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„Das Instrument, welches die Vermittlung bewirkt zwischen Theorie und Praxis, zwischen Den-

ken und Beobachten, ist die Mathematik; sie baut die verbindende Brücke und gestaltet sie 

immer tragfähiger. Daher kommt es, daß unsere ganze gegenwärtige Kultur, soweit sie auf der 

geistigen Durchdringung und Dienstbarmachung der Natur beruht, ihre Grundlage in der Mathe-

matik findet. Schon GALILEI sagt: Die Natur kann nur der verstehen der ihre Sprache und die Zei-

chen kennengelernt hat, in der sie zu uns redet; diese Sprache aber ist die Mathematik, und ihre 

Zeichen sind die mathematischen Figuren. KANT tat den Ausspruch: „Ich behaupte, daß in jeder 

besonderen Naturwissenschaft nur so viel eigentliche Wissenschaft angetroffen werden kann, als 

darin Mathematik enthalten ist.“ In der Tat: Wir beherrschen nicht eher eine naturwissenschaft-

liche Theorie, als bis wir ihren mathematischen Kern herausgeschält und völlig enthüllt haben. 

Ohne Mathematik ist die heutige Astronomie und Physik unmöglich; diese Wissenschaften lösen 

sich in ihren theoretischen Teilen geradezu in Mathematik auf. Diese wie die zahlreichen wei-

teren Anwendungen sind es, den die Mathematik ihr Ansehen verdankt, soweit sie solches im 

weiteren Publikum genießt. Trotzdem haben es alle Mathematiker abgelehnt, die Anwendungen 

als Wertmesser für die Mathematik gelten zu lassen. GAUSS spricht von dem zauberischen Reiz, 

den die Zahlentheorie zur Lieblingswissenschaft der ersten Mathematiker gemacht habe, ihres 

unerschöpflichen Reichtums nicht zu gedenken, woran sie alle anderen Teile der Mathematik 

so weit übertrifft. KRONECKER vergleicht die Zahlentheoretiker mit den Lotophagen, die, wenn 

sie einmal von dieser Kost etwas zu sich genommen haben, nie mehr davon lassen können. Der 

grosse Mathematiker POINCARÉ wendet sich einmal in auffallender Schärfe gegen TOLSTOI, 

der erklärt hatte, daß die Forderung „die Wissenschaft der Wissenschaft wegen“ töricht sei. 

Die Errungenschaften der Industrie, zum Beispiel, hätten nie das Licht der Welt erblickt, wenn 

die Praktiker allein existiert hätten und wenn diese Errungenschaften nicht von uninteressierten 

Toren gefördert worden wären. Die Ehre des menschlichen Geistes, so sagte der berühmte Kö-

nigsberger Mathematiker JACOBI, ist der einzige Zweck aller Wissenschaft. 

Wir dürfen nicht denen glauben, die heute mit philosophischer Miene und überlegenem Tone 

den Kulturuntergang prophezeien und sich in dem Ignorabimus gefallen. Für uns gibt es kein 

Ignorabimus, und meiner Meinung nach auch für die Naturwissenschaft überhaupt nicht. Statt 

des törichten Ignorabimus heiße im Gegenteil unsere Losung:

Wir müssen wissen, 

Wir werden wissen.“

“We must not believe those, who today with philosophical bearing and deliberative 

tone prophesy the fall of culture and accept the Ignorabimus. For us there is no Ignora-

bimus, and in my opinion none whatever in natural science. In opposition to the foolish 

Ignorabimus I offer our slogan:

We must know,

We will know.”

     David Hilbert
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1. Abstract 

Primary open angle glaucoma, one of the leading causes of blindness in the world, con-

stitutes a slow progressing condition characterized by damage to the optic nerve and 

retinal nerve fibre layer, and results in visual field defects afflicting the visual function. 

Highly specific and sensitive diagnostic tests able to detect the clinically significant glau-

comatous changes in the structure of the nerve fiber layer and visual field are therefore 

required for the early detection and management of this disease. This thesis treats the 

application of advanced statistical techniques based on machine learning for automa-

ted classification of tests from visual field examinations and retinal nerve fibre measu-

rements to detect glaucoma. Diagnostic performance of the applied machine learning 

classification algorithms was shown to depend primarily on the type of test information 

that was provided. Optimized parameters from standard automated perimetry tests 

and OCT measurements of the nerve fibre layer derived from statistical processing to 

highlight statistically significant functional and structural changes, led to improvements 

in diagnostic accuracy. Moreover, the combination of structural and functional test in-

formation through incorporation of á priori knowledge about the anatomical relation-

ship of the retinal nerve fibre layer and the visual field further increased the diagnostic 

performance of the automated classification algorithms. Machine Learning Classifiers 

based on optimized test input data could become useful decision support tools for 

more accurate glaucoma diagnosis.
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3. Abbreviations 

ANN – Artificial Neural Network 

AROC – Area under the Receiver Operating Characteristic curve

asb  –  apostilbs

dB  –  decibel

GHT  –  Glaucoma Hemifield Test

HFA  –  Humphrey Field Analyzer

LTSA  –  Local Tangent Space Alignment

MD  –  Mean Deviation

MLC –  Machine Learning Classifier

MLP  –  Multi-Layer Perceptron

µm  –  micrometres 

mW  –  milliwatt

NTG  –  Normal Tension Glaucoma

OCT  –  Optical Coherence Tomography

ONH  –  Optic Nerve Head

PCA  –  Principal Component Analysis

PD  –  Pattern Deviation

PEX  –  Pseudoexfoliation Glaucoma

PG  –  Pigment Glaucoma

POAG  –  Primary Open Angle Glaucoma

PSD  –  Pattern Standard Deviation

RNFL  –  Retinal Nerve Fibre Layer

RNFLT  –  Retinal Nerve Fibre Layer Thickness

ROC  –  Receiver Operating Characteristic 

RVM  –  Relevance Vector Machine

SAP  –  Standard Automated Perimetry

SD-OCT – Spectral Domain Optical Coherence Tomography

SITA  –  Swedish Interactive Threshold Algorithm

SVM  – Support Vector Machine

TD  –  Total Deviation

TD-OCT – Time Domain Optical Coherence Tomography
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4. Introduction

4.1 Primary open angle glaucoma

POAG comprises the most frequent type of glaucoma afflicting the visual function of 

individuals and is the third leading cause of blindness worldwide1. It is a progressive 

condition characterized by damage of the RNFL and optic nerve head, and resulting 

in visual field defects2 – 4. According to epidemiological data, the prevalence of POAG 

is increasing with age and in white populations5 over 70 years of age is estimated at 

6%. The incidence of the disease in mainly European populations is estimated to about 

0.1% - 0.2% per year6. Main clinical signs of POAG are alterations of the optic nerve 

head topography and structural defects of the RNFL, visual field defects corresponding 

to the anatomical organization of the RNFL, and in circa 50 % of cases increase in 

intraocular pressure7 – 10. The level of intraocular pressure, initially considered a diag-

nostic criterion, is currently viewed as the main independent risk factor for the onset of 

POAG11 and its progression12,13. Structural alterations of the ONH and RNFL, as well as 

visual field defects, are the most important signs of the onset of POAG. Early diagnosis 

and management of POAG has gained support following the results of large clinical 

randomized trials indicating the positive effect of intraocular pressure lowering therapy 

on the progress of the disease12,13. Highly specific and sensitive diagnostic tests able to 

detect the clinically significant glaucomatous changes are therefore required for the 

early detection of POAG.

4.2 Visual field testing – The perimetric examination

Visual field loss in glaucoma – initially manifested as localized variability in perceived 

light sensitivity - may develop early and progress gradually over time, long before the 

patient perceives any abnormalities or loss of vision. Thus, examination of the visual 

field is important both for the diagnosis of open-angle glaucoma and for following its 

progression in order to construct an appropriate therapy plan. Perimetry is the method 

used to examine visual fields. Initially introduced in the 1800’s14,15 the first perimetric 

methods able to determine the extent of the visual field were further developed by 
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Bjärrum to become capable of discovering specific patterns of visual field defects16. 

The subsequent development of static perimetry17 enabled quantitative measurements 

of light sensitivity in the visual field. The advent of computerization during the 1970’s 

evolved the perimetric method into its current form (SAP) by automating both the 

presentation of light stimuli and the registration of patient responses. The automated 

static perimeter functions by determining the intensities of the dimmest light stimulus 

that can be seen in specific pre-selected test point locations across the visual field. In 

this way, threshold values of differential light sensitivity are measured. Statistical ana-

lysis of the raw threshold data can facilitate the identification of significant visual field 

changes18. Such analysis is based on the creation of a normative dataset, from tests on 

healthy individuals, and enables corrections that account for the effects that age and 

the presence of media opacities have on test measurements. 

4.3 Testing the morphology of RNFL and ONH – OCT Imaging

Degenerative changes of the RNFL have been shown to occur at very early stages of 

glaucoma19 – 23. Defects of the peripapillary RNFL and alterations of ONH morphology 

can be observed by examining mono- or stereoscopic photographs of these structu-

res. Evaluation of RNFL and ONH photographs by experts is of course subjective and 

dependent on the skill of the individual examiner24,25. Advances in imaging technology 

enabled the quantitative description of retinal structures and led to the development of 

diagnostic instruments that depict structural details at high resolutions and with good 

reproducibility26,27. Imaging methods like confocal scanning laser ophthalmoscopy, 

scanning laser polarimetry and optical coherence tomography, provide morphological 

information such as thickness measurements of the RNFL and ONH.

OCT is a technique used for the characterization of semi-transparent structures and 

in-vivo, non-invasive, imaging of biological tissues28,29. It is based on the principle of 

interferometry and utilizes a near-infrared, broad bandwidth light source with a short 

coherence length. The OCT instrument is able to provide cross-sectional images of tis-

sue structures by analyzing the light that is reflected (scattered) back from the different 

tissue elements. Due to the short coherence length of the light source, the axial reso-

lution of OCT images is very high. The initial OCT instruments used an interferometric 

setup where the interference pattern was resolved in time (TD-OCT). Recent iterations 

of OCT (SD-OCT) utilize instead a detector setup that registers the light at different 

frequencies and then analyses the different light spectra by Fourier transformation. This 
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approach leads to improved scan acquisition times and scan quality (i.e. higher signal 

to noise ratio). 

Several studies investigated the ability of the TD-OCT parameters to discriminate bet-

ween normal and glaucomatous eyes30 – 38. RNFLT parameters in particular, have shown 

better discriminative ability than OCT ONH measurements35,39,40 and have exhibited sen-

sitivities between 70% and 80% at specificity levels of more than 90% and AROCs 

of about 0.90. The best diagnostic performance was provided by RNFLT parameters 

derived from the inferior and superior peripapillary RNFL quadrants and their associa-

ted clock hour sectors, as well as from the average RNFLT value of the whole OCT scan 

circle test pattern.

4.4 Machine Learning Classifiers (MLCs) – Artificial Neural Networks & 

Support Vector Machines

In the field of artificial intelligence, machine learning is an active area of research 

concerned with the development of computational methods that are able to learn 

to perform classification, clustering and regression tasks through a training process41. 

For classification tasks, machine learning algorithms are able to adapt their decision 

boundaries based on the data that is presented during the training process, in contrast 

to conventional statistical methods with explicitly defined functional parameters. MLCs 

have been successfully used in a variety of fields42, including medicine43 – 45, for automa-

ted interpretation of medical diagnostic tests45 – 48 and modeling of biological systems44. 

In ophthalmology and the area of glaucoma diagnosis in particular45, MLCs have been 

used for classification of tests based on visual field data51 – 61, structural measurements 

of the RNFL and ONH62 – 69, as well as for detecting progression of glaucomatous visual 

field defects70 – 72, and combining functional and structural diagnostic parameters73 – 76. 

Moreover, the high diagnostic accuracy of MLC methods has been favorably compared 

against the performance of traditional linear discriminant analyses77 – 78 and human 

experts58,79. 

In order to broadly evaluate the diagnostic performance of MLCs, this thesis compares 

three supervised MCLs with different architectures and learning methods – artificial 

neural networks, support vector machines and relevance vector machines. Supervised 

classification techniques such as artificial neural networks were employed due to their 

efficient learning and well-documented performance in classification problems80. Re-

cently developed statistical learning methods using kernels (support vector machines) 
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or a Bayesian framework (relevance vector machines) have been proposed as more 

optimally trained classifiers compared to artificial neural networks. We chose to use the 

above techniques as they have already been used as decision support systems in oph-

thalmology81,82 and have demonstrated high diagnostic accuracies in various bench-

mark datasets83. 

4.5 Artificial Neural Networks – ANNs

The ANNs constitute a class of machine learning algorithms whose creation was inspired 

by the attempts to mathematically model the function of biological neural networks. 

ANNs however are not exact functional representations of biological neural networks. 

Taking the structure of neural tissue as an analogy, ANNs are composed of a number 

of processing elements called artificial neurons, with their connection nodes approxi-

mating the axons and dendrites, their connection weights approximating the synap-

ses, and their threshold functions approximating the activity in the biological neuron’s 

soma. The learning process in biological neural networks is accordingly modelled by the 

ANNs through the incremental adjustment of the values of their connection weights.

Following the work of early researchers84, Rosenblatt provided a mathematical descrip-

tion of the function of the single artificial neuron and introduced the perceptron85. 

Learning of the perceptron on a set of training data occurs by changing the value of 

the perceptron weights (W) in proportion to the difference (error) of the target (correct) 

output Y, and the perceptron output y, for each training example presented (Figure 1). 

The architecture and learning law of the perceptron, however, imposed limitations in its 

classification ability, resulting in accurate discrimination of objects that are only linearly 

separable. 
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Figure 1. Illustration of the interaction between n biological neurons with signals of intensity X and synaptic 

strength W feeding into a neuron with a threshold b and producing an output y. As an analogy to the con-

nections of biological neurons, the Perceptron receives input that is the product of the input value X and its 

connecting weight W. The transfer function allows the perceptron to produce an output y when the sum of 

weighted inputs is larger than the specified threshold b.  

In order to cope with nonlinearly separable objects, additional layers of neurons can 

be placed between the input layer and the output neuron, leading to the widely used 

MLP architecture and its learning algorithm based on backpropagation of error86. The 

widespread use of MLPs is mainly due to their ability to conduct nonlinear classification 

tasks and their efficient learning algorithms. The general structure of an MLP (Figure 2) 

includes an input layer (representing the input data or variables of the problem into the 

network), one more hidden layers which form representations of the relevant informa-

tion and enable the construction of the MLP decision boundaries during the training 

process, and the output layer consisting of one or more nodes that produces the solu-

tion (output) of the network to the specific problem modelled. The transfer function of 

each neuron in the network is usually a continuous differentiable sigmoid function (e.g. 

logistic or hyperbolic tangent). 
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Figure 2. Example of an MLP with an input layer of 74 units, 2 hidden layers of 25 and 5 neurons respectively 

and 1 output neuron. During each training cycle (epoch), information is passed forward from the input to 

the output layer, and the MLP classification output (y) is compared to the known label (target output, t) of 

the training examples. The error (e) of the MLP from this comparison is backpropagated to the connections 

of each layer in order to adjust the connection weights according to an error function that tries to minimize 

the MLP classification error during each training epoch. The MLP undergoes numerous training epochs and is 

considered to be trained when its error approaches zero or falls under a specified value.   

In a backpropagation MLP, the data from the input layer nodes are weighted by the 

connections, summed, and transformed by the transfer function in order to be used as 

input into the next layer. The same process continues forward until it reaches the out-

put node(s). The solution generated by the output layer, is compared with the desired 

(correct) output value of the example from the training data set. The measured error 

is passed in a backward fashion from the output layer to the hidden and input layers, 

in order to adjust the connection weights between the neurons. Each example is pro-

cessed in the same way until the whole training set is presented (training epoch/cycle). 

This procedure is repeated until there is a sufficiently low error rate (convergence). The 

trained network’s ability to generalize is tested with a set of data containing different 

examples from those of the training set.
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4.6 Support Vector Machines – SVMs

Following developments in statistical learning theory87, new techniques for classifica-

tion and regression were introduced within the group of machine learning algorithms. 

SVMs are kernel-based methods that, like ANNs, can be trained to recognize patterns 

in data and adapt their decision boundary to the training data. Unlike ANNs, these 

algorithms perform classification by using kernels to map the input data in a space of 

higher dimensionality and, with the help of constructed support vectors (from part of 

the training data), they create hyperplanes that maximize the separation between the 

classes while minimizing the generalization error (Figure 3).

Separation may be easier in higher dimensions

Complex in lower dimensions Simple in higher dimensions

feature
map

support
vectors

support
vectors

Figure 3. An illustration of the principle of SVM classification. By projecting data into a higher dimensional 

parameter space it can be easier to construct hyperplanes that can separate the different classes of data. 

The construction of the decision boundary for the SVM is based on a subset of training examples (support 

vectors) that lay close to the decision boundary (i.e. belong to a set of examples that are most difficult to 

correctly classify).
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4.7 Relevance Vector Machines – RVMs

Another type of MLC that has produced promising results is the Relevance Vector Ma-

chine (RVM). RVM is a sparse linear model formulated within the Bayesian framework88. 

Even though its functional form resembles the SVM, the two algorithms are based on 

different principles. RVM provides a probabilistic output that is easier to interpret in the 

context of test classification compared to the SVM output of class membership. RVM 

also uses a sparse representation requiring fewer relevance vectors to create decision 

boundaries, compared to the number of support vectors used by the SVM. On the 

other hand, RVM training is highly non-linear, making optimal results hard to achieve.
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5. Aims 

5.1 General Aim

The aim of this thesis is the development of improved glaucoma diagnostic tests through 

the utilization of new automated techniques for interpretation of perimetric data and 

measurements of the RNFLT with OCT. The employed techniques are based on the MLC 

paradigm and constitute methodologies related mainly to ANNs. 

5.2 Specific Aims

1. Investigate the effect of using raw perimetric measurements and processed 

SAP parameters on the performance of an ANN classifier. Identify the type of 

SAP parameter that optimizes the performance of our automated classifier for 

the visual field data set.

