-time programming and electronics.
Fields covered in this project are amongst others object recog-
nition using image analysis, spatial positioning using computer
vision, projectile trajectory modelling using Kalman filters,
real-time programming using monitors and robot control using
the FABRIK method.

The idea behind catching a ball with a robot arm was
inspired by a Ph.D-thesis [1] made by Magnus Linderoth.

II. MODELING

A. Ball trajectory

An important design idea behind this project is the need
to estimate the ball trajectory from just a single measurement
point. By doing this efficiently the time-margins for moving
the robot arm and estimating the ball position might be
increased (giving the robot arm something to aim for very

early in the ball’s actual trajectory). First of all, a mathematical
model of the ball position is needed.

Given the position vector p = [X, Y, Z], the position of the
ball is acquired through the differential equation:

0

p=—cplplly = |9 +ve. (1
0

In (1) g is the gravitational constant, v, is a disturbance in the

position (for example caused by wind) and c is the air drag

coefficient (affected by the mass and the size of the projectile).
After discretisation (assuming

p(t) =~ p(kh), ¥V kh <t < (k+ 1)h) and by using the state

vector z = [X, Y, Z, XY, Z), (1) can be represented by the

Fig. 1: The rig we used. Robot arm and connections can be
seen in the figure.
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state-space seen below:
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In (2) V=V X2+ Y2+ Z2 is the speed of the ball and the
I" matrix can be seen as some sort of time-dependent part of
the ball trajectory estimation where the states depend on the
air-drag and gravitation. Note that X (k), Y (k) and Z(k) are
the three last states in the state vector z(k).

Using (2), a Kalman filter can be developed to estimate
the next position in each step, 2(k + 1). This does not give
the entire trajectory. However, when a new ball position is
acquired (from the computer vision) and the velocity for this
position has been calculated, the next ball position is estimated
using the Kalman filter. From this state estimation we then
estimate the next ball position and so on and so forth until
we reach a point that lies as close to the robot arms neutral
position as possible (the impact point).

The Kalman filter is explained in more detail in Section
IV-B.

III. ELECTRO-MECHANICS

The mechanical parts of the robot arm were bought as a kit
and assembled by hand. Six servos were used, four heavier
ones (Towerpro MG996R) to control the major joints and two
lighter ones (Turnigy MG90S) to control the smaller joints.
To send PWM signals to the servo motors an Arduino Uno
R3 was used with an Arduino servo shield. The servo shield
was powered by a 5V DC adapter with a maximum current
of 7.5 A. A 12V DC adapter with a maximum current of 1 A
powered the Arduino. Two PS3 EYE cameras were used for
the image analysis and the computer vision. Since the cameras
needed to be kept at a fixed distance from the robot arm and
from each other, a wooden frame was built as well. All of this
can be seen in Figure 1 (excluding the cameras that were used
for testing during the photo).

IV. CONTROL

A. Real-time implementation and Monitor

Since the entire project consists of four major tasks (ball
trajectory estimation, image analysis, computer vision and
robot-arm trajectory generation) it is essential that there is a
solid core structure which will execute the tasks in parallel.

Since our code is implemented in Java the tasks are very easy
to parallelize using the synchronized keyword.

It is of utmost importance that our variables are mutually
exclusive, since some of them are shared between threads (e.g
the ball position is shared between the computer vision part
and the ball trajectory estimator). The way this is solved is by
introducing a monitor to keep the common variables locked.
Another aspect we introduced to our code was an Observer-
Observable connection on the monitor. The way this works is
that we make the monitor class extend an Observable class
and the classes that will use the monitor are implementing the
Observer interface. When something in the monitor happens it
notifies its observers that it has changed. This, in turn, triggers
a specific method in the observer threads to wake up and
collect the desired variables. This way the threads that depend
on the monitor will not have to wait for something to happen
since when it happens they will be notified.

B. Kalman filter
The Kalman filter is based on basic control theory:
#(k +1) = ®i(k) + T + K (y(k) — Ci(k))
= (®— KO)i(k) + T + Ky(k).

The discretized Kalman filter matrix, K, is found using
MATLAB’s built-in function dlge.m. For this function to
calculate K we need ®, C and three matrices ), R and G.
The @ matrix is a weight matrix which says how much trust
is put into the model in comparison to the measurements.
The R matrix is in some sense the complete opposite. It
puts weights on how much trust the measurements gets in
comparison to the model. Finally the G matrix describes how
the load disturbance is distributed amongst the states (since the
disturbances are assumed to be independent in each direction,
G=1).

By using (3) in a conditional loop, the optimal impact point
can be found. With the ball positioned in p = (X, Y, Z) and
initial velocity v = (X, Y, Z) the next position is estimated
as (in accordance with (2)) Z(1) = ®%(0) + I'(0) + v.(0),
where 2(0) = [X(0), Y(0), Z(0), X(0), Y (0), Z(0)] is the
initial state vector created from the input position and velocity.
In the next loop iteration £(2) is estimated from Z(1). If the
distance from the estimation #(2) to the robot arm is smaller
than that of (1) to the robot arm, the loop continues. If this
is false Z(1) is returned as the optimal impact point since it
will have had the minimum distance to the robot arm.

Note that the algorithm above finds the optimal impact point
for any choice of #(k) and Z(k + 1).

3)

C. Colour based object detection

In this project, colour based object detection for finding the
position of the ball is used. The problem with colour based
detection is that the perceived colour of an object may vary
a lot in different lightning conditions, e.g. sunlight or lumi-
nescent light. This makes simple colour detection techniques,
such as simple thresholding in the RGB-space, sensitive to
outer conditions. A more robust technique for colour based
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Fig. 2: The normalized RGB-space represented by the red and
green channels.

object detection was suggested by Magnus Linderoth in his
Ph.D-thesis [1], which will be used here.

A colour can be described by its chromaticity and lumi-
nance, where the chromaticity represents the “actual colour”
and the luminance describes the intensity of the colour. The
luminance is not used in the detector, which only uses the
chromaticity which makes it “invariant” to light intensity (the
colour channels might still be saturated or dominated by
noise). The chromaticity can be represented by two channels in
the normalized RGB-space {r,g,b: r+g+b=1, r,g,b > 0}.
The detector described here uses the red and green channels.
The chromaticity is described by:

B R B G
“R1G+B YT RYG+B

How r and g in (4) map to actual colours can be seen
in Figure 2. Let an object illuminated by sunlight have
the colour (Ry,Gy, By) with chromaticity (r1,¢1), and let
the same object illuminated by luminescent light have the
colour (Rg,Gs9, By) with chromaticity (rq,gs). If the two
light sources illuminate the object simultaneously, the resulting
colour will be:

r

“4)

(R3,G3,Bs) = A\i(R1,G1, B1) + A2(R2,Go, Ba),  (5)

where A1, Ay > 0. The corresponding chromaticity for the
colour in (5) will be:

(r3,93) =01 (r1,91) + 02 - (r2, 92), (6)

where 0; = %. It can be shown that 0,05 > 0

and 0, + 62 = 1, which implies that (r3,g3) is a convex
combination of (71, ¢1) and (r2, g2), which means that (r3, g3)
will be somewhere on the straight line between (ry, ;) and
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(r9,g2) in the space seen in Figure 2. This property is the
back bone of the colour based object detector.

The method for object detection can be divided into a

number of steps. The following steps are performed offline:

1) A lot of images of the ball illuminated by two different
light sources (sun and luminescent) are collected and the
mean image is formed for the different light sources.
This is to reduce the effect of noise in the training data.

2) The sensor bias is subtracted from the mean images.
Sensor bias is the recorded intensity in completely
darkness and may vary for different colour channels.
Therefore it can introduce dependencies between the
luminance and chromaticity, which is why it has to be
subtracted.

3) A histogram over the chromaticities for the pixels in the
training images that belong to the ball are created. This
will create two peaks in the histogram for the different
light sources. The bins in the histogram that lie between
the peaks are increased according to the principle de-
scribed by (6). If the histogram is normalized, it can be
interpreted as the probability density for the chromaticity
of the ball.

4) The “probability density” of the background is chosen.
This is a tuning parameter which has to be found
experimentally.

5) For each colour in the table, the probability of belonging
to the foreground, Py, is calculated.

6) A look-up table with RGB values as its input is created.
The output is Py, — 0.5 (denoted as probability score)
which means that a positive output implies Py, > Py,
and vice versa. The elements in the table are shifted
according to the sensor bias, e.g. a sensor bias of (1,1, 1)
and RGB-entry (3,3, 3) will get the probability for the
“true” RGB-value (2,2, 2). This look-up table is stored
for online use.

The probability mentioned in point 5 is calculated as:

=D )
Pfg + Pog
where py, is the tuning parameter from point 4. Note
that since py, is chosen, not calculated, (7) is not a “real”
probability. py, can be thought of as a threshold on how large
the probability density should be before the algorithm decides
that a pixel belongs to a ball. The steps taken online will be:

1) An image of the scene is taken and for each pixel, the
probability score is retrieved from the stored look-up
table. A “probability image” is created as the result.

2) The square that maximizes the sum of the scores en-
closed by the square is calculated. The centre of this
square will be interpreted as the position of the ball.

As mentioned in point 2, the ball is approximated by a

square. Point 2 can be implemented efficiently with a method
called integral images which is a lot easier if we look for
squares compared to circles. The centre of the obtained squares
also seems to approximate the true ball centre fairly good, as
can be seen in Figure 15.

Pfg
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Fig. 3: The pattern used to calibrate a camera’s intrinsic and
extrinsic parameters.

D. Computer vision

From the image analysis one will achieve two images with
the 2D-coordinates of the ball on each image. Using computer
vision combined with parameters defined by the cameras, one
can calculate the 3D-coordinates of the ball. There are two
different types of parameters that are of interest, extrinsic and
intrinsic parameters. Extrinsic parameters are the orientation
and position of the camera in space and are not unique for
a specific camera. Intrinsic parameters on the other hand, are
the fundamental properties of the camera and they describe
the camera’s focal length, skew and aspect ratios. Both the
extrinsic and intrinsic parameters can be calculated through a
calibration process by using a calibration pattern, see Figure
3.

The calibration process consists of three steps; calibrating
the first camera’s intrinsic parameters, calibrating the second
camera’s intrinsic parameters and then calibrating the extrinsic
parameters for both cameras simultaneously. All three steps
use a function that detects chessboard corners and therefore
one needs a printout of the calibration pattern seen above, see
Figure 3. In order to get a decent calibration of the cameras,
a large number of images (more than 50) have to be taken
of the calibration pattern from multiple angles and distances
by the cameras. The calibration is performed offline, which
means that no real time constraints apply, and the parameters
are saved for future use.

The extrinsic parameters are simply described by [R t],
where R is a rotation matrix and ¢ is a translation vector. The
intrinsic parameters, however, is achieved by forming a matrix
K, as seen below:

[ sf wo
K=10 ~vf wo]|. (®)
0 0 1

f is the camera’s focal length, ~ is the aspect ratio, (xo, yo)
is the principal point and s is the skew. The extrinsic and
intrinsic parameters can be stored in a camera matrix P:

P=KI[R t]. )

Having the two 2D-coordinates of the ball and the two
camera matrices one can calculate the 3D-coordinates. If

10

w1 and uo define the 2D-coordinates of the ball then these

coordinates can be written in homogeneous coordinates:
ur = (v1,41) = w1 = (21,91,1) (10)
ug = (x2,y2) = ug = (22,¥2,1)

According to computer vision theory, these can be trans-
formed to the following:

_ 10 1 —m
e = |:—1 0 T :|
) (11)
W o O 1 —y2
2z = -1 0 ZTo

These coordinates can then be used to get the ball’s 3D-
coordinates in homogeneous coordinates U':

’U,lmplU =0
UQQL-PQU =0 (12)
U = (‘r7 y? Z? 1)

From homogeneous coordinates and the camera matrices a
matrix M can be constructed:

U1 P

M= [Uprz] '

The null space of M can be calculated using singular value

decomposition (SVD) and one could easily achieve the 3D-

coordinates of the ball, since one of matrices resulting from

the SVD contains the information of the homogeneous 3D-

coordinates U. Both the image analysis and the computer

vision were implemented using OpenCV for java (version
3.2.0).

13)

E. Arm trajectory

1) FABRIK algorithm in 2D: FABRIK stands for forward
and backwards reaching inverse kinematics. The algorithm
consists of two parts, each consisting of a number of steps
which now will be explained. The following steps just happen
in the code and not on the actual robot. The picture illustrates
a robot arm in 3D, with three segments connected with joints.
The steps in the first part of the algorithm are illustrated in
Figure4 to Figure9.

Figure 4 shows the robot arm in a random position and the
red cross is the goal and the desired position for the end of the
arm to reach. The first step in the first part of the algorithm
is shown in Figures 5 and 6.

Fig. 4: Robot arm illustrated in 2D and a red cross which is
the position to reach.



Fig. 5: The end segment has been rotated towards the goal.

™~

Fig. 6: The end segment has been moved so that it is positioned
at the goal.

The next step is the same as the first, but this time the
middle segment will be rotated towards the base of the end
segment. This is illustrated in Figures 7 and 8.

L

Fig. 7: The middle segment has been rotated towards the base

of the end segment.

Fig. 8: The middle segment has been moved so that its end is
positioned at the base of the end segment.

The last step in the first part of the algorithm can be seen in
Figure 9. This time the segment is just rotated but not moved
to another position as in the other steps.

4 /\

Fig. 9: The base segment has been rotated towards the base
of the middle segment.

The first step in the second part of the algorithm is to rotate
and move the middle segment back so it is connected with the
base segment again. This is illustrated in Figures10 and 11

Ball Catching Robot Arm

Fig. 10: The middle segment has been rotated towards the end

of the base segment.

Fig. 11: The middle segment has been moved so that its base
is positioned at the end of the base segment.

Last the end segment is connected with the middle segment
again done by moving it as in Figures12 and 13

Fig. 12: The last segment has been rotated towards the end of
the middle segment.

Fig. 13: The last segment has been moved so that its base is
positioned at the end of the middle segment.

This is all calculated with vectors and the actual robot is
not moved like in each of these steps. After part one and two
of the algorithm is done the angles are sent to the robot and it
is positioned like in Figurel3. As can be seen in Figurel3 the
end segment has not reached the goal after one iteration, but
it has moved closer. Iterating these steps and the end segment
will eventually reach the goal. Since the computations are not
very heavy and it does not take to many iterations to come
close to the goal, this is done relatively fast in comparison
with the rest of the code.

2) FABRIK in this project: The robot arm for this project
and how the joints can be rotated can be seen in Figure 14.
To simplify we will not change the joints making the rotations
crossed out in Figure 14, they will be kept constant.

11
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Fig. 14: Movements not used are crossed out.

Given the goal position (x,y,z) and rotate this around the
y-axis to the yz-plane we only need to solve a 2D problem
and thus the FABRIK algorithm can be implemented easier
leaving out the angle of the base joint of the robot arm. The
base joint angle is instead given by # = tan~'(x/z). This
2D algorithm was first implemented and simulated yielding
promising, stable behaviour. In our project the computation
time for the FABRIK algorithm is not a bottle neck because
of the limited speed of the servos controlling the robot. The
FABRIK method can be implemented taking account of angle
constraints. This needs to be researched further and we will
try using FABRIK without constraints in the meantime.

FE. Controlling the servos

In order to send PWM signals to the servos an Arduino
with a servo shield is used. The Arduino receives the desired
angles for the servos through a USB cable from the PC running
the main code. These angles are then mapped using linear
regression for some known PWM signals and corresponding
angles.

V. RESULTS
A. Ball trajectory and Kalman filter

When constructing the Kalman filter, the following matrices
were chosen as the covariance matrices needed to compute the
Kalman gain matrix, K (as described in Section IV-B).

o G was chosen as the identity matrix, Ijs.¢).

o Q was chosen as the identity matrix, Ijs.).

o R was chosen as the identity matrix, I[3,3).

B. Robot-arm trajectory

The method used to measure the position of the robot arm
end point was not accurate since no sensors existed on the
servos, but an accuracy on the position could be estimated
up to +-20mm from the actual position. If the position of the
robot arm was set to a position out of reach, an oscillating
motion occurred.

C. Image analysis

As can be seen in Figure 15, the object detection works
well on the test image. Even though the ball is approximated
by a square, the centre of the square almost coincides with the
real centre of the ball.

12

Fig. 15: The square that maximizes the sum of enclosed
probability scores can be seen around the nearest red ball.
The image is taken in a mixture of sunlight and luminescent
light.

Fig. 16: The pixels from Figure 15 where P, > 0.5 are seen
in gray.

Figure 16 shows where in Figure 15 P, > 0.5, i.e. the
pixels that are classified as the ball.

As can be seen in Figure 16, the probability is high for
the two red balls in the image and there are also some noise
around the hand, lips and eyebrows of the person in the image.
The algorithm managed to classify the largest red ball as the
most probable, and the approximated center (of the square)
coincides well with the real center of the ball. However, the
noise in Figure 16 is problematic when the ball is far away,
and the noise has as large areas in Figure 16 as the true ball.
Experiments showed that the algorithm found the ball in a
majority of the images up to distances around three meters. At
further distances, the noise dominates the probability image.

The PS3 EYE cameras take images with the resolution
640x480 and if they are scaled down to 160x120, the ball
finding algorithm takes approximately 20 ms on average on a
2.5 GHz processor (the first couple of times takes almost the
double due to cache misses and such).

D. Computer vision

Using the calibration method described earlier (see Section
IV-D, page 4), the result on two sample images can be seen



(a) The view from one of the two (b) The view from the other camera.
cameras.

Fig. 17: Detecting the calibration pattern with both cameras.

in Figures 17a and 17b.

The calibration pattern is recognized in both images by
the software and the points are marked in the image. The
software used these points, matched them accordingly with
each other between the two images and calculated the cameras’
parameters.

VI. DISCUSSION
A. Kalman filter

All of our matrices were chosen as the identity matrix due
to the fact that we were never able to test the Kalman estimator
on the real system. However, since we needed to test the
Kalman estimator the identity matrices were the initial, and
final, choice.

B. Real-time programming

A monitor was used to keep the commonly used variables
mutually exclusive. Since we also added Observer-Observable
behaviour we might have done things twice. We wanted to
keep the threads as independent as possible and therefore
only notify them when something happened in the monitor
but doing so we might have introduced unnecessary run time.
When a thread calls a function in the monitor (which will
notify its observers) it gets paused until the observers have
completed their update functions. This might introduce some
extra wait time for important threads if the update functions
are computationally heavy. We went around this problem by
making the update functions very nimble (finishing in under
1 ms) but it is important to notice that this might introduce
problems if you are not aware of this fact. This problem might
be solved by using await and notifyAll functions (that all
classes in Java share) alongside conditional variables.

C. Robot arm

One of the problems we faced with the robot arm was the
connection from the Arduino to different computers. Since
most of our code (e.g the image analysis library OpenCV) was
preferably run on a Linux based operating system we needed
to configure the Arduino to connect with a Linux computer.
Problems arose as soon as the two devices were connected as
it seemed as the Linux computer sent signals to the Arduino
(maybe asking for a virtual handshake) making the Arduino

Ball Catching Robot Arm

freak out. This was solved by resetting the Arduino every time
the devices were connected and then running the code with
root access (giving the serial connection root access as well).

As mentioned in V-B the accuracy of the robot arm is
approximately +-20mm which we definitely think can be
improved. The angles calculated by the FABRIK algorithm
are mapped to PWM signals. Doing this mapping includes
measuring the angles manually with a contractor and can
definitely be a source of error.

The strange behaviour described in V-B when trying to set
the robot arm to a position out of reach should be possible
to prevent. It is probably an error in the code implementing
the FABRIK algorithm even though we have not been able
to localise the error. We believe this because this error did
not occur when simulating the robot arm in 2D, mentioned in
IV-E2. After the simulations were done the code was improved
and a the handling of a third coordinate was added which may
have introduced the error.

D. Image analysis

As mentioned in Section V-C, finding the ball in an image
worked well when the ball was reasonable large in the image.
The algorithm failed to find the ball at large distances, i.e.
when the ball is depicted in few pixels in the image. There
will always be some noise in probability image (Figure 16),
and the probability that these pixels will be classified as the
ball increases as the true ball gets smaller and smaller in the
image. A solution to this may be to increase the resolution
of the images, but this will also increase the computation
times considerably. Black background colours are also a major
problem. Black is a non-colour and is the result of low light
intensity, which means that black objects can have “true”
colours anywhere in Figure 2. The RGB-value (1,1, 1) with a
maximum possible value of 255 will be perceived as black by
our eyes, but will produce white colour in the classifier. The
classifier is trained on a red ball, and as can be seen in Figure
16, skin tone and specifically lips are sometimes confused with
the ball, which produces noise in the probability image. A
better choice of ball colour would for example be a distinctive
green colour, which is unusual in indoor environments (which
is why green screens are used).

Slow computation times are a known issue for computer
vision. Images are usually fairly large and looping through
them takes a lot of time. Many computer vision applications
also have real-time constraints which enforce a trade-off of
computation time and precision. The object detection algo-
rithm proved to be quite fast though, with execution times of
tens of milliseconds for images with approximately 20,000
pixels (scales as O(n) with increased number of pixels).
Every image is only looped through twice; the first is to
translate the pixel values to probability scores and build an
integral image, and the second is to search for the maximizing
square in the integral image. This is to be compared with,
for example, feeding the images through a deep convolutional
neural network which often makes multiple convolutions (each
requiring one image loop) at each layer.
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E. Computer vision

The computer vision faced a lot of difficulties in this project.
One of the biggest difficulties was the requirement of high
accuracy on the two 2D-coordinates of the ball, which were ac-
quired through colour based object detection from two images
taken by the cameras. These 2D-coordinates had a tendency
to be fluctuating from one image to another, which made it
problematic to calculate reliable 3D-coordinates of the ball
since the fluctuations got magnified in the conversion process.
However, when the detection of the ball was functioning it
seemed as if the 3D-coordinates had the proper behaviour,
but it would still require a mapping or translation of the
cameras’ coordinate system to the robot’s coordinate system.
This was never done and therefore it is difficult to know if
these coordinate systems would be difficult to align and if
there were any other major issues with the computer vision.

Other difficulties were figuring out how the calibration
process works in OpenCV, especially since OpenCV is not
written in Java and the data types, classes and methods could
be completely different compared to the original ones used in
C++. In addition, the documentation for OpenCV in Java was
not well documented and since some methods could require
over thirteen parameters of different types, it is difficult to
know if all of the inputs and outputs were done properly.
However, since the behaviour seems reasonable when the
detection of the ball is working, it is fair to assume that the
calibration was working to some extent.
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Abstract—The aim of this project was to design and implement
different control strategies for balancing a robot on two wheels,
and to investigate how measurement noise affects the perfor-
mance. The problem can be formulated as balancing an inverted
pendulum, which is a standard nonlinear control problem. PID
and LQR controllers were implemented and compared to each
other. In order to measure the angle of the robot a gyroscope and
an accelerometer were used, and measurement noise was filtered
using two different methods, which we compared: Kalman
filtering and complementary filtering. The control algorithms
were implemented first in Simulink and then in leJOS on a LEGO
Mindstorms EV3 microprocessor. Our findings suggest that a
LQR manages to balance the robot better than a PID controller
does. As for filtering, our findings suggest that a Kalman filter
is the best filter to use in order to reduce the drift from the
gyroscope and the noise from the accelerometer.

I. INTRODUCTION

This project aimed at balancing a two-wheeled LEGO-
structure, shown in figure 1, similar to a Segway by keeping
it in the upright position. The control problem is that of an
inverted pendulum. Different control strategies for keeping
the robot upright and steering it have been implemented
and tested. Three common control methods have been com-
pared: optimal control through a linear-quadratic regulator
(LQR), control through feedback linearisation (FBL), and
proportional-integral-derivative control (PID).

II. EQUIPMENT AND MATERIALS

The robot was built using LEGO Mindstorms. The main
components of the robot are two wheels, a LEGO EV3 proces-
sor, two NXT motors, a gyroscope and an accelerometer. Other
LEGO pieces were used to construct the frame. The regulator
for the robot was implemented in Java using the Eclipse IDE.
The program was compiled on a computer connected to the
robot with an USB-cable. The robot structure is partly based
on blueprints found online [4].

III. THEORY
In this section theoretical backgrounds for the different
control theories are described.
A. Complementary filter

When dealing with multiple sensors with various flaws, a
complementary filter can be used to minimize these flaws.
The idea of a complementary filter is to combine filtered
signals from different sensors in such a way that the desirable

Fig. 1. Lego model

properties of each sensor are utilized. An example is to com-
bine an accelerometer and a gyroscope to measure an angle:
a gyroscope typically is inaccurate low frequencies, which
causes measurement drift, and an accelerometer typically has
undesirable high frequency components, which causes mea-
surement noise. By numerically integrating the gyroscope’s
signal and passing it through a high-pass filter and combining
this signal with a low-pass filtered accelerometer signal, an
estimate of the angle can be retrieved. See figure 2. This can
easily be implemented using the update formula in equation
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1.

angle = a - (angle + gyro - dt) + (1 — a) - accel (1)

where
-

T+ dt

a =

where 7 is the desired time constant and dt = % where fs

is the sampling frequency.

Accelerometer |:> Low-pass filter 9 :> Angle

High-pass filter

Numerical
integration

Angular
velocity

Gyroscope

Fig. 2. Complementary filter

B. Kalman filter

A Kalman filter is an algorithm that can be used in order to
estimate unknown variables and reduce noise from measure-
ments. For a discrete-time state-space model on the form

Tpq1 = Azxy + Buy + vy, 2
yr = Cxg + e (3)
where E{vkva} = Qulkj, E{ek@f} = Qcdk;, and

E{vke]T} = Quedr;. The Kalman filter is constructed accord-
ing to equations 4-8: [2]

g, = Cig )
Ry = Q.+ CP,CT o)
Py = AP AT + Q, — Ky R KT (6)
Ki = (APC" + Que)(Qe + CRLT)™H (D)
Zpy1 = Ady + Bug + Ki(yr — 9x) ®)

In the case of estimating the angle with measurements from
an accelerometer and a gyroscope, a simpler Kalman filter can
be implemented according to the following equations [3]:

Kppo1 = FXy_1jx_1 + BOy,
Pyt =FPy  FT +Q,
Vi = zx — HXp 1
Sk =HP;;, H” +R
K, =Py, H'S;*
Xijk = Xijk—1 + Ke¥y,
P = (I - KeH)Pypy )
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With

w0 w= [ ) sl

Q= [%" QO_ ] , H=[1 0], R=vwar(ex) (10)
0y

where 6 is the angle, éb the bias of the measurements from

the gyro, h the sample time, () is process noise, and R

measurement noise. The noises are the parameters that can

be tuned. The initial P-matrix can be set to a 2x2 matrix with

Zeros.

C. Linear-quadratic regulator

The LQR was used as the primary regulator. It is concerned
with operating a dynamic system at minimum cost and can be
described by a set of equations:

u(t) = —Li(t) (11)

Z(t) = Az(t) + Bu(t) + K (y(t) — Ci(t)) (12)
0= AP+ PA" + NRyN"

T —1 T T (13)

— (PCT + NRy5)R; ' (PCT + NRy3)

K = (PCT + NRy2)R;* (14)

L=Q;'B"S (15)

0=ATS+SA+MTQ:M - SBQ,*'BTS  (16)

The equations eventually yield a state feedback controller.

D. PID control

A PID controller finds the difference between the desired
reference signal and the actual system output signal and
thereafter calculates a control signal. Denoting the error as
e(t) the PID-controller on standard form can be written as:

de(t) )

dt
or, as a transfer function in the Laplace-domain (s-domain)
1
Gs)=K |1
=5 (147

iS

)

ut) = K (e(t) + 1 At e(t)dt + T,

+ Tds)

where K, T; and T}; are tuning parameters for the controller.
Since the controller was implemented digitally a discrete-time
representation was needed. Using the backward Euler method
with sampling time 7 the following transfer function was
acquired:

T, 1 T -
H(Z):K<1+T'1—Zl —1—%(1—2 1))

Letting K1 = K, Ky = T,/T; and K3 = T4/Ts the
equation can be rearranged into:

Ki(1 - 2_1) + Ko+ K5(1 — 2_1)2
1—2-1
(K1 + Ky + K3) + (—K, —2K3)z7! + K3z
1—2z71

H(z) =
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Let Ka = K1 +K2+K3, Kb = —K1—2K3 and Kc = Kg,

yielding: Fan, 29,7) = my1Gypsin(xy) — m2, cos(wy) sin(zy)a3 — mag 7
ulk] = ulk — 1] + Kqe[k] + Kpelk — 1] + Koelk — 2] T mi1may — mi, cos? (1) 0)
which is a causal assignment that can be implemented in The system in equation 19:
computer code. .
Tr1 = T2
IV. MODELLING {@ = mL11Gbn2 T — 7 (1)
11M22—M74y 11M22—M7y
The d ics of hich the robot based
© ynarplcs ora Segwa-ly, whie ¢ robot was based on, with N = —™L_ the system can be written in matrix
can be described as follows: f m11M22 =M,
orm:
i ------- .”,U = Al’ + BT (22)
; y=Cx
" with:
i v Center of mass - .
A" m,I, A:{NGb 0}, B:[N], c=1[0 1 (23

B. Second model

(m12 cosf + MQQ)T + m22m1202 sin f — mlng sin @ cos 6

M I f b = mi1mag — miy cos? 0
ylw, T ‘ (24)
. e
b, — mi2Gy 0+ mig + mzz2 - (25)
mii1Mmo2 — Moy mii1Mmo2 — Moy
Fig. 3. Segway dynamics [1] Using the states x = [0 0, 0 éw}T and introducing
K = my1maa — m3,, the system become.
{mlléw-f—mlgéCOSQZT-i-leéQ sin 0 (17 [0 010 0
] i : 0 0 0 1 0
mi20y, cos 0 + maogll = —7 + G sin 6 p—
12 22 b T NG, 00 0 T+ N T
with: _7mI1(2Gb 00 0 mia+mos
1 0 0 0
_ 2
_ 0 010
mis = mir
9 0 0 0 1
Moo = ml* + Ib - e
. ONTROL
Gy = mgl (18)

In order to implement this on the real process, the system
where M and m are the masses of the wheel and the body, has to be discretized. This can be done with zero-order hold
r the radius of the wheel, [ the length from the wheel to the Samp]ing. For the first model, the system becomes
centre of gravity, 6,, the rotational angle of the wheel, 6 the

angle of the body, I, and I, the moment of inertia for the (ty + h) = @ra(ty) + Thu(ty)
wheel and the body respectively, and 7 the applied torque on y(tr) = Cx(ty) (27
the wheel. [1]
where
A. First m?del o B cosh&/NG3h) sinh(\N/J\éC:bh) 08)
Introducing the states x1 = 6 and x5 = 6 yields: - /NG, sinh(\/mh) cosh(\/mh)
.1'31 = T2 T
. (19) _ cosh(/ NGyh)—1 VN sinh/ NGyh)
{xz = f(z1,22,7) Tn = [_ e S (29)
where: and i = 0.02 is the sample time. For the second model, the

matlab function c2d was used.
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A. Control strategies
The linear systems can now be controlled using a LQR
(described above) or a PID controller.
VI. IMPLEMENTATION
A. Simulation

In order to test the control strategies and the different filters
before moving on to the real process, Simulink was used. Two
different models were created, one with a complimentary filter,
figure 5, and one with a Kalman filter, figure 5. Both used LQR
to control the system.

=

Random I Scopey2

) (]
x *

To Workspace
1
b4

Unit Delay2

scope 3

Vector
Concatenatet

Stept

Fig. 4. Simulink model of the linearised and discrete system (with 4 states)
with a LQ controller and a complementary filter.
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Fig. 5. Simulink model of the linearised and discrete system (with 4 states)
with a LQ controller and a Kalman filter to estimate the angle.

In figure 4, the angle is filtered using a complementary filter
with both the angle and the angular velocity as inputs. The
filter is based on figure 2, where both the integration and the
low-pass filter is included in the LowPass block. The system
is controlled using a LQR. There is also a step disturbance on
the control signal and noise on the measured angle to represent
a bad sensor.

The model in figure 5 is very similar, but instead of a
complementary filter, there is a Kalman filter described by
9 to estimate the angle.
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B. Java

The program for the robot was written in Java and imple-
mented with the operating system leJOS, which is a Java based
operating system. 1leJOS VM supports most of the functionality
from the standard library such as real-time threads, synchro-
nization mechanisms, and it also includes some libraries for
the LEGO Mindstorms hardware. In figure 6 the structure for
the classes used for controlling the robot and communicating
with the computer are visualized. A conceptual description of
the blocks (Java classes) are described below:

o Main: Main method, starts all the required threads.

« ControlRobot: Depending on chosen control strategy, this
controller regulates the dynamics of the robot.

o Wifi: Used for communication between the robot and a
computer on the same LAN.

« LQR and PID classes: one class for each control strategy.
Stores the variables needed for the control strategy.

LQR, FeedbackLinearisation

- X, y: double[]
- u, ref : double

+ updateState(): void
+ getRef(): double
+ getX() : double[]

IRConnection

I +run() : void

ControlRobot

+ run(): void
+ setMode(Int) : void
Main
-K_M, B_D, C_D : double[] ; : o
-A_D, A_KC : double[][ + main(String[]) : void

Fig. 6. UML diagram of the program structure

VII. METHOD

Initially, a feedback linearisation regulator was implemented
but was put on hold due to not yielding any desirable simu-
lation results. Instead an LQR controller with feedback was
tried with the states:

z = (0, ) (30)

where 6 is the angle of the robot body and 0 is the angular
velocity of the body. However, after trial and error the robot
still did not manage to balance, so another model were made
with 4 states:

T = (Ga wa éa ¢)

where the added states ¢ and ¢ are the wheel angle and
the angular velocity of the wheel. Following a trial and error
approach by simulating the system in Simulink, new model
parameters were found that managed to balance the robot to a
sufficient degree. With the robot now successfully balancing,
using only a gyroscope to measure the angular velocity and the
angle by numerical integration, and the wheels to measure the
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current wheel angle and wheel angular velocity, an accelerom-
eter was added to calculate the angle using sensor fusion. A
complementary filter was implemented that mostly trusted the
value from the gyroscope due to the accelerometer value being
corrupted by noise. Secondly, to improve the measurements
from the gyroscope and accelerometer for the angle, a Kalman
filter was implemented according to 9. Simulations were done
in Simulink with the different filters and then tried on the real
robot. As comparison, a simple PID controller with two states
was implemented as well.

VIII. RESULTS
A. Simulink

In figures 7 and 8, the angle and the angular veloc-
ity, and the filtered angle is shown using LQR with a
complementary filter. In figures 9 and 10 the same is
shown but for a Kalman filter. The LQR parameters are:
[—18.3341 —0.0459 —2.8688 70.0619].
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Fig. 7. Angle and angular velocity using the complementary filter. There is
an initial angle of 0.1 Rad, a step disturbance with amplitude 5 at time 30 s,
and noise with variance 0.001 on the measured angle.
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Fig. 8. Real angle, measured angle and filtered angel with complementary
filter. There is an initial angle of 0.1 Rad, a step disturbance with amplitude
5 at time 30 s, and noise with variance 0.001 on the measured angle.
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Fig. 9. Angle and angular velocity using the complementary filter. There is
an initial angle of 0.1 Rad, a step disturbance with amplitude 5 at time 30 s,
and noise with variance 0.001 on the measured angle.
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Fig. 10. Real angle, measured angle and filtered angel with Kalman filter.
There is an initial angle of 0.1 Rad, a step disturbance with amplitude 5 at
time 30 s, and noise with variance 0.001 on the measured angle.

B. Real system

In figure 2 the estimated angle from complementary filter,
gyroscope and accelerometer is shown on the actual robot with
an external force added to measure the performance of the
system. Figure 12 the estimated angle from Kalman filter,
gyroscope and accelerometer is shown on the actual robot
with an external force added to measure the performance of
the system. In table I the measured constants of the robot is
shown, table III show our LQR constants for the robot and in
table II the Kalman constants are shown.

J

M I
H

Fig. 11. LQR: Estimated angle from the Complementary filter, Gyroscope
and accelerometer at different times. An external force was introduced to the
system after 5 seconds
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Fig. 12. LQR: Estimated angle from the Kalman filter, Gyroscope and
accelerometer at different times. An external force was introduced to the
system at around 2.5 seconds

Fig. 13. PID: Estimated angle from the complementary filter, Gyroscope
and accelerometer at different times. An external force was introduced to the
system at around 2.5 seconds

TABLE I
MEASURED CONSTANTS

m 0.554kg
M 0.060kg
r 0.04m
l 0.11m
g 9.82m/s?
Iy 9.6- 10" %kg - m?
Iy 0.0067kg - m?
TABLE II
KALMAN VALUES

R, 43

Qaccel 0.03

Qgyro 0.00000002




TABLE III
LQR-VALUES

kg 18.1696
ky 0.08
0.85

k; 0.083

TABLE IV
PID VALUES

K, 19
K; 1.82
Ky 24.5

IX. DISCUSSION

Based on figure 11, the complementary filter starts to
drift away from the actual value. This was expected since
the filter is based mostly on the values from the gyroscope
due to the variance of the accelerometer values, which can
be seen in equation 1. By using our LQR controller with
the complementary filter the robot manage to self balance.
However, due to the drift in the motors, the position of the
robot gets further away from the starting point. Using the
Kalman filter, this drift was removed, which can be seen
in figure 12. The values for the Kalman filter that were
used on the robot are shown in table II. A high value of
the measurement noise was chosen since the accelerometer
angle tend to be corrupted by noise and the angle from the
gyroscope drifts. The Q values show how much we trust the
sensor outputs (see section III-B for more details) compared
to the other, where a high value indicates that the sensor was
trusted less compared to the other sensor. Based on the result
from II, the accelerometer was trusted less than the gyroscope
which worked for the system. The values from III are the
result from trial and error to calculate the Q matrix in section
II-C which balanced the robot. With the PID implementation
the robot was successfully successfully balanced. However, if
external force was added on the robot it was not successful
in reducing the disturbance resulting in the robot oscillating
and eventually tipping over, which can be seen in figure 13.

Comparing the results from the different controllers,
they suggest that an LQR controller is better than the PID
to self balance a robot. However, it might be that the PID
is not properly tuned. It is also worth noting that the EV3
with 1eJOS had a limitation in the speed of the control
loop. The minimum time per loop was around 16 ms, and
it was not possible to go lower than that if the values from
the accelerometer and gyroscope were to be collected. It
is possible that a PID controller would work better with a
lower downtime per iteration. One could try doing the control
strategies in C or the EV3 language, which could help with

Self-Balancing Lego Robot

reducing the delay. Furthermore, it is possible that both
controllers could have worked better if 4 motors were used
instead of 2 so the robot could recover balance from steeper
angles.

As for the filters it looks like the Kalman filter performed
better than the complementary filter to estimate the angle. That
being said, the implementation has not taken care of the bias
offset from the gyroscope which might be what makes the
complementary filter follow the gyroscope so closely. So if
one takes care of the bias offset from the gyroscope and then
use the complementary filter the result might be closer to the
Kalman filter.
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Abstract—The aim of this project was to make a suitcase
balance on one of its short edges. This was done by changing the
position of small masses along two of the sides, thus altering
the center of mass for the suitcase. An accelerometer kept
track of the inclination of the suitcase. Two control methods
were investigated: cascade controller and Linear Quadratic
Regulator (LQR), where the former was been the main focus.
The inner loop performs very well, but work remains regarding
implementation and tuning of the outer loop. Due to several
problems, mostly concerning electromagnetic disturbances in the
accelerometer chip/cables, the performance is not yet satisfactory.
The accelerometer per se is demonstrating good behavior when
the motor is not receiving power, but as the motor is turned
on, some serious EMC noise problem arises. This results in that
the regulator acts on an incorrect angle and cannot stabilize the
construction. As accelerometers tend to be noisy (even without
EM disturbances) a complementary filter was implemented. Due
to the fact that we did not manage to balance the construction
that was to fit inside the suitcase, no suitcase has been bought.
The finished construction can be seen in Figure 1.

1. INTRODUCTION

The purpose of this project is to build a suitcase that will
use a stabilization system to balance on one of its short edges.
This will be achieved with a brushless synchronous motor with
Hall sensors, a 3D accelerometer and 3D gyroscope named
LSM6DS3, all of that piloted by a Raspberry Pi 3B. The aim
is to be able to control the angle of inclination of the suitcase

Fig. 1. Final construction

center of mass relative to upright position by controlling the
position of one or two weights inside of the suitcase, so that
the angle of inclination is always close to zero. The regulators
of choice are cascade control and Linear Quadratic Regulator
(LQR). With cascade control the problem can be divided into
subproblems, making the entire process a bit less cumbersome
to deal with. The idea behind LQR is that the control may be
optimized based on desired behavior in certain states, such as
inclination, mass movement and applied motor force.

II. DESIGN

In order to simulate and implement a controller for a
balancing suitcase, a model of it is needed. To find one, some
basic decisions were made about how to stabilize the suitcase.
After some discussions on how to design the construction,
three different construction models were suggested for this
project. The fundamental design concepts can be seen in
Figures 2, 3 and 4. There are some pros and cons with the
different models, both regarding mathematical modeling and
construction of the design.

A. Mathematical modelling, pros and cons

o Design a: The mathematical model is fairly easy, much
due to the fact that distance from the small mass to the
origin is constant.

o Design b: Modeling is quite difficult as the distance
between the small mass and the origin depends on where
the mass is positioned along the path.

e Design c: More difficult to model than configuration a,
but easier to model than configuration b as the distance
between masses to origin is angle-independent.

B. Design construction, pros and cons

o Design a: May be difficult to construct the bent shape
in a satisfactory way. Some control difficulties may also
arise from the fact that a moment force in the opposite
direction will appear whenever the mass is accelerated.

o Design b: Easier to build than configuration a, but the
problem with the moment force in the opposite direction
is still present.

o Design c: Construction wise it is fairly similar to design b.
The problem with moment force in the opposite direction
is not present in this case.
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Taking the different pros and cons into account, the group
decided to go with design ¢, mainly in order to minimize the
problem with opposing moment force.

Yy

Fig. 2. Design configuration a. Moving a single weight with a fixed distance
from the ground contact point of the suitcase.

Z

Fig. 3. Design configuration b. Moving a single weight in a straight line.

Fig. 4. Design configuration c¢. Moving two weights along the sides of the
suitcase.