2. Confirm the classification accuracy of the previously trained best performing 

ANN classifier on an independent material of SAP tests from healthy persons 

and patients with mild and moderate glaucomatous visual field defects. Com-

pare the performance of the ANN classifier with that of other algorithms com-

monly used for diagnosis of glaucoma based on visual field data.

3. Evaluate the ability of conventional and novel parameters, derived from OCT 

RNFLT measurements, to provide relevant diagnostic information when used 

as input data for MLCs. Optimize the MLC architecture and RNFLT parameters 

that provide the best results in terms of diagnostic accuracy.

4. Investigate ways to combine the best performing SAP and OCT RNFLT para-

meters. Construct and evaluate the diagnostic performance of an MLC-based 

method that can utilize the complementary information from the functional 

SAP data and structural measurements of OCT. 
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6. Methods

6.1 Study Design 

Studies I and II

Both were case-control studies evaluating data collected prospectively from healthy 

individuals and retrospectively from patients with POAG. The glaucoma definition in 

the first two studies, where SAP tests were used as input data to an ANN, was based 

on glaucomatous changes of the optic nerve head evaluated by an expert from optic 

disc photographs and/or comprehensive descriptions of optic nerve head appearance 

found in patient records. 

Study III

The third case-control study was a retrospective analysis of prospectively collected OCT 

test data, taken from randomly chosen healthy individuals and glaucoma patients fol-

lowed at the Department of Ophthalmology at Skåne University Hospital, Malmö, Swe-

den. The definition of glaucoma required both functional and corresponding structu-

ral glaucomatous defects to be present. Similarly, the included healthy individuals had 

normal visual function and a healthy RNFL judged by RNFL and /or ONH photographs.

Study IV

This case-control study is based on analysis of prospectively collected data from a ran-

dom population sample of healthy individuals residing in a defined catchment area of 

southern Sweden and glaucoma patients followed at the Department of Ophthalmolo-

gy at Skåne University Hospital, Malmö Sweden. For both healthy persons and glauco-

ma patients, the definition of normality and glaucoma was based on evaluation of the 

optic disc during fundus examination. 

All four studies were conducted according to the tenets of the Declaration of Helsinki 

and were approved by the Regional Ethical Review Board of Lund, Sweden. In the stu-

dies where clinical data were prospectively collected, all healthy individuals and glauco-

ma patients provided informed consent prior to any examinations.
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6.2 Subjects

All glaucoma patients included in the four studies had POAG, normal tension glauco-

ma, pseudoexfoliation glaucoma or pigment glaucoma. Patients with other types of 

glaucoma such as angle-closure glaucoma, congenital, or other secondary forms of 

glaucoma, were excluded. Additionally, neuro-ophthalmic or other systemic disorders 

(except diabetes mellitus without retinopathy) as well as retinal diseases that affected 

the visual field or the RNFL constituted grounds for exclusion. All four studies were 

based on data derived from only one randomly chosen eye per included individual.  

Selection of individuals and test data

Study I

Since media opacities in the form of cataract are often present in patients with glauco-

ma it was deemed important to train our ANN with SAP tests belonging to healthy indi-

viduals and glaucoma patients with or without the presence of cataract. The following 

four groups were thus created:

1. Healthy persons

SAP test data from healthy individuals, derived from a large normative database created 

by a multicenter study with the aim to establish the normal thresholds and limits for 

the SITA algorithms89, consisting of 335 healthy persons. The inclusion of individuals 

depended on their ophthalmic status after a clinical examination, and not on the results 

of their visual field examination. However, suspicious or pathologic visual fields consis-

tent with the ocular status, or due to obvious test artifacts, were excluded. From this 

database, 213 tests from 213 subjects were randomly selected as the normal material 

for the first study. The mean age of the healthy group providing the 213 tests was 52 

years (range 19 to 84 years) and the average MD was -0.02 dB, ranging from -6.11 to 

+3.07 dB.

2. Patients with media opacities 

We identified 55 patients with a diagnosis of cataract, and descriptions of a normal 

ONH as well as normal previous visual field examinations, in their medical records. After 

removal of those with unreliable field test results, mostly due to poor fixation, 41 eyes 

of 41 patients remained in this group. The mean age in this group was 77 years (ran-

ge: 54 to 96), with MD ranging from -9.82 to -2.46 dB. The visual field tests from this 

group were grouped together with the 213 normal tests.
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Selection of groups with glaucoma 

We randomly selected 30-2 SITA Standard SAP tests from one of our HFA databases 

(containing 11,134 tests of 3,629 patients) and matched the patients corresponding to 

the selected tests to our glaucoma register. Only tests from patients with a diagnosis 

of glaucoma or suspect glaucoma were included for further analysis. Additionally, first-

time visual field tests were not chosen, so as to avoid perimetric training effects90 – 92. 

This process yielded 643 SAP tests. Review of medical records of patients corresponding 

to the selected tests was carried out and only tests of patients having a glaucomatous 

ONH (either in photographs and/or comprehensively described in the patient records) 

prior to the SAP test date were included. Depending on the presence or absence of 

cataract as described on the patients’ medical records, the following 2 groups were 

formed:  

3. Patients with glaucoma

Patients with records having no description of cataract or noting a clear lens or the 

existence of intraocular lens implant (without posterior capsule opacification) were re-

garded as patients having glaucoma without cataract. In this way, 127 SAP tests of 127 

patients were selected. The mean age of the patients in this group was 75 years (range: 

40 to 96), and the MD ranged from -31.18 to +0.74 dB. 

4. Patients with concomitant glaucoma and cataract

Patients with medical records indicating the presence of any type or stage of cataract 

were classified as having concomitant glaucoma and cataract. This group consisted of 

68 tests. The mean age of this group was 77 years (range: 51 to 97), and the MD values 

ranged from -29.99 to -0.12 dB.

Study II

1. Healthy persons

From the SITA normative database89 consisting of 335 healthy individuals, after the ex-

clusion of 213 tests used in the first study, 122 SAP tests of 122 individuals remained. 

From this set of tests, 6 were lost due to corrupted data leaving 116 SAP tests of 116 

individuals to form the healthy group. The mean age of this group was 51 years (range: 

19 to 83), and the MD ranged between -4.62 and +2.4 dB (mean: +0.08 dB). 
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2. Glaucoma patients

Randomly selected 30-2 SITA Standard SAP tests from one of our HFA databases (con-

taining ca 25,000 tests of ca 6000 patients), and the corresponding patient records 

were retrieved. In this way, 588 visual field tests from 588 patients were extracted. 

Since we wanted to test our trained ANN classifier in patients with mild and moderate 

glaucomatous changes, only SAP tests with a mean deviation (MD) value (rounded to 

the nearest integer) better than or equal to -10 dB were included. SAP tests with MD 

values worse than -10dB were instead replaced with earlier SAP tests from the same 

patient if the MD value was within the specified range. Unreliable tests were excluded, 

as well as tests of patients that participated in the first study. None of the included SAP 

tests were the patients’ first tests, so as to avoid erroneous test results due to lack of 

perimetric experience90 – 92. After application of all criteria, 100 SAP tests from 100 pa-

tients were included. The presence of cataract was not taken into account during the 

selection process. Of the included patients, 28% had media opacities (26% in the form 

of cataract and 2% in the form of postoperative opacities of the posterior capsule) at 

the time of test acquisition. The average age was 75 years (range: 41 to 95), and MD 

ranged from -10.42 to +0.31 dB (mean: -5.77 dB). 

Study III

1. Healthy persons

This group was formed by persons recruited mainly by a random selection of presuma-

bly healthy individuals living in Malmö, Sweden. The collected OCT measurements for-

med a database that was divided into 2 parts. Two-thirds of the database (178 persons) 

was used for the construction of a normative RNFLT model with reference limits cor-

rected for both age and refraction93. This normative database was used to correct for 

age and refractive status all TD-OCT RNLFT measurements of the remaining one-third 

(90 persons) that was subsequently used as the normal group for training our MLCs.  

2. Glaucoma patients 

Glaucoma patients followed at the Department of Ophthalmology, Skåne University 

Hospital, Sweden during the last 3 years prior to this study were recruited. After review 

of the corresponding medical records, persons between 40 and 80 years of age, ha-

ving POAG, NTG, PEX or PG and not involved in other ongoing studies were invited to 

participate. After application of all inclusion criteria, 62 patients with glaucoma were 

included. Four of those were newly diagnosed with glaucoma during recruitment of the 

presumably healthy persons. If both eyes of each patient were eligible, the eye with the 

better MD value on SAP tests was included. All included eyes had reproducible visual 
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field defects on SITA Standard 24-2 tests corresponding to glaucomatous changes in 

the ONH and ⁄ or the RNFL as judged by examination of photographs. The included 

eyes had SAP tests with MD better than -12 dB, PSD outside the 95% normal limit and 

classified by GHT as falling outside normal limits.  

Study IV

1. Healthy Individuals

We performed a random selection from a population register containing 4,718 per-

sons over 50 years, living in two primary care catchment areas of Scania, Sweden. This 

selection yielded a sample of 307 individuals who were invited to participate in the 

study. Of those, 170 individuals accepted the invitation and underwent a comprehen-

sive ophthalmic examination including SAP testing and TD-OCT imaging. All included 

persons had VA > 0.5, refractive errors < 5 D sphere and/or < 3 D cylinder, and a healthy 

appearance of the ONH as judged by a trained physician during fundus biomicroscopy. 

In this way, 125 healthy persons were included.

2. Glaucoma Patients

The initial recruitment was based on a random selection of 397 patients with a diag-

nosis of POAG, PEX, NTG or PG from a register of 2,174 visits of patients with these 

diagnoses, followed at the Department of Ophthalmology, Skåne University Hospital, 

Sweden between January 2nd 2007 and March 13th 2008. After review of the corres-

ponding patient medical records and exclusion of patients with confounding ocular or 

systemic pathological conditions, 164 patients were invited to participate and under-

went a comprehensive ophthalmic examination, including SAP testing and RNFL ima-

ging with TD-OCT. After further exclusion of patients with VA < 0.5, refractive errors of 

> 5 D sphere and/or > 3 D cylinder, unreliable SAP tests and artifacteous OCT images 

or errors on OCT RNFLT analysis, 135 patients remained. Eight of those patients were 

newly diagnosed with glaucoma, detected during recruitment of healthy individuals, 

and were included in the glaucoma group.  

6.3 Diagnostic Tests

6.3a Standard Automated Perimetry – SAP 

The most broadly used automated perimeter in both research and clinical praxis is the 

HFA (Carl Zeiss Meditec, Dublin CA). All visual field data in this thesis were collected 

with the HFA II. 
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Perimetric threshold tests

SAP tests with the HFA use projected white stimuli of varying intensity over a range of 

5.1 log units (51 dB) in the range of 0.08 to 10,000 asb, and usually with a stimulus size 

corresponding to the 0.43-degree Goldmann size III stimulus. Thresholds of differential 

light sensitivity are measured by projection of the standardized stimuli against an illumi-

nated background of 31.5 asb brightness for 200 ms in specified locations of the visual 

field. The perimeter is also able to detect the point of fixation of the patient’s gaze in 

order to ensure proper gazing during the test. This is achieved by either the blind spot 

monitoring technique or the gaze tracker monitoring system94. 

The calculation of differential light sensitivity is based on repeated presentation of sti-

muli at varying intensities across a threshold level. This threshold level can be defined as 

the level of light intensity where each presented stimulus has a 50 % probability to be 

perceived. In order to provide a reduction of test time while maintaining or improving 

the level of measurement accuracy, the more recent SITA test strategy, employs ad-

vanced mathematical modelling of the visual field and statistical processing of patient 

responses95 – 97. The SITA algorithm allows for appropriate selection of both the intensity 

of stimulus presentation and the pace and length of the inter-stimulus interval based 

on analysis of patient responses and their statistical consistency. Moreover, by recording 

all test-related parameters, SITA can accurately estimate threshold values based on the 

whole pattern of patient responses. In studies I and II, we used the SITA Standard 30-2 

program that measures light sensitivity at 76 locations of the central visual field within 

30 degrees from the point of fixation. In study IV, we used the SITA Standard 24-2 pro-

gram, which provides sensitivity measurements at 54 locations of the central visual field 

within 24 degrees from the point of fixation. 

Statistical analysis of the threshold tests – the deviation plots

Interpretation of SAP test results by examination of the numerical threshold sensitivity 

measurements can be a difficult task for a physician. The main reason is that the range 

of normal threshold values in each test point varies by a different amount, without 

following any theoretical Gaussian distribution. Thus in order to correctly distinguish 

normal from pathological visual fields, every physician should possess knowledge of 

the normal sensitivity ranges at each test point in the visual field. STATPAC is a stati-

stical analysis package that incorporates this type of knowledge in the interpretation 

of SAP tests in the HFA18. In the Single Field Analysis format of the standard threshold 

test, STATPAC highlights any sensitivity values that deviate from normal, by comparing 

the threshold measurements with age-corrected measurements from pre-constructed 
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databases containing tests from perimetrically healthy individuals. Apart from the raw 

threshold numerical values with the corresponding greyscale representation, STATPAC’s 

output includes test reliability parameters, global indices for the visual field, deviation 

plots, and the GHT labelling98.

The TD deviation numerical plots indicate the deviation of each measured threshold 

value after comparison with the age-corrected values from the normative database. 

The significance of this deviation compared to the instrument’s normative database is 

illustrated on the TD probability maps. The PD analysis (based on the TD highest sensiti-

vity values) denotes deviation of sensitivity at each test point location after adjustment 

to remove any generalized depression of light sensitivity from the hill of vision. The 

PD probability plot and associated probability maps highlight in this way localized loss 

of sensitivity and are able to detect visual field defects earlier than the greyscale prin-

touts99, and de-emphasize common artifactual patterns100.

6.3b Optical Coherence Tomography – OCT

OCT data in this thesis were obtained with the only commercially available TD-OCT in-

strument (StratusOCT, Carl Zeiss Meditec, Dublin CA), which has been extensively used 

in both research and the clinical environment since its introduction in 2003. 

In TD-OCT, the standard examination for the detection of glaucomatous structural chan-

ges entails the scanning of the peripapillary RNFL in a circular pattern with a diameter 

of 3.4 mm centred on the ONH, in axial sections with a resolution of circa 10µm. The 

acquired raw reflectivity measurements from each A-scan are then processed by the 

instrument in order to correct for signal noise and motion generated signal artifacts. A 

segmentation algorithm provides the boundaries of the RNFL based on the reflectance 

intensity profiles of the image, and RNFLT measurements of the scan are calculated. In 

our third and fourth studies, OCT scans were obtained at a beam power of 750 mW 

with the “Fast RNFLT scan protocol”, which produces average thickness values of three 

circumpapillary scans, each with 256 A-scan measurement points. The OCT instrument 

provides parameters based on the average RNFLT measurements of the whole scan cir-

cle or sectors of it (4 quadrants and 12 clock hour sectors). Even some ratios between 

average values and the highest measurements in specific RNFL scan sectors are being 

presented in the analysis output of the OCT examination. In study III, we used the best 

performing of the commercial RNFLT parameters and constructed novel parameters 

based on the lowest measured thickness values and their percentiles, and on A-scan 
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RNFLT values transformed by the LTSA algorithm. In study IV, we utilized corrected OCT 

A-scan measurements after processing by PCA.

6.4 MLCs

6.4a MLC architectures and training 

In the following section, some more technical details concerning the architecture and 

training method of our MLCs are presented.

ANN structure and training

The ANNs in the first three studies were fully connected feed forward MLPs with an 

input layer consisting of a vector of the data values and their input weights, two hidden 

layers with hyperbolic tangent transfer functions and an output layer of one neuron 

with a logistic transfer function. The number of neurons in the hidden layers was cho-

sen based on the number of input parameters, and for the first two studies was 25 and 

5 neurons respectively. In the third study the ANN configuration was 12 and 6 neurons 

in each hidden layer respectively. In the fourth study we used a variation of the feed for-

ward MLP, the cascade forward neural network. The general ANN structure is the same 

with the exception of the input layer, which provides connections to all other layers 

instead of only the first hidden layer. All ANNs were trained with the scaled conjugate 

gradient training algorithm developed by Møller101. We used a subset of the training 

data as en early stopping dataset, to avoid overfitting of the networks during training. 

All ANNs were programmed and run in the Neural Network toolbox of MATLAB (The 

MathWorks Inc., Natick, MA, USA).

ANN ensembles and training with bagging

The ensemble approach can be used to decrease the classification error of an ANN 

classifier by combining the prediction of a number of ANNs102. The decomposition of 

the ANN classification error into the factors of bias (i.e. the classification accuracy on 

the training data) and variance (i.e. the stability of ANN classification with respect to 

the variability of the training data) reveals an inverse relationship (i.e. a trade-off) bet-

ween these two measures. It can be shown that the classification error of the ensemble 

equals the averaged classification error made by an individual ANN minus the averaged 

variance (a.k.a. diversity) of the individual ANNs in the ensemble. Training the individual 

ANNs with a resampling algorithm such as Bootstrap aggregating (bagging) on slightly 

different subsets of the training data increases the diversity of individual ANNs and thus 
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decreases the ensemble classification error. The bagging algorithm generates training 

subsets by uniformly sampling examples from the training data with replacement103. 

The created bootstrap samples (expected to contain 63.2% of unique examples) are 

then used for training the individual ANNs. This approach can also be incorporated into 

a cross-validation testing setup.

SVM structure and training 

The SVMs utilized a radial basis function kernel and were trained by a variation of Platt’s 

sequential minimal optimization algorithm104. Programming, testing and training of the 

SVM classifiers were done in Python (Python Software Foundation) and MATLAB (The 

MathWorks Inc., Natick, MA, USA) with the Libsvm software105. We used a global opti-

mization technique based on simulated annealing106 to determine the values for the C 

and g parameters of the SVM algorithm.

RVM structure and training 

The RVMs used a Gaussian kernel with bias and were trained with the first version 

of the SparseBayes software package for MATLAB (The MathWorks Inc., Natick, MA, 

USA). The width of the kernel was chosen as the value that provided the best results 

on 10-fold cross-validation.