III. MODELLING

In order to compute a state space equation, Lagrangian
mechanics was used. The different parameters for the system
are
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o 0 - angle of the suitcase center of mass relative to upright
position.

e M - mass of the body (everything besides the small
masses).

e m - mass of the small masses. Preferably they will be
equal.

o « - angle of the weights relative to the center of the body.
This will be constant for a given design.

o d - distance from origin to center of mass.

e r - distance from origin to nominal point of the small
masses.

e p - deviation from nominal point r, for the small masses.

e J - moment of inertia for the body around origin.

e ¢ - gravitational constant.

e I - motor force

A. Mathematical model using Lagrangian mechanics

Kinetic energy for the body:

1 .
Thody = 5J@z. (1)
Potential energy for the body:
Voody = M gd cos(6). 2)

Kinetic energy for the small masses:

T = 5+ 9)” + (r = PP + 2?2
= m(r® + p*)0% + mp?. 3)
Potential energy for the small masses:
Vin = mg(r + p) cos(6 — ) + mg(r — p) cos(6 + «)
= mg(r + p)(cos(6) cos(a) + sin(0) sin(a))
+ mg(r — p)(cos(0) cos(a) — sin(6) sin(a))
G

in(a
) sin(a
= 2mgr cos(0) cos(a) + 2mgpsin(0) sin(a). 4)

Inserting v = 7 (meaning the angle between the two sides is
5 rad) in equation 4 yields

' = V2mgr cos(0) + v2mgpsin(6). ®)
Using equations 1, 2, 3 and 5 yields the Lagrangian

L =Tyoqy + T — Voody — Vin =
= %JéQ +m(r? + p)62 + mp® — Mgd cos(f)
— V2mgr cos(0) — V2mgpsin(0)
Solving the equation
4oL oL _,
dt 99 00

results in

(J + 2m(r® + p*))0 + 4mppd

= (Mgd + V2mgr) sin(6) — v2mgp cos(d). (6)



In a similar fashion

doL oL _
dt 9p Op
gives
2mp = 2mph* — V/2mgsin(6) + F. (7

B. State-space form

The states can be introduced as:

T
T2
T3
L4

DT

Linearizing the model around (p,p,6,6) = (0,0,0,0)
results in

(J +2mr?)d = (Mgd + V2mgr)0 — V2mgp ~ (8)

and
2mp = —v/2mgf + F. ©)

With equations 8 and 9, and letting F' = u + ﬁmg@
(to simplify the state-space equation), gives the state-space
equation

T 0 1 0 0] [a; 0
; 0 0 0 0 1
T2 T2 2m
ds| | 0 1 0 0 {as| T 10| ¥
i) Lz o MR o] lw] Lo
T
yil (1 0 0 Of |z
vl |00 1 0] |as]”
T4

where « is an input signal to the motor, measured in volts.
There are two output states in this model: y; is the first output
i.e. the position of the masses, p, and y- is the second output
i.e. the angle of the suitcase center of mass inclination, 6.

IV. ELECTRO-MECHANICS
A. Material and components

The three most important components have been assigned
their own subheading, IV-A1 — IV-A3. All other parts have
been compiled in the following list:

« Plastic tubes

o Gearwheel

o Mechanical belt

¢ Iron rod (to cut up and make the moving weights)

o Cables

o Cable ties

o Various metal parts (structural support, screws, pop rivets)
« Pulleys

o Power box

o Thread

Balancing Suitcase

1) Raspberry Pi unit: The Raspberry Pi unit is of the
model 3B. It is equipped with 40 GPIO (General Purpose
Input/Output) ports that will be used to communicate with
the DC motor and the accelerometer. Programming is made
in Python.

2) Accelerometer: An IMU (Internal Measurement Unit)
named LSM6DS3 manufactured by STMicroelectronics is
used to measure angles and angular velocities [4]. There are
more things it can measure, but that will not be necessary for
this project. Communication with the Raspberry unit is done
via I?C-bus protocol and some code for this was also found
and used [1]. The IMU is connected to the Raspberry Pi
using the GPIO’s for SDA (data line) and SCL (clock line).
Current and ground is also provided by the Raspberry unit.

3) DC motor: A brushless DC motor (largest in the BLDC-
3 series) is used to change the position of the small masses
found in Figure 4 [3]. The motor will be connected to a belt
that will be strapped around the construction, using pulleys
in the corners. According to the data sheet the motor has a
torque of up to 0.6 N m. Communication with the Raspberry
unit is achieved via the GPIO-pins, but current is provided
using an external power box, as it is operated around 24 V.
The motor has two built in Hall sensors which is can be used
to determine the revolution speed and distance keeping, see
Figure 5. Counting the amount of times one of the Hall sensors
rises per second, and dividing by two gives revolutions per
second. By checking if the other Hall sensor is high or low
when a rise or fall edge is triggered, one can get the direction
the wheel is turning.

Mec. degrees 0 30 60 90 120 150 180 210 240 270 300 330 360
|

Hall A (pin 9) =12V
& oV
i : 12V
Hall B (pin 10) + ov

Fig. 5. The hall sensors in the motor will be high twice per revolution. Source:
BLDC-3 series data sheet.

B. Construction

Construction wise, the very first thing was to get the
motor running and testing the IMU-chip. Once these had been
understood and tested, the construction could be initiated. A
triangular metal plate was cut out and holes were drilled in
order to attach the motor. This plate was then attached with
pop rivets to the bottom of a large metal V, with a right angle.
This V was supported with another metal piece further up.
Along the sides of the V, the plastic tubes were attached with
screws and cable ties. The reason for the plastic tubes was that
previous years in this project, there have been some problems
with the weights wobbling in directions other than along the
sides. To prevent this undesired behavior, the weights traveled
through tubes.

An iron rod was cut up in eight pieces, in order to create the
moving weights with the weight of about 500 g each, as this
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weight had worked in the simulation. Four of these iron rod
pieces were attached to each other and to the mechanical belt
with threads. They were then inserted in the plastic tubes and
the belt was tightened around the gearwheel and the pulleys
that had been put in the plastic tubes. For pictures of the
construction see either the first page or the appendix.

V. THEORY

Two control methods have been under discussion for this
project, namely cascade control and Linear Quadratic Reg-
ulator (LQR). With a cascade control the problem can be
divided into two subproblems, making the overall regulation a
bit easier. Also, full state feedback is not needed. Only the
position of the small masses and the angle 6 needs to be
measured. In order to be able to use LQR, full state feedback
is required. A decision was made to keep main focus on the
cascade controller and implement LQR if there was spare time
at the end.

A. Cascade control

The inner system will describe the dynamics between the
motor and the positions of the small masses while the outer
system describes the dynamics between the angle 6 and the
positions of the small masses. In order for cascade control to
work, the inner system dynamic need to be faster than the
outer one. See Figure 6 for a visual representation. Coding
will be done directly on the Raspberry unit in Python. The
angle reference will always be zero, so the inclination should
always be zero.

disturbance

Outer |p, Outer

PID PID

Inner | y | Inner | p

Orer

Process Process

Fig. 6. Block diagram for the system. For a bit more realistic process, u
should be saturated in order to mimic the limitations of the motor.

B. Cascade simulations

In order to make sure the regulators would work, they
needed to be simulated. The simulation was made with Matlab
Simulink. The PID parameters of the inner and outer loops
were found using trial and error. The parameters of the inner
loop and outer loop are in the Table I. The simulations yielded
the graph that can be seen in Figure 7

C. Linear quadratic regulator (LOR)

LQR aims to minimize the quadratic cost function

t1
J = / (27 Qx + u” Ru)dt

to
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TABLE I
PID PARAMETERS FROM SIMULATIONS.
Parameters | Inner loop | Outer loop
P 7 -1.7
1 2 -0.8
D 50 -0.3

Fig. 7. Simulation of the cascade controller. The pulses simulate disturbances
of 0.1 radians. Yellow line is pulse, blue is 6.

where Q and R are design parameters that can be chosen to
penalize the states of the system, and the control signal. Q is a
matrix with dimensions states X states (4 x 4 in this case) and
R is a matrix with dimensions control signals x control signals
(scalar in this case). See Figure 8 for a visual representation.
As the goal of the project is for the suitcase to balance in
upright position, the state for 6 should be penalized hard in
the Q-matrix. R should be chosen such that the control signal
u does not exceed the maximum motor force. Then a matrix
is calculated with respect to the cost function and used to
multiply with the states to get a feedback in the usual LQR
manner further described in Glad and Ljung [2].

The simulations of the LQR has not been included due to the
fact that it’s not the controller that was used in the project.

disturbance
- b)) Proces L)
N rocess
06 p Pl
-K

Fig. 8. Block scheme for process controlled by LQR.



D. Complementary filter

As accelerometers generally suffer from a lot of high
frequency noise a filter is needed to sort out relevant data, in
this case angle measurements. Several methods are available
and the one used here is the so called complementary filter.
On the short term it uses data from the gyroscope as it is
quite precise and not susceptible to external forces. On the
long term it uses data from the accelerometer as it generally
does not drift. The filter is an iterative process that can be
written as

Op+1 = a (0 +wg - dt) + (1 — @) - (accDatay,)

where 6 is the angle, w is the angular velocity (gathered from
the gyroscope function of the accelerometer), dt is the sample
time, accData is the unfiltered angle from the accelerometer
and « is a weighting parameter. £+ 1 and k denotes instances
of time.

VI. CODING

The coding was made in the language Python. A structure
of how the code is built can be seen in figure 9.

initialize

loop interrupt

¥ 7
A .
calculate #- o e . Trlgg and
mass position count
‘ Hall sensors
outer PID

wpos-ref ¥

measure 6

inner PID

calculate
Motor strength
2
Give power
to motor

I

Fig. 9. The coding structure of the entire process.

In the initialize block the Raspberry Pi was set up. The data
pins was set up, constants initialized and libraries imported.
Then the loop is started, where the current 6 is fetched from the
IMU-chip and the mass positions is calculated. The angle of
the construction is sent to the outer PID which calculates what
the angle should be (pos-ref), which together with the current
mass position is being sent to the inner PID. The necessary
motor strength is calculated and sent to the motor. Then to
process starts over. Meanwhile there is a trigger for when the
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Hall sensors are changed from HIGH to LOW or vice versa
(see Figure 5 to calculate how many revolutions the wheel has
turned and the hence how far the masses has moved.

VII. RESULTS

So far we have not been able to balance the construction that
is supposed to fit inside a suitcase. As the center of mass will
be shifted to a trickier position with the suitcase implemented
we want to stabilize the construction before we attach it to a
suitcase. Furthermore we are hoping to be able to minimize
the construction if the regulators behave satisfactory. LQR
implementation has mostly been put aside in order to work
with the cascade control. Regarding the cascade controller the
inner loop is stabilized with good performance. Performance of
the outer loop is difficult to evaluate as the motor is generating
electromagnetic interference that affects the accelerometer.

A. Complementary filter

After some trial and error we found that the filter behaves
satisfactory with oo = 0.9. See Figure 10

fltered ]
0.4 unflllered I
0.3
0.2
el byl
=
o 01
o
=
@
o0
-0
-02
03

time [t]

Fig. 10. Complementary filter with o = 0.9. Construction moved by hand
while pwm is set to zero. As the filter is iterative the filtered angle will always
be one step behind the unfiltered one.

B. LOR

Since the cascade controller is not yet fully operational, the
effort spent on LQR has been quite low. A few runs has been
tried out, but most of them results in bang-bang control, which
results in a bit of slipping between gear and strap. The reason
for this is not yet clear, but a few different explanations are
possible.

o The process may be very unstable, rendering the lin-
earized point very hard to reach.

¢ Code may need to be optimized. If each iteration takes
too long the system may not be able to react before the
construction is too far from the linearization point.

o Further tuning of design parameters Q and R is needed.
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C. Cascade controller

Problems have been connected to the position of the small
masses. As the resolution of the hall sensors in the motor
is 90°, a position error of +2cm is present. This error may
propagate as the masses are moved back and forth. At this
point the inner loop is working very well. See Figure 12
for how the masses follow the position reference. For the
outer loop to work properly a bit of work remains regarding
implementation and tuning. PID parameters differs greatly
from simulated results. Note both that D = 0 in the inner loop,
and close to zero in the outer one. Note also and that the inner
P-parameter is significantly larger than in the simulations.

TABLE 11
PID PARAMETERS FROM EXPERIMENTS. COMPARE TO TABLE I FOR
SIMULATION PARAMETERS.

Parameters | Inner loop | Outer loop
P 300 0.5
1 2 3
D 0 0.08

1) Inner loop: The inner loop is properly closed and
performance for different tunings of the PID regulator may
be seen in Figure 11.

0.05 :|_ — —— pos, P=10
[ — paos, P=100
— | B pos, P=300
E 0 | L . — posref 1
\
005 ‘
4 45 5 55 6 65 7 75 B8
time [t]
40
20
z 0 S
=
0‘—‘_20 "_ - ——pwm, P=10 | |
—— pwm, P=100
40 pwm, P=300|
-0
4 45 5 55 6 65 7 75 8
time [f]
Fig. 11. Step response of the inner loop and pwm strength for different

P-values, all with I =2 and D = 0.

VIII. DISCUSSION

Over the course of the project we have encountered nu-
merous problems of different impact. One major issue has
been how to tighten the strap enough to avoid slipping when
changing direction of the gear (from i.e. clockwise rotation to
counterclockwise rotation). Two ropes has been destroyed in
this process before getting the final belt. As mass positions are
not measured directly, rather we measure the total revolutions
of the gear using the hall sensors and convert it to mass
positions, slipping may lead to masses not moving although the
hall sensors indicate that they do. Since the cascade controller
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Fig. 12. Position and position reference of the masses when the entire process
is running. The construction is not able to balance on its own. Objects are
placed on the sides thus making it impossible for the construction to lean
more than £ 10 degrees.

may be divided into two problems we decided to put or focus
on that over the LQR implementation. Problems also occurred
with cables that did not work when the motor was tested for
the first time which took time to find out. With the cascade
control the loops could be tuned separately, whereas in the
LQR everything has to be tuned at once.

Even when the complementary filter is implemented the ac-
celerometer measurements become rather noisy. After holding
the construction at place by hand and running the motor, with
the position reference altering between £5 cm, we noticed
that electromagnetic interference is present. See Figure 13.
This is a major problem for which several solutions were
tested, including twisting pairs of cables (to cancel out the
EMC interference) and implementing different kinds of filters.
However, nothing was successful and this disturbance in the
angle is probably the main reason for failure. The results
of this is that the control signal of the outer loop, position
reference for the masses, gets noisy. This can clearly be seen
in Figure 12.

The discrepancy between simulated and experimental PID
parameters is quite big, most notably for the inner P-parameter
and the D-parameters. Implementing derivative parts proved to
be a real struggle, probably due to the fact that the system is
working in discrete time. This could be the explanation for the
large value of the inner P-parameter. One could also take note
that no friction is present in the mathematical model while
there is a lot of friction in the construction.

Sometimes when pwm is roughly 40 or larger, the motor
emits a high pitched noise at the same time as the current
provided by the power box increases fast up towards 5-6
Ampere. Therefore we have chosen to set a limitation at pwm
< 30.

As can be seen in Figure 11, there is a small delay in the
response. Approximately 0.1 seconds for P = 300. This of
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Fig. 13. Theta is in reality constant (construction held at place by hand),
but when the motor is running it generates EM-interference resulting in
accelerometer data being nonconstant.

course has a negative effect on the result as you want the
fastest possible inner loop.

Implementing the derivative part of the PID-regulators
proved to be very difficult. Oftentimes it took over the entire
regulator leading to the masses more or less simply oscillating
within a very short interval from the start position, regardless
of position reference. We suspect that this is tied to the fact
that derivative gain in discrete time may be very large as the
time steps are very small while the measurement differences
may be relatively large. Ultimately the derivative parts were
set to zero in the inner loop and close to zero in the outer one.

Friction was largely present in the construction. Preferably
the circumference of the masses should have been a bit smaller
to avoid this. Aside from simple plastic wheels proper bearings
could be used as pulleys.

Another problem could be that the motor that was used has
a certain, unknown, transfer function, which makes it more
difficult to understand how the control signal is really related
to the output. It would possibly have been good to make some
sort of system identification of the motor, or open it up and
make a controller for the motor it self.

Much has been learned in this project. No prior experience
with Raspberry Pis existed, but the versatility of the Raspberry
Pi has been made clear to the group. Prior to the project
only one group member had used Python as a programming
language. Also Git was new to the entire group.
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APPENDIX

A. Pictures of construction

Fig. 14. The construction that is to fit inside a suitcase. Masses can be seen
inside the tubes. The IMU is the red chip, and the motor is the black box.

Fig. 15. The construction.
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Abstract—Today we see Segways and Hoverboards daily in our
cities and in our streets. This project will use the principles of
these inventions to balance a suitcase on one of its short edges.
With a reaction wheel placed inside the suitcase, Newtons third
law of motion enables us to do just that. The control system,
developed in python, is executed on a Raspberry Pi. Using a IMU
to read the tilt angle and angular velocity of the suitcase, a control
signal is calculated and sent to a brushless DC motor connected
to the reaction wheel. Using the LQR control principle to achieve
optimal state feedback, the speed of the reaction wheel can be
minimized at all time. Minimizing the speed of the wheel is the
key to giving the system the ability to maximize the acceleration
of the reaction wheel in the needed direction at any time. The
Balancing Suitcase can handle small load disturbances if the
disturbance is in the opposite direction of the velocity of the
reaction wheel. So, one can make a suitcase balance on its short
edge, but the storage remaining is utterly limited and thus, the
purpose is exchanged from traveling, to the demonstration of an
inverted pendulum at fairs and lectures.

Fig. 1. The balancing suitcase

I. INTRODUCTION

Balancing an inverted pendulum is a common showcase
problem in control theory, a task which can be quite difficult
for a human to do. Automatic control quickly demonstrates
its use as it can perfectly balance the inverted pendulum. The
simple dynamics of the problem lay ground for e.g. rockets
and Segways.

This project was part of the course FRTN40 “Projects in
Automatic Control” held by the department of Automatic
Control at Lund University, fall 2017. The goal of the
project was to build an inverted pendulum in the form of
a suitcase, construct the hardware needed and implement a
controller to balance the suitcase on one of its short edges.
This could have been done in several ways, but two different
options were presented to two project groups by the project
supervisor. One option was to use weights in order to balance
the suitcase and the other was to use a reaction wheel. This
group decided to go with the reaction wheel concept while
the other project group went with the weights. Inspiration
for the project has been drawn from The Cubli [4], which
is a more advanced version of this project. The scope of
the project was eight weeks and the work flow consisted of
modeling of the system, construction of the hardware and
implementation of the software. Followed by verification,
testing, and lastly a project report and presentation.

II. MODEL

A. Modeling

A simplified model of the Balancing Suitcase can be seen
in Fig. 2, the parameters can be found in Table I. Using this
model a mathematical model was derived using Lagrangian
mechanics[3]

L=T-YV, ey

where L is the Lagrangian, the difference between the kinetic
energy 1" and the potential energy V' of the system. Which
were derived as

1 . 1

and
V = mgr cos(0). 3)
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The Lagrangian equation

d oL,

4oL oL
dt og;"

dg;

(5-)s

where ¢ is a generalized coordinate, was used with equation
(1), (2) and (3) to model the system, yielding the derived
differential equation

mgr

J

sin(f) = —. €5

6 —
J

—7

mc

x
Fig. 2. Simplified model of the Balancing Suitcase with parameters. m. in

the figure is an arbitrary location of the center of mass.

TABLE I
PARAMETER DECLARATION.

Variable  Unit Description
0 rad Angle around vertical axis
6 rads™! Angular velocity around vertical axis
w rads™! Angular velocity of reaction wheel
g kgms~2  Gravitational constant
r m Distance to center of mass of the system
J kg m? Moment of inertia of the system
Jw kg m? Moment of inertia of reaction wheel
T Nm Motor torque
m kg Mass of the system
h S Sampling time of the system

Equation (4) describes the system without friction and
motor dynamics. The relation between the motor torque and
acceleration of the wheel was formulated as

wly =T )
Table I describes all parameters used in the model.

B. Linearization and State-Space

The differential equation (4) was linearized around 6 = 0
and sin(f) ~ 6 for small angles of 6.
By denoting the state vector as

0
rz= 1|60
w
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the equations (4) and (5) can be represented in the following
continuous state-space model

0 1 0 0
t=Ar+Br=|"F 0 0|z+ 7?1 T.
0 0 0 L

The system was discretized, yielding the discretized system
on the following form [1]

z(kh + h) = ®a(kh) + T (kh)

y(kh) = Cx(kh) ©

where h is the sampling time and k the period

d =cAh

h
I‘:/ e dsB.
0

III. CONTROL

A. Control Theory

The Linear Quadratic Regulator (LQR) is an optimal state
feedback regulator that controls a dynamic system by mini-
mizing the following function for an infinite-horizon discrete
system on the form (6)

J = Z(xf@xk + uj Ruy, + 221 Nuy) @)
=1

where Q and R are weight matrices for the state vector x and
the control signal . N is the correlation between the state and
input signal. By solving for the optimal feedback, one yields
that the optimal static feedback law [2]

u(ty) = —La(tk)
L= (BTSB+ R)"YBTSA+ NT)

where S is the unique, positive semi-definite symmetrical
solution obtained by solving the discrete time algebraic Ricatti
equation [2]

ATSAS(ATSB+N)(BY'SB+R)'(B'SA+NT)+Q = 0.

B. Control Implementation

As the system is static, a LQR with a static feedback
law will be sufficient to control the process because of the
possibility to decide the weight parameters for the state
transitions and the control signal in the cost function, equation
(7). The controller should be able to keep the control signal to
a minimum and stabilize the system at its unstable equilibrium.
The control signal is scaled by a factor 100. This gives a
sufficiently large change in velocity, to produce an acceleration
of the reaction wheel, large enough to stabilize the suitcase.
As the output signal is on Pulse Width Modulation (PWM)
form, there is a need for saturation of the signal as the limits
for the PWM are [0, 100] %.



IV. SIMULATION

To simulate the behavior of the system, a Simulink model
was created which can be seen in Fig. 3. The motor was
roughly estimated with a saturation of its maximum output
torque and a time delay for the torque. The parameters
for the simulated model were measured and entered into a
separate MATLAB script where the state-space model and the
controller were calculated. Zero mean white Gaussian noise
was added to the measured output signals and a disturbance
on the input signal in order to verify the stability of the model.

radodeg @

[ bo-{/-{]

thetaref { Saturation  Delay theta dot

rad2deg
1

>0

omega

rad2rps

Fig. 3. Simulink model for the derived mathematical model with a LQR
controller

V. ELECTRO-MECHANICS

This section will describe the different mechanical and elec-
trical components of the Balancing Suitcase. The placement
of the components can be seen in Fig. 4 and their mechanical
parameters Table II.

Fig. 4. Component placement inside the Balancing Suitcase. 1. IMU: 2.
Motor: 3. Embedded Motor Controller: 4. Raspberry Pi: 5. Reaction Wheel

A. Raspberry Pi

A Raspberry Pi 3 Model B! was used as the processing unit
in the Balancing Suitcase. The Raspberry Pi has 40 General-
purpose input/output (GPIO) with support for Inter-Integrated
Circuit (I?C) communication and PWM which was needed to
communicate with the IMU and control the Motor.

Uhttps://www.raspberrypi.org/products/raspberry-pi- 3-model-b/
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B. Inertial Measurement Unit

The Balancing Suitcase used an Inertial Measurement Unit
(IMU) of model LSM6DS3, which has an accelerometer and
a gyroscope that was used to measure the angle and velocity
at which the Balancing Suitcase was currently tilted. The
protocol used for communication between the Raspberry Pi
and the IMU was 12C.

C. DC Motor

The reaction wheel was driven by a brush less DC motor
of model BLDC3-ZWXO01. The motor had an embedded
controller which controlled the speed, direction and braking
of the motor. Two hall sensors were available and were used
to measure the speed of the motor. The default output of the
hall sensors was 12V and 0.1 mA, which is above the input
voltage level for the Raspberry Pi. Due to a constant output
current, it is enough to place a resistance between signal and
ground to get the desired voltage output of 3.3 V.

D. Reaction wheel

The reaction wheel was designed with spokes and a large
rim in order to maximize the moment of inertia while minimiz-
ing the mass. Small holes along the rim were added to enable
increments in the moment of inertia. The reaction wheel was
water cut in aluminum. In Fig. 5 the reaction wheel design is
shown.

Fig. 5. Design of reaction wheel.

E. Suitcase and Frame design

The suitcase attributes can be seen in Table II, where
only the heavier and larger components are included. A few
components from the inside of the original suitcase were
removed in order to make room for the frame. The frame
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construction consists of a triangle shaped aluminum frame
designed to fit inside the Balancing Suitcase. The design of
the frame is shown in Fig. 6. The frame was used in order

300

Fig. 6. Sketch of frame design. The measurements presented in the sketch
are in mm.

to stabilize the Balancing Suitcase and to mount the hardware
components.

F. Component placement

Most of the components are placed in the balancing corner
of the suitcase, this to ensure a low center of mass, see Table 11
for values. This allows the motor to handle greater angles. The
motor was placed further away from the balancing corner, to
make room for the reaction wheel. The design of the frame
was made with aspect to keep the distance from the balancing
corner to the motor short, i.e. to have a low center of mass.
The only exception for placement of the components close to
the balancing corner was the IMU, which instead was placed
in the top corner in order to maximize its sensitivity.

TABLE II
MECHANICAL PARAMETERS

Parameter Unit Value
Motor with frame:
Mass 1.18 kg
Suitcase:
Mass 1.86 kg
Height 0.48 m
Width 0.33 m
Wheel:
Mass 0.44 kg
Thickness 1.0 cm
Inner radius 9.80 cm
Outer radius 11.80 cm

VI. SOFTWARE

The software was developed in Python, which was divided
into classes where each class had a specific task. The following
subsections goes through the purpose of each class.
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A. Hall

In order to measure the speed of the motor, communication
with the hall sensors had to be established. The output from
each of the hall sensors is a square wave with two periods per
mechanical revolution. Sensor B is phase shifted 30 degrees
from sensor A.

The output from sensor A was read when an event was
triggered on either a rising or falling edge on the Raspberry
Pi GPIO. The wheel had to revolve a quarter of a revolution
in order to update the speed of the motor. By keeping track of
the level of hall sensor B, the direction of the wheel could be
determined. When the controller reads the latest values, it is
the median of the latest three stored values in order to reduce
noise and falsely triggered events.

B. IMU

The IMU continuously measured the acceleration and the
rotational movement of the Balancing Suitcase. The acceler-
ation was measured by an accelerometer which is stable for
low frequencies but have high frequency noise. The rotational
movement was measured by a gyro which is good at measuring
high frequencies but suffers from DC-drift. To get reliable
measurements, sensor-fusion through a complementary filter
was used. When called upon, the IMU class returned the output
from the complementary filter

0 = a(Bk—1 +vh) + (1 — )8 (8)

with raw data from the IMU as input. « is a weighting constant
for the filter, h is the sampling time, -y is scaled data from the
gyroscope and ¢ the measured low-pass scaled acceleration
data. The raw values from the IMU are thus converted to the
tilt angle of the Balancing Suitcase as well as the angular
velocity. An offset of the IMU tilt angle in upward position
can be adjusted.

C. Motor

The motor class contains the methods for controlling the
motor. The methods are used for starting and stopping the
motor, changing duty cycle of the PWM signal and changing
direction of the wheel.

D. Control

The control class has a reference to the Hall, IMU and motor
classes, i.e. it has access to their methods. The controller starts
by reading its control parameters from a configuration file.
When the setup is finished, the control loop starts. The control
loop calls the measurement methods of the Hall and IMU
classes. These values are then used for calculating the control
signal which is sent to the motor class.

E. __main__
The __main__ class acts as an initiator of the other classes
and handles shutdown of the Balancing Suitcase.
VII. RESULTS

This section presents the results of the project, divided into
the subcategories; Simulation and Implementation.



A. Simulations

The system according to the Simulink model in Fig. 3 was
simulated with an initial value on the angle of the suitcase,
0 = 2°. The velocities of the suitcase and wheel where initially
set to zero. The input reference was set to zero to force the
suitcase to be in its upward position. A step disturbance was
added at time 7's to time 7.5s. As can be seen in the result in
Fig. 7, which shows the angle of the suitcase, the controller
was able to stabilize the system from the initial value and also
handle the step disturbance. The weight matrices were

100000 0 0
Q=] 0 1000 0
0 0 10

and
R=1000 N =0

for equation (7). The following feedback vector was produced

L =[—42.8509

—6.4332  —0.0743].

Angle of Suitcase 6

With measurement noise
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Fig. 7. Angle 6 for the suitcase from simulation, with and without measure-
ment noise

B. Implementation

The main idea for the frame design was inspired by one
of the previous projects of the Balancing Suitcase which left
their frame for future groups. The constructed frame could
be fitted snugly in the suitcase and could be mounted with
screws and nuts through the sides of the suitcase. All electronic
components were fastened with screws or Velcro inside the
suitcase. The reaction wheel was successfully mounted with
an expansion bolt onto the motor axis. The final construction
was sufficiently rigid for the suitcase to balance on its corner.

Balancing Suitcase

The software was fully implemented in Python on the Rasp-
berry Pi. After calibrating the weight matrices the Balancing
Suitcase was functional, with the parameters

10000 0 O
Q= 0 10 0
0 0 1
and
R=1 N=0

for equation (7). The following feedback vector was produced

L =1]-108.0241 —16.3314 —0.2529]. 9

The last value of the L vector was reduced by a factor ten
in order to improve the results. In figure Fig. 8 the measured
angle for the real suitcase is plotted. At the beginning the
suitcase is put into place by hand and therefore an increasingly
larger angle can be seen there. Then it can be seen that
the angle is stabilizing, though around a small offset of
approximately 0.6 °. The variance of the angle measurements
when stabilized is approximately 0.02°2.
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Fig. 8. Angle 6 for the suitcase from real measurements

The main results of the project was the successful construc-
tion and the implementation of the controller in the Balancing
Suitcase.

VIII. DISCUSSION

During the duration of the project there was a fundamental
focus on keeping the center of mass low. The idea behind this
was to allow large angles since the magnitude of the needed
torque for any angle would be smaller with a lower center of
mass. However, another approach would be to construct the
suitcase with a higher center of mass, thus rendering the whole
system slower and maybe more robust.

What posed the greatest obstacles during the project was
the embedded motor controller, getting usable readings from
the sensors and the reaction wheel design.

During testing, the embedded motor controller proved prob-
lematic. The embedded controller was aggressive with over-
shoots on the velocity and gave maximum torque with every
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change of the PWM signal. The idea of using a lookup table
was thought of but discarded for a solution with integrating
the signal. The signal was then functional, but caused the
system to be slower and thus lose stability, so it was removed.
Attempts at smooth torque control ultimately failed, due to the
unknown characteristics of embedded motor controller.

The importance of thoroughly validating the signals from
the IMU was underestimated and that caused some trouble. For
some time during the project, signals that were reasonable but
not correct were used, and caused some issues and instability.
This was resolved by conducting thorough tests for calibration
of the filter. The same thing happened with the Hall sensors.
Initially, the resolution of the hall sensors was too poor and
could not handle values close to zero effectively.

When designing the reaction wheel there was an issue
with the first iteration. The result was an unbalanced wheel,
unusable in the project. The second iteration was successful,
however it was severely delayed and the first iteration was
instead lathed and balanced to avoid falling further behind
schedule. Thus the second reaction wheel has not been tested
and the currently mounted might be slightly unbalanced.

The Simulink model is missing the true motor dynamics,
which caused the simulations to not yield a good feedback
law. Proper motor dynamics would have altered the model
of the system and thus the feedback law. Perhaps giving a
feedback law not needing altering.

The reason for reducing the third L parameter in equation
(9), which corresponds to w, was that we saw a correlation
between w, 6 and the control signal. The correlation was that w
and 6 multiplied with its respective L parameter canceled out,
causing the control signal to ignore the angle of the suitcase.
This caused the suitcase to fall over. Seeing this correlation
we lowered the third L parameter.

The main results were satisfactory even though, as can
be seen in Fig. 8, the suitcase balances around an offset of
0.6 °. When this offset was added to the calibrated IMU offset
the performance worsened. The group discussed this offset in
length but could not find a reasonable explanation, therefor it
is left as is. While it can be difficult to place it successfully in
balancing position, when the position is found, it is stable. The
system can balance for long periods of time and even handle
small disturbances, such as vibrations in the balancing surface
and nudges to the suitcase itself. The Balancing Suitcase
could be improved, how and why is mentioned in the section
future work. The biggest lesson taken from this project is the
importance of handling signals correctly and the importance
of choosing the components based on solid research.

IX. CONCLUSION

The inverted pendulum problem can be solved in many
ways, this project has shown one of those ways; with a reaction
wheel inside of a suitcase. The hardware was constructed with
the purpose of making the suitcase more rigid, which it did.
The control was implemented with the purpose of stabilizing
the system, which it did. The Balancing Suitcase was designed
to balance, which it does.
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X. FUTURE WORK

The Balancing Suitcase can be further developed. One
feature that could be implemented is a swing-up controller.
This controller would make the Balancing Suitcase ”jump up”
from a standing position to the balancing position. This would
be done by accelerating the wheel to an appropriate speed,
and then braking the wheel with an appropriately positioned
external brake. At the balancing position the software could
switch controller back to the current controller.

The project in this iteration has not implemented any dy-
namics of the motor. Performing system identification to map
PWM signal to output torque, could improve performance in
terms of stability. One way to do this is to hang the Balancing
Suitcase upside down, run different PWM sequences and
measure the torque.

If a more effective motor was to be installed, a battery could
be installed in the suitcase and a charging connection in order
to remove the negative effect of the cables on the motion.
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Abstract—This report will analyze and implement the Mahony
filter which is used to fuse information from two or more sensors
to estimate the attitude of, in this case, a small quadcopter with
limited processing capabilities.

The attitude can only be an estimation since the quadcopter
has no information regarding its orientation other than its
imperfect onboard sensors. There are a couple of filters that
can be used for this, however, since processing power is limited,
the Mahony filter has been proven to be very efficient in regards
to its computational difficulty.

The advantage of using a filter that combines the output
from different sensors is that the shortcomings of either one
of them can be compensated for. The high frequency accuracy
from the gyroscope will be the main contributor when analyzing
movement, while the low frequency stability of an accelerometer
is used to compensate for the gyro drift that is otherwise
inevitable.

The filter is first implemented in the readable way using
rotational matrices, to then be rewritten in a more efficient
way by using something called quaternions. Finally this filter
is translated to the C programming language to gain the last bit
of efficiency to be able to run on the low powered processor that
is located on the Crazyflie quadcopter by Bitcraze. The results
were a quadcopter that could fly in a controlled manner and
stably hover when not receiving any control inputs.

I. INTRODUCTION

This project will explore modern methods of Unmanned
Aerial Vehicle (UAV) attitude estimation, using non-linear
complementary filters. The goal is to implement a useful
algorithm that can be used in a real UAV to estimate its
attitude and keep it from tumbling to the ground. The model
of quadcopter that will be used for this is the Crazyflie 2.0
from Bitcraze (shown in figure 1), which will have its firmware
modified with the help of the tools that are provided on their
homepage [3].

Attitude estimation of a quadcopter is a problem in control
that has been studied for years [9], but has recently gained
more interest since the technology have become more af-
fordable. Using simple methods of complementary filters are
often insufficient so non-linear complementary filters, such
as the Madgwick filter or the Mahony filter, are preferred
as they provide much better results [13][11]. These two
filters have also been designed around the limitations of the
hardware these hobbyist UAVs are equipped with. Since they
are designed to be as light as possible, the processor onboard
tend to be very low powered, and the filters will have to be
as easy to compute as possible while still providing a good
estimation of the orientation that will permit the drone not to
crash.

The well known Kalman filter could have been used and
tuned to provide a very high degree of accuracy, but it is far
more computationally intensive in comparison. For the weaker
processors this filter might be too complex for the system
to update the estimation with a high enough frequency that
would be necessary for a stable flight. That is why alternative
methods have been created in order to produce a suitable result
with much lower overhead [12].

In this report the Mahony filter will be the one that is
studied, implemented and used for attitude estimation on
the real quadcopter. Other filters will be mentioned during
comparisons, but they will not be explained in depth since
that is out of the scope of this report.

To begin with the mathematical background of the system
and filters will be analyzed (including rotational transforma-
tions and their parametrizations), to get a understanding of
how they actually estimate the system. These mathematical
functions will then have to be implemented in efficient C code
to be able to run on the embedded system that is present on
the quadcopter. The goal is to be able to replace the current
estimator on the Crazyflie with the Mahony filter, implemented
in C, and have it fly in a satisfactory manner.

All the code used in this project will be available in the
GitLab repository visible in the title. If the text refers to a
folder, it is probably located therein.

Fig. 1. The quadcopter used in this project. The Crazyflie 2.0 by Bitcraze.

II. MODELING

A quadcopter in flight is a very complex system, with a lot
of parameters that needs to be taken into account. Fortunately
for us, the supervisor of this project has graciously provided
us with an advanced simulation of a UAV that is designed
and implemented in MATLAB’s Simulink. This model is the
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one that used and found on the Gitlab repository for those
interested in studying it, but since this model was given, no
analysis of the inner workings will be made.

What this model does is that it imitates how the Crazyflie
quadcopter would behave if one were to fly it in different
patterns. Inside this Simulink model there will be an output of
realistic values from the simulated onboard accelerometers and
gyroscopes that can be used in the Mahony filter for estimation
of its orientation. To be able to compare the accuracy of
the created filter, the simulation will also provide the “true”
rotation of the quadcopter model. This would then enable a
opportunity to tune the filter’s parameters to better estimate
the simulation.

In figure 2 there is a visual of how the outputs from
the model is used when testing the designed filter. The ac-
celerometer output does not come with gravity included, so the
always downwards pointing gravity acceleration will have to
be transformed to the body frame and then added to the output.
Both the sensor signals will then have white noise added to
them to better reflect an imperfect real-world situation. These
noisy signals are then passed trough the Mahony filter, which
will be explained in detail in the Modeling chapter, that then
returns a rotation matrix that is the estimation of how the UAV
is oriented. The rotation matrix defines how much the body-
frame have rotated in comparison to the fixed frame which is
the room/earth.

Acellerometer

n
aB_t aB_t n ——»{aB_m ‘

»R “ gravity Add > wB_t
fen

Rhat

"True"
Rotation

wB_t_n P»(wB_m fcn

Mahony Filter (Rotation Matrix)

. - Add Noise to Signals
Gravity Acceleration (Body-Frame)

Gyroscope

Fig. 2. Coupling scheme of the Mahony filter in Simulink.

This estimated rotation matrix (Rhat) is then compared to
the “true” rotation matrix (R) that comes straight from the
Simulink model. The comparison is done in the error metric
block, found inside the model, which outputs two different
error measurements that are useful.

One is the “Rotational Error” while the other is the 2-norm
of the difference between the two matrices. The former is the
metric that will be primarily used in the Results sections, as it
will provide an easier to understand plot with the measurement
being sort of a scale how much off the estimated rotation is
compared to the true one. If one were to look at the equation:

rotErr = 0.5 trace(lzxs — RT. R) (1)

the best result would be that the matrix multiplication will
result in the identity matrix. This is only true if the estimation
and the true rotation are identical, which would then make the
whole equation equal 0. The worst that could happen is that
the estimation is pointing in the completely opposite direction.
This would then result in the equation being equal to 1. An
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example of how the rotation matrices of a situation like this
would look like is presented below:

100 0 1 0
R=10 1 0 Rhat= 1|1 0 O
0 01 0 0 1

Visualized these matrices would point in the direct opposite
direction, like this:

ke

Fig. 3. Visualization of the true rotation to the left and the estimated one on
the right. This would yield the result 1 from equation (1).

The scale on how “wrong” the estimation is would then go
from O to 1, with O being the best and 1 the worst as seen in
figure 3.

III. ELECTRO-MECHANICS

In regard to the electrical and mechanical part, the amount of
physical construction will be very limited during this project.
However, the Crazyflie does not come assembled, so simple
instructions on how to piece it together can be found on the
Bitcraze site [5]. But that is about as far as it goes in regard to
building something physical, the rest is done in the firmware
that is flashed over to the quadcopter. The tools used for this
are all found on the same page as the assembly instructions,
and from experience the most reliable way of getting this
to work is to install everything on a Linux machine. There
exist a virtual machine image that can be downloaded that
has everything necessary already installed, but there has been
trouble getting this to communicate properly with the drone
[2].

Nevertheless, something that does relate to the mechanics
are the sensors that are mounted on the vehicle. The output
from these will be used by the Mahony filter to estimate the
attitude, and to our disposal there is an 3-axis accelerometer, a
3-axis gyroscope and a 3-axis magnetometer [4]. However, for
the basic variant of the Mahnoy filter, which is the one to be
used, the magnetometer will be ignored as it is not necessary
to achieve a stable flight. The reason for this is explained in
the Modeling chapter.

All the onboard sensors are located inside a single compact
chip with the model number MPU-9250. This can measure a
rotational rate change of up to 2000 degrees per second and
accelerations up to 16¢g, which is way more than will be needed
for this project [10]. The electrical signals are translated by
the chip to numbers that represent angular velocity in degrees
per second for the gyroscopes, or accelerations in m/s? for
the accelerometers. This means that the outputs from these
sensors are directly usable in the code.



IV. CONTROL

There are a couple of different ways of estimating the
attitude of an aerial vehicle, but basically everyone uses some
kind of accelerometer and a gyroscope working together. This
is also the case for the Crazyflie, as it will be its 3-axis
accelerometer and 3-axis gyroscope that is used for controlling
the aircraft.

Gyroscopes are a type of sensor that perform really well for
high frequency variations, i.e. for rotations of the quadcopter,
but struggles at measuring steady states. The reason is that
gyroscopes drift over time and so does their measurements,
which is why these sensors are not ideal to be trusted by
themselves [14]. On the other part, accelerometers perform re-
ally well when measuring steady states but struggle at keeping
track of fast variations in attitude since they are comparably
quite noisy [1]. The conclusion here is that neither a pure
accelerometer-based or a pure gyroscope-based estimation
system can be completely trusted. A different type of sensor
will have to be considered, one which can combine the best
features of each one of them at their preferred frequencies.

The solution is a type of sensor called, maybe not unsurpris-
ingly, a fusion sensor. This type of sensor gathers information
from the available sources and combines, predicts and filters
their information in order to obtain a much higher quality
measure of the actual state of a system [8]. There are many
types of fusion sensors, but a few examples are the Non-Linear
Complementary filter, the Mahony filter, the Madwick filter,
and the Kalman filter.

As stated in the introduction, this report will focus on the
Mahony filter, as it is relativly simple in comparison to the
Kalman filter, and will provide more than sufficient accuracy in
regard to its complexity. The filter will be implemented twice
with the first time using calculations with the “standard” rota-
tion matrix for readability and then again using quaternions for
a performance increase. The functionality should be identical
in regard to the test cases presented here, as the results of the
implementations only differ in certain extreme cases that will
be explained later.

A. The Mahony Filter

This estimator will read the output data from an accelerom-
eter and a gyroscope and fuse them in a way that ensures
accuracy and stability [13]. The estimator is going to rely
very heavily on the measurements from the gyroscope when
approximating how far the vehicle has rotated since the last
measuring point. The values from the accelerometer will be
fused with the gyroscope’s output signal via a PI-controller in
the final step to compensate for gyro drift.

While trying to implement this solution, the first problem is
to handle the two different inputs as they are both in different
magnitudes and units of measurements. An accelerometer
gives values of acceleration (m/s2) along the three different
axis directions the sensor is able to measure, whilst the
gyroscope gives values of rotational velocities (rad/s) around
the aforementioned axes. In other words, the nature of the two
sensors are very different.

Quadcopter Attitude Estimation

Mahony proposed solving this using the gyroscope for de-
ciding any rotations done by the quadcopter, compared to the
earth/room it is located in. Gyroscopes are very good at these
kinds of measurements, and will provide sufficient estimations
for hobbyist use. The problem occurs when the quadcopter
hovers, i.e. very low frequency movements. The signal from
the gyroscopes will then falsely indicate that the quadcopter is
slowly turning, because of the gyro drift, and thereby topple
over the aircraft. This is where the accelerometer comes to
use.