6.4b MLC training and testing by cross-validation

We employed the 10-fold cross-validation procedure107 in order to maximize the use 

of our collected data without the need of a completely separate test subset, and avoid 

the bias of simultaneous training and testing on the same individual tests. In this cross-

validation setup, all test data were randomly divided into 10 subsets, with each subset 

containing approximately the same amount of healthy and glaucomatous tests. One 

subset was used for testing classification performance, and the remaining 9 subsets 

were used for training the MLCs. In training of the ANNs, one of the 9 training subsets 

was used for early stopping of network training in order to avoid overfitting. The remai-

ning 8 subsets provided the training data. In the ANN ensemble, the training data were 

created with bagging from these 8 subsets. ANN training was repeated by keeping the 

same test subset and changing the early stopping set, until all training data was used 

both in training and early stopping of the ANNs and the classification error of the net-

works was averaged. The training and testing process for the MLCs was iterated, each 

time with a different test set, and the results were merged to produce a single average 

output for each type of machine classifier.
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6.4c Input Data to MLCs

SAP data

In the first study we used the raw threshold numerical values, as well as the TD and PD 

numerical plots and probability maps. In order to use the TD and PD probability maps 

as input data, we represented each probability level by numerical values based on a 

scoring procedure. The scoring scheme was adopted from the process of calculating 

the GHT output98. The SAP data used as MLC input in the second and fourth study were 

based on the scored probabilities of the PD probability maps. The SITA Standard 30-2 

and 24-2 test patterns provided 74 and 52 scored PD probability values respectively 

(excluding 2 test point measurements falling on the blind spot).

OCT data 

In the third and fourth study, all OCT RNFLT measurements were derived by the instru-

ments’ peripapillary RNFL scan circle examination protocol. We performed corrections 

for age and refraction on all the collected A-scan data prior to any analyses. These 

corrections were accomplished by linear regression analysis on a model of the relation-

ship of age, refraction and measured RNFLT on a normative database93, and use of the 

derived coefficients to calculate the corrected values of measured RNFLT. In the third 

study, we used the A-scan values to calculate mean, highest and lowest RNFLT values 

for the whole scan circle as well as for different RNFL sectors (quadrants and clock hour 

sectors). We then derived the commercially available OCT RNFLT parameters in the 

same way that these are produced by the StratusOCT instrument. The performance 

of the age- and refraction corrected A-scan measurements was also investigated after 

processing to reduce their complexity (i.e. their high number of parameters).

Dimensionality reduction of OCT A-scan data

The A-scan data of OCT acquired with the FAST protocol require 256 parameters (i.e. 

dimensions) to be represented. The problem with high-dimensional data lays in the 

fact that one needs very large number of tests in order to successfully train MLCs, so-

mething that is impractical in medical research studies. These difficulties can be amelio-

rated by simplifying the representation of high-dimensional data using techniques able 

to map the large number of values into a set of fewer parameters (i.e. a lower dimensi-

onal parameter space). We have examined the application of both linear (study IV) and 

non-linear (study III) dimensionality reduction methods on the A-scan measurements.
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Linear Dimensionality Reduction – PCA

PCA108 is a well-described, widely used technique for reducing complexity in datasets. 

The PCA method is essentially an orthogonal linear transformation of data. It trans-

forms the dimensions of the data into a new dimensional space where the first dimen-

sion maps the largest variance of any projection of the data; the second dimension 

maps the second largest variance of the projected data, etc. Parameters that contain 

useful and relevant information, add to the variance of data in a dataset, in contrast to 

redundant parameters. The function of PCA allows for the maximum possible variance 

in the data to be mapped in the first few dimensions (principal components). During 

dimensionality reduction with PCA, the few initial principal components describe the 

largest part of variance of the original dataset and the remaining parameters can be 

overlooked without significant loss of information. Since PCA is depended on the mul-

tidimensional mean, it is very sensitive to the scale of each parameter. This is important 

to consider when having data from different sources with different measurement sca-

les. In the fourth study, we used PCA to reduce the parameters of OCT A-scan measure-

ments, and included the principal components that retained a large amount of relevant 

information (99.9% of variation) from the original measurements.

Nonlinear dimensionality reduction – LTSA

In study III, we used the LTSA algorithm109. LTSA is a non-linear dimensionality reduc-

tion method that has performed very well in other datasets110 and is more robust to 

the choice of its function parameters compared to similar techniques. It belongs to the 

group of sparse spectral dimensionality reduction methods and is a local embedding 

technique. It functions by linearly mapping the high-dimensional measurement points 

to their local tangent space and finding low-dimensional representations whose alig-

ned linear mappings reconstruct the same local tangent space. The number of reduced 

A-scan parameters after the application of LTSA was based on the estimation of the 

intrinsic dimensionality of the OCT A-scan data, calculated by a maximum likelihood 

estimator.

Combinations of SAP and OCT data

In the fourth study, we investigated three different ways of combining SAP test data 

and OCT RNFLT measurements (Figure 4) in an attempt to further increase the ability of 

our MLCs to diagnose glaucoma. Based on combinations of the best performing SAP 

and OCT parameters that were discovered in the previous studies, these approaches 

were:
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i.  The simple combination of 52 SAP PD probability scores from SITA Standard 24 – 2 

tests with 22 OCT parameters derived from PCA processing of the RNFLT A-scan 

measurements, to form an input vector of 67 parameters. The 67 values were 

then used as input to an ANN ensemble and an RVM classifier.

ii.  The construction of a 2-stage ANN classifier consisting of 2 ANNs in the first stage 

with each network receiving input from either SAP or OCT data, and providing 

output used as input for the second stage ANN.

iii.  The fusion of SAP and OCT measurements based on a model relating sectors of 

the peripapillary RNFL to areas of the visual field. We tested the performance of 

the 52 fused SAP (F-SAP) parameters and the 38 fused OCT (F-OCT) derived from 

PCA, as well as their combination (i.e. 90 fused parameters), by using them as 

input to an ANN ensemble and an RVM classifier.
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OCT:  Optical Coherence Tomography     SAP:  Standard Automated Perimetry     PCA:  Principal Component Analysis     MLC:  Machine Learning Classifier
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Figure 4. Three different approaches to combination of SAP- and OCT derived data: The first approach is 

based on simple combination of measurements for the creation of the input data vector to the MLC (i), the 

second approach is based on a 2-stage ANN classifier (ii), while the third approach is based on a model driven 

data fusion of OCT and SAP before the integration of the fused measurements as input data to the MLC (iii). 
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Model-based fusion of data

The fusion of OCT RNFLT measurements and SAP PD scored probability values was 

based on the map constructed by Garway-Heath et al111 to represent the topographi-

cal relationship between sectors of the peripapillary RNFL and areas of the visual field. 

Accordingly, the OCT RNFL scan circle was divided into 6 sectors, with the A-scan mea-

surements of each sector corresponding to SITA Standard 24-2 test point locations of 

a specified area in the visual field (Figure 5). All OCT A-scan thickness measurements 

were translated into probabilities, based on the calculated normal distribution of RNFLT 

values derived from a separate database93. The fusion process represented a weighting 

scheme of the age- and refraction-corrected OCT A-scan measurements in each test 

with the corresponding scored PD values from SAP.

TE
M

PO
RA

L N
A

SA
L

SUPERIOR

INFERIOR

270°

271°

310°

31
1°

40
°

41
°

80°

81°

120°

121°
230°

231°

Figure 5. The map of Garway-Heath et al111 illustrating the relationship between sectors of the peripapillary 

RNFL and areas of the visual field tested in SAP. 

Fusion of OCT data

For every A-scan position in each of the 6 OCT sectors, the corresponding A-scan pro-

bability values falling below the fifth percentile of the RNFLT distribution from our nor-

mative database were multiplied with an exponential factor. This factor was the mean 

pattern deviation probability score (i.e. the sum of all PD scores divided by the number 

of test points) of the visual field sector corresponding to the OCT scan circle sector. PCA 

was subsequently applied to the fused OCT A-scan values and provided 38 principal 

components that were used as input to the MLCs.
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Fusion of SAP data

For every visual field sector, the PD probability score value of each test point was trans-

formed by an additive factor that was derived from the A-scan probability values of the 

corresponding OCT sector. The A-scan probability values were subsequently scored in 

a manner similar to the calculation of the GHT98. The lowest scored probability value 

below the fifth percentile or the highest scored probability value above the ninety-fifth 

percentile of our normal RNFLT distribution from each OCT sector was used as the fac-

tor in the fusion process. The fused SAP parameters were obtained by adding this factor 

to the SAP PD probability score value of each SAP test point in the corresponding area 

of the visual field. In the event that scored probability values outside both the fifth and 

ninety-fifth percentile of our normative RNFLT database existed in the same OCT sector, 

only the lowest probability value was used as the additive factor. 

6.5 Analyses

Using the number of correct classifications (true-positive and true-negative results), as 

well as the number of incorrect classifications (false-positive and false-negative results) 

we calculated the sensitivity and specificity of each MLC. Both measures depend on the 

position of the cut-off limit for defining a field as glaucomatous or normal (i.e. a value 

between 0 and 1) over the range of the MLC output. Plotting the sensitivity and speci-

ficity pairs for all cut-off limits produces a ROC curve112. The AROC is a measure of the 

diagnostic accuracy of a classifier since it represents the probability that a randomly se-

lected test from either the normal or the glaucoma group will be accurately classified113. 

The largest possible AROC has a value of 1, indicating perfect accuracy of classification, 

whereas an AROC of 0.5 indicates classification accuracy no better than chance. Com-

parison between AROCs for examining significant differences in the performance of 

our MLCs is accomplished in all four studies with DeLong’s non-parametric method114. 

Calculation of confidence intervals at the 95% significance level was based on a normal 

approximation of a binomial distribution, according to the score method115. Diagnostic 

accuracy values were calculated by dividing the sum of true positive and true negative 

responses with the sum of true and false, positive and negative responses116. Signifi-

cance testing for differences in gender distribution between the healthy persons and 

patients with glaucoma was accomplished with the Chi square test. The Mann-Whitney 

test was used for significance testing on the variables of age, visual acuity and refractive 

error between the healthy and glaucoma groups (studies III and IV). Diagnostic accuracy 
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of the SAP and OCT parameters was compared with the McNemar test for correlated 

proportions (study IV).
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7. Results

Studies I & II

We found significant performance differences between the different SAP parameters 

used as input data. The largest AROC was produced with the PD probability scores 

(0.988), while the smallest AROCs belonged to TD probability scores and numerical 

values (0.943 and 0.942 respectively). Our ANN trained on the PD probability scores 

performed significantly better (p < 0.001) compared to the ANN using raw threshold 

sensitivities as input data (Figure 6). 
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Figure 6. AROCs of ANN based on the raw threshold values and the best performing ANN based on PD pro-

bability scores in the first study. The latter ANN was subsequently tested on a new set of SAP tests in study 

II and achieved similar performance. The specificity and sensitivity of other SAP interpretation algorithms 

(Glaucoma Hemifield Test – GHT, Pattern Standard Deviation – PSD and Cluster of defects algorithm) for 

interpretation of SAP tests is shown for comparison.
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In study II, our ANN previously trained on PD probability scores was tested on an inde-

pendent dataset and achieved similar performance (AROC: 0.984). With a diagnostic 

accuracy of 93.5% and sensitivity and specificity of 93.0% and 94.0% respectively, it 

provided the best trade-off between specificity and specificity compared to other com-

monly used interpretation algorithms.

Study III

The performance of MLCs based on all conventional and new parameters is presented 

in Table 1. The novel input formed from A-scan values transformed by LTSA provided 

the largest AROCs of all tested parameters for both MLCs (Figure 7). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 - specificity

se
ns

iti
vi

ty

Dimensionality reduction ANN  0.982

Dimensionality reduction SVM    0.989

Average thickness ANN     0.943

Average thickness SVM     0.940

Figure 7. AROCs of MLCs based on the LTSA transformed A-scans, and the best performing single value 

conventional RNFLT parameter (average RNFLT).

The SVM trained on the LTSA transformed data (sensitivity of 96.8% at specificity of 

96.7%) performed significantly better than MLCs trained on the best single commercial 

parameter (full circle average thickness, p = 0.028). SVM performed also significantly 

better than average RNFLT of the full scan circle without the use of MLCs (p = 0.013). 

Novel parameters based on the thinnest measurements of RNLFT or on percentiles of 
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measured thickness performed at least as good as the commercially available parame-

ters. Comparison of AROCs for all studied RNFLT parameters, revealed no significant 

differences between the ANN and SVM classifiers.

Table 1. AROCs of the MLCs for all conventional and novel parameters  

RNFLT Parameters ANN SVM
full circle average 0.943 0.940

temporal quadrant 0.766 0.757
superior quadrant 0.926 0.922

nasal quadrant 0.789 0.783
inferior quadrant 0.930 0.922

kl 8 0.778 0.777
kl 9 0.640 0.601
kl 10 0.771 0.713
kl 11 0.935 0.933
kl 12 0.833 0.844
kl 1 0.825 0.821
kl 2 0.788 0.796
kl 3 0.703 0.666
kl 4 0.747 0.758
kl 5 0.806 0.811
kl 6 0.929 0.912
kl 7 0.887 0.877

all 17 parameters 0.977 0.977
all clock hour sectors 0.977 0.977

all quadrants 0.959 0.955
best 2 hours 0.970 0.976

best 2 quadrants 0.961 0.959
Smax 0.876 0.861
Imax 0.898 0.896

90% of Smax (S_90) 0.885 0.865
90% of Imax (I_90) 0.91 0.904

Smin 0.919 0.908
Imin 0.916 0.906

10% over Smin (S_10) 0.916 0.909
10% over Imin (I_10) 0.915 0.909

Max – Min 0.942 0.927
Max_90 – Max_10 0.946 0.940

LTSA-transformed A-scans 0.982 0.989

Smax: The highest measured RNFLT in the superior quadrant of the OCT scan circle

Smin: The lowest measured RNFLT in the superior quadrant of the OCT scan circle

Max – Min: The difference between the highest and lowest measured RNFLT of the OCT scan circle

Max_90 – Min_10: The difference between the highest and lowest 10th percentile of measured RNFLT of the 

OCT scan circle
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Study IV

The simple combination of SAP and OCT measurements did not lead to significant im-

provements in the performance of MLCs. The 2-stage ANN model provided very similar 

results to the simple combination of data. The data fusion approach provided the best 

results. ANNs based on the fused OCT and the combined fused OCT and SAP data re-

spectively provided almost identical AROC values of 0.978, performing better than the 

ANN based on SAP measurements alone (p=0.047). RVM produced results similar to 

the ANN classifier. The AROCs of ANNs and RVMs based on the fused and non-fused 

parameters are shown in Figure 8 (page 40).

The use of fused parameters as input, improved the agreement in classification (reflec-

ted by the odds ratios) between SAP- based and OCT-based ANNs. This improvement 

led to a larger number of tests correctly classified by both function-and structure-based 

MLCs (Figure 9, page 41).
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Figure 8. AROCs for both MLCs based on the fused and non-fused SAP and OCT data.
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Figure 9. Three examples (two healthy individuals and one glaucoma patient) with disagreement between 

the SAP-based and OCT-based ANN and RVM classification results, which not evident when fused OCT (F-

OCT) and fused SAP (F-SAP) parameters are used as input data. The odds ratios signify the chance that a test 

will be classified as normal or abnormal by both SAP- and OCT based ANNs. ANN and RVM classification 

results using combined  OCT and SAP as well as combined F-OCT and S-SAP data are also shown under each 

diagram. 
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8. Discussion 

The primary aim of this thesis was to investigate the potential of automated diagnostic 

algorithms based on machine learning to detect glaucomatous changes, thus assisting 

clinicians in recognizing the onset of glaucoma earlier and with higher diagnostic accu-

racy. To this extent, we investigated the effect in classification performance of different 

types of input data and different MLC-based architectures. Our results show that MLCs 

are capable of detecting glaucomatous defects in the visual field and the RNFL with 

high diagnostic accuracy. MLC performance depends much more on the type of input 

parameters used and their optimization, than the type of employed MLC architecture.   

ANNs based on statistically processed data can diagnose glaucoma from perimetric test 

measurements of the visual field (studies I and II)

We have shown that ANN classifiers can discriminate between healthy and glaucoma-

tous visual field tests with high degree of accuracy. Our results were based on a large 

sample of 449 persons. We intended to investigate the effect that different types of 

SAP input had on the performance of automated classifiers, since all previous studies 

utilized only the raw unprocessed threshold sensitivity values as input data. We focused 

on the deviation plots of SAP since other indexes such as MD or PSD only provide a 

summary description of the visual field status and omit spatial information that could 

be important for the recognition of glaucoma-related patterns of visual field defects.

The benefits of selecting STATPAC parameters from SAP tests depend on their statistical 

processing that highlights significant changes while accounting for factors affecting 

SAP test measurements. Thus, the ability of scored PD probability values to provide 

age-corrected significance limits that highlight localized depressions of VF sensitivity 

while accounting for the presence of media opacities, could explain the performance 

improvement exhibited by our ANN in the first two studies. 

Since media opacities in the form of cataract are often present in the population of 

patients with glaucoma, it is important for the practical applicability of MLC methods to 

be able to detect those patterns of glaucomatous defects despite the presence of other 

confounding conditions affecting the status of the visual field.
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Evaluation on an independent material showed the generalization ability of trained 

ANNs in discriminating between glaucomatous and healthy visual fields (study II)

In the second study, our goal was to validate the trained ANN classifier on a new 

independent set of data from healthy persons and patients with mild and moderate 

glaucoma. The majority of glaucoma diagnostic studies investigating the performance 

of MLCs conduct the training and testing of the algorithms on the same groups of 

subjects. Although resampling techniques like the cross-validation procedure maximize 

the use of available data and decrease the bias of training and testing the algorithms on 

the same group of individuals, separate testing on a completely independent material is 

a better indicator of the MLC generalization ability. 