Gravity is a constant acceleration that affects every ob-
ject and will be picked up by the accelerometers. This is
especially relevant in steady state, when the aircraft is not
doing a translation, as the only acceleration actuating on the
accelerometer would be gravity. Gravity acts constantly in the
same direction with respect to the global frame over time,
hence it is possible to estimate the attitude of the quadcopter by
studying the decomposed accelerations that the gravity induces
on the sensor. By simply stating that the acceleration on the
quadcopter should always be straight down (in parallel with the
gravitational vector), any deviations from this will be corrected
by a Pl-controller with the accelerometer as input.

A shortcoming of this approach is that this filter has no way
of correctly estimating in what direction the drone is facing. It
can only guarantee that the drone is level with the earth so it
can hover autonomously. However, in most cases the direction
the quadcopter faces is directly observed and controlled by the
operator of the drone, and therefore not a deal breaker.

B. Filter Equations — Rotatinal Matrix

The basic formula for the Mahony filter is that there is
the reference frame, which is the room, and a body-frame
that is attached to the quadcopter. The matrix R is then the
rotation matrix defining how the body-frame is oriented in
regard to the room. By taking measurements of the changes
in rotational velocities from the gyros, the filter will gradually
update this matrix as time goes on. As the digital controller
isn’t continuous, the update formula will contain a sample
time, At, that is dependant on how fast the processor can
perform the calculations. The update formula will therefore
be

Ry =R—1) + Rt At = Ry + R—1)Qx - At (2)

with
0 —W, Wy
Q= | w, 0 — Wy 3)
—Wy Wy 0

where w is the rotational rate around the axes of the body-
frame. Having the rotation velocity multiplied with the sample
time will yield a distance, which is then added to the previous
rotation matrix to create the current.

In this form the calculations only takes into account the
data directly from the gyroscope (rotational rates). Mahony
suggested a way to improve this estimation by fusing the
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gyroscope measurements with those from the accelerometers
via a correction factor:

W = w4+ dw 4)

This correction factor, dw, will be calculated by a PI-
controller implemented in the estimator like this:

dw = (Kp + Ki1> e= (K, + K;At)e )
s

Here K, and K; are parameters to be tuned for optimal
performance, and e being an “error vector”. This error will
be derived from the accelerometer measurements, and what
Mahony suggested was that:

e=axd (6)

where a is the normalized values from the accellerometer and
d is the gravitational vector transformed to the body-frame of
the quadcopter. The cross product of these two vectors will
then output the error vector used in Eq. (5).

The way to transform the gravitational acceleration to the
local axis is by multiplying the transposed rotation matrix RT
with the vector of gravity accordingly:

d=R"g=R"-[0 0 —9.816]". )

The vector a is a measure of accelerations based on data
from the accelerometer in the current sample time frame. The
gravity is said to always point straight down in the reference
frame (towards the center of the earth). If the vector a is
parallel with g (i.e. the quadcopter is not tilted) it will result in
the cross product of these being equal to 0. If the two vectors
are not parallel, then a value greater than 0 will be achieved
which here is used as the error, e, to be corrected.

The tricky part to visualize is that the filter interprets an
increased value along the z-axis as a rotation around that
axis, i.e. the quadcopter’s z- and y-axis are the ones that are
changing by increasing z. By taking the cross product of the
gravity vector (z-axis) and, for example, a tilted y-axis, it will
result in just the z component being grater than 0. This way
the accellerations along the axes can be translated to rotations,
which is what the controller on the quadcopter understands.

This accelleration deviation is filtered through a PI-
controller to determine its aggressiveness in correcting the
gyroscopes values. The integral action here is what keeps the
gyro drift in check.

This works for rotational corrections around the x and y
axes, but there will not be any useful acceleration measure-
ments to stop drifts around z. This was the problem mentioned
earlier regarding that the quadcopter can not reliably know
which way it is facing solely based on information from
these sensors. An extension of the Mahony filter exists which
includes the magnetic field from the earth so the vehicle
knows which way the magnetic north is. However, since the
drone’s operator should always be present in these situations,
direction is not something that is necessary to compensate for
in this case. When observing plots in the Results section, large
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deviations from the “true” orientation often stems from that
the drone does not face the expected way, while the rest of
the estimations are actually really good.

An additional limitation that comes with this is that doing
loops should be avoided. The filter will try to correct the
acceleration vector to be parallel with the gravitational vector.
If it is parallel with the quadcopter being right side up
or flipped on its back is irrelevant for the calculations, as
they result in O either way. Since the Crazyflie will not be
configured for inverted flight, this situation is best avoided.

For the last step in Mahony’s method, the w in equation (3)
will be replaced with this new and improved angular velocity
from (4). The update formula for the rotational matrix will
then be

R =R,
where the angular velocity tensor Q/X is obtained through the
corrected rotational rate vector w’ as in the expression:

’
0 —w, w,
Q/ o ’ ’
X W, O/ Wy
—w, Wy 0

After this is implemented, an optimal value on K, and K;
will have to be experimentally obtained. In the firmware source
code of the Crazyflie it can be found that suggested values are
K, =0.8 and K; = 0.002 [2].

C. Filter Equations — Quaternions

Before proceeding with the implementation of the Mahony
filter in quaternion form, it is recommended to read the
appendix descibing in detail what a quaternion is. A very short
explanation is that they are basically the imaginary numbers
extrapolated into three dimensions, and that way you can
describe a direction and a rotation in just four numbers.

Quaternions are preferred for their compactness and robust-
ness when used to calculate rotations. Implementing this in the
calculations of the Mahony filter is therefore highly desirable
for when the code is to be run on a system with limited
computing power. Instead of keeping track of a 3 x 3 matrix,
a 1 x 4 vector is all that is needed.

Referring back to equation (2), the rotation matrix R is then
substituted by the quaternion ¢, and the update formula will
become

Gt = q—1) + Gt - At (8)

where ¢ will contain the special quaternion multiplication that
can be seen in Eq. (13).

In the following equation, the ® symbol signifies quaternion
multiplication, while - still has the same effect on vectors as
“normal” multiplication.

. ]. ’ ]. ’ ’ ’
(=592w =592 (0,w,,w,,) ©9)
Here ' is the same as the one from (4), but the calculations
leading up to dw will look different. Nevertheless, just like
before, the filter begins with a measurement of the gyroscope,



w, and the normalized values from the accelerometer, a. Then
the gravitational vector, transformed to the body-frame of the
quadcopter, d is needed. Compared to the previous one in (7),
d is not formulated based on the rotational matrix R, but as a
function of the body-frame quaternion gq.

z(qgc ‘gz — Guw Qy)

2(qw'Qx+qy'QZ)
G — @ — a4y + ¢

d=Im{qg"'-g-q} = (10)

Refer to (14) to understand the notation of ¢ in the matrix.

Afterwards it only remains to calculate the error vector
e. Cross-multiplying the normalized acceleration a with the
gravity vector d, as seen from the body-frame, is not affected
by any quaternion rule, and will work the same as in (6):

e=axd

After that, the improved velocity estimation w' is once again
reached via the correction factor dw with the help of a PI-
controller, as seen in (4) and (5):

w/:w—i—éw:w—}-(Kp—i—KiAt)e.

And now that ¢ and W are known, the rate of change ¢ from
Eq. (9) can finally be executed. Therefore, because ¢ has been
calculated, the recursive update formula for ¢ in Eq. (8) can
be applied. However, a final step is required to be carried out
on ¢ before it can be used as an updated estimation of the
orientation, and that is to normalize it accordinlgy

=T
fal

Why the quaternions needs to be normed is for the reason
that an un-normalized one does not really correspond to a ro-
tation in a uniform scale. The equations expect the quaternion
to be normalized, and after the calculations are done some
floating point rounding errors will have crept into the results.
Having this last step prevents these errors from cascading into
the next update step [6].

(1D

D. Implementing Mahony Filter in C

The mathematical explanations until now have been rel-
atively easy to follow, and they are more or less directly
implementable in Matlab since it handles matrix operations in
a very simple way as seen by the user. However, the code used
to abstract the operations in Matlab is far too computationally
intensive to be used in the Crazyflie quadcopter, so the
previous operations needs to be translated into C code that
can then be compiled and executed on the processor.

This is a common limitation for these small UAVs, and that
is also why Mahony and Madgwick filters might be preferred
over the Kalman filter. The lines of code needed are far
fewer and less computationally expensive. Furthermore, these
calculations are able to be made even more efficient by doing
them in quaternion form rather than using Euler angles or
rotational matrices.

Inside the source folder “crazyflie-firmware”, from
the Bitcraze’s git repository, there exist a lot of files for all
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the different mechanics there needs to be to keep it in the air.
Since everything is open source it is possible to rewrite the
estimator algorithm to a more preferred one. To enable the
use of a custom Mahony filter, the following files needs to be
modified:

e Makefile
e stabilizer.c

and another two files needs to be created:

e group_e_filter.h

e group_e_filter.c

The contents of all these files are found inside the
crazyflie-firmware-modified folder on the GitLab
repository linked in the title of this report. If you would like to
try to build this firmware yourself, please refer to the README
inside the same folder.

Nevertheless, what is happening is that instead of calling
the Kalman filter, the code from stabilizer.c calls the
Mahony filter that is inside group_e_filter.c. This filter
then does the quaternion calculations explained in the previous
chapter, and outputs an updated rotation estimation for the
onboard controller to use. This controller is what keeps the
drone in the air, and it has not been modified in any way.

If the source code is to be studied the different steps are
clearly named so their corresponding step here in the report
can be found. What makes the code hard to read is that almost
every step is broken down to the most simple of operations
(+,—,+,/), and every element of vectors have to be treated
separately. This results in a lot to read, but is much faster
computationally wise.

A little magic trick that is done to speed up the
normalization step can be found at the bottom of
group_e_filter.c. It is called “the fast inverse square
root” and can be done because the code is written using 32-
bit floating-point numbers in the calculations. Here no division
or square root operations are made, only a bit-shift with
the number 0x5£3759d£f. This is much faster while only
yielding an error that is lower than 0.175%. For the interested
reader it might be useful to look up why this work in the
referenced bibliography [7].

V. RESULTS

This section will begin with a study of how the filter created
in Simulink reacts to inputs, to then inspect how it holds up
against the Kalman filter in a real-world test.

A. Simulink Simulation

As stated in the Modeling chapter, the equation used to
obtain the error graph is the one found in equation (1).

The simulation is going to be moving the quadcopter in a
bit of a jerky manner around the origin, and after 10 seconds
return to the starting position completely level with the floor
and remain stationary. In the best case estimations the plot
should always stay at 0, as that signifies perfect estimation.

If the simulation is run for 20 seconds, the plot in figure
4 can be obtained. Here the Mahony filter is used with the
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weights K, = 0.8 and K; = 0.002, and the plot will show a
measurement on how much deviation from the true orientation
the estimation is.

Deviation of Estimation from True Rotation (Mahony Filter Simulink)

Fig. 4. The rotational error (from O to 1) between the estimated and the true
rotational matrices. This is the deviation if the Mahony filter is used with the
weights K;, = 0.8 and K; = 0.002.

Please note that the scale on the y-axis is 1073, so the
largest spike reaches just beyond 0.005 difference. At the
end you can clearly see that there is still a stationary error
that grows slightly over time, even though there is drift
compensation. However, this plot does not tell the whole story.
If the rotational matrix were to be decomposed into its three
axis components, the actual directions where the deviations
occur would become visible.

As stated in the Modeling chapter, there is no way of this
filter to compensate for drifts around the z-axis (which way the
UAV is looking) as there is not enough information regarding
those translations. The only thing the filter can do is to make
sure that the drone is hovering stably parallel to the ground.
The remaining error seen here therefore stems from the drone
not facing the way expected.

B. Real-World Test

Moving on to the real test, where the firmware of the
Crazyflie is updated with a new estimator, the following plots
can be obtained.

What is visible in figure 5 is the value of the four separate
components of the quaternion that is the the estimated rotation.
Because of the double column format of this report, the size of
this graph is a bit small and a bit hard to see. However, these
graphs can all be loaded in Matlab by running the ‘“create-
plots” script found in the matlab-plots folder.

Additionally, a two dimensional top-down overview of the
drone’s flight path can be seen in figure 6. The test begins
at rest in position [1.2, 3], for the quadcopter to then quickly
rise into a position where it hovers for a second. It then moves
back and forth between two spots in a straight line three times,
to then move upward in a spiral. This is the sinusoidal pattern
that can be seen in figure 5. At the very end it does a hard
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landing in [—0.2, 4], which is why the quaternion plot is very
messy in the last bit.

Value of the
T T

Over Time (Mahony Filter)
T

Value

Time (s)

Fig. 5. Components of the quaternion used in estimation of the quadcopter’s
attitude. These values are extracted from the Crazyflie’s log file.

Top-Down View of the Quadcopter's Flight Path
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Fig. 6. Top-down overview of the drone’s flight path in the real-world test.

However, what is more interesting is how the Mahony filter
compares to the Kalman filter that is usually used on this. In
figure 7 each component of the quaternion is split up into its
own graph. The blue line is the estimation done by the Kalman
filter while the red one is the Mahony one, and the closer they
are the better.

As can be seen they are very similar and, as it is set up
now, the Kalman filter will have to be seen as the closest to
the truth.

VI. DISCUSSION

In regard to the complexity of the filter mathematics,
Mahony is much simpler than Kalman. However, the processor
on the Crazyflie is actually powerful enough to run both these
filters in parallel which is why the comparison plots were able
to be obtained. The mentioning regarding the computational
limitations does not hold true in the case of the Crazyflie, but
there are smaller and cheaper aircraft out there that do have
this limitation. Analyzing the possibility for simpler filters
allows the use of cheaper hardware, which is usually good.

Commenting on the data in figure 7, the plot created by the
Kalman filter should be seen as closer to the truth. However,
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the Mahony filter obviously does a fine job at keeping the how they calculate the “error vector” in Eq. (6). How this
estimation close to the more advanced filter. This is also translate to real world differences, and finding out which is
backed up by the fact that the simulated error in figure 4 is more accurate could be a good idea for next years students.

very small.
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against its main competitor: the Madgwick filter. They both
have about the same computationally complexity since their
structure is very similar. Their main point of difference is
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APPENDIX

Quaternions and Spatial Rotations

Quaternions are a number system that extends the complex
numbers and they were first described by Irish mathematician
William Rowan Hamilton in 1843 and applied to mechanics
in three-dimensional space.

To get a grasp regarding what is going on a little bit faster,
a comparison to the more familiar complex numbers can be
made. They are defined by introducing an abstract symbol,
i, which satisfies all the usual rules of algebra but with the
addition of the rule that i2 = —1. With this additional rule,
directions in 2 dimensions can be described through numbers
containing a real and an imaginary part.

In the same way the quaternions can be defined by in-
troducing the abstract symbols 7, j, k& which satisfy the rules
i? = j2 = k? = ijk = —1. These would then be able
to describe directions in three dimensions. The quaternions
also follow the usual algebraic rules but with the important
exception of the commutative law of multiplication. What this
means is that the order of operations matter when dealing with
quaternions, i.e. ¢j = k, while ji = —k. This property will
prove to be very useful in later calculations.

Quaternions are generally represented in the form:

qg=a+bi+cj+dk=(a,b,cd)

where a,b,c,d are real numbers, and ¢, j, k are the funda-
mental quaternion units previously mentioned. They form a
four-dimensional associative normed division algebra over the
real numbers, and therefore also a domain denoted by H (for
Hamilton):

H = {(a,b,c,d) | a,b,c,d € R}.

Since quaternions are vectors of dimension 4, basic op-
erations such as addition and multiplication becomes more
complicated, and custom algorithms are necessary for the cal-
culations to be correct. Below are two examples of operations
that will be used in the estimator algorithm (i.e. addition and
multiplication).

@1+ g2 = (a1,b1,c1,d1) + (az, ba, ca, da)

(12)
= (a1 + ag,by + by, c1 + ca,d1 + dy)
q1 ® g = (alvblvclvdl) : (a27b2a027d2)
= (a1a2 — biby — c1co — dida,
a1by + bras + c1da — dico, (13)

aicy — bida + crag + dibo,
airds + bica — c1bg + dias)

These might seem complicated, but they actually streamline
the calculations that are necessary to do when estimating
rotations. Please also note the use of the symbol ® here to
signify that quaternion multiplication differs from the normal
vector multiplication (-).

In 3-dimensional space, according to Euler’s Rotation The-
orem, any rotation or sequence of rotations of a rigid body

44

or coordinate system about a fixed point is equivalent to a
single rotation by a given angle 6 about a fixed axis (called
the Euler axis) that runs through the fixed point. The Euler
axis is typically represented by a unit vector 7i. Therefore,
any rotation in three dimensions can be represented as a
combination of a unit vector 77 and a scalar 6.

Quaternions give us a simple way to encode this axis—angle
representation in four numbers, and can be used to apply
the corresponding rotation to a position vector, representing
a point relative to the origin in R3. In this case, the scalar
would be the rotation w of the body, and the vector would be
the axis on which the body rotates. Therefore, the quadcopter’s
movement can be represented in quaternion form as

q=(w,7) = (w,2,y,2) = w+xi+yj + 2k (14)

with ¢ € H, w € R and 77 € R3. Then the formulas for the
addition and the multiplication can be written more compact
like this:

g1+ g2 = (w1, 71) + (wa, fl2) = (w1 + we, iy + 7i2)

@ ® g2 = (wy,71) - (w2, 72)

= (w1w2 — i - Mg, WMo + Woily + 711 X ﬁg)

where - is the dot product and X is the normal cross product.

Quaternions, compared to Euler angles, are simpler to
compose and have the benefit of not being affected by the
“gimbal lock” problem. Gimbal lock is the loss of one degree
of freedom in a three-dimensional, three-gimbal mechanism
that occurs when the axes of two of the three gimbals are
driven into a parallel configuration. This “locks” the system
into rotation in a degenerate two-dimensional space. In simpler
terms this means that there exist some extreme cases where
two rotational axes become aligned, and the calculations will
not know how to rotate the quadcopter to get away from this
position.

The cause of gimbal lock is representing an orientation as
three axial rotations with Euler angles. A potential solution
therefore is to represent the orientation in some other way.
This could be as a rotation matrix, a quaternion, or a similar
orientation representation that treats the orientation as a value
rather than three separate and related values.

Compared to rotation matrices quaternions are more com-
pact, more numerically stable, and may be more efficient.
Furthermore, for a given axis and angle, one can easily
construct the corresponding quaternion, and conversely, for
a given quaternion one can easily read off the axis and the
angle. Both of these are much harder with matrices or Euler
angles.

A quaternion rotation p’ = gpg~! (with ¢ = a+bi+cj+dk)
can be expressed as a matrix rotation p’ = Rp, where R is
the rotation matrix given by:

1—2s(c2+d?)  2s(bc— da) 2s(bd + ca)
R=| 2s(bc+da) 1-2s(b>+d?)  2s(cd— ba)
2s(bd — ca) 2s(cd +ba) 1 —2s(b?+c?)



where s = ||| =2 and if ¢ is a unit quaternion, s = 1.
The axis 77 and the angle 6 corresponding to a quaternion
q = a+ bi + c¢j + dk can be extracted via:

(b,c,d)
VR E+E

a a
0 = arccos — = arccos

|4l Va? + 0%+ 2 + &2 s

. |7 . Vbt d? (16)

= arcsin — = arcsin

lql Va2 + 02+ ¢+ d?

(15)

= (x,y,z2) =
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Abstract—This is a report of a project in the course Projects
in Automatic Control at Lund University. It builds on a previous
project in the course Real Time Systems where drone position
control was implemented. The goal was to make a small drone
follow a person using an on-board camera. The camera sent a
video feed to an AI via radio communication which classified
the images, detected if there were humans in them and specified
where they were. The relative position of the person was then
used as input for a controller which calculated a control signal
for the drone. The project was mostly a success as the controller
received positional values that should be good enough for the
controller. Due to lack of time only one dimension, height, was
implemented and had issues with oscillation.

I. INTRODUCTION

The first good face-detection algorithm was implemented
by Paul Viola and Michael Jones, named the Viola-Jones
Algorithm, was created in 2001 [26]. This used hand-coded
features fed into a support vector machine (SVM). A similar
algorithm was invented in 2005 which used the Histograms
of Oriented Gradients (HOG) technique and was invented by
Navneet Dalal and Bill Triggs [10]. The HOG-features are
compared with some reference image features to determine if
the image is of some specific class or not. In 2012, the era of
deep learning started and the ImageNet competition was won
with a Convolutional Neural Network (CNN) [18]. At this
time CNN was mostly used for classification, not detection.
By 2015, the R-CNN was invented by Professor Jitendra Malik
at UC Berkley, which used region proposals and a CNN to do
object detection (detecting the position as well as the class of
some object in an image) [14]. and was way faster then just
sliding a CNN over the whole image. This technique has been
iterated upon with Fast R-CNN [13], Faster R-CNN [24] and
the recent Mask R-CNN [15]. In 2017, all these technique were
outperformed by a YOLO-net (You Only Look Once) [23], if
time to run is taken into account. More specifically, this was
achieved with the second iteration of YOLO (YOLOv2) [22].
YOLO segments the image in a grid where each cell in the grid
predicts possible partial bounding boxes. YOLO also gives a
confidence of each class in the bounding box. So this network
handles all tasks that were previously separated into different
algorithms, which contributes to YOLO’s efficiency.

The results of this project could be useful in several ap-
plications. For instance it could help enabling safe human-
robot interactions or identification of humans in autonomous
search and rescue missions. It could also be a cheaper option
for surveillance of large areas where it could replace multiple
security cameras. Another use is within the media industry,

Fig. 1. The figure shows the final Crazyflie 2.0 quadcopter, outfitted with both
structure that both holds the camera in place, and protects it from breaking
when colliding.

where an autonomous drone could be safer, give higher quality
video shots and be cheaper for certain types of scenes. This
project is a continuation of a previous one in the course Real
Time Systems, were the goal was to implement a position
regulation algorithm on the Crazyflie platform [25]. A picture
of the final quadcopter is seen in Figure 1. Code from that
project was used for example in the GUI and the control
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system. The goals of the project can be divided into several
milestones:
1) Get the chosen neural network up and running on the
graphics card.
2) Ensure that the neural network can provide a real-time
stream of classified images using a demo camera.
3) Get the drone to fly with a person controlling its
movements.
4) Get the radio communication from the camera to the
computer to work smoothly.
5) Classify images from the wireless camera.
6) Control the drone using data from the Al.

II. IMPLEMENTATION AND DESIGN
A. Deep Learning

To successfully make a drone follow a person the drone
needs to know where the person-objects are. This can be done
through object classification and tracking. Deep learning is an
excellent tool to create a person-tracking algorithm, and there
are a number of different network architectures that could be
suitable for this task. The ones worth considering are Faster
R-CNN [24] and YOLOV2 [22]. Both of these networks are
quite new and have been proven to be reliable and fast. The
real-time aspects of the network is a very important feature, as
the classification needs to run at a sufficient speed to update
the relative position of the drone to the tracked person.

The group decided to use the YOLOv2 network created
by Joseph Redmon, Santosh Divvala Ross Girshick and Ali
Farhadi [22], which has similar performance to other state
of the art networks, such as Faster R-CNN Inception Resnet
v2 [17], but with a significant speed increase. The speed
of YOLOvV2 made the network suitable for this project, as
hardware was limited to a midrange Graphics Processing Unit
(GPU) (Nvidia GTX 1060). The YOLO network comes in
two different sizes, YOLO and Tiny-YOLO. Tiny-YOLO is
significantly faster and can run at up to 200 Hz on a decent
GPU. But this comes at a great cost in accuracy. After testing
both these networks, normal YOLO was deemed to be the
best network for the task, running at a sufficient 13 Hz on the
given GPU. Worth mentioning about Tiny-YOLO is that it ran
at 5 Hz on a CPU, which might be sufficient on an embedded
platform or Raspberry Pi.

YOLOV2 is written in Darknet, which is a C-based deep
learning framework. This is not consistent for the project,
as everything else is implemented in Python. Therefore the
project group made use of YAD2K [4], which is a translator
of YOLOV2 to Python using Tensorflow and Keras [1], with
a bare-bones implementation overview seen in Appendix ??.

YOLO is a fully Convolutional Neural Network which
benchmarks at 78,6 % mAP on VOC 2007 [16], compared
to SSD500 (which is another fast tracking network) which
comes in at 76,8 % [27]. mAP is the unit which performance is
measured in for object detection, and stands for mean average
precision.

One of the first iterations of the Neural Networks were the
Fully Connected Networks [19]. These networks are typically
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good at learning non-linear functions of higher degree. But
these networks are not very good at image classification or
object tracking. As shown in Figure 2, the fully connected
network has all of its neurons in layer n connected to layer
n+1. This is not a very efficient way to approximate functions,
as a large part of the network tends to be unused or dead.

output

Fig. 2. The figure shows a fully Connected Neural Network, where the circles
are the "neurons” and the arrows are weights. Every neuron in each layer takes
the weighted average of the previous layer of neurons.

Convolutional Neural Networks make use of weight-sharing
to increase the efficiency of the network. This means that
instead of having all neurons in layer n connected to all
neurons in layer n+/, the convolution makes use of a patch,
stride and filters to achieve this efficiency. Convolutional
Neural networks can be described as shining a flashlight on
the previous layer, and looking only at the part where the
light shines on that layer, the patch. Then one moves the
the flashlight a certain number of neurons/pixels, stride, in
horizontal and vertical steps until the whole picture has been
examined. The same weights are used in every step, and the
network is therefore weight-sharing. Convolutional layers also
have a depth, or a certain number of filters. Each filter does not
share weights with the other filters. This means that different
filters can look at different features in the previous layer.
Typical convolutional networks might range from 1 to over
100 layers deep. But for classification and tracking tasks they
are typically around 10-30 layers deep. A convolution layer
example is shown in Figure 3.

Q00

Fig. 3. The figure shows a convolution layer in a CNN. The convolution
is done on a layer that is 3 channels deep (e.g., a RGB image). One may
see that the resulting layer has a longer channel dimension. Each entry on a
certain channel correspond to a specific filter applied on a certain part of the
previous layer. [9]

During testing, the video from the wireless camera appeared
very noisy. An approach to denoising images was made with
a neural network architecture called an autoencoder. This
consists of an encoder and a decoder. The encoder is a
convolutional neural network that compresses the image into a
tensor with a smaller volume then the input image. A decoder
is then used to uncompress the tensor into an image of same



size as the input. The decoder consists of convolutions and up-
samples. The autoencoder was then trained as a network on
images with artificially added noise and the output was set to
be the image without noise. The artificial noise was recorded
from the wireless camera. The principles of an autoencoder
can be seen in Figure 4 and Figure 5.
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Fig. 4. The figure shows an autoencoder denoising on hand written digits
from the MNIST dataset. One may see that the image is compressed into a
smaller, feature tensor. Thus it is trained to only save relevant information,
and discard the rest. The decoder is trained to restore the image from the
feature tensor.[8]
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Fig. 5. The figure shows a convolutional Autoencoder. Here, the encoding
layers use convolutional layers to extract and compress the image into a
feature tensor. The decompressing layer then uses convolutional layers and
upsampling to combine the features back into an image. [6]

B. Communications Design

1) Crazyflie to computer: A small camera with radio trans-
mitter [12] was mounted on the Crazyflie [25]. The camera
took analogue pictures and sent them as an analog stream. A
radio receiver [7] received the image data and passed it on
to a digitizer[11] that converted the analog stream of pictures
from the camera to a digital stream. A stationary camera [5]
was initially used to find the position of a person in order to
test the YOLO network before the work continued on with the
small camera [12] that was mounted on the drone.

2) Computer to Crazyflie: The Crazyflie used the Crazyra-
dio PA, which is a long range open USB radio dongle, to com-
municate with the computer. It is based on nRF24LU1+ [20]
from Nordic Semiconductor and a 20 dBm power amplifier.
It was programmed with firmware for the Crazyflie and had
a range of 2 km together with the Crazyflie 2.0. The camera
transmitted over the 5.8 GHz frequency band. This band is
part of the 802.11n standard and is widely used in homes
and in consumer electronics. The camera has four different
bands to choose from on the 5.8 GHz band and each band has
eight different options. All these frequencies can be seen in
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the tablel. The BOSCAM FPV Wireless RC305 receiver also
works over the 5.8 GHz band but only has eight channels.
The chosen band was limited according to which band the
BOSCAM could use. The entire communication path between
the various hardware that was used is shown in Figure 6.

TABLE I
THE TABLE SHOWS THE FREQUENCY BANDS FOR CAMERA MOUNTED ON
DRONE.
Frequency Table
Frequency Band A (5865 |5845 |5825 |5805 (5785 |5765 |5745 (5725
Frequency Band B (5733 |5752 |5711 |5790 (5809 |5828 |5847 [5866
Frequency Band E [5705 |5685 |5665 |5645 (5885 |5905 [5925 (5945
Frequency Band F (5740 |5760 |5780 |5800 (5820 |5840 [5860 (5880
Frequency Band R [5658 |5695 |5732 |5769 (5806 |5843 [5880 (5917
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Fig. 6. The figure shows the Various hardware used for the project. The flow
of information from the various pieces is also shown.

C. Software Design

A project of this type, where different components with
different software basis need to be merged together requires a
structure that allows for intercommunication between different
software modules. An almost natural choice was to use Python
2, due to its flexibility between different operating systems. As
a consequence of this, Python’s flexibility allowed parallelism
for various parts of the software to be developed and tested
on Ubuntu 16.04, Ubuntu 14.04 and Windows 10.

1) Robot Operating System (ROS): Another reason for
choosing Python 2 was its integration with ROS. ROS is a set
of software libraries that allow the user to create a messaging
network for real-time implementations and is for this reason
the backbone of this project. One is able to create a network of
nodes that in turn manage topics. These topics effectively work
like mailboxes, where each node can subscribe to a couple
of mailboxes and receive the information stored within them
when a publisher of the topic publishes new information to
them. Since multiple nodes can subscribe to a topic and each
such node receives the message when it is published to the
topic, the nodes can receive messages that are accessed without
having to worry about mutual exclusion aspects.
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Another type of messaging that is used in ROS is called
services. Services work similarly to topics, but instead of
passing one-way messages from many publishers to many
subscribers, this construct works on a one-to-one basis with a
two-way message path. A node sends a request message to a
service and waits for the owner of the service to respond with
a message. ROS’s framework is thus ideal for communication
between the camera, GUI, Al, regulator and Crazyflie. A
representation of how ROS sees these components is shown
in Figure 7.

Service invocation

EL YT T
-,

AN

Topic — .
P Subscription

Publication

Fig. 7. The figure shows a schedule of ROS graph concepts. The solid lines
are one-way one-to-many message path, whereas the dashed line represent a
two-way one-to-one message path.

2) GUI: The graphical user interface was built with the
Tkinter module for building the window. As mentioned pre-
viously, the GUI could contain a ROS node through which it
communicated with the outside world. The node subscribed
to two topics, one of which published the output boxes from
the YOLOV2 network imprinted on the original image and the
second topic it subscribed to published the position from the
state estimator which also had the output from the YOLOv2
network as input.

3) Regulator: Another thing that the GUI script started was
the regulator. The regulator was initialized in a different thread
in order to ensure that the quadcopter input signal change
could be applied independently of the internal GUI update
time or some other process that could halt the update input
signal. The regulator instance that was created continuously
ran the PID and PD controllers, moving the quadcopter to the
reference point in space by sending the control signals directly
to the crazyflie through the Crazyradio PA.

4) Testing modules: While the aforementioned implementa-
tion was used for the final product, there were some additional
hardware and software modules that were used during develop-
ment. The first one was that the Al was initially implemented
for an ASUS Xtion camera. It used a ROS node to publish its
image matrices through the openni/kinect_vision driver. The
change in code in order to use the small radio transmitting
camera did not require any major changes. All one had to do
was to change the input channel from a ROS node to a frame
grabber implemented through the pygame module.

In order to test the input signals to the crazyflie, the
joy drivers was used to map the inputs from a Xbox 360
controller to a ROS node that publishes to a topic. This topic
is subscribed to by a submodule in the regulator thread. The
regulator thread then used this as input signals to the crazyflie
instead of using the PID controller input.
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III. CONTROL
A. Drone Control

There was an attitude controller on the embedded system
in the drone that controlled the speed of the motors and
kept the drone somewhat stable. The outer controller that
will be described here focused only on the positioning of the
drone. The output of this outer system was a vector with four
commands: roll, pitch, thrust and yawrate. The inner control
loop then handled the control of the actual actuators. The
complete system can be seen in 8.

Thrust reference

Com pl.,Lel T, - Motor speeds
{roll, pitch, yaw}

aﬂ

3 ||{9.0.9} o L.

= Sensor
g ors Process > fusion
38 w

n
ques

Gyroscope data

Attitude
control

Fig. 8. The figure shows a schematic over the entire control system.

The purpose of the project was to have the drone follow a
person. When a person had been detected, its position in the
image was converted into positional error values which were
to be minimized. There were three separate PID-controllers for
each positional dimension. An error in the y-direction (height)
corresponded to an increased or decreased thrust. An error
in the x-direction (sideways) on the other hand affected the
roll rate, meaning that the drone rotated in order to keep the
person centered in its view (instead of moving sideways by
rolling as would be the other option). The final dimension,
the z-dimension or depth corresponded to an error in distance
to the target person and thus controlled the pitch of the drone.

A person’s position in the image was given by the upper left
and lower right corner of a bounding box surrounding them (in
pixel coordinates). Finding the error in the x- and y-directions
is thus pretty straightforward. By defining the center of the
box as the center of the person, the error values were given
as distance in pixels from the center of the image (or some
other arbitrary point). The error in z-direction on the other
hand was be a little bit trickier. It could be defined as the size
of the bounding box in either one or two dimensions, but then
the distance would vary for people of different size. A person
could also appear larger by spreading their arms for example.
It was the method that was tested however, before considering
other options, which would be more precise but would also
require more work.

B. Yolo Theory

YOLOV2 consists of 23 convolutional layers with batch
normalization, maxpooling and Leaky Relu activations. In



table ?? one can see an overview of the used architecture.
Note that the networks split into a parallel network from
leaky_re_lu_13 until concatenate_1.

This version of YOLO produces an output-tensor with the
shape of 19x19x425. This prediction reflects the 19 by 19 grid
cells the input image is segmented into. Bounding boxes and
classes are predicted in each grid cell, which are put through
a threshold to determine which predictions that are objects
and not. This is visualized in Figure 9 (but with 7 by 7 cells
instead of 19 by 19).

Fig. 9. The figure shows an example of grid cells, similar to the ones used
by the YOLO network when deciding bounding boxes.[23]

Each filter in the output-tensor makes a certain part of the
prediction. Every prediction consists of 5 filters + the number
of labels. These 5 filters predicts the probability of an object
being present, x, y, width and height. In this version of YOLO
a total of 5 different objects can be predicted in each grid-cell.
Therefore the depth of the output tensor is 5x* (54 80) = 425
[23]. This is visualized in figure 10
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Fig. 10. The figure shows the output tensor from YOLO. Here, one may see
the 5 (colored) filters determining if and where a general object is. In the last
filters (white cells), one may see the probability of each of the cells belonging
to a certain class. [21]
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IV. RESULTS
A. Object detection

The results of using YOLOV2 as an object detection algo-
rithm showed promising results. While testing it using both the
ASUS camera and the camera onboard a Surface Pro, it had
a very high detection rate and certainty. An example of this is
shown in Figure 11. The object detection tried to incorporate
the entire human within the bounding box, resulting in a
larger box if e.g., the person being detected has their arms
extended. The only issue is that it would define other objects
as persons every now and then. While the wireless camera
showed very promising initial results, it became apparent that
it was just a lucky time window that it was tested on. In
general, the images were very susceptible to noise from all the
surrounding electronics. The YOLOV2 network was unable to
detect objects in some workplaces.

. f

Fig. 11. The figure shows the classification done by the YOLO9000 network
using an ASUS Xtion camera. The bounding boxes show where the persons
are and the text above them shows what type of object they are and the
corresponding certainty.

B. Camera

The image quality was not good enough for the network to
be reliable and we believe this is partly due to noisy environ-
ment but also partly due to non compatible hardware, since
some improvements were made by changing the environment
and the picture did not become worse when removing the
antennae on both the camera and the receiver. The specs should
be good enough but the image quality still isn’t great. Not only
were there noise in the image, but there noise also distorted
the image in the vicinity of the discolored pixels. One may
see this effect clearly in [2].

C. Autoencoder

However, due to the noisy image received from the wireless
camera, an autoencoder was created to remove the noise. The
resulting autoencoder, which was trained on noise obtained
from the wireless camera, see Figure 12, was very effective
at removing the additive noise. However, when testing the
autoencoder filtering on the wireless camera feed, it was clear
that the noise was not only additive, but there were some
spatial distortions that came along with it. The resulting image
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was nonetheless clear of any discoloring noise, which was
most obvious when the camera stream recorded dark images.

Fig. 12. The figure shows the additive noise which was extracted from the
wireless camera.

Fig. 13. The figure shows the result from the trained autoencoder on additive
noise. Original images taken from the BiolD dataset.

D. Controllers

The performance of the PID controller that was designed
to control the thrust, is shown in [2]. One may see that the
detection is missing for some short time periods and that the
crazyflie shows some very oscillatory behavior. One may also
see that it is easy for the controller to steer the crazyflie up to
its preferred reference value, but when a decrease in height is
needed, the motors shut of and it is difficult for the drone to
break the fall and start rising up again, which is also seen in

[3].
V. DISCUSSION

The project went on smoothly and was on schedule, much
due to the great work during the planning phase. The delivery
of the camera components was a bit delayed but during that
time work could still proceed on the neural network as we had
the GPU up and running from the start and could test it using
a ASUS Xtion camera.

The wireless camera was one of the biggest uncertainties
of the project beforehand as it depends on three separate
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components from different manufacturers. It proved to be
easy to get the camera to send a video stream to a computer
although problems arose when the images was to be imported
into the test program. It was most likely because OpenCV
had issues with the video format which resulted in distorted
images. PYgame was compatible and therefore chosen to show
the stream in the GUI and to send it to the Al. There were
also some problems with radio disturbances in the lab which
distorted the images significantly as well as shown in Figure
12

While designing the system, the communication interference
was not given much thought. More thought should have been
given to be able to guarantee an interference free communi-
cation, such as finding an optimal communication frequency
or choosing a disturbance free environment. An autoencoder
provided the possibility to a posteriori removal of the noise,
taking a dataset (the BiolD dataset in this example), adding
the noise to it and finally training the autoencoder to remove
it proved to be very effective as seen in Figure 13. However,
the image is distorted such that wavy patterns occur exactly
in the vicinity of the noise shown in Figure 12. Thus, a
better approximation would be to manually distort the training
pictures near the noised pixels as well.

While the YOLOvV2 network proved to be a strong tool in
detecting people, the position of a person projected on to a two
dimensional surface failed to give the depth coordinate. Due
to the fact that any one person could also appear of different
size and shape depending on how they are positioned relative
to the camera, one can not rely on blindly mapping the size
of the detection box to the distance. A more invariant feature
is the size of a face. One can use this as a distance mapping
since the size of the face is relatively invariant throughout
the human population (and definitely if one is talking about
the same person). The problem with the pre-trained YOLOV2
network is that is has not been trained on human faces.

To account for this, several ideas have been proposed. An
initial idea was to use the image within the bounding box as
a new input for a face detection algorithm. By using a canny
edge detector, one might use the edges detected in the image
to find the best fit for an ellipse, which roughly represents a
face. The problem with this method is that there are a lot of
edges in a “ordinary” picture, both within the face and outside
of it, resulting in the ellipse often fitting around some random
continuous edge. A different method was to try and apply the
Viola-Jones algorithm within the “person” box frame. This
proved to be very successful, however one had to have a face
that was perfectly aligned just like in the training set for the
algorithm. Therefore, a more general approach was needed.

A different idea was to train the YOLOvV2 network to detect
faces. However, finding a labeled dataset that was large enough
was difficult. The BiolD dataset, consisting of roughly 2000
images, was being considered, since it seems that it the CNN
detection is invariant to the orientation of the objects on the
screen. The problem that was left to solve was thus to find
a way to fine-tune the YOLOV2 network without losing its
strengths. The implementation of retraining the model in keras



did not seem to work for the BioID dataset. Thus, a new
implementation of YOLOvV2 written in Darknet and converted
though Darkflow was considered. However, there was not
enough time to explore this direction.

Some difficulties with the crazyflie arose during testing. The
camera, together with the rig made to attach it to the crazyflie,
proved to be a bit too heavy for the crazyflie. Some alterations
were made to reduce the weight, for example by removing
excess parts. While this allowed the crazyflie to respond to
higher control signals without giving an error signal, it was
still not enough. It is most obvious when looking at [2]. There,
the crazyflie can easily provide enough thrust rise upwards
and hover, however, when it comes to descending, it lowers
its thrust so much that the the descent becomes more like a
free fall. Due to its heavy weight, it has a difficulty breaking
this fall before hitting the ground.

A different problem that arose was that the internal attitude
control of the crazyflie malfunctioned, causing the system to
be difficult to stabilize around a point in the horizontal plane.
Different crazyflies were also tried, but they also showed the
same behavior. Although the systems were troubleshooted,
there were no apparent errors found.

Videos of the control for the height is referred to in section
IV-D. One may see that the system shows typical behaviors
that one might expect with a PID controller, i.e., there are
overshoots and oscillatory behavior. With a better choice of
PID parameters, one might be able to create a robust controller.
If the internal attitude control were to function properly, one
could have used the Ziegler-Nichols step or frequency methods
to find some optimal values for the PID parameters.

VI. CONCLUSIONS

In conclusion of the project, it was found that it is possible
to include artificial intelligence to set reference values in a
drone control system in real-time when the drone is paired
with a PC that is running a consumer GPU.

Hardware, in terms of streaming a video feed by means of
radio communication, was proved to be a a serious limitation.
Future directions might be to upgrade the hardware so it can
send images distortion free, or implement some algorithm that
cleans up the signal. Another approach might be to retrain the
neural network on faces/heads, which might give a more robust
depth reference.

REFERENCES

[1] Martin Abadi et al. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. Software avail-
able from tensorflow.org. 2015. URL: https://www.
tensorflow.org/.

[2] Rijad Alisic. Crazyflie GUI test. 2017. URL: https://
youtu.be/nyst_-VUgTU (visited on 12/19/2017).

[3] Rijad Alisic. Test of Crazyflie. 2017. URL: https://youtu.
be/9Zj4P4Mg950 (visited on 12/19/2017).

[4] allanzelener, shadySource, and gardaud. YAD2K: Yet
Another Darknet 2 Keras. https : / / github . com /
allanzelener/YAD2K. 2017.

(5]
(6]

(8]

(9]

[10]

[11]

[16]

[17]

(18]

Quadcopter with Artificial Intelligence

ASUS Xtion. Dec. 13, 2017. URL: https://www.asus.
com/3D-Sensor/Xtion_PRO/.

Autoencoders - Deep Learning bits. Jan. 11, 2018. URL:
https://hackernoon.com/autoencoders- deep - learning -
bits-1-11731e200694.

BOSCAM FPV 5.8G 8CH 200mW Audio Video Wireless
RC305 Receiver. Dec. 13, 2017. URL: https://www.
gearbest.com/fpv-system/pp_226494.html.