Our study, the first in the area of glaucoma diagnosis to test a trained automated classi-

fier on a completely separate set of data, showed that the ANN was able to generalize 

very well, achieving the same level of performance as in the cross-validation setting 

during training and initial testing (study I). The best threshold for the ANN found from 

cross-validation was also shown to be the best threshold for the network even on the 

new material, indicating that there was no significant overfitting during the training 

process.

Circa one-third of the glaucomatous SAP data were derived from patients with media 

opacities. The performance of our ANN did not degrade during testing on this new set 

of SAP fields, irrespective of the presence or absence of media opacities, probably due 

to our use of optimized input in the form of PD probability scores. Moreover, the ANN 

was tested on a group of patients having only mild and moderate visual field defects. 

Even though it is important to provide the ANN with examples representing the who-

le spectrum of glaucomatous defects during training, the clinically relevant situations 

where MLCs could function as decision support systems do not encompass cases of 

advanced glaucoma with obvious visual field defects.

The used of novel RNFLT parameters enabled MLCs to accurately detected glaucoma-

related changes of the RNFL measured with TD-OCT (study III)

Both types of MLCs (ANNs and SVMs) were able to accurately distinguish between 

the normal and glaucomatous OCT tests based only on RNFLT information, providing 

very similar results. Our results showed that when examining the OCT derived RNFLT 

parameters, the input selection and optimization of parameters significantly affected 

the performance of MLCs. The commercially available measurements from StratusOCT 

such as mean-RNFLT measured over the whole scan circle or sectors of it are only sum-
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mary values of all RNFLT measurements associated to every individual A-scan location, 

and can lead to loss of relevant information. On the other hand, the use of all A-scans 

without pre-processing, introduces a very large number of parameters for each test to 

be classified. This large number of parameters would necessitate a very large numbers 

of training examples in order to avoid overfitting during the training process. Overfit-

ting occurs when MLCs memorize the pattern of training examples instead of learning 

the underlying rules characterizing the different classes where these examples belong. 

Utilizing all available information found on the A-scan RNFLT values and optimizing 

their representation by reducing the number of parameters through dimensionality re-

duction techniques significantly improved the diagnostic accuracy of our classifiers. 

Another reason for the high diagnostic accuracy of our MLCs was the implementation 

of an ensemble structure for the ANN, and a global optimization scheme for selection 

of the SVM training parameters.     

Knowledge based fusion of visual field and OCT data provide parameters that can in-

crease the accuracy of MLCs in diagnosis of glaucoma (study IV)

There has been interest in investigating the functional and structural relationship in 

glaucoma117 – 127. Recent studies have attempted to combine information from structu-

ral and functional tests in order to improve the classification accuracy of glaucoma dia-

gnostic systems73 – 76. The results from these studies were mixed, but indicated possible 

advantages of integrating information from different test modalities in order to achieve 

higher diagnostic performance. In all previous attempts, the integration of information 

was carried out by simple combination of data from visual field tests and structural 

data of the ONH and RNFL. Our approach was instead based on utilization of á priori 

knowledge about the anatomical relationship between the RNFL structure and the vi-

sual field. We thus used a morphological model representing this relationship in order 

to fuse the available structural and functional information in the test measurements, 

instead of relying on the MLCs to internally construct the same representation based 

on the limited set of patient data. 

Utilizing a fusion process for the individual test measurements, in contrast to creating a 

global probabilistic estimate of the structure – function effects on test measurements128, 

enables the incorporation of additional knowledge related to the specific advantages of 

each test modality. This can be accomplished by applying different weighting schemes 

on the fusion of OCT and SAP data. Accordingly, significantly low OCT RNFLT values 

could only be accentuated during fusion, by the existence of corresponding defects on 

the visual field, whereas a normal visual field did not attenuate low RNFLT values due to 
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the fact that very early glaucoma can be evident on OCT tests without any detectable 

visual field defects. However, visual field defects shown by the PD probability scores 

could be either accentuated or attenuated during the fusion procedure, depending on 

whether a significantly low or high RNFLT existed on the corresponding OCT sector, 

since discreet visual field defects (e.g. due to learning effects) can occur in healthy per-

sons with a normal RNFL.  

Furthermore, the use of PCA on the OCT data enabled the reduction of complexity of 

the dataset while preserving the relevant information used by the MLCs for classifica-

tion of the SAP and OCT tests. PCA was chosen because it can be extended to include 

new data (out of sample extension) without the need to reapply the algorithm to the 

whole dataset. 
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9. Conclusions

•	  ANNs can successfully identify glaucomatous defects from SAP tests. The type 

of SAP parameters, chosen as input data, significantly affected the performance 

of the classifier. Refined input data, based on PD, resulted in significantly higher 

accuracy compared to the raw threshold values.

•	  The high diagnostic performance of ANN based on refined input visual field data 

was confirmed in an independent sample. The ANN performed at least as good or 

better than other SAP interpretation algorithms.

•	  MLCs were able to detect glaucomatous changes on OCT RNFLT measurements 

with high accuracy, exhibiting similar diagnostic performance. RNFLT input pa-

rameters had a much larger impact on diagnostic performance than the type of 

MLC used. Optimized MLC input based on A-scan RNFLT measurements provided 

the highest diagnostic accuracy of all tested parameters.

•	  The utilization of optimized parameters through data fusion of OCT and SAP mea-

surements significantly increased the performance of MLCs, compared to the use 

of SAP parameters only. Integrating parameters by including a priori relevant infor-

mation through data fusion could improve MLC classification accuracy compared 

to currently available methods.
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10. Populärvetenskaplig Sammanfattning

Grön starr (glaukom) är en relativt vanlig sjukdom som påverkar synfunktionen och 

utgör den andra vanligaste orsaken till blindhet. Den vanligaste varianten av grön starr, 

s.k. öppenvinkelsglaukom, är en kronisk sjukdom som drabbar ca 6 % av befolknin-

gen över 70 år. Den kännetecknas av långsamt tilltagande skador på synnerven och 

näthinnans nervfiberlager med åtföljande bortfall i ögats synfält. Förhöjt ögontryck är 

en stark riskfaktor för att utveckla glaukom och för försämring av sjukdomen. Stora 

kliniska studier har visat att sänkning av ögontrycket kan bromsa utvecklingen av sjuk-

domen, även hos patienter med normalt ögontryck, och därmed förhindra en hastig 

utveckling av skador i synfältet. Därför är det viktigt att kunna upptäcka glaukom på 

ett tidigt stadium. 

Synfältsundersökningen är en viktig metod för att upptäcka, kartlägga utbredningen 

och uppskatta allvarlighetsgraden av skadorna i ögat. Synfältsundersökning är även 

nödvändig för att kunna följa sjukdomens utveckling och effekten av behandlingen. 

Den statistiska bearbetningen av mätningarna som utförs vid en modern datorstyrd 

synfältsundersökning hjälper läkarna att tolka undersökningsresultat.

Synfältsundersökningen visar den funktionella skadan, medan avbildning av strukturer 

visar skadan på ögats vävnader. En modern metod, Optical Coherence Tomography 

(OCT), använder ljussignaler för att avbilda näthinnas nervfiberlager med mycket hög 

upplösning och möjliggör upptäckten av diskreta förändringar orsakad av glaukom. 

Tidiga förändringar i nervfiberlagret kan ofta föregå synfältsskador. 

Syftet med detta projekt var att utveckla mer känsliga metoder för diagnostik av glau-

kom, genom användning av avancerade statistiska metoder baserad på artificiell intelli-

gens, s.k. maskininlärningsklassificerare (MLC), som kan tränas att känna igen sjukliga 

förändringar i synfältet och i ögats nervfiberlager. 

Projektet består av fyra delstudier.
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I första studien har vi undersökt hur väl en typ av maskininlärningsklassificerare, Ar-

tificiella Neurala Nätverk (ANN), kan upptäcka glaukomskador i synfältet. Vi använde 

olika mer eller mindre förbehandlade data, dvs. råa mätvärden och mätvärden som kor-

rigerades för olika förvillande faktorer såsom ålder och förekomst av lättare grå starr, 

samt även mätvärden relaterade till normalgränserna, som inmatningsinformation till 

ANN. Vi fann att en viss typ av förbehandlade data som använder information om hur 

normala synfält ser ut, gav ett statistisk bättre resultat, dvs. var bättre på att känna igen 

glaukom i synfält från patienter, och bättre på att känna igen normala synfält från friska 

individer. I denna studie tränades ANN för detta ändamål. 

I andra studien provade vi det färdigtränade ANN på synfält från helt andra personer 

(både patienter och friska) än de som ingick i den första studien. Vi jämförde också 

resultatet från ANN med de andra tolkningsmetoder som används idag för att diagnos-

tisera glaukom med hjälp av synfältstest. Resultatet bekräftade den höga diagnostiska 

träffsäkerheten av ANN som vi såg i den första studien, samt att ANN gav minst lika bra 

(och antydan till bättre) resultat som andra etablerade tolkningsmetoder. 

I tredje studien tittade vi på avbildning av nervfiberlager med OCT. Vi använde två 

typer av maskininlärningsklassificerare; ANN och Support Vector Machines (SVM) och 

provade olika typer mätvärden, korrigerade för olika förvillande effekter, precis som vid 

synfältsundersökningarna. Vi tog också fram nya typer av mätvärden som vi tror skulle 

kunna vara bättre för diagnos än de som finns kommersiellt tillgängliga i OCT-instru-

mentet. Resultaten visade att våra nya mätvärden ökade den diagnostiska förmågan av 

både ANN och SVM jämfört med de gängse mätvärdena, men att typ av maskininlär-

ningsklassificerare inte hade någon, eller väldigt liten, betydelse. 

I den fjärde studien använde vi oss av den kunskap vi fått från studier I – III för att 

kombinera synfältstester och OCT mätningar till en ännu bättre diagnostisk metod. Vi 

använde de bästa synfälts- och OCT- mätvärdena, och kombinerade dem med hjälp av 

en modell som beskriver anatomiska samband mellan delar av nervfiberlagret och om-

råden i synfältet. Resultaten visade att de nya kombinerade mätvärdena ökade den di-

agnostiska träffsäkerheten jämfört med enbart bästa synfälts- eller bästa OCT resultat. 

Sammanfattningsvis har vi kunnat visa att maskininlärningsklassificerare förbättrar tol-

kningen av både synfälts- och OCT undersökningar, samt att en kombinerad analys yt-

terligare förbättrar den diagnostiska träffsäkerheten. Förbättringar i resultaten förklaras 

mestadels av typen av mätvärden som används som indata i MLC, och i betydlig mindre 

grad av typen av MLC metod som används. 
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Paper
I





Effects of Input Data on the Performance of a Neural
Network in Distinguishing Normal and Glaucomatous
Visual Fields

Boel Bengtsson, Dimitrios Bizios, and Anders Heijl

PURPOSE. To compare the performance of neural networks for
perimetric glaucoma diagnosis when using different types of
data inputs: numerical threshold sensitivities, Statpac Total
Deviation and Pattern Deviation, and probability scores based
on Total and Pattern Deviation probability maps (Carl Zeiss
Meditec, Inc., Dublin, CA).

METHODS. The results of SITA Standard visual field tests in 213
healthy subjects, 127 patients with glaucoma, 68 patients with
concomitant glaucoma and cataract, and 41 patients with cat-
aract only were included. The five different types of input data
were entered into five identically designed artificial neural
networks. Network thresholds were adjusted for each net-
work. Receiver operating characteristic (ROC) curves were
constructed to display the combinations of sensitivity and spec-
ificity.

RESULTS. Input data in the form of Pattern Deviation probability
scores gave the best results, with an area of 0.988 under the
ROC curve, and were significantly better (P � 0.001) than
threshold sensitivities and numerical Total Deviations and To-
tal Deviation probability scores. The second best result was
obtained with numerical Pattern Deviations with an area of
0.980.

CONCLUSIONS. The choice of type of data input had important
effects on the performance of the neural networks in glaucoma
diagnosis. Refined input data, based on Pattern Deviations,
resulted in higher sensitivity and specificity than did raw
threshold values. Neural networks may have high potential in
the production of useful clinical tools for the classification of
visual field tests. (Invest Ophthalmol Vis Sci. 2005;46:
3730–3736) DOI:10.1167/iovs.05-0175

Perimetry is one the most important examinations for diag-
nosis and monitoring of glaucoma. Static computerized

threshold perimetry in which white stimuli are shown on an
evenly illuminated white background has been the most com-
mon type of perimetry in clinical glaucoma management for a
long time. The way in which perimetric findings are analyzed
and presented is important in the interpretation of test results.
Reading fields by looking only at maps of numerical threshold
sensitivities or gray-scale representation of such values, is dif-
ficult even for experts. Programs such as the Humphrey Stat-

pac (Carl Zeiss Meditec, Inc., Dublin, CA)1 for computer-as-
sisted interpretation were developed in the mid- to late 1980s.
The probability maps included in the Statpac program are often
able to highlight early glaucomatous field defects before they
become visible in gray-scale representations of raw threshold
values2 and can also reduce effects caused by cataract.3 This
probability map concept has enjoyed wide acceptance and has
subsequently been applied in most new perimetric devices and
perimetric modalities, such as frequency-doubling perimetry4

and short-wavelength automated perimetry.5,6

The Glaucoma Hemifield Test (GHT)7 included in Statpac, is
a rather simple expert system based on up-and-down hemifield
differences between probability scores calculated from Pattern
Deviation probability maps. The GHT was one of the first
computerized systems that was able to classify field test results
reliably as normal or abnormal and improved the ability of
ordinary clinicians to assess visual field test results.8

In the beginning of the 1990s artificial neural networks
(ANNs), one of many algorithms in the machine learning clas-
sifier concept, were tested as a tool for the interpretation of
perimetric results (Goldbaum MH, et al. IOVS 1990;31:ARVO
Abstract 2471; Keating D, et al. IOVS 1992;33:ARVO Abstract
1394).9 ANNs were reported to be able to differentiate be-
tween glaucoma and normal visual field status at least as well as
trained readers.10 In other papers, it was also reported that
machine learning classifiers discriminate better between nor-
mal and glaucomatous fields than do global visual field
indices.11,12 Global visual field indices are far from ideal as
diagnostic tools, however, because they condense all threshold
data into one number, resulting in loss of valuable spatial
information, and visual field indices are not particularly sensi-
tive to early localized glaucomatous visual field loss.13–15

The performance of ANNs has also been compared with
that of other types of field interpretation criteria based on
localized loss.11 Disc topography data have also been added to
visual field data to improve the diagnostic ability of ANNs.16

We hypothesized that it may be possible to enhance the
diagnostic performance of ANNs further by using input data
from which the effects of age and media opacities have been
eliminated or reduced and in which measured sensitivities
have already been compared to the range of age-corrected
normal sensitivities and subsequently translated into probabil-
ities. The Statpac program provides two important analyses: (1)
Numerical Total Deviations represent the deviation at each
tested point of the measured threshold from age-corrected
normal values. (2) Numerical Pattern Deviations represent a
modification of the Total Deviation results in which a correc-
tion has been applied to account for any general elevation or
depression of the field caused by media opacities or changes in
pupil size. Total and Pattern Deviation probability maps are
graphic presentations of the significances of the numerical
deviations, relative to the known ranges of normal values at
each test point location.

The purpose of this study was to test our hypothesis by
comparing sensitivities and specificities achieved by ANNs for
glaucoma diagnosis by using different types of perimetric in-
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Supported by Grant K2002-74X-10426-10A from the Swedish Re-
search Council, by the Järnhardt Foundation, and by funds adminis-
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puts: numerical threshold values in decibels, and Statpac nu-
merical Total and Pattern Deviations and probabilities.

METHODS

Visual Fields

All visual fields included were obtained with the 30-2 SITA Standard
program of the Humphrey Field Analyzer II (model 750; Carl Zeiss
Meditec, Inc.). All test point locations in the 30-2 test point pattern
were included, except two located in the area of the physiological
blind spot. The input data from each field test were:

1. Raw threshold sensitivity values in decibels.
2. Statpac numerical Total Deviations (i.e., deviations in decibels

from age-corrected threshold).
3. Numerical Pattern Deviations, which are those same deviations

adjusted for the general height of the field and probability
scores computed from the Total Deviation and Pattern Devia-
tion probability maps (Fig. 1). The probability scoring scale was

identical with that used in the calculation of the GHT7—that is,
all test points were assigned a score according to significance
level of the deviation from the normal value.

Unreliable field test results, defined as a frequency of false-positive
answers exceeding 15% or a fixation loss larger than 20% were ex-
cluded from the analysis. False-negative rates were not included in the
exclusion criteria, because they have been found to correlate highly
with the degree of legitimate and reliable glaucomatous field loss
measurements.17,18

Subjects

Because patients with glaucoma often have concomitant cataract, it is
desirable that methods designed to recognize glaucomatous visual field
loss not be affected by ocular media changes. Therefore, it was nec-
essary to train the neural networks with fields from healthy subjects,
patients with cataract, patients with glaucoma, and patients with both
glaucoma and cataract. Patients with glaucoma had primary open-angle
glaucoma (POAG), including normal tension, exfoliation, and pigment

FIGURE 1. A 30-2 SITA Standard vi-
sual field test with thresholds and
Statpac Total and Pattern Deviations
and corresponding probability maps.
This field was correctly classified as
glaucomatous by all five types of net-
works.
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glaucoma. Other types of glaucoma, such as angle-closure, secondary,
and congenital forms were not included. Glaucomatous eyes were
defined as those having typical glaucomatous changes in the optic disc:
notches, thin or absent neural rims or marked vertical optic cup
asymmetry, combined with glaucomatous visual field defects. Glauco-
matous field defects were those that were compatible with glaucoma
and not explained by other disease. The visual field classification was
subjective, including all information available on the single-field print-
outs. However, we also included seemingly normal fields from eyes
with pathologic disc topography, if field defects were found in later
visual field tests. Patients with macular or retinal changes and neuro-
logic or endocrinological disorders or other conditions likely to cause
field defects were excluded, whereas patients with diabetes mellitus
without retinopathy were included. No first field test results of any
subjects were considered, to avoid patterns caused by lack of perimet-
ric experience.19–21 The study was conducted according to the tenets
of the Declaration of Helsinki and was approved by the Ethics Com-
mittee of Lund University.