Building Autoencoders in Keras. Jan. 11, 2018. URL:
https://blog.keras.io/building - autoencoders- in- keras.
html.

Convolutional Neural Networks (CNNs / ConvNets).
Jan. 11, 2018. URL: http : / / cs231n . github . io /
convolutional-networks/.

N. Dalal and B. Triggs. “Histograms of oriented gradi-
ents for human detection”. In: 2005 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 1. 2005, 886-893 vol. 1.
por: 10.1109/CVPR.2005.177.

easycap video capture dc60. Dec. 13, 2017. URL: https:
//www.fpvmodel.com/easycap-dc60-usb-2-0-high-
quality- video- capture- with-audio- great- for-fpv_g131.
html.

FX798T Micro FPV Camera. Dec. 13, 2017. URL: https:
/Iwww.getfpv.com/fx798t-micro-fpv-camera-5- 8ghz-
37ch-25mw-vtx.html.

Ross Girshick. “Fast R-CNN”. In: The IEEE Interna-
tional Conference on Computer Vision (ICCV). 2015.
Ross Girshick et al. “Rich Feature Hierarchies for Accu-
rate Object Detection and Semantic Segmentation”. In:
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2014.

Kaiming He et al. “Mask R-CNN”. In: CoRR
abs/1703.06870 (2017). arXiv: 1703.06870. URL: http:
/larxiv.org/abs/1703.06870.

he PASCAL Visual Object Classes Challenge 2007.
2017. URL: http://host.robots.ox.ac.uk/pascal/VOC/
voc2007/ (visited on 12/20/2017).

Jonathan Huang et al. “Speed/accuracy trade-offs for
modern convolutional object detectors”. In: CoRR
abs/1611.10012 (2016). arXiv: 1611.10012. URL: http:
/larxiv.org/abs/1611.10012.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. “ImageNet Classification with Deep Convolutional
Neural Networks”. In: Advances in Neural Information
Processing Systems 25. Ed. by F. Pereira et al. Curran
Associates, Inc., 2012, pp. 1097-1105. URL: http://
papers . nips . cc/ paper /4824 - imagenet - classification -
with-deep-convolutional-neural-networks.pdf.

Warren S. McCulloch and Walter Pitts. “A logical cal-
culus of the ideas immanent in nervous activity”. In: The
bulletin of mathematical biophysics 5.4 (1943), pp. 115-
133. 1SSN: 1522-9602. por1: 10.1007 / BF02478259.
URL: https://doi.org/10.1007/BF02478259.

53



Abramsson, Waraeus, Alisic, Sonko

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

54

nRF23LUI + 2.4GHz RF transceiver core. Dec. 13,
2017. URL: https://www.nordicsemi.com/eng/Products/
2.4GHz-RF/nRF24LU1P.

Object Detection (D214 2017 UPC Deep Learning for
Computer Vision). Jan. 11, 2018. URL: https://www.
slideshare . net/ xavigiro/object - detection - d214 - 2017 -
upc-deep-learning-for-computer-vision.

Joseph Redmon and Ali Farhadi. “YOLO9000: Better,
Faster, Stronger”. In: CoRR abs/1612.08242 (2016).
arXiv: 1612.08242. URL: http://arxiv.org/abs/1612.
08242.

Joseph Redmon et al. “You Only Look Once: Unified,
Real-Time Object Detection”. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).
2016.

Shaoqing Ren et al. “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Net-
works”. In: Advances in Neural Information Processing
Systems 28. Ed. by C. Cortes et al. Curran Associates,
Inc., 2015, pp. 91-99. URL: http://papers.nips.cc/paper/
5638-faster-r-cnn-towards-real- time- object-detection-
with-region-proposal-networks.pdf.

Test of Crazyflie. 2017. URL: https://www.bitcraze.io/
crazyflie-2/ (visited on 12/20/2017).

P. Viola and M. Jones. “Rapid object detection using a
boosted cascade of simple features”. In: Proceedings
of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001.
Vol. 1. 2001, I-511-1-518 vol.1. por: 10.1109/CVPR.
2001.990517.

Yolo Website. Dec. 14, 2017. URL: https://pjreddie.com/
darknet/yolo/.



Reflow Oven Control

Claudine Chaplais*, Jose Maria Martinez Morenof, Simon Paulsson’ and Jens Thieme Almkvist?
Lund University
*claudine.chaplais.5222 @student.lu.se, Tj06139ma—s@student.lu.se, jthyl3spa@student.1u.se, §maslS’jal@student.lu.se
https://gitlab.control.lth.se/regler/FRTN40/group-G

Abstract—This is an attempt to convert a small kitchen hot
air oven to an oven usable in reflow soldering applications.
With the use of simple consumer electronics control of the oven
was achieved. The system was identified with a gradient based
procedure and found to be a SOTD, and thus a PID controller was
chosen. The controller was implemented in an Arduino board and
actuated on the oven by a solid state relay. A simple thermistor
probe was used as temperature sensor. Due to sensor failure in
the late stages of the project, the controller was implemented only
for around 130°C, instead of around 220°C. Results showed that
the oven was not fast enough in cooling down, even with the
hatch open.

I. INTRODUCTION

A. Background

Reflow soldering is the process of soldering components to
circuit boards by temporarily attaching the components using
solder paste. The board is then subjected to controlled heat,
melting the solder and permanently attaching the components
to their contact pads.

The department of automatic control at Lund University
has expressed a desire for reflow soldering. There are several
commercially available reflow soldering ovens to buy, but the
department is interested in seeing if one could be made from
on site. Therefore. the purpose of this project was to look into
the possibility of controlling a regular hot air oven so that it’s
temperature follows a reflow soldering temperature curve.

B. Reflow soldering

For reflow soldering the temperature has to follow a certain
curve that is specific to the each type of solder. A conceptual
graph of the temperature is shown in Figure 1 [7]. The
soldering procedure is outlined below.

« Heat to a certain temperature (usually around 150°C), but
not too fast (1-4°/s).

o Hold this temperature for about 1-2 minutes. This is to
expel some components in the solder paste and to give
the board an even temperature.

o Heat to about 220°C to solder melt the solder for about
45 seconds.

e Cool down, around 4°C/s, until room temperature.

217°C Llquibus
45 - 75 SECS

RAMP
PREHEAT/SOAK | TO
150°C +/- 20°C P|
60 - 120 SECONDS

TEMPERATURE

REFLOW

RAMP
TO
SOAK

1-3°C/SEC

EAK
1-4CISEC
COOLING

2- 4°CISEC

TIME

Fig. 1. A conceptual temperature curve of a typical reflow soldering process.

(7]

C. Objective

The goal of this project is to control a hot air oven to
follow a predetermined temperature profile. The range of
temperatures and temperature changes are to be corresponding
to those found in reflow soldering temperature profiles.

D. Hardware

project-automatic-control.bib The oven used in this project
is a STEBA STKB19[6]. The controller is implemented on an
Arduino Uno microcontroller [4].

II. MODELING

A. The oven

Figure 2 shows a principle sketch of the oven. The oven con-
sists of two separated spaces, a baking space and an insulating
space between the baking space and ambient environment.
This is where all the electrics are located. The oven is heated
by four electric resistors located at the top and the bottom of
the baking space. There is also a fan circulating the air in the
baking space to distribute the heat evenly.
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Fig. 2. Principle sketch of the oven.

For modeling the oven, Newton’s law of cooling is used.
It states that the rate of heat loss of a body is directly
proportional to the difference in temperature between the body
and its surroundings. The heat transfer version of the law is
expressed with equation (1).

% =h-A-(T(t) = Tump) = h- A-AT(t) = k- AT(t) (1)

where,

@ is the thermal energy,

h is the heat transfer coefficient,
A is the heat transfer area,

T(t) is the temperature of the oven,

Tomp 1s the ambient temperature.

The oven consists of three instances where heat is ex-
changed, each instant with different heat transfer constants.
These three instances are as follows: heat transfer from the
resistors to the air inside the baking space, heat transfer from
the baking space to the insulating space and heat transfer from
the insulating layer to the ambient environment. Choosing the
temperatures of the resistors, the air inside the baking space
and the air in the insulating space as one state since they are
similar in heat capacity. Now the system can be expressed on
state space form as in equation (2).

1 = B(xy — 1) + €u
T = Oé(xl - x2) + ’Y(tamb - x2) 2
Yy = [O 1] X.
In the state space representation in equation (2), the heat

transfer constant and surface area of the heat transfer have been
combined into one single constant. Since it is a second order
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system (SOTD), with the approximations, it is appropriate to
use a second order model for the identification.

B. Measuring

In order to estimate good values for the constants, measure-
ments of the states had to be done. The measurements were
initially done with a thermometer with a thermocouple probe
to measure the air temperature inside the baking space and the
insulating layer. The thermometer was read manually at time
intervals of 5 seconds and the values were noted down. For
measuring the temperature of the heating resistors, a pyrometer
was used instead of a thermometer to avoid burning the leads.

As seen in Figure 3, initial tests showed that the cooling time
of the oven was too slow for the purpose of reflow soldering
and some kind of cooling is necessary to achieve a higher
cooling rate.

T(°C) Vs Time (s)

Temperature X1 (°C) Temperature X2(°C)

Fig. 3. Graphic of heating and cooling process with door closed. The blue
line is the oven baking temperature and the orange is the insulating layer’s
temperature. Notice that the cooling of the baking compartment is far from 6
celsius/second.

As it can be appreciated, it takes more than 25 minutes
to cool down again. The temperature needs to decrease ap-
proximately 6°C per second. The increased cooling could be
very simply accomplished by opening the oven door when
needed. The opening of the door could be done manually by
the operator at certain time points or a way of automatically
opening the oven door could be implemented.

C. System identification

For identification a gradient based identification proctimee-
dure as proposed in [5] is used.

This identification starts with using a relay function to
obtain input and output signal data around a steady state. Then
a model is guessed, simulated output based on the recorded
input is generated. The real and the simulated output are
then compared and a gradient of how to change the model
parameters is used to get a better and better model. The
advantage of this is that only a few oscillations of the system
are required, which is good since the oven takes up to 25 min
to cool down from 230°C. When identifying around 128°C
the SOTD expressed in equation (3) was identified,



0.01621
s2 +0.2728s + 0.000397

with a DC gain of 40.83 and the time unit of seconds. The
closeness to the real process is shown below in Figure 4.

3)

SOTD
T

Control signal
Real output
identified model simulated output

L L L
0 200 400 600 800 1000 1200

Fig. 4. Control signal from a relay controller along with the process output
and the simulated output from the identified transfer function.

D. Simulation

Simulations were performed in the simulink system shown
in figure 5 was used. This environment can follow different
curves, add load disturbance and add a artificial gain to the
process to see what would happen if the process gain would
be different.

3 control_simulation * - Simulink acad

Ready View 3 warnings 100% auto(ode4s)

Fig. 5. The simulink model that was used to simulate control of the process.

In this environment two types of curves can be followed.
Firstly a reference curve similar to a typical curve that is
required to be followed when soldering and secondly a ramp
up to a steady state. Furthermore, load disturbance can be
applied if wanted and an added process gain to see what
would happen if the process has higher gain than identified.
The process model used was the identified one.

Reflow Oven Control

The design parameters that were used can be seen in table

L
TABLE I
CONTROLLER PARAMETERS
Parameter  Value
kp 1
kd 10
ki 0.01

The results of the simulations can be seen in
Figure 7 and Figure 8.

Figure 6,

Fig. 6. Result of control simulation with parameters form table I. As can be
observed the process is to slow, considering that the input signal is saturated.

As can be observed in Figure 6 the process is simply to
slow to achieve our purpose. To rectify this in simulation, to
see what would happen if it would have been faster, a artificial
process gain of 4 was introduced. This produced the result
below in Figure 7.

Fig. 7. Result of control simulation with parameters form table I. An artificial
process gain of 4 is here introduced. Here, due to the increased gain, the
controller is a little to aggressive though since it overshoots.

This shows that the controller is a little to aggressive given
the new process.

To see how well the controller could handle load distur-
bances a reference curve up to a stationary value was also
tried. A load disturbance was introduced a 250 seconds in the
form of a step with value -2. The results in Figure 8 show that
it does not affect the output signal much.
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Fig. 8. Result of control simulation with parameters form table I. The artificial
load of 4 is kept. Here a load disturbance of -2 is introduced at 250 seconds.

III. ELECTRO-MECHANICS

The oven. with all it’s peripherals and the Arduino Uno
together with the LCD-display is shown in Figure 9.

\

Fig. 9. Photograph of the oven, Arduino Uno, LCD-display. The temperature
sensor is inside the oven.

A. The oven

The wiring of the Steba KB19 is a simple setup. The oven
relies on heat-induced resistance in the heating elements to
do the closed loop on-off control. Figure 10 shows the wiring
diagram of the unmodified oven. The most important parts are
the following:

o Power supply: Connected to the grid (230 V).

Timer: A dial which lets the user set the time for oven
to be on.

Process: A dial that lets the user set which mode to cook

in (i.e. fan on/off, upper/lower heat).
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o Fan: In order to move the air inside the oven. Turned on
by starting the timer and choosing correct mode.

o Resistance R1, R2, R3, R4: These are the heating resis-
tance which heat up the oven.

The timer dial has to be turned up for the oven to be turned
on. It works as the on button for the oven. This feature will
be kept after modifying it as a safety feature. It will ensure
that the operator always is able to manually turn of the power
to oven mechanically if a catastrophic error would occur in
the software or electronic hardware. It also serves as an extra
safety feature should the oven be left unattended and an error
occurs since the timer will turn of the oven eventually.

BLUE LED ., R1 R2
32 OHMS 32 OHMS
R5
M
PERATURE  R3 R4
32 OHMS 32 OHMS
RED
| =} WHITE
TIMER :  FAN
PROCESS . ;

TRANSFORMER

Fig. 10. The wiring diagram of the unmodified Steba KB19.

The oven was modified by replacing the on-off controller
with a solid state relay that could be controlled by the Arduino
board. The Arduino board opens and closes the relay by
sending 5V or OV to the relay, which then provides the oven’s
resistors with either full power or no power. This way, in order
to get a control signal other than full power or no power,
the control signal needs to be generated by a pulse width
modulator. The circuit diagram of the modified oven is shown
in Figure 11.

} BACK
—
“+SCROLL

LCD Display

WENTER
Temperature Sensor

RDUI
H

I[k

&

]
3

100 OHMS
32 OHMS

Fig. 11. The modified wiring diagram of the Steba KB19.



B. Temperature sensor

Different temperature sensors were considered and two
types were tested, a 3-wire PT100 [10] and a simple steak
thermometer probe [9]. The PT100 was considered because of
it’s accuracy, stability and well documented characteristics [2].
The steak thermometer was considered due to it’s availability
and simple setup configuration. Both types are relatively
cheap. However, the PT100-sensor tested had too much ther-
mal inertia and was abandoned. The steak thermometer probe
also has some thermal inertia, but not nearly as much as the
PT100.

The steak thermometer probe is a simple thermistor. The
resistance of the thermometer is exponentially dependent on
the temperature. In order to get the resistance as an input to
the Arduino board a simple voltage divider was used. Equation
(4) describes the relationship between resistance and measured
voltage.

_ B
Rl + Rscnsor

The reference voltage (5V from the Arduino board) pro-
duced a high enough output voltage for the Arduino to read
with reasonable resolution without the need for amplification.

Vout = ' Vref (4)

C. User interface

The user interface consists of a TFT LCD display [3]
and three simple push buttons. The user can choose between
preprogrammed temperature curves. The connections for the
display and buttons can be seen in Figure 11. A diagram
showing how the user interface works is shown in Figure 12.
There are three buttons, enter, scroll and back. Pressing enter
moves the indicator to the right, pressing scroll moves the
indicator downwards (then back up top when pressing scroll
while at the lowest menu item) and back brings the indicator
back a step to the left.

Curve 1
Soldering
Curve 1
Curve 2 Saldem;g Curve
l I Soldering
Curve 3
Curve 3

Show the actual
Temperature
temperature

[ Choose curve sTOP ]

Scroll button

Back button

Fig. 12. A flow diagram of how the user interface works.

D. Microcontroller

To control and run it all, an Arduino UNO board is being
used. It is a cheap and user friendly microcontroller based on
the Atmega 328P. The Arduino UNO is somewhat easier to use
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since it can be programmed with the Arduino sketch language.
This language is based on C, and since the whole board
essentially is an Atmega 328P, writing C code works as well.
Figure 11 shows how the board is connected to everything
else.

IV. CONTROL
A. Control design

The controller chosen for this project was a PID controller
implemented on parallel form. This design choice was made
because of the difficulty of implementing e.g. a model predict-
ing controller compared to a PID controller. As can be seen in
(3), the system is almost an integrator, which would suggest
that a PD controller would be sufficient. However, since the
problem really is the servo problem (not the regulator problem)
with a continuous reference curve, a small integrator part can
be justified to help with the tracking of the curve. Also, the
rough model shown earlier in (3) would suggest that a second-
order time-delay (with our system exhibiting no delay) system
describes the system accurately enough. The accuracy would
be increased if the system was identified as a linear system
around two important points, which would be at around 150°C
and 220°C. This would also mean that gain scheduling would
be required, using two different controllers, one below e.g.
180°C and one above.

Early tests of the system showed that the hatch to the oven
needed to be opened in order to cool the oven fast enough.
See Figure 3. Here, the most important thing would be the
cooling rate and not the temperature, which would require
a different controller. The system also changes dramatically
when the hatch is open which further motivates the need for
a different controller when cooling.

In order to avoid having to implement a multiple input single
output system(how much to heat the resistors and how to open
the hatch), the hatch was to be opened a set amount and then
use the rods for controlling the temperature descent.

Initial thoughts for choice of the parameters was to use
a constrained gradient based tuning as proposed in [8]. This
was abandoned in the end due to lack of knowledge and time.
Instead, parameters were estimated with the help of plotting
step responses in MATLAB. The sampling time was chosen
to 1 second because of the slow dynamics of the oven. Since
the actuator can only do the two binary states on/off a PWM
which divided the sampling second into tenth was used.

Because of the limitations imposed by the temperature
sensor the system was identified at 128°C, which in steady
state corresponds to a 20 % duty cycle. This also meant that
the controller performed worse than it would, if the oven was
hotter. The temperature probe responds almost linearly from
100°C to 180°C, but at room temperature the response is very
non-linear.

Final tests showed that opening the hatch was not enough to
cool the oven as quickly as needed, see Figure 14. At higher
temperatures, the cooling would be faster, but it would still
slow down when approaching 120°C.
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Also, there might be a problem with having the control
signal saturated at on for a long time since the heat from
the heating elements takes time to transfer to the air inside
the oven. This means that there is a need for a software
implemented saturation to avoid overheating. Control wise,
this is captured by the model, but the controller is controlling
the baking space temperature. In this case it is the heating
resistors that could overheat without the baking space getting
dangerously hot (e.g. if the hatch is open and you are trying
to achieve maximum temperature).

B. Implementation

The controller is implemented on an Arduino UNO board.
The controller would be faster if it was implemented us-
ing fixed point operations to accommodate for the board’s
somewhat lacking performance but since the process is slow,
there is no real need for speedy calculations and therefore the
controller was implemented with floating point operations.

During testing it was discovered that the temperature probe
could not handle sustained exposure to temperatures above
170°C. Therefore the team decided to implement the solution
with a maximum temperature of 130°C to guarantee that probe
could be relied on.

The program consists of two parts, interrupt routines that
handles the control aspect and the main loop, which handle
the user interface. A diagram showing the program structure
can be seen in Figure 13. Two interrupt routines handle the
sampling and actuation. One handles the output of the control
signal and it actuates with a frequency of 500 Hz. The other
routine is responsible for sampling, calculating and updating
the control signal. This is done with a frequency of 1 Hz.

SRIVERD ISR TIMER 1
—1 main-loop (500 Hz) (1Hz)
calc_u()
output_u() sampies input signal
sends signal to relay update_u() calcilates outuelgnal
depending on updates output signal based on ermor
calculated u
calc_ref()
start_curve() calculales reference
L Interface b | sets temp vector temp depending in time
sets time vector
sets up reference vector

Fig. 13. Picture displaying major functions and what they do. Arrow means
that the function calls the pointed to function. The interface is not detailed
here, se Figure 12 instead.

The controller is preprogrammed with 3 different tem-
perature curves as is. These are coded as vectors in the
source code and the user interface determines which curve
to run. The temperature curves consists of one time vector
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and one temperature vector. The temperature vector holds the
different temperature values in °C in chronological order for
the temperature curve and the time vector holds the times in
seconds for when these temperatures should be reached.

From these two vectors the reference is generated, by
creating a linear equation between points in the temperature
and time vectors, so that the reference becomes a straight line
between the two values. This is done once the user has chosen
a curve and started it.

The input is then compared to the reference to generate the
error in degrees which the control signal then is calculated
from. The control signal is calculated as described in (5),

u:k:p~e+k:i~Ze+l<:d~(e—eo). 5)

The integral part of the control signal is checked for anti-
windup by before added. The anti wind-up function checks if
—128 < e+ e < 127 and sets it to one of the extreme values
if it outside that range. The total control signal is saturated at
£10 before being updated. This is done once every second by
a interrupt service routine set up to trigger on TIMERI.

The control value is then used as the duty cycle for the
PWM that is the final output. For example, an output value
of 7 results in a duty cycle of 70%. A negative control value
means that the controller wants to cool, but as it has has no
way of doing so, it just menas that the output is set to O.

The interface code is a series of switch-statements that relies
on a counter that increments or decrements when a button is
pushed. When the user has traversed to a ’start curve’-option,
a function that initializes the time- and temperature vectors
corresponding to the chosen curve and starts the controller is
called.