Healthy Subjects. Two hundred thirteen tests results of 213
subjects were randomly selected from an existing large normal data-
base originally collected to establish normal thresholds and normal
limits for the SITA thresholding strategies.22 The mean age of these
subjects was 52 years, ranging from 19 to 84. Most fields in the
normative database appeared quite normal, although normality was
not a criterion for inclusion; Average Mean Deviation (MD) was �0.02
dB, ranging from �6.11 to �3.07 dB (Fig. 2A).

Patients with Media Opacities. These patients had normal
disks and normal visual fields and a notation of cataract in their record.
We identified 55 such patients. After removing those with unreliable
field test results, mostly due to poor fixation, 41 eyes of 41 patients
remained in this group. The mean age of these 41 patients was 77
years, ranging from 54 to 96. The MD ranged from �9.82 to �2.46 dB
(Fig. 2C). Forty of these patients had cataract and one had postsurgical
opacification of the posterior capsule. These fields were regarded as
normal and were included among the 213 normal tests.

Patients with Glaucoma. The field tests of patients with
glaucoma were randomly selected from the directory fields included in
the database in one of our Humphrey Field Analyzers. This database

consisted of 11,134 tests of 3,629 patients, almost all assessed by the
30-2 SITA Standard program. The directory was sorted in alphabetic
order according to the patient’s surname. Starting with the letter A,
one field test was randomly selected from every fifth patient; no first
field results were selected, to avoid patterns of learning. The selected
patients were then matched to our glaucoma register. Only patients
with a diagnosis of glaucoma or suspected glaucoma were eligible, and
patient records were retrieved. In this way, 643 SITA Standard 30-2 test
results were selected to be evaluated for inclusion. At this point the
only information available was that the patient had undergone 30-2
SITA Standard visual field testing at least twice, and that the patient had
a diagnosis of suspected glaucoma or glaucoma. After retrieving patient
records disc photographs obtained before the selected field test were
inspected. Fields of all eyes with glaucomatous disc appearance were
deemed usable. A comprehensive description of disc topography was
required in patient records lacking disc photographs. A description of
lens status was also required. The absence of such a description or a
notation of a clear lens or pseudophakic eyes was regarded as glau-
coma without cataract, whereas data indicating the presence of any
type or stage of cataract classified the eyes as having glaucoma plus
cataract. After exclusion of eyes according to these criteria, 127 tests of
127 eyes with glaucoma and 68 tests of 68 eyes with concomitant
glaucoma and cataract remained.

The mean age of the 127 patients with glaucoma was 75 years,
ranging from 40 to 96. MDs ranged from �31.18 to �0.74 dB (Fig. 2B).
The group with both glaucoma and cataract averaged 77 years of age,
ranging from 51 to 97 and had MDs ranging from �29.99 to �0.12 dB
(Fig. 2D). In some eyes, the selected field test results appeared normal,
but then the disc appeared suspicious or pathologic, and later field
tests, not included in the analysis, showed glaucomatous field loss.

Neural Network Design

Our networks were fully connected feed-forward multilayer per-
ceptrons built using commercial software (Neural Network Toolbox,
ver.4.0 of MatLab; The MathWorks Inc., Natick, MA). This network
architecture, consisting of an input layer, two hidden layers, and an
output layer, was the same for the different sets of input data. There
were 74 units in the input layer, each unit corresponding to one test

FIGURE 2. Distribution of MDs in
(A) healthy subjects (average MD,
�0.02 dB), (B) patients with glau-
coma (average MD, –9.84 dB), (C)
patients with cataract (average MD,
�5.27 dB), and (D) patients with
concomitant glaucoma and cataract
(average MD, �12.13 dB).
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point in the 30-2 test point pattern. The number of processing ele-
ments in the two hidden layers was 25 and 5. The output layer, one
neuron with a logistic transfer function, provided the network’s out-
put: glaucoma or normal.

Network Training. The networks were trained in batch mode
by using an optimization of the back propagation algorithm developed
by Møller.23 This algorithm has been shown to have a fast convergence
rate (i.e., relatively few iterations are needed to achieve a small classi-
fication error calculated from the network output). An early stopping
technique was applied to terminate the training procedure to prevent
overfitting of the data. A glaucomatous field classified with 100%
certainty was assigned an output of 1 and a 100% normal field an
output of 0. Fields falling between were assigned values between 0 and
1. Outputs close to the endpoints 0 or 1 indicated high confidence in
the classification, whereas those close to 0.5 indicated uncertainty of
the output. Because the task of the network was to identify glaucoma-
tous field loss, patients with cataract only were included in the normal
group and patients with concomitant cataract and glaucoma in the
glaucoma group. During network training, classification errors were
calculated and used to adjust weights in the neural network. The
number of necessary iterations, arbitrarily set to a maximum of 300,
was also determined by the size of the classification error. Eighty
percent of all fields were used in the training procedure.

Validation. A validation procedure was applied, using half the
fields not used in initial training, to prevent overfitting of data. Over-

fitting of data hampers the network’s generalization ability and effec-
tive classification of previously unseen data.

Evaluation. The performance of the network was evaluated with

a 10-fold cross-validation procedure, in which all fields were randomly
divided into 10 subgroups each containing 10% of the full data set.12,24

The number of subgroups used in training, early stopping, and test
procedures was 8, 1, and 1, respectively. With this procedure, each
subgroup was used for training, validation, and evaluation, while en-
suring that the network was trained and evaluated, by using different
sets of visual fields to avoid confounding.

Analyses

Network receiver operating characteristic (ROC) curves25 were pro-
duced by adjusting the network threshold. The network threshold,
ranging from 0 to 1, was used to define patient classification or
diagnosis. For each network threshold, fields with outputs larger than
the threshold were classified as glaucomatous, and outputs lower than
the network threshold were classified as normal. The areas under the
ROC curves, one for each type of input data, were compared by a
nonparametric method described by Delong et al.,26 and the Bonfer-
roni correction was applied to adjust for effects of multiple compari-
sons on the type I error—that is, to reject falsely the null hypothesis
stating no difference between ROC curves.

FIGURE 3. ROC curves for each of the five different
types of input data. Pattern Deviation (PD) probability
scores had the largest area under the curve (0.988),
whereas numerical Total Deviations (TD) had the
smallest area (0.942).

TABLE 1. Performance of Neural Network in Classifying Standard Automated Perimetric Visual Fields, using Different Input Data

Pattern Deviation
Threshold
Sensitivity Total Deviation

Prob. Scores dB dB Prob. Scores dB

Network threshold 0.50 0.30 (best) 0.50 0.37 (best) 0.50 0.43 (best) 0.50 0.42 (best) 0.50 0.47 (best)
Sensitivity (%) 89.7 93.9 86.7 90.8 81.5 85.1 79.5 82.1 79.5 80.5
Specificity (%) 97.6 96.5 98.0 94.9 95.3 91.3 94.9 93.3 94.9 94.9
Area under ROC curve 0.988* 0.980† 0.960 0.943 0.942

* Significantly better than threshold sensitivity (dB), Total Deviation (dB) and Total Deviation prob. scores (P � 0.001).
† Significantly better than Total Deviation (dB) and Total Deviation prob. scores (P � 0.001).
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RESULTS

ROC curves showing combinations of sensitivities and speci-
ficities for the different types of data input are shown in Figure
3. All types of input data formed areas under the ROC curve
larger than 0.9, but the different data inputs yielded quite
different results. The best results, defined as the largest area
under the ROC curve, was achieved with the Pattern Deviation
probability scores, followed by the numerical Pattern Devia-
tions. Pattern Deviation probability scores had a significantly
larger area under the ROC curve than did threshold sensitivities
and numerical Total Deviations and Total Deviation probability
scores (P � 0.001). Numerical Pattern Deviations were signif-
icantly better (P � 0.001) than both numerical Total Deviations
and Total Deviation probability scores, but not better than raw
threshold sensitivity values. Threshold sensitivities performed
slightly, but nonsignificantly, better than both numerical Total
Deviations and Total Deviation probability scores (Fig. 3).

In the set of normal fields MDs differed between healthy
subjects without (Fig. 2A) and with (Fig. 2C) cataract, whereas
the proportion of significantly depressed points in Pattern
Deviation probability maps was more similar. For example, the
relative number of points depressed at the P � 0.5% level
(black box in the probability map) was 0.3% in eyes without
cataract and 0.6% in eyes with cataract. The corresponding
proportion of such depressed points in Pattern Deviation prob-
ability maps in glaucomatous eyes was 26.8% in eyes without
cataract and 26.4% in eyes with cataract.

A best threshold for the network was determined by the
best combination of sensitivity and specificity, simply defined
as the product of the two. Best network thresholds differed for
the various types of input data (Table 1).

DISCUSSION

ANNs have been suggested as tools for interpretation of auto-
mated visual field test results in patients with glaucoma.10,11

Other types of machine learning classifiers, such as support
vector machines or committee machines, have also been re-
ported to interpret visual fields adequately.12 In all studies that
we have been able to find, however, the inputs have been
trained and tested with unprocessed threshold sensitivities.
There is no reason to believe that different types of machine
learning classifiers would yield different results when different
types of input data are compared. We found that using the
more refined input data available from a program for computer-
assisted interpretation (i.e., Statpac data) could significantly
enhance sensitivity and specificity. Pattern Deviation probabil-
ity scores based on the Pattern Deviation probability maps
produced the largest area under the ROC curve, indicating high
performance in discrimination between normal and glaucoma-
tous fields.

The improved results obtained when field data were en-
tered as Pattern Deviations is probably explained by the reduc-
tion of the influence of cataract on Pattern Deviations. Both
Pattern Deviation numerical displays and probability maps
were designed to reduce the effect of media opacities. Pattern
Deviation misclassified only 2 normal eyes with cataract,
whereas 13 were misclassified when Total Deviation was used.
The network was designed to identify the absence or presence
of glaucomatous visual field loss. Thus, we included subjects
with cataract in the normal group and patients with concom-
itant cataract and glaucoma in the glaucoma group. We used
this approach because cataract frequently occurs in the age
groups where glaucoma is most prevalent.

The normal fields obtained in healthy subjects without
cataract were randomly selected from a larger multicenter
database used for calculation of Statpac normal values and

normal limits for SITA fields. We do not believe that this has
biased our results. A large database including data from multi-
ple centers is probably more representative of a normal pop-
ulation than a smaller sample collected at one center only. We
did not use the full database; 66% of the records were randomly
selected for the purpose of this study. We also included normal
fields of patients with media opacities in our set of normal
fields. The results, as presented in ROC curves, depended
considerably more on the network output than on the Statpac
normal limits. Further, our purpose was to compare different
input derived from the same normal and pathologic fields and
the conclusion pertaining to that comparison would not be
expected to cause any bias, as the effects of the selection of the
normal data would be equal in all five parameters.

The five different ANNs correctly classified most fields; but,
as expected, normal eyes with substantial cataract were more
often classified correctly by the two Pattern Deviation–based
ANNs compared with the Total Deviation and unprocessed
threshold ANNs (Fig. 4). In fields with severe damage, Pattern
Deviation–based ANNs did not perform as well as ANNs
trained with Total Deviation and threshold sensitivities. This
was also anticipated, as the Pattern Deviation concept cannot
presently be successfully used in end-stage fields.27,28

The selection of subjects is crucial when evaluating diag-
nostic methods. Testing the method in only patients with
obvious moderate to severe field defects would give results
suggesting better discrimination than would be found in pa-
tients with early defects. We randomly selected our glaucoma
fields from the directory of tests on the hard disk in one of our
perimeters. This resulted in a representative selection of pa-
tients with a wide range of visual field defects, including
glaucomatous eyes without apparent field loss. With this
method, 39% had MDs better than �5 dB and thus could be
considered to have mild loss. If only fields with clear-cut
reproducible defects were selected, one would expect higher
sensitivities for all types of input data. Our selection of fields
including a random sample of glaucomatous eyes has advan-
tages, but the selection, in principle, should not be critical
when comparing performance of neural networks all using
different input data from the same normal and glaucomatous
visual fields.

Our results suggest that the ability of artificial neural net-
works to classify visual fields can be further improved if refined
input data based on Pattern Deviations is used. Such input data
resulted in higher sensitivity and specificity than did raw
threshold sensitivity values, probably because of the former’s
ability to separate field loss caused by glaucoma from that
caused by cataract. Further studies including independent vi-
sual field data not used for training of network data are needed
to evaluate a more general applicability of ANNs for classifica-
tion of visual field test results. Neural networks and other
machine classifiers seem to have a great potential to become a
useful clinical tool in the diagnosis of glaucomatous visual field
loss, and it may be of value in the study of the performance of
a range of types of data inputs with different machine classi-
fiers.
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Trained Artificial Neural Network for Glaucoma Diagnosis
Using Visual Field Data

A Comparison With Conventional Algorithms
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Purpose: To evaluate and confirm the performance of an

artificial neural network (ANN) trained to recognize glaucoma-

tous visual field defects, and compare its diagnostic accuracy

with that of other algorithms proposed for the detection of

visual field loss.

Methods: SITA Standard 30-2 visual fields, from 100 glaucoma

patients and 116 healthy participants, formed the data set. Our

ANN was a previously described fully trained network using

scored pattern deviation probability maps as input data. Its

diagnostic accuracy was compared to that of the Glaucoma

Hemifield Test, the Pattern Standard Deviation index at the

P<5% and <1%, and also to a technique based on the

recognizing clusters of significantly depressed test points.

Results: The included tests had early to moderate visual field loss

(median MD= � 6.16 dB). ANN achieved a sensitivity of 93%

at a specificity level of 94% with an area under the receiver

operating characteristic curve of 0.984. Glaucoma Hemifield

Test attained a sensitivity of 92% at 91% specificity. Pattern

Standard Deviation, with a cut off level at P<5% had a

sensitivity of 89% with a specificity of 93%, whereas at P<1%

the sensitivity and specificity was 72% and 97%, respectively.

The cluster algorithm yielded a sensitivity of 95% and a

specificity of 82%.

Conclusions: The high diagnostic performance of our ANN

based on refined input visual field data was confirmed in this

independent sample. Its diagnostic accuracy was slightly to

considerably better than that of the compared algorithms. The

results indicate the large potential for ANN as an important

clinical glaucoma diagnostic tool.

Key Words: glaucoma diagnostics, perimetry, visual field,

artificial neural network

(J Glaucoma 2007;16:20–28)

Perimetry is important for the detection of glaucoma
and for monitoring disease progression. Interpreta-

tion of the quantitative measurements of differential light
sensitivity provided by static automated perimetry is
facilitated by prior knowledge of the normal sensitivity
range at each tested location. The Statpac program in the
Humphrey Field Analyzer1,2 includes deviation plots
simplifying the interpretation of visual field test results.
Pattern deviation probability maps emphasize localized
visual field loss after adjustment for age and for any
general depression of light sensitivity, and are often
capable of detecting early glaucomatous defects not yet
visible in gray-scale representations of the measured
threshold values,3 while reducing diffuse sensitivity loss
caused by media opacities.4

Over the past decade, several studies have investi-
gated the ability of neural networks and other machine
classifiers, trained using both supervised and unsuper-
vised techniques, to detect the presence or progression of
glaucomatous defects based on data from perimetric
testing and other diagnostic tests.5–15 Techniques based
on artificial neural networks (ANNs) have been successful
in diagnosing glaucoma, both with functional16 and
structural17 tests. ANNs using data from standard
automated perimetry have produced results comparable
to those of other methods of discriminant analysis16,18,19

and glaucoma experts.20

The Glaucoma Hemifield Test (GHT),21 part of
Statpac, is a plain-text interpretation tool based on
probability scores derived from the pattern deviation
probability maps, and functions by detecting threshold
sensitivity differences across the horizontal meridian of
the visual field.21,22 GHT has high sensitivity and
specificity,23 and the simplicity of its output can be of
help to physicians lacking detailed knowledge in the
assessment of perimetric test results.

Other types of statistical analyses, such as the global
index Pattern Standard Deviation (PSD) included in
Statpac, and cluster analyses based on the pattern
deviation probability maps,24 have also been proposed
as criteria for recognizing glaucomatous defects, both in
experimental settings and clinical practice.23,25 StudiesCopyright r 2007 by Lippincott Williams & Wilkins
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Ophthalmology, Malmö University Hospital, Lund University,
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have shown that these analytical approaches may have
high degrees of specificity at acceptable levels of
sensitivity.26,27

Both GHT and cluster recognition approaches are
based on the concept of pattern deviation probability
maps. We have previously demonstrated that the use of
refined input data based upon pattern deviation, rather
than on total deviation plots or on the raw numerical
values of measured threshold sensitivity, can result in
better performance of neural network classifiers.28 The aim
of the present study was to assess the diagnostic accuracy
of a trained neural network with its input based on pattern
deviation probability maps, using an independent data set
of both healthy and glaucomatous eyes with early to
moderate damage, and to compare the performance of this
neural network to that of other interpretation methods
proposed for the detection of glaucomatous field loss.

METHODS

Visual Fields
The study material consisted of SITA Standard 30-2

field tests from the Humphrey perimeter (Humphrey
Field Analyzer II 750, Carl Zeiss Meditec, Dublin, CA).
The visual field interpretation algorithms used in our
analysis, included:
1. ANN, using probability scores derived from the pattern

deviation probability maps as input. The ANN
employed here has been described earlier and is a
feed-forward multilayer perceptron (MLP).28 It uses a
scoring process, in which all test points were assigned
a score according to the significance level of the
deviation from the normal value, adapted from the
calculation of the GHT results.21

2. PSD expressed in decibel (dB), with 2 cut-off values
defining pathology.
� PSD with P<5% and
� PSD with P<1%.

3. GHT classification: Two definitions of normality were
used:
� GHT1: Normal fields were indicated by both the
‘‘within normal limits’’ and the ‘‘borderline’’ test
outputs.

� GHT2: Only visual field tests with a ‘‘within normal
limits’’ result were considered normal.