To capture results, the serial port recording software
Coolterm [1] was used. The controller program simply sent
the relevant values separated by commas to the serial port, it
was recorded and saved by Coolterm in a text file. This text
file was then inserted into a MATLAB workspace with the use
of the import wizard, and the plot function was used to plot
the temperature measured, reference signal and control signal
against the time.

V. RESULTS

Below are some results from tests shown. The red line is
the reference, the blue line is the measured temperature and
the yellow line is the control signal.
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Fig. 14. A complete run of curve 1 with the hatch fully opened.
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Fig. 15. A complete run of curve 1 with the hatch closed.

Figure 14 and Figure 15 shows the same reference curve,
beginning at roughly the same temperature but with the
difference that the hatch was fully opened in Figure 14 and
kept closed in Figure 15. Even with full actuation and closed
hatch, the oven lags way behind in heating, although this could
be attributed to some inertia in the temperature sensor as well.
As for the cooling, even with hatch opened full, there is no
way that a decrease rate of 4°C/s can be achieved without any
other means of cooling.
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Fig. 16. A complete run of curve 3 starting at 40°C, hatch open.
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Fig. 17. A complete run of curve 3 starting at 80°C, hatch open.

Figure 16 and Figure 17 shows the same reference curve
with the exception that the initial temperature is different. This
shows that the controller is actually slower when started at
higher temperature. This is probably due to the thermal inertia
in the resistors.
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Fig. 18. A complete run of curve 3 starting at 40°C, hatch initially closed,
opened at 400 seconds.

Figure 18 shows the same reference curve as Figure 16 and
Figure 17 but with the hatch initially closed and opened at
400 seconds. This run shows some promise, and tells about
the need for having the hatch closed when heating and active
cooling when needed.

VI. DISCUSSION
A. The hardware

This project has proven the importance of knowing the
limitations of the hardware that are being used. The team
discovered very late in the process that the oven was too slow
in both heating and cooling down (even with the hatch open)
to be suitable for reflow soldering. The team thought it would
be sufficient with opening the hatch to achieve the desired
rate of cooling but as the results show, that is not the case. At
higher temperatures, around 230°C, opening the hatch might
cool the oven fast enough, but as the temperature difference
between oven and ambient environment decreased so did the
rate of cooling. This means that a proof of concept. as in
having a cooling rate of 4°C/s, was not possible for the lower
temperatures in the tests.

Having the proper sensor for the job is also something the
team discovered is crucial to getting good results. Much work
was dedicated to finding a suitable sensor, then installing it,
only to find out that it was too slow. The PT100 was stable and
very accurate. It is also very well documented, which means
that it is easy to get correct temperature readings. The 3-wire
connection version that was tested also doesn’t drift over time
if properly set up, which made it an ideal candidate for this
application. It was also rated for up tp 400°C. It’s only, and
also fatal, flaw was that it was very slow. The thermal inertia
in the probe was too high for this type of application and this
sensor could not be used.

The steak thermometer probe, which is the one used, is
far from perfect. It was easy to set up, just a simple voltage
divider. But there is no documentation of how it behaves
and it was discovered that it responded exponentially. It did
not stand prolonged exposure to high temperatures. During
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late stage testing one probe was destroyed. This was just
at 170°C, well below the required temperature needed for
reflow soldering. But working with limited time, it was decided
that an implementation at lower temperatures to prove the
concept of the oven was better than no implereport-2017-
group-G.bblmentation at all.

B. The software

Splitting up the the software development resulted in two
standalone programs that worked on their own but not together.
The two programs needed to be merged in order for the
complete program to work as intended. This proved to be a
lot more difficult than expected. It would have been better to
have developed the program as one, but due the time limits of
this project it was not possible. The problem could have been
avoided, or at least mitigated, if a more detailed plan of the two
programs’ structures and resource requirements were made
before software implementation. Alternatively, there could
have been possible to use a programmable LCD-screen which
would run the interface code and just send what choices had
been made in the menu to the Arduino. This would mean that
their is two programs workin on separate units and no merging
would have been required.

C. Downstream development

The results show that process probably would benefit a
lot from model predictive control, if the system could be
identified accurately enough. If the slow time constant could
be predicted, better results could be achieved.

For possible future development of this project, a thermo-
couple probe as a temperature sensor is an option worth con-
sidering, since they are common, reasonable priced and fast.
They also come in variants rated to withstand temperatures
well above 400°C. A way of cooling the oven would be
beneficial as well.
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Abstract—This project examines and develops a method for
path following with a Balanduino using computer vision and con-
trol theory. The Balanduino already had a functional balancing
controller at the start of the project. Using color filtering from
OpenCV a well functioning path detection was made. Utilizing
this path detection a PID controller managing turn rate and
an optimized speed controller function were designed. These
combined made the Balanduino follow the colored track in a
smooth and fast manner.

I. INTRODUCTION
A. Balanduino

The Balanduino is an Arduino compatible open source
balancing robot kit created in a kickstarter campaign by TKJ
Electronics in 2013.[5]

By combining accelerometer, gyroscope and rotary encoder
data, the Balanduino is able to keep itself balanced even when
pushed. It uses a highly optimized and tuned PID controller
and a Kalman filter to keep the robot balanced.

B. Path following robots

Path following robots are nothing new, there is an ocean of
DIY (Do-It-Yourself) guides and university papers which can
be found on the web.[3] [2] Most of them use an array of
infra-red leds and photo diodes placed on the robot directed
down towards the ground to recognize the path. They control
the robot with a PID controller where the output signals is
the torque in the robots right and left wheel. Using computer
vision to follow a line is an area less researched and gives

Fig. 1: The finished robot

room to simultaneously use the sensor(camera) for other uses
while following a line, like avoiding obstacles.

II. MODELING

The modeling of the system depends on what problem one
is trying to solve. Initially it was thought that the problem
to solve was that of an inverted pendulum balancing by two
wheels, with the only input being the torque to each wheel. It
was similar to the inverted pendulum on a cart problem that
is a common control problem. Instead of a cart the wheels
of the system serve as a base and the wheel center point is
the same as the pendulum endpoint. The dynamic equations
of motion were derived using force and moment calculation
in three dimensions. A few assumptions were made regarding
the system for simplification. First is that the wheels are in
constant contact with the ground and they do not slip on
the surface. Second is that the nonlinear system is linearized
around a small angle of the pendulum from the vertical.
Assisting in the derivation of the equations were also a master
thesis by a few students trying to create a robotic walker.[1]
This lead to a state-space representation as below:

L 001 0 0 0 0]fz 0 0
z 0 0 Ay 0 0 0| |2 By Ba
é»| |00 0 1 0 0| ¢ L0 0 [Tiw
dp| |0 0 Az 0O 0 Of |¢p Bs1 Baz| |Trw
¥ 00 0 00 1]||% 0 0
b 00 0 0 0 0] [ Bs1 Be

(D

Where x represents the position, ¢ the pitch of the Balan-
duino, v the yaw, and Ty &Trw the different torques. The
development of a control-scheme to control the position and
yaw began, but the model had to be abandoned. It was found
that the internal balancing control and the systems connected
to it where so deeply programmed that to access the torque
would be to disturb this ecosystem, which would’ve been
outside the scope of our project.

The next idea for modeling was then to look upon a vehicle
driving along a road and trying to optimize around the road
and the coming curvature.
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Fig. 2: Sketch of the modelling

The Balanduino was looked upon as a two-input - two-
output system. The inputs were speed and angle references,
and the outputs the actual measurement from these. These
could then be used to estimate the states « and y, and be used
to optimize a path following trajectory using some algebraic
method. The equations of motion were as seen in equation 2.
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However, the group was hit by a backlash when the
modeling group was halved. This lead to the decision to
further simplify the model into an offset-correcting model.
This was chosen due to its simplicity and good possibilities of
integration with the camera. Thus the the model simply turns
into the equations seen in equation 3&4.

0 = Quy 3)
UZUQ(t—hg) (4)

Here omega is the turning speed of the Balanduino, the
time constant is dependent on the system speed and u; & uq
are turn and speed, respectively. However, since the internal
balance control is not perfect and is heavily interconnected
with the turning, it is proper to model the system as the output
having some measurement disturbance, due to the unstable

nature of the inverted pendulum.

Later discovered during testing, it seems that control signals
might also be having issues with disturbances. Hence, the
model becomes as equation 5&6.

0=Qu +w (©)

=l Bl A ol o A )

The different time constants will be determined through
testing. The hs time constant was deemed to be to small to
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Fig. 3: Picture of the path and what angles are calculated

be of any consequence to the system, whereas the {2 constant
was determined to be 1.9 rad/s.

The modeling of the path can be found in Figure 12.

This is the path that the computer sees, and the objective is
to minimize the different offset angles as quickly and smoothly
as possible. Here the rectangle enclosing the road a bit ahead
of the Balanduino is what the camera actually sees, since
the camera does not see straight down. The distance from
the wheel axis to the first point the camera can see was
measured to be 17 centimeters. A conversion between pixels
and centimeters was measured and thus we could transform
the offset distance to an offset angle between the road and
the Balanduino. This is referred to as offset angle theta in the
picture. If the road is straight ahead of the Balanduino, we
have zero angle offset.

However, this is purely to control that the Balanduino stays
on the track. To be able to control future values and follow
smoothly, we also need to look ahead. To do this we chose
two points at different fixed distances ahead. These two points
together with the first point are used to control the following of
the path. They can be seen as the reference generating points,
which are summed up using different weights to be able to
counteract future offsets properly. The equation is as below.

errorg = 0.5-601 +0.65- 605 + 0.65 - 05 7

Where the different 6 begin from the point closest to the
Balanduino and following subscripts move outwards. The
closest point is always at the closest end of the picture, the
others at fixed pixel distances in the picture. This means
that the absolute real world distance might change due to
oscillation in the balancing of the Balanduino, but nonetheless
it has been shown to be rather robust.

The erroreg variable will be the input to the controller.
The offsets have almost equal value, due to the speed we are



reaching. It is important to try to correct current errors, but
future values must be accounted for since the points are rapidly
approaching. One can easily see that this equation also yields
less turning when the angles have opposite values. The reason
behind this is that a strict following of the path is desirable,
but it is more important to predict and correct for future errors
as well, otherwise the current error will be quickly corrected,
but the future error even greater. This can lead to oscillatory
and erratic behavior of the process, and losing the vision of
the path, which is not desirable.

Lastly, to provide good robustness in the operation and not
losing the track from sudden curves in the road, we need to
regulate the speed so as to not go too fast when trying to
do sharp turns. To do this, we anticipate the curvature of the
road. This is done by taking three points far away from the
Balanduino and calculating the angles.

These angles provide an understanding of the curvature of
the road ahead and allows for control of the speed in such a
way that when the roads curvature is high the speed is turned
down so as to be able to follow the path smoothly.

The different angles are then fed into a function as below.

[0a] + 105 + 166]
40

The tangent function is here used to disregard small changes
of the curvature of the path. The change in speed value is also
limited to 0.25 per loop, which means, since the camera speed
is around 50fps, that we can maximally change the speed 12.5
per second. This is to smooth out the input change of the
speed, so as not to get rapid changes, which has been proven
to be detrimental to the process.

A problem occurs when the curvature is too large and the
camera can’t see any of the points. Therefore when the image
analysis doesn’t discover one of the three points they are set
to a value of 95 which will drastically slow the robot down.

speed = 100 — 17 - (tanh( -3)+1) 8

A. Simulation

To try and simulate the system in MatLab a Simulink model
was created, with the parameters taken from the mathematical
modeling, see Appendix A. This system was used to tune a
PID-controller using the Ziegler-Nichols[6] method to get an
apt controller for the process. This controller was later tuned
to get even closer convergence to the track, with parameters
on parallel form being: P =1, I = 1.2, and D = 0.17. The
initial controller tuning seems to have been too lenient due to a
lower value of €2 which had not been appropriately measured.
This simulation has not been proper enough to converge with
the real world values and will require further work, so as to be
used as a good tool. The speed seems to not have as large of
an effect on the error as has been observed in the real world
application, thus the model is not correct.

III. IMPLEMENTATION
A. Hardware

The following hardware were used in the project.

Path Following Balanduino using Computer Vision

S - .
~ e r..’

N

S

T

Fig. 4: Picture of the Balanduino with the added hardware
modifications. Arduino board on the first level, Raspberry Pi
on the second level, batteries and camera on the third level.

« Balanduino Balancing Robot

o Raspberry Pi 3

o Raspberry Pi Camera V2 Daylight
e Color coded tape track

The balancing Balanduino had already been built before the
project was started. What has been added and fixed to the robot
in the form of hardware is a Raspberry Pi 3 and a Raspberry
Pi camera V2 Daylight. Figure 4 shows the robot refitted with
the added hardware.

The camera was fixed using a aluminum plate that was bent
and attached to the third level of the wooden structure with
screws. Since the Raspberry camera had circuitry on the back
of its board a layer of tape was put in between the board and
the plate in order to prevent short circuits. The Raspberry Pi
was attached to the second level wooden board with screws.
On the top level an extra mini USB battery was put in place
to power the Raspberry Pi. A Serial port cable connects the
Raspberry Pi with the Balanduino.

Some crash pads were built and assembled to both sides of
the robot using zip ties, so as to protect the components when
the Balanduino falls over. A small flashlight was added in the
end to make the robot see the tape better in dark areas of the
room.

B. Software

The first sketch of the software system was designed as
seen below in Figure 5. The system uses one monitor to keep
track of the inputs and outputs to the control function. The
OpenCV thread handles the image analyzing, the Regul thread
calculates the new outputs/control signals while another thread
sends the outputs/control signals to the Balanduino.

This software architecture was redefined because of two
main reasons, one being that running multiple threads on
Python has not been proved to work well in real-time. The
problem has been discovered to happen because of the GIL,
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OpenCV

image
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control output for

12C to PID control
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position and angle to angle balanduino
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Get image send control output to
balanguino

ILC

get Position,speed and
angle

update control output
for balanduino

Fig. 5: Simplified UML class diagram.

Global Interpreter Lock in Python. GIL prevents multiple
threads from accessing a global variable. The other reason why
the software structure has been changed is because several tests
have been conducted using the 12C (Inter-Integrated Circuit),
which caused poor performance. The Balanduino already uses
its 12C for balancing and when too many steering values
are sent through that connection from the Raspberry Pi the
Balanduino can’t handle the balancing anymore. This has been
solved by using a slower communication route, the serial port.

As for the threads the software structure has been redesigned
to use only two threads. Previously the Regul and I2C
threads were running too frequently because of their small
computational demands which slowed down the OpenCV
thread. Reading through a blog post by Adrian Rosebrock on
increasing FPS (Frames per second, camera) of a Raspberry Pi
videostream it was also deemed necessary to have a separate
thread for grabbing the images from the camera.[4] The
software layout was then changed accordingly, see Figure 6.
One thread which handles the PiCamera stream and one main
thread which takes frames from the PiCamera thread. The main
thread then analyses the frames using OpenCYV, calculates the
new control commands and sends them to the Balanduino via
Serial communication. The main thread also measures the FPS.

1) Computer Vision: Figure 7 shows an example of a frame
from a video taken with the Raspberry Pi camera at full
resolution.

OpenCV uses Numpy which is a package for scientific

mainV3

Pt i PiVideoStream
cv2Parameters ;
dataVectors : ki

4 I start{self}
[JlIIE![EITDF) " update(self)
writeMumber(vals) read(seln
calcAngle{img,x1,x2) stop(sel rj
speedContral{angles) :

lapTime()

Fig. 6: New UML class diagram using only two threads.
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Fig. 7: Frame captured from Raspberry camera

computing with Python. It makes it possible to represent each
frame as a double array of pixels. Using built in functions
in the Open-CV package everything except the color blue in
the RGB spectra can be filtered out. Combining these two
functions gives a Numpy array where each pixel that represents
a blue color in the original frame is converted to the color
white(255,255,255) in the RGB scale and all other the other
elements is represented with the color black(0,0,0). Below in
Figure 8 this Numpy array is shown. There are a lot of different
factors that change the characteristics of the blue colored tape
in terms of RGB values that the camera picks up. These
are for example, angle from camera to tape, distance from
camera to tape, lighting in the room, shadows and background.
Therefore this RGB filter had to be very specifically designed
to the conditions of the place were the track was. Tests were
conducted using many pictures of the track at different places
in order to design a good working color filter. To filter out
noise a method in Open CV named morph was used. The
function slides through all the pixels in the picture making the
software a bit slower and decreases the frames per second.

Fig. 8: Similar frame were everything except the blue color
tape is filtered out using open-CV



2) Communication: To communicate with the Balanduino
a package named pySerial was used. The main Python thread
sends x and y positional offsets as strings encoded into bytes
via serial communication. The strings are received through the
Balanduino serial port and a built in function in the Balanduino
script converts the string to two float values, x and y offsets.
The Balanduino then tries to change its position to match the
offsets. Sending several control signals per second translates
these positional offsets to acceleration and turning. Large
positive y offsets result in increased forward acceleration and
backwards acceleration for negative values. Positive x offsets
result in turning left and turning right for negative values.

IV. RESULTS

Getting any decent measurements from steering the Ba-
landuino is made very hard by the way the control system
is implemented. The steering is done in two-dimensional
positional offsets which are measured with the accelerometer
and wheel positions. This makes the steering very blunt and
sending the duplicate control signals can yield different results.

With the old software layout of three threads the program
sent 5-8 control signals per second to the Balanduino. This
was drastically improved to 48-56 control signals per second
with the new layout of one video stream thread and one main
thread.

The performance objective of the system was determined to
be the speed which the robot gets around the track and how
well it follows the path. A way to quantify this performance of
the system was to record the position 1 offset, the speed and
time during a lap around the track. Three tests were done with
different speed settings. First one had constant speed, second
one had high maximum speed and low minimum speed and
the third one had high maximum speed and high minimum
speed.Below in Table I the mean and the standard deviation
were calculated for the position 1 offset. The plot below in
Figure 9 shows the speed signals sent to the Balanduino for
the same three test. Another test was done to compare the
position 1 offset to the turn control signal during one lap. The
result of this test can be seen Figure 10 and 11. Important
to note here is that small values in mean and deviation are
desirable.

TABLE I: Data is the position 1 offset (road to middle of
picture, ;) from three tests with different speed settings. o is
the standard deviation and the mean is taken from the absolute
value.
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Fig. 9: Plot of speed references from the three tests with
different speed settings over one lap. Speed has unit % of
max-speed. Sampled: 50Hz.
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Fig. 10: Plot of control references from one lap. Control turn
has unit % of max-turn. Sampled: 50Hz.
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Fig. 11: Plot of position 1 offset from one lap. Sampled: S0Hz.

Test 1 2 3
Mean [cm] | 138 | 142 | 2.08 V. DISCUSSION
olcm 1.79 1.86 2.72 . .
Tap tgme] 5] | 1756 | 17.97 | 1648 As can be seen in Table I the faster the Balanduino goes

the worse the line following becomes. This was also noted
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when first testing the turning PID control. More weight on
points further ahead meant it could go faster but also resulted
in worse line following, sometimes taking shortcuts.

The plot in Figure 9 shows just how the speed control works.
Previous failed tests also showed that constant speed was not
bad because frequent speed changes affected the balancing
which in turn affected the steering. Holding an even speed
when turning was a hard problem to solve because the robot
needs to recognize the exact curvature of the next turn to know
the optimal speed. Instead a lower value was chosen that the
robot was known to be able handle all turns on the path. The
speed graphs might look a bit too nice, and they are, since this
is the reference signals rather than the actual measurements,
which are noisy.

Comparing the control signal and the position offset in
Figure 10 and 11 a correlation can be seen. This is not
surprising since parts of track with harder turns needs greater
control signal which decreases precision. Sharp turns also
make the robot turn ahead of time which increases the position
1 offset.

Since the color filtering for the computer vision depended
on many different factors and had to be specifically designed
for a setting it would be advisable in the future to design
a calibration function where the Balanduino is placed along
the track and analyses the tape color to create a filter. This
calibration process seemed out of the scope of this project.

There have been several problems with the robot from the
start that slowed down the implementation of the project. The
serial port connection and a crystal component were loose and
had to be soldered on again. One wheel was assembled the
wrong way which made the balancing unstable since the gyro
didn’t sense the right rotation. The Bluetooth dongle placed
in the Balanduino was defect which made it difficult to test
how well the steering speed and turn worked. Mostly these
problems were fixed or alternative solutions were found.

Another issue has been the unreliability of the robot in
the way it interprets signals. The same signals can give two
different outcomes on different runs. One reason being the
amount of stored energy in the battery that power the motors.
This has meant that parameter-tuning has been very hard so
as to accomplish good control. Calibration has been important
too since results could differ between two runs when nothing
had been changed at all.

A. Further development

An early idea was to implement some kind of learning
algorithm for the system. This was thought to be done by using
ILC, or iterative learning control. The way this is done is by
repeatedly driving the same track over and over, and feeding
a learning algorithm with the input to the system as well as
the error output. The algorithm thus learns what inputs yield
the best minimization of error and converges to the optimal
reference value.
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This algorithm is formulated in the equations below.

Y (t) = Te(@)ya(t) + Te(q)ur(t) ©)
ex(t) = ya(t) — yr(t) (10)
ug(t) = Q(q)[ur—1(t) + L(g)ex—1(t)] (an

Here T, represents the closed loop system transfer function, q
the time shift operator and Q & L the filters that need to be
designed. The L, filter can be chosen on a few different bases,
one of them being the Model Based filter, which is basically
the inverse of the closed loop transfer function. This however
can cause an anti-causal function to arise, which means that
the @, filter must be chosen as a low pass filter. However,
this kind of algorithm is computationally and mathematically
heavy. Therefore attempts will be made to implement this after
this report is due.

A few different problems with implementing this is the vari-
able nature of the process. Since the process turns differently
and follows the track in other ways during two runs, the ILC
can not solely rely on the previous runs’ error values.

This might cause problems when trying to reach conver-
gence for the algorithm.
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