Tests showing only a ‘‘general reduction’’ of sensitivity
result were considered normal.

4. Clusters of test points exhibiting reduced differential
light sensitivity at the P<0.05 significance level with
at least one point depressed at the P<0.01 significance
level, as seen in the pattern deviation probability maps.
Following the definition found in Anderson25 and
suggested by Katz et al,23 we defined a cluster as 3 or
more nonedge adjacent depressed test points in the
same hemifield.

Eligibility
Patients with primary open angle glaucoma, normal

tension glaucoma, exfoliation, and pigmentary glaucoma

were eligible. Tests from patients with angle closure,
secondary and congenital glaucoma or with retinal
disease, neuro-ophthalmologic and metabolic disorders,
and systemic diseases affecting the visual field, were not
eligible for the study. Tests from glaucomatous eyes in
diabetic patients without retinopathy and from patients
with cataract were also eligible.

Visual field-based information was not used as
reference standard. The definition of glaucomatous
damage was instead based on optic disc evaluation
performed by a glaucoma expert. The information used
by the expert to determine the presence of glaucomatous
optic nerve damage included structural changes of the
optic disc from fundus photographs and/or comprehen-
sive descriptions of the optic disc appearance as found in
patient records. A number of tests with normal visual
fields were included based on the appearance of the
corresponding optic discs.

Selection of Glaucomatous Fields
A database search was performed in one of the

Humphrey perimeters at the Department of Ophthalmo-
logy of Malmö University Hospital containing appro-
ximately 25,000 visual field tests from about 6000
individuals, and the corresponding patient records were
retrieved. Starting alphabetically and choosing either a
right or a left eye in an alternating order, the most recent
SITA Standard visual field test with the 30-2 test pattern
was retrieved from 1 out of every 5 individuals found in
the database. In this manner, 588 visual field tests from
588 patients were extracted from the perimetric database.

As we wanted to explore the diagnostic ability of the
compared methods in participants with mild and moder-
ate glaucomatous changes, only tests with a mean
deviation (MD) value (rounded to the nearest integer)
better than or equal to � 10 dB were included. If a visual
field test had an MD value worse than that, we used an
earlier test from the same patient if damage was then
within the acceptable range. Tests with fixation losses
exceeding 20% or false positive response rates of more
than 15% were excluded. None of the included visual
fields were the patients’ first tests, to avoid false defects
due to lack of perimetric experience.29–31 We also
excluded any patients who had provided visual field tests
previously used in training of the neural network.

Selection of Tests From Healthy Individuals
This group was part of an existing normative

database, created by applying a multicenter design and
consisting of 335 visual field tests from 335 healthy
individuals recruited in several different ways, as spouses
or accompanying persons of patients, friends or relatives
of personnel, etc. Inclusion of participants was based on
criteria pertaining to the ocular status after an ophthal-
mologic examination. Visual field test results did not
constitute grounds for exclusion, except where suspicious
or pathologic visual fields explicable by ocular status or
clearly artifacteous test results were present.32 From this
database, the 213 tests randomly chosen to train and test
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the ANN28 were excluded. Of the remaining tests, 6 were
lost due to corrupted data leaving 116 to form the healthy
group in the current study.

Neural Networks
The network structure and its training process have

been previously described in detail.28 Briefly, this was a
fully connected feed-forward MLP with one 74 unit input
layer, two hidden layers with 25 and 5 processing
elements respectively, and one output layer, created with
the Neural Network toolbox version 4.0 of MATLAB
(The MathWorks Inc, Natick, MA). The single neuron
output layer with a logistic transfer function provided the
network’s output: glaucoma or normal.

Analyses
The output layer provides a network response in the

form of any number in the range between 0 and 1,
indicating normality and glaucoma, respectively. Setting a
cut-off value (threshold) for the network responses
enables separation of the 2 classes (normal and glauco-
ma), and measurement of the correct and incorrect
responses. Sensitivity was defined as the ability of ANN
to detect glaucomatous visual fields from eyes with
evidence of possible or certain glaucoma, whereas
specificity as the ability to classify visual fields from
healthy eyes as normal. Sensitivity-specificity pairs were
measured through adjustment of the network threshold
over the spectrum of output values. We plotted the
resulting receiver operating characteristic (ROC) curve
and calculated the area under the curve.33,34 For the PSD
index, the GHT and cluster analysis, sensitivity and
specificity values were calculated. The statistical signifi-
cance of the difference in sensitivity and specificity
between the compared methods (probability, P) along
with the confidence intervals, based on a normal
approximation of a binomial distribution, at the 95%
significance level according to the score method, was also
computed.35 After application of the Bonferroni correc-
tion, statistical significant differences were considered
those having a probability of <0.003. Diagnostic
accuracy was calculated by dividing the sum of true
positive and true negative responses with the sum of true
and false, positive and negative responses.36

This study was conducted according to the tenets of
the Declaration of Helsinki and was approved by the
Ethics Committee of Lund University.

RESULTS
The proportion of normal and glaucomatous 30-2

SITA Standard visual field tests in the test data was
46.3% and 53.7%, respectively. The glaucoma group
included 100 tests from 100 patients. The selection
process is schematically presented in Figure 1. Patient
age ranged between 41 and 95 years, with an average of 75
years. MD ranged from � 10.42 to +0.31 dB (median:
� 6.16 dB; mean: � 5.77 dB). According to the patient
records, approximately one-third (28%) of the eyes had
media opacities in the form of cataract (26%) or

postoperative opacities of the posterior capsule (2%) at
the time of the visual field examination.

The 116 individuals in the healthy group had a
mean age of 51 years (range 19 to 83). In this group MD
ranged between � 4.62 and +2.4 dB (median: +0.22 dB;
mean: +0.08 dB).

FIGURE 1. Flow chart illustrating the selection process of the
glaucomatous visual field tests included in the study.
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The area under the ROC curve for the ANN
classification was 0.984 (Fig. 2). The network achieved a
sensitivity of 93.0% at a specificity of 94.0% and had a
diagnostic accuracy of 93.5%, with the network threshold
set at 0.3. This level provided the best results with respect
to specificity and sensitivity during previous training of
the network.28

The value of diagnostic accuracy for the ANN was
slightly but not significantly higher than that achieved
with both GHT approaches, and the PSD P<5%.
For these methods diagnostic accuracy exceeded 90%
(Table 1). The accuracy of both the most sensitive
cluster procedure and the most specific PSD P<1%
was 87.9% and 85.6%, respectively. The ANN was more
sensitive than the PSD<1% and more specific than the
cluster approach (P<0.0001). The differences in sensi-
tivity and specificity between ANN, PSD P<5% and
GHT methods were not statistically significant. GHT1,
where ‘‘borderline’’ test results were regarded as normal,

revealed relatively low sensitivity, 83%, but high
specificity, 96.6%, whereas GHT2, where ‘‘borderline’’
test results were regarded as abnormal, revealed both
sensitivity and specificity above 90%, as expected
(Table 1).

DISCUSSION
Our ANN was able to distinguish between normal

and glaucomatous fields slightly or considerably better
than the other interpretation algorithms even though
most differences did not reach statistical significance
(Fig. 3 and Table 1). Our results were obtained using
visual field tests from patients with moderate and early
glaucoma, independent of the presence or absence of
cataract.

There was rather good agreement in classification
between the ANN and GHT. Among the 7 glaucoma
patients misclassified by the network, 4 patients had GHT
‘‘within normal limits’’ and 2 patients had ‘‘borderline’’
test results. The best GHT algorithm, GHT2, misclassi-
fied 8 glaucoma patients whereas 9 had borderline test
results. Comparison of the GHT1 and GHT2 showed, as

FIGURE 2. Area under the ROC curve for the neural network
output. A test with perfect discrimination would achieve an
area of 1.0 under the ROC, whereas discrimination no better
than random selection would produce an area of 0.5.

TABLE 1. Diagnostic Accuracy and Sensitivity With Specificity, Including the 95% Confidence Intervals, for the Different
Interpretation Algorithms

PSD PSD
ANN GHT1 GHT2 P<5% P<1% CLUSTER

Accuracy (%) 93.5 90.3 91.7 91.2 85.6 87.9
Sensitivity (%) 93.0 83.0 92.0 89.0 72.0 95.0
95% confidence interval 86.3 to 96.6 74.5 to 89.1 85 to 95.9 81.4 to 93.7 62.5 to 79.9 88.8 to 97.8

Specificity (%) 94.0 96.6 91.4 93.1 97.4 81.9
95% confidence interval 88.0 to 97.0 91.5 to 98.7 84.9 to 95.3 87.0 to 96.5 92.7 to 99.0 73.9 to 87.8

CLUSTER indicates approach based on identification of clusters of test points exhibiting reduced sensitivity, based on pattern deviation probability maps; GHT1
indicates Glaucoma Hemifield Test with ‘‘borderline’’ results indicating normal visual fields; GHT2, Glaucoma Hemifield Test with ‘‘borderline’’ results indicating
glaucomatous visual fields; PSD P<5%, Pattern Standard Deviation outside the 5% normal limit; PSD P<1%, Pattern Standard Deviation outside the 1% normal limit.

FIGURE 3. Sensitivity and specificity of classification for the
compared methods, along with the 95% confidence intervals
(sensitivity and specificity range). In this graph, the ANN
approach is located closest to the point exhibiting perfect
discrimination (sensitivity and specificity value of 1.0).
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expected, improvement in test sensitivity when borderline
tests were considered abnormal, whereas the specificity
was in both cases over 90%. Both GHT classifications
and the PSD P<5% performed well, with a diagnostic
accuracy higher than 90% (Figs. 4–6).

The ANN’s ability to adapt to the distribution of
data rather than assume a predefined distribution, as do
the basic statistical techniques, makes them capable of

pattern extraction from the data set, through a training
process.18 The ANNs are capable of performing non-
linear classification and have exhibited a superior
classification ability compared with other linear discrimi-
nant methods. The MLP structure of our ANN is a well-
described neural network architecture that has been
successfully employed in a variety of classification
problems. It is conceivable that further optimization,

FIGURE 4. Visual field test of a glaucoma patient, correctly classified by the neural network and cluster analysis. The GHT and PSD
outputs did not classify the test as abnormal, probably because significantly depressed points are located in mirror image sectors.
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both structural and input related, of the current ANN,
could provide even better accuracy in detecting glaucoma.

In the majority of included visual field tests, optic
disc photographs were separately examined by an expert
masked to the test results, but when relying on descrip-
tions of the optic disc as found in patient records, we
could not determine by review of these records whether or
not the specialist making the description was influenced

by the patient’s visual field status. This could possibly
affect the sensitivity of the commercially available
interpretation tools. It could be argued that the use of
visual fields from the SITA normative database could
constitute a source of bias affecting the specificity of the
results. The visual field tests we randomly chose though,
derived from participants with a healthy ocular status and
collected from multiple center, constituted only a part of

FIGURE 5. A glaucomatous visual field test classified as borderline by the GHT and as normal by the neural network and the PSD
index at P<1%. The PSD index at P<5% and cluster approach, indicated pathology.
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the SITA normative database. Further, our comparison
analysis should not be affected because any eventual bias
would be equal to all the compared methods.

We used structural information, that is, optic disc
appearance, as a reference standard to define normality
and disease. By excluding visual field-related parameters
in the reference standard, we avoided bias toward any
particular diagnostic criterion derived from perimetric
measurements.

There was an average age difference of 24 years
between the normal and glaucoma groups. Although this
difference was large, it should not affect the results of our
analysis as all of the compared algorithms make use of
age-corrected perimetric data.

Even if the results with the ANN were not
statistically significant, the classification of visual fields
by the ANN revealed the highest sensitivity at specificity
values over 90%, providing an acceptable trade-off

FIGURE 6. A visual field test from a glaucoma patient showing a shallow inferior defect on the pattern deviation probability map.
This test was misclassified by all the compared algorithms.
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between these 2 parameters of diagnostic accuracy
(Fig. 3).

This is, to our knowledge, the first study to test the
performance of a trained neural network for glaucoma
diagnosis using an independent data set. In this sense, the
results can also be viewed as a measure of the general-
ization ability of the previously proposed classification
method. Despite the use of an independent set of patient
data, our results on the performance of the ANN were very
similar to those previously obtained.28 This may imply a
good level of reproducibility for our classifier. Previous
studies evaluating ANN-based techniques for glaucoma
diagnosis employed partitioning of the patient data set to
obtain training and early-stopping subsets, testing the
accuracy of classification in only a fraction of the patients.
This necessitated resampling techniques to counteract the
small size of the training set. The use of all available data
solely for testing purposes generates a large and indepen-
dent test set, increasing the strength of our study.

This study evaluated the applicability of ANN-
based systems for classification of glaucomatous visual
fields. The diagnostic accuracy of our ANN can be
attributed in part to the use of preprocessed data based
on probability maps. It is desirable for a glaucoma
diagnosis test, operating in a clinical environment, to be
able to account for cataract associated loss of sensitivity
without compromising its ability to recognize glaucoma-
tous visual field loss.

Further studies are needed to investigate the ability
of classification methods based on ANNs to discern
patterns of glaucomatous damage from visual field loss
caused by other ophthalmic conditions. It has been
suggested that the ability of machine classifiers to use as
input combined data from structural and functional tests
may lead to better tools for glaucoma diagnosis.7

Incorporation of different test modalities such as struc-
tural measurements37 and subsequent optimization might
further facilitate the applicability of ANNs as clinical
diagnostic tools.

REFERENCES
1. Heijl A, Lindgren G, Olsson J. A package for statistical analysis of

computerized fields. Doc Ophthalmol Proc Ser. 1987;49:153–168.
2. Heijl A, Patella VM. Essential Perimetry. The Field Analyzer Primer.

3rd ed. Dublin, CA: Carl Zeiss Meditec Inc; 2002:44–69.
3. Heijl A, Bengtsson B. Early visual field defects in glaucoma: a study

of eyes developing field loss. In: Bucci MG, ed. Glaucoma: Decision
Making in Therapy. Milan: Springer Verlag; 1996;75–78.

4. Heijl A, Lindgren G, Olsson J, et al. Visual field interpretation with
empiric probability maps. Arch Ophthalmol. 1989;107:204–208.

5. Mutlukan E, Keating D. Visual field interpretation with a personal
computer based neural network. Eye. 1994;8:321–323.

6. Lietman T, Eng J, Katz J, et al. Neural networks for visual field
analysis: how do they compare with other algorithms? J Glaucoma.
1999;8:77–80.

7. Zangwill LM, Chan K, Bowd C, et al. Heidelberg retina tomograph
measurements of the optic disc and parapapillary retina for
detecting glaucoma analyzed by machine learning classifiers invest.
Ophthalmol Vis Sci. 2004;45:3144–3151.

8. Bowd C, Medeiros FA, Zhang Z, et al. Relevance vector machine
and support vector machine classifier analysis of scanning laser
polarimetry retinal nerve fiber layer measurements. Invest Ophthal-
mol Vis Sci. 2005;46:1322–1329.

9. Burgansky-Eliash Z, Wollstein G, Chu T, et al. Optical
coherence tomography machine learning classifiers for glaucoma
detection: a preliminary study. Invest Ophthalmol Vis Sci. 2005;46:
4147–4152.

10. Huang ML, Chen HY. Development and comparison of automated
classifiers for glaucoma diagnosis using stratus optical coherence
tomography. Invest Ophthalmol Vis Sci. 2005;46:4121–4129.

11. Spenceley SE, Henson DB, Bull DR. Visual field analysis
using artificial neural networks. Ophthalmic Physiol Opt. 1994;14:
239–248.

12. Sample PA, Chan K, Boden C, et al. Using unsupervised learning
with variational Bayesian mixture of factor analysis to identify
patterns of glaucomatous visual field defects. Invest Ophthalmol Vis
Sci. 2004;45:2596–2605.

13. Goldbaum MH, Sample PA, Zhang Z, et al. Using unsupervised
learning with independent component analysis to identify patterns
of glaucomatous visual field defects. Invest Ophthalmol Vis Sci.
2005;46:3676–3683.

14. Sample PA, Boden C, Zhang Z, et al. Unsupervised machine
learning with independent component analysis to identify areas of
progression in glaucomatous visual fields. Invest Ophthalmol Vis Sci.
2005;46:3684–3692.

15. Tucker A, Vinciotti V, Liu X, et al. A spatio-temporal Bayesian
network classifier for understanding visual field deterioration. Artif
Intell Med. 2005;34:163–177.

16. Goldbaum MH, Sample PA, Chan K, et al. Comparing machine
learning classifiers for diagnosing glaucoma from standard
automated perimetry. Invest Ophthalmol Vis Sci. 2002;43:
162–169.

17. Poinoosawmy D, Tan JC, Bunce C, et al. The ability of the GDx
nerve fibre analyser neural network to diagnose glaucoma. Graefes
Arch Clin Exp Ophthalmol. 2001;239:122–127.

18. Bowd C, Chan K, Zangwill LM, et al. Comparing neural networks
and linear discriminant functions for glaucoma detection using
confocal scanning laser ophalmoscopy of the optic disc. Invest
Ophthalmol Vis Sci. 2002;43:3444–3454.

19. Chan K, Lee TW. Comparison of machine learning and traditional
classifiers in glaucoma diagnosis. IEEE Trans Biomed Eng. 2002;49:
961–973.

20. Goldbaum MH, Sample PA, White H, et al. Interpretation of
automated perimetry for glaucoma by neural network. Invest
Ophthalmol Vis Sci. 1994;35:3362–3373.
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Introduction
Degeneration of the retinal nerve fibre
layer (RNFL) can occur at early
stages of glaucoma (Sommer et al.
1991; Quigley et al. 1992; Tuulonen
et al. 1993; Harwerth et al. 1999;
Kerrigan-Baumrind et al. 2000). Opti-
cal coherence tomography is an inter-
ferometric noninvasive imaging
technique that enables high-resolution
cross-sectional images of tissues and
provides quantitative measurements of
ocular structures such as the RNFL
(Chang & Budenz 2008), with good
reproducibility (Schuman et al. 1996;
Paunescu et al. 2004; Budenz et al.
2005a).

The commercially available RNFL
thickness (RNFLT) parameters imple-
mented in the software of Stratus
OCT (Carl Zeiss Meditec Inc., Dub-
lin, CA, USA) include measurements
of average, or highest and lowest
thickness values, at defined sectors of
the scanned RNFL. This software
assists interpretation of RNFLT mea-
surements by highlighting parameters
outside age-corrected reference values.

Several studies investigated the abil-
ity of the provided OCT RNFLT
parameters to differentiate between
normal and glaucomatous eyes (Medei-
ros et al. 2004, 2005; Budenz et al.
2005b; Leung et al. 2005; Wollstein
et al. 2005; Shah et al. 2006; Sihota
et al. 2006; Hougaard et al. 2007;
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ABSTRACT.
Purpose: To compare the performance of two machine learning classifiers
(MLCs), artificial neural networks (ANNs) and support vector machines
(SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) mea-
surements by optical coherence tomography (OCT), on the diagnosis of glau-
coma, and to assess the effects of different input parameters.
Methods: We analysed Stratus OCT data from 90 healthy persons and 62
glaucoma patients. Performance of MLCs was compared using conventional
OCT RNFLT parameters plus novel parameters such as minimum RNFLT
values, 10th and 90th percentiles of measured RNFLT, and transformations of
A-scan measurements. For each input parameter and MLC, the area under the
receiver operating characteristic curve (AROC) was calculated.
Results: There were no statistically significant differences between ANNs and
SVMs. The best AROCs for both ANN (0.982, 95%CI: 0.966–0.999) and
SVM (0.989, 95% CI: 0.979–1.0) were based on input of transformed A-scan
measurements. Our SVM trained on this input performed better than ANNs
or SVMs trained on any of the single RNFLT parameters (p £ 0.038). The
performance of ANNs and SVMs trained on minimum thickness values and
the 10th and 90th percentiles were at least as good as ANNs and SVMs with
input based on the conventional RNFLT parameters.
Conclusion: No differences between ANN and SVM were observed in this
study. Both MLCs performed very well, with similar diagnostic performance.
Input parameters have a larger impact on diagnostic performance than the
type of machine classifier. Our results suggest that parameters based on trans-
formed A-scan thickness measurements of the RNFL processed by machine
classifiers can improve OCT-based glaucoma diagnosis.
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Chang & Budenz 2008). OCT thick-
ness parameters reached sensitivities
of 70–80% at specificity values of
more than 90% and areas under the
receiver operating characteristic curve
(AROC) of about 0.90, although these
results might be better than the actual
performance of the studied parameters
because in some studies (Budenz et al.
2005b; Leung et al. 2005; Wollstein
et al. 2005) no corrections were made
for the significant factor of age, which
is correlated to measured RNFLT.
Parameters representing measurements
of the inferior and superior peripapil-
lary RNFL sectors and the average
RNFLT provided the best diagnostic
performance.

In an effort to improve the diagnos-
tic accuracy of OCT measurements,
previous studies have also explored
the implementation of linear discrimi-
nant functions and machine learning
algorithms using RNFLT measure-
ments as input parameters (Essock
et al. 2003; Hougaard et al. 2004;
Burgansky-Eliash et al. 2005; Huang
& Chen 2005; Chen et al. 2006;
Manassakorn et al. 2006; Naithani
et al. 2007). Artificial neural networks
(ANNs) and support vector machines
(SVMs) are machine learning algo-
rithms able to perform nonlinear clas-
sification. In contrast to conventional
statistical techniques, such as linear
discriminant analysis, these methods
do not fit the data into a pre-existing
set of model variables; instead they
learn to nonlinearly adapt the classifi-
cation decision based on the data that
is presented. Provided a representative
and adequately large training dataset
in relation to the input parameters,
this approach produces robust classifi-
ers that are able to generalize well
even in the absence of a model of the
underlying process and are insensitive
to noise and outliers in the data
(Haykin 1999).

In the field of ophthalmology and
glaucoma diagnosis, machine classifi-
ers have been used for classification of
visual field data (Brigatti et al. 1996;
Chan et al. 2002; Goldbaum et al.
2002; Bengtsson et al. 2005, Bizios
et al. 2007) and structural measure-
ments of the RNFL and optic disc
[Huang & Chen 2005; Burgansky-Eli-
ash et al. 2005; Naithani et al. 2007;
Bowd et al. 2002, 2005; Poinoosawmy
et al. 2001; Zangwill et al. 2004), as
well as for detecting visual field pro-

gression (Sample et al. 2005; Tucker
et al. 2005). These methods produced
AROCs larger than 0.95 and were
more effective in discriminating
between normal and glaucomatous
eyes than the commercially available
RNFLT parameters (Burgansky-
Eliash et al. 2005; Huang & Chen
2005; Naithani et al. 2007). ANNs
have a long history of development
and successful deployment in many
scientific fields, including medicine.
SVMs, despite their recent conception,
have shown performance improve-
ments compared to more conventional
approaches. Even though ANNs and
SVMs have different theoretical prin-
ciples outlining their function, both
techniques have shown high classifi-
cation accuracy. Although their diag-
nostic performance based on OCT
measurements has been investigated
(Burgansky-Eliash et al. 2005; Huang
& Chen 2005; Naithani et al. 2007),
none has compared the performance
of both classifiers on the same OCT
dataset.

The primary aim of our study was
thus to compare the ability of ANN
and SVM classifiers to detect differ-
ences in age-corrected RNFLT mea-
surements between healthy persons
and patients with predominantly early
glaucomatous visual field loss. Perfor-
mance analysis of the ANN and SVM
classifiers should also provide a mea-
sure of the diagnostic ability of the
standard and novel OCT RNFLT
parameters.

Methods
The study was conducted according to
the tenets of the Declaration of Hel-
sinki and was approved by the Com-
mittee for Research Ethics at Lund
University, Sweden. Informed consent
was obtained from all participants.
Inclusion and exclusion criteria for
healthy individuals and patients with
glaucoma examined in this study have
been described in detail elsewhere
(Hougaard et al. 2007) and are sum-
marized below.

Healthy individuals

The normal OCT measurements were
part of a larger collection of OCT
data acquired from healthy individu-
als. The individuals were mainly
recruited by random selection of pre-

sumably healthy persons living in
Malmö, Sweden.

About two-thirds of this database
(178 healthy subjects) were used for
the construction of a normative
RNFL model with reference limits
corrected for both age and refractive
status (Hougaard et al. 2006). All
OCT thickness data (i.e. all conven-
tional and novel RNFL thickness
parameters) for both normal and
glaucoma groups included in this
study were corrected for age and
refractive status (spherical equivalent)
based on this normative database.
From the remaining one-third of
healthy individuals (90 subjects)
whose measurements were not part of
the normative database, one randomly
selected eye was included in this study
as the healthy group.

Subjects with visual acuity (VA) ‡ 0.5,
intraocular pressure (IOP) < 22
mmHg, and refractive error £ 5 diop-
tres (D) sphere and < 3 D cylinder
were eligible. Healthy subjects were
also required to have normal visual
fields (VF) as examined by frequency
doubling perimetry screening program
C20 – 1 (Welch Allyn, Inc, Skanea-
teles Falls, NY, USA), as well as a
normal optic nerve head (ONH) and
RNFL, as judged from photographs
by two examiners.

Glaucoma patients

The patients with glaucoma were
mainly recruited among patients who
had visited the department of Oph-
thalmology at Malmö University Hos-
pital during the last 3 years prior to
inclusion. All records of patients with
glaucoma were retrieved and reviewed,
and those who fulfilled the inclusion
criteria and were not involved in other
ongoing studies were invited to partic-
ipate. Four of the included patients
were newly diagnosed with glaucoma
and had been detected during recruit-
ment of the presumably healthy per-
sons.

Eligible patients were between 40
and 80 years of age, with VA ‡ 0.5
and a diagnosis of primary open angle
glaucoma (POAG), normal tension
glaucoma, pigmentary glaucoma or
pseudo-exfoliation glaucoma. The
included patient’s eyes had reproduc-
ible visual field defects (SITA Stan-
dard 24-2 tests), with mean deviation
(MD) ‡ )12 dB, pattern standard
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deviation outside the 95% normal
limit and classified by the Glaucoma
Hemifield Test as falling outside nor-
mal limits. The visual field defects
measured by standard automated peri-
metry (SAP) corresponded to glauco-
matous changes in the optic nerve
head (ONH) and ⁄or the RNFL
judged by examination of photo-
graphs.

Patients with a history of serious
ocular trauma, findings of systemic or
retinal pathology affecting the visual
field and refractive errors > 5 D
sphere or ‡3 D cylinder were not eligi-
ble, as were patients with cortical
(LOCS C > II) and subcapsular cata-
ract (LOCS p > 0).

One eye of each patient was
included in the study. If both eyes
were eligible, the eye with the better
visual field as measured by the MD
value was included.

OCT tests

The OCT scans were obtained, at
750 lW, with the ‘Fast RNFL Thick-
ness’ scan protocol and software ver-
sion A4.0.3 of the Stratus OCT. We
used average thickness values of the
three circumpapillary scans, each with
256 measurement points. Two OCT
scan series were performed in each eye
by the same experienced examiner.
OCT tests with overt image artefacts
or obvious software errors in the defi-
nition of the RNFL inner border were
not considered eligible for further
analysis. To be included, single scans
had to be of good quality (i.e. having
signal strength higher than 8 on the
10-grade scale). If both scan series
were eligible, the first one was used in
our analysis. The effect of age and
refraction on OCT measurements of
the RNFLT is already known (Houg-
aard et al. 2006). We have thus cor-
rected all OCT thickness data for
both age and refractive status (spheri-
cal equivalent) based on our norma-
tive database, in a way analogous to
that of Statpac for perimetric tests.

Conventional RNFLT parameters

Tested parameters included mean
RNFLT of the full scan circle; mean
RNFLT of the temporal (315–45�,
right eye terminology), superior (45–
135�), nasal (135–225�, right eye ter-
minology) and inferior (225–315�)

quadrants and average thickness val-
ues of each of the 12 clock hr sec-
tors. The thickest (maximum) points
of the superior and inferior quad-
rants (superior maximum or ‘Smax’
and inferior maximum or ‘Imax’)
and the difference in thickness
between the thickest and thinnest
measurement points of the RNFL
scan (Max–Min) were also included
in our analyses.

New RNFLT parameters

We evaluated the single A-scan value
of the thinnest RNFLT measurement
in the superior and inferior quadrants
(superior minimum or ‘Smin’ and
inferior minimum or ‘Imin’). We con-
ducted this evaluation based on the
assumption that the thinnest RNFLT
measurements should be more sensi-
tive to localized, deep defects of
RNFL compared to the thickest mea-
surement points. The ‘Smin’ and
‘Imin’ parameters are not automati-
cally defined and are not presented in
the test output of the commercially
available interpretation tool.

We also calculated and evaluated
thickness values corresponding to the
higher and lower 10th percentile (i.e.
the 90th and 10th percentile of mea-
sured thickness) derived from the 64
RNFLT measurements for each of the
superior and inferior quadrants, and
of the whole RNFL scan circle.
Parameters based on defined percen-
tiles of measured thickness instead of
highest and lowest values could con-
ceivably be more robust and less likely
to be affected by test error measure-
ments and outliers in the data. The
resulting new parameters based on
percentiles were as follows:

(1) The superior quadrant 90th and
10th percentile thickness values
(‘Smax_90’ and ‘Smin_10’),
(2) The inferior quadrant 90th and
10th percentile thickness values
(‘Imax_90’ and ‘Imin_10’) and
(3) The difference in thickness
between the 90th and 10th percentile
of the full scan circle (‘Max_90–
Min_10’).

The use of A-scan thickness values as
input data to automated classifiers is
a difficult task because of computa-
tional problems dealing with the large
number of parameters (related to the
number of A-scans). Novel techniques

for processing information as derived
from A-scans could efficiently reduce
the amount of data while preserving
relevant diagnostic information (Bizios
et al. 2007; Invest Ophthalmol Vis Sci
48: ARVO E-Abstract 525). To exam-
ine whether such an approach would
improve classification, we created a
novel parameter by transforming the
age and refraction corrected thickness
values of the 256 A-scans of each
OCT image into a set of six values
that we then used as input data in
our machine learning classifiers. These
values do not correspond to any par-
ticular A-scan, but reflect all 256
A-scan measurements of each OCT
test. Data transformation was accom-
plished by the local tangent space
alignment (LTSA), a dimensionality
reduction algorithm based on mani-
fold learning (cf. Appendix) (Zhang &
Zha 2004).

We thus tested a total of 28 differ-
ent OCT RNFLT parameters, consist-
ing of 20 conventional and 8 new
parameters, using both ANNs and
SVMs.

Artificial neural networks

In this study, we used an ANN
ensemble (cf. Appendix) of multilayer
perceptrons (MLPs). The ensemble
output was the averaged output of
thirty-five MLPs, each consisting of a
12-neuron input layer, a hidden layer
with six neurons and an output layer
with one neuron and a logistic trans-
fer function. The ANNs were pro-
grammed and trained in matlab’s
neural network toolbox version 5.0
(The MathWorks Inc, Natick, MA,
USA) with the scaled conjugate gradi-
ent algorithm (Møller 1993).

Support vector machines

Our SVM (cf. Appendix) used a
radial basis function kernel and was
trained by a variation of Platt’s
sequential minimal optimization algo-
rithm (Fan et al. 2005). Program-
ming, testing and training of the
SVM were performed in Python
(Python Software Foundation) and
MATLAB with the Libsvm software
(Chang & Lin 2001). The C and c
parameters of the algorithm were
determined by a global optimization
technique based on simulated annea-
ling (Imbault & Lebart 2004).
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Training of machine learning classifiers

Training and testing were performed
with each RNFLT parameter sepa-
rately, as well as with all 17 conven-
tional RNFLT parameters used
conjointly. To maximize the use of
our collected data and avoid bias, the
10-fold cross-validation resampling
method was employed. Accordingly,
all data were randomly divided into
10 subsets, each containing approxi-
mately the same number of healthy
and glaucomatous OCT thickness
measurements. Nine subsets were used
for training the classifiers while the
remaining subset was used for testing
classification performance. In training
the ANN ensemble, one of the train-
ing subsets was used for early stop-
ping of network training to avoid
overfitting of the MLPs. Training data
for the thirty-five MLPs were created
with bagging (cf. Appendix) from the
remaining eight subsets. ANN training
was repeated by keeping the same test
subset and changing the early stop-
ping set, until all training data were
used both in training and early stop-
ping of the ANNs and the classifica-
tion results were averaged. The
training and testing process for the
ANN ensemble and the SVM were
iterated, each time with a different test
set, and the results were merged
to produce a single output for each
classifier.

Analyses

All OCT thickness data, i.e. all
A-scans and the derived novel and
conventional RNFLT parameters,
were corrected for age and refraction
prior to any analyses. By modelling
the relationship of age, refraction and
measured RNFLT on our norma-
tive database, we conducted a linear
regression analysis and used the
derived coefficients to calculate the
corrected values of measured RNFLT.
ROC curves were constructed from
the specificity and sensitivity values of
each MLC. AROCs were used as a
measure of the classification perfor-
mance of ANN and SVM classifiers,
as well as of the diagnostic ability for
the examined OCT RNFLT para-
meters. Confidence intervals for the
AROCs at the 5th percentile (95%
CI) were derived by the SPSS statisti-
cal software (version 16.0, SPSS Inc,

Chicago Ill, USA). Testing for signifi-
cant differences between AROCs was
performed with DeLong’s nonpara-
metric method (DeLong et al. 1988).
For testing significant differences in
the distribution of gender between the
healthy and glaucoma groups, the Chi
square test was used, whereas signifi-
cance testing for differences in the dis-
tributions of age, visual acuity and
refractive error was performed with
the Mann-Whitney test.

Results
OCT data of 62 patients with glau-
coma and 90 healthy individuals were
used as input for the MLCs. Subject
demographics are summarized in
Table 1. Included OCT tests from the
healthy group had an average signal
strength score of 9.96, while the aver-
age signal strength score for the glau-
coma group was 9.69.

Of the 28 RNFLT parameters
tested, the temporal and nasal quad-

rants, the Smax, Smax_90 and Imax
parameters as well as 10 of the 12
clock hr sectors produced AROCs
< 0.9. Consequently, we chose not to
present those results in detail. The
performance of MLCs based on con-
ventional and new parameters with
AROCs of more than 0.90 is pre-
sented in Tables 2 and 3, respectively.
Comparison of the AROCs for all
studied RNFLT parameters, revealed
no statistically significant differences
between the ANN and SVM machine
classifiers.

Conventional RNFLT parameters

The average RNFLT of the full circle
scan, the superior and inferior quad-
rants, the 6th and 11th clock hr sec-
tors and the Max–Min thickness
measurements provided good classifi-
cation performance. The diagnostic
ability of the conventional OCT
RNFLT parameters without the use
of MLCs has been previously reported

Table 1. Demographic data of included healthy subjects and patients with glaucoma. All values

except for gender are represented as median and min–max values.

Healthy

(n = 90)

Glaucoma

(n = 62)

p – value

(Mann–Whitney test)

Gender (female ⁄male) 60 ⁄ 30 45 ⁄ 17 NS (v2 test)
Age (years) 61.5 (22–79) 71.5 (52–78) <0.0001

Visual Acuity

(decimal scale)

1.0 (0.7–1.0) 1.0 (0.6–1.0) NS

Refractive error

(spherical equivalent)

+0.1 ()5.5 to +4.4) +0.5 ()4.0 to +4.3) NS

Visual Field (MD) – )4.5 ()11.77 to 0.00) –

NS = nonsignificant, MD = mean deviation value in decibel, as measured by 24-2 SITA Stan-

dard program.

Table 2. Classification performance based on the area under the receiver operating characteris-

tic (AROC) curve, with the corresponding 95% confidence intervals (95% CI), for artificial neu-

ral networks (ANN) and support vector machines (SVM) trained on the conventional retinal

nerve fibre layer thickness (RNFLT) parameters.

Parameters

ANN SVM

AROC AROC

(95% CI) (95% CI)

Full circle average 0.943 (0.905)0.981) 0.940 (0.901–0.982)

Superior quadrant 0.926 (0.872–0.963) 0.922 (0.876–0.968)

Inferior quadrant 0.930 (0.878–0.972) 0.922 (0.870–0.976)

Clock hr 11 0.935 (0.895–0.975) 0.933 (0.893–0.977)

Clock hr 6 0.929 (0.886-0.970) 0.912 (0.870-0.969)

Max–Min* 0.942 (0.905–0.982) 0.927 (0.881–0.979)

17 parameters� 0.977 (0.958–0.995) 0.977 (0.959–0.999)

* Max–Min: difference in thickness between maximum and minimum RNFLT measurements.

� 17 parameters: average RNFLT of the full circle scan as well as RNFLT of the four quad-

rants and 12 clock hr sectors.
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on this study population (Hougaard
et al. 2007). The full circle average
RNFLT parameter measured with the
FAST protocol exhibited at the 5th
normative percentile a sensitivity of
76% at a specificity of 99%, which
was not significantly different than the

performance achieved by MLCs using
the same parameter as input data.
Using 17 conventional RNFLT
parameters (average thickness of the
full circle scan as well as RNFLT of
the four quadrants and 12 clock hr
sectors) as input resulted in improved

classification accuracy for both the
ANN (0.977, 95% CI: 0.958–0.995)
and SVM (0.977, 95% CI: 0.959–
0.999) as expected.

New RNFLT parameters

The A-scan thickness values trans-
formed by the LTSA algorithm pro-
vided the largest AROCs of all tested
conventional and new parameters for
both ANN (0.982, 95%CI: 0.966–
0.999) and SVM (0.989, 95% CI:
0.979–1.0) classifiers (Fig. 1).

Only our SVM trained on the trans-
formed A-scan thickness values (sensi-
tivity of 96.8% at specificity of
96.7%) performed significantly better
than ANNs or SVMs trained on any
of the single RNFLT parameters
(p £ 0.038) (Table 4). SVM perfor-
mance based on this input was also
better than the performance of the
average RNFLT of the full scan circle
without the use of MLCs (McNemar’s
test: p = 0.013).

The difference in measured thick-
ness between the highest and lowest
tenth percentiles (Max_90–Min_10)
gave the best classification results
compared to the other single OCT
parameters, even though for the
parameters with AROCs > 0.9 the
differences did not reach statistical
significance. ANN and SVM perfor-
mance of the lowest percentile of
superior and inferior quadrants, and
the Smin and Imin parameters
(AROCs over 0.90, Table 3), was
slightly but not significantly better
than the performance of the conven-
tional Smax and Imax parameters.

Discussion
This study is the first to our knowl-
edge to apply a nonlinear dimension-
ality reduction method based on
manifold learning for the transforma-
tion of OCT A-scan measurements,
and to apply optimized MLCs such as
an ANN ensemble for the classifica-
tion of OCT test data. Our ANNs
and SVMs, two of the most widely
used classifiers in the machine learning
paradigm, exhibited high performance
with input based on RNFLT measure-
ments only, without the use of any
ONH data. Despite differences in the
way ANNs and SVMs perform classi-
fication tasks, both methods were
successful in recognizing pertinent

Table 3. Performance, as measured by the area under receiver operating characteristic curve

(AROC) with the corresponding 95% confidence intervals (95% CI), for artificial neural net-

works (ANN) and support vector machines (SVM) trained on the new retinal nerve fibre layer

thickness (RNFLT) parameters.

Parameters

ANN SVM

AROC AROC

(95% CI) (95% CI)

Transformed

A-scan thickness

measurements

0.982 (0.966–0.999) 0.989 (0.979–1.0)

Imax_90* 0.91 (0.857–0.961) 0.904 (0.850–0.959)

Smin� 0.919 (0.876–0.962) 0.908 (0.858–0.958)

Imin� 0.916 (0.862–0.970) 0.906 (0.850–0.969)

Smin_10§ 0.916 (0.872–0.958) 0.909 (0.862–0.956)

Imin_10– 0.915 (0.859–0.969) 0.909 (0.852–0.971)

Max_90–Min_10** 0.946 (0.907–0.983) 0.940 (0.898–0.986)

* Imax_90: inferior quadrant 90th percentile RNFLT.

� Smin: superior quadrant minimum RNFLT.

� Imin: inferior quadrant minimum RNFLT.

§ Smin_10: superior quadrant 10th percentile RNFLT.

– Imin_10: inferior quadrant 10th percentile RNFLT.

** Max_90–Min_10: difference between 90th and 10th percentiles of the full circle RNFLT.

Fig. 1. Input based on the average RNFL thickness produced good results for both classifiers.

The input of 17 conventional RNFLT parameters further increased classification accuracy. The

best results for ANN and SVM were achieved by using transformed A-scans as input.
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patterns in the training data and
applying this knowledge to classify
new data, achieving similar perfor-
mance. We found no significant differ-
ences in classification of normal and
glaucomatous OCT tests between the
two machine classifiers trained on the
same input parameters.

When evaluating, however, the
effect different input parameters had
on ANN and SVM classification
accuracy, we found significant differ-
ences in performance depending on
the type of input used by the classi-
fiers. Studies (Burgansky-Eliash et al.
2005; Huang & Chen 2005) have
shown that reduction in the number
of OCT RNFLT parameters used by
machine learning classifiers can yield
improvements in classification perfor-
mance. Instead of using only the
conventional OCT RNFLT para-
meters, we decided to use all 256
A-scan thickness values and reduce
their complexity by means of a
dimensionality reduction technique.
This novel approach significantly
improved SVM performance by
enabling extraction of useful infor-
mation from a larger set of unpro-
cessed thickness data (A-scans).

Huang & Chen (2005) employed
principal component analysis (PCA)
to linearly reduce the number of 25
ONH and RNFLT input parameters,
while Burgansky-Eliash et al. (2005)
chose 8 of 38 ONH and RNFLT
parameters that were closest related to
visual field MD value. Using visual
field information for reducing the
number of OCT parameters could
introduce bias, because these parame-
ters would be correlated to informa-
tion used in the selection of the study
groups. For this reason, our data

reduction approach utilized structural
OCT data only.

In a study by Huang & Chen
(2005) , an MLP trained with another
technique (the steepest gradient des-
cent with momentum algorithm)
achieved an AROC of 0.874. Learning
in our ANN was accomplished with
the scaled conjugate gradient method,
which has generally better training
performance (Haykin 1999). More-
over, the ensemble approach provides
more reliable results than any single
ANN classifier, by decreasing the
overall variability of ANN responses
(Haykin 1999). The best SVM classi-
fier presented in the study by Burgan-
sky-Eliash et al. (2005) achieved an
AROC of 0.981, using as input both
RNFL thickness and ONH measure-
ments not corrected for age or refrac-
tion. Our results suggest that the high
performance of our MLCs can be
attributed to the choice of input type,
as well as the choice of classifier archi-
tecture and algorithms employed dur-
ing the training phase.

Age differed significantly between
the glaucoma and the healthy groups
in our data set. Knowing the effect of
age on OCT estimation of the
RNFLT, we would expect the age dif-
ference to affect the performance of
our classifiers. Training the classifiers
on RNFLT parameters not corrected
for age, as expected resulted in larger
AROCs (AROCs > 0.99). Because
we have quantified the effect of age
on RNFLT measurements, we chose
to correct all data prior to introducing
them as input to the classifiers. In this
way, we did not have to include age
as a separate input to the classifiers.
The inclusion of age would create
input data with different measurement

units (age and thickness values) and
would not allow any insight on the
way classifiers use age information in
their classification decision. We would
thus be unable to utilize our prior
knowledge concerning the influence of
age in estimation of RNFLT. Houg-
aard et al. (2006) have previously
shown a significant influence of refrac-
tive status, in addition to that of age,
on normal RNFL thickness measure-
ments by the Stratus OCT. We uti-
lized our own normative database
(Hougaard et al. 2006) to accomplish
the appropriate corrections of age and
refraction.

Despite the sole use of OCT-derived
information for training the classifiers,
our selection criteria required both
functional and corresponding struc-
tural glaucomatous defects to be pres-
ent in the glaucoma group, as well as
normal visual field function and a
normal RNFL in the healthy group.
The definition of a healthy RNFL
was, however, based on assessment of
RNFL and ⁄or ONH photographs,
which does not have perfect agree-
ment with OCT classification. Our
definition of glaucoma and normality
may result in higher specificity and
sensitivity results, but that should not
affect the performance comparison
between ANN and SVM because all
analyses are based on the same mate-
rial. Thus, our classifier performance
with AROCs approaching 1.0 (i.e.
perfect discrimination) should be
viewed in the context of the primary
aim of this study (i.e. the comparison
of different MLCs in classification of
OCT test data).

It is also possible that our classifiers
have a certain degree of bias towards
the data used in their training and

Table 4. Significance testing (probability value) of the performance between two multivalued parameters (transformed A-scan thickness values

and the conjointly used 17 conventional RNFLT parameters) and the best single-valued parameter (Max_90–Min_10); performance is measured

as the area under the receiver operating characteristic (AROC) curve and the corresponding confidence intervals at 95% confidence level (95%

CI) are presented in parenthesis.

AROCs (95% CI)

17 RNFLT parameters Transformed A-scan thickness values

ANN SVM ANN SVM

0.977 (0.958–0.995) 0.977 (0.959–0.999) 0.982 (0.959–0.999) 0.989 (0.959–0.999)

Max_90–Min_10*

ANN 0.946 (0.907 – 0.983) 0.156 0.170 0.084 0.038�
SVM 0.940 (0.898 – 0.986) 0.143 0.073 0.082 0.018�

ANN = artificial neural network; SVM = support vector machine.

* Max_90–Min_10: difference between the highest and lowest tenth percentiles of the full circle RNFLT measurements.

� Statistical significant difference.
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deployment, and one would expect
their performance to slightly decrease
when tested on a different population.
Although we used 10-fold cross-vali-
dation to minimize this bias, our
results have to be verified in an inde-
pendent sample. Other limitations in
the current study include the use of an
unbalanced dataset, because normal
tests comprised more than half of all
OCT tests. The ensemble method can
counteract some of the potential
problems with training classifiers on
unbalanced data. Moreover, it is
conceivable that other types of
machine classifiers could be equally
successful in classification of OCT
RNFLT values. Similarly, the LTSA
algorithm is only one of several tech-
niques that could be applied to reduce
the complexity and extract features
from OCT data. We did not conduct
an exhaustive comparison between all
available machine learning algorithms
and complexity reduction techniques,
because that would be practically not
feasible within the constraints of the
study design and would adversely
affect any significance testing.
The similar performance of our

two machine learning algorithms and
the high classification accuracy of
the SVM based on the transformed
A-scan measurements further supports
the argument that the type of input
data seem to be more important than
the type of classification method. Our
results also suggest that data-process-
ing techniques like LTSA might better
represent relevant diagnostic informa-
tion found in the A-scan measure-
ments compared to current RNFLT
parameters. Performance improve-
ments from methods such as LTSA,
leading to more effective representa-
tion of structural information, may be
even more prominent in future genera-
tions of OCT instruments that provide
increasing numbers of test parameters.
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Appendix

Nonlinear dimensionality reduction based

on manifold learning

OCT A-scan data can be character-
ized as multidimensional, because they
require multiple parameters (dimen-
sions) to be represented. One
approach to simplify the representa-
tion of data is to use techniques that
are able to map the data into a set of
fewer parameters (i.e. a lower dimen-
sional space). Nonlinear dimensional-
ity reduction techniques based on
manifold learning, function by con-
structing parameters with values that
are assumed to be measurement points
embedded in a specific type of topo-
logical space (a nonlinear manifold),
existing within the high-dimensional
space of the complete dataset. In
contrast to linear methods, such as
principal component analysis, these

techniques retain information on non-
linear relationships between measure-
ment points and are able to represent
nonlinear structures in the data. The
local tangent space alignment (LTSA)
algorithm that is used in this study is
considered a local embedding tech-
nique, and functions by constructing
an approximation for the tangent
space at each data point, and aligning
these tangent spaces to provide the
global coordinates of the data points.
The choice for the number of trans-
formed parameters that describes the
A-scan data is based on estimations
of the intrinsic dimensionality of the
dataset.

Machine learning classifiers – artificial

neural networks & support vector

machines

Machine learning is a field of artifi-
cial intelligence concerned with the

development of computational and
statistical methods that are able to
learn through a training process.
ANNs comprise a group of machine
learning methods used for both classi-
fication and function approximation
tasks. They have been successfully
used in a variety of fields, including
medicine, for data mining, automated
interpretation of tests and feature
extraction from large datasets. Multi-
layer perceptrons (MLPs), consisting
of multiple layers of artificial neurons,
are a type of ANN developed from
the original perceptron model (the first
type of ANN, created in the 1940s).
The widespread use of MLPs is partly
because of their ability to conduct
nonlinear classification tasks and
because of their efficient supervised
learning algorithm based on back-
propagation of error. Following devel-
opments in statistical learning theory,
new techniques for classification and
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regression were introduced within the
group of machine learning algorithms.
SVMs are kernel-based methods that,
like ANNs, can be trained to recog-
nize patterns in data and adapt their
decision boundary to the training
data. Unlike ANNs, these algorithms,
perform classification by using kernels
to map the input data in a space of
higher dimensionality and, with the
help of constructed support vectors
(from part of the training data), they
create hyperplanes that maximize the
separation between the classes while
minimizing the generalization error.

Artificial neural network ensembles

One important aspect of trained
ANNs is their ability to generalize
their adaptively created decision rules

on previously unseen data. It has been
shown that the generalization error of
ANNs can be decomposed into the
factors of bias (i.e. a measure of the
classification accuracy on the training
data) and variance (i.e. a measure of
the stability of the given classification
solution provided by the ANN,
depending on the variability of the
training data). The two factors of bias
and variance have an inverse relation-
ship and there exist a trade-off
between these two. To decrease the
generalization error of a classifier, one
can combine the prediction of a num-
ber of classifiers in an ensemble struc-
ture. It can be shown that the
generalization error of the ensemble
equals the averaged generalization
error made by an individual ANNs
minus the averaged variance (a.k.a.

diversity) of the individual ANNs in
the ensemble.

Training with bagging

One approach to increase the diversity
of individual ANNs in an ensemble
(and thus decrease the ensemble gen-
eralization error) is to train the net-
works on slightly different subsets of
the training data. This can be accom-
plished with a resampling algorithm
such as Bootstrap aggregating, also
called bagging. The bagging algorithm
generates training subsets by uni-
formly sampling examples from the
training data with replacement. The
created bootstrap samples (expected
to contain 63.2% of unique examples)
are then used for training by the indi-
vidual ANNs.
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Integration and fusion of standard automated
perimetry and optical coherence tomography data
for improved automated glaucoma diagnostics
Dimitrios Bizios*, Anders Heijl and Boel Bengtsson

Abstract

Background: The performance of glaucoma diagnostic systems could be conceivably improved by the integration
of functional and structural test measurements that provide relevant and complementary information for reaching
a diagnosis. The purpose of this study was to investigate the performance of data fusion methods and techniques
for simple combination of Standard Automated Perimetry (SAP) and Optical Coherence Tomography (OCT) data for
the diagnosis of glaucoma using Artificial Neural Networks (ANNs).

Methods: Humphrey 24-2 SITA standard SAP and StratusOCT tests were prospectively collected from a randomly
selected population of 125 healthy persons and 135 patients with glaucomatous optic nerve heads and used as
input for the ANNs. We tested commercially available standard parameters as well as novel ones (fused OCT and
SAP data) that exploit the spatial relationship between visual field areas and sectors of the OCT peripapillary scan
circle. We evaluated the performance of these SAP and OCT derived parameters both separately and in
combination.

Results: The diagnostic accuracy from a combination of fused SAP and OCT data (95.39%) was higher than that of
the best conventional parameters of either instrument, i.e. SAP Glaucoma Hemifield Test (p < 0.001) and OCT
Retinal Nerve Fiber Layer Thickness ≥ 1 quadrant (p = 0.031). Fused OCT and combined fused OCT and SAP data
provided similar Area under the Receiver Operating Characteristic Curve (AROC) values of 0.978 that were
significantly larger (p = 0.047) compared to ANNs using SAP parameters alone (AROC = 0.945). On the other hand,
ANNs based on the OCT parameters (AROC = 0.970) did not perform significantly worse than the ANNs based on
the fused or combined forms of input data. The use of fused input increased the number of tests that were
correctly classified by both SAP and OCT based ANNs.

Conclusions: Compared to the use of SAP parameters, input from the combination of fused OCT and SAP
parameters, and from fused OCT data, significantly increased the performance of ANNs. Integrating parameters by
including a priori relevant information through data fusion may improve ANN classification accuracy compared to
currently available methods.

Background
Glaucoma is an optic neuropathy resulting in character-
istic visual field defects. Investigating the relationship
between development of functional damage in the visual
field and structural glaucomatous changes of the retinal
nerve fiber layer (RNFL) has been the purpose of
numerous studies [1-5].

Diagnostic instruments providing quantitative analyses
in glaucoma assess either functional or structural aspects
of the disease. Imaging and quantitative analysis of RNFL
measurements can be accomplished with Optical Coher-
ence Tomography (OCT). OCT is a noninvasive interfero-
metric technique that provides cross sectional images and
thickness measurements of the RNFL (RNFLT) with high
resolution [6] and good reproducibility [7-9]. Standard
Automated white-on-white Perimetry (SAP) is the stan-
dard for examining the visual field. Perimetric tests are
able to provide quantitative measurements of differential
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light sensitivity at many test point locations in the visual
field, and commercially available statistical analysis
packages help clinicians in identifying significant visual
field loss [10,11]. The diagnostic performance of both
OCT and SAP in glaucoma as well as the correlation
between SAP and OCT measurements has been investi-
gated [12-15].
It is conceivable that integration of functional and struc-

tural test measurements could provide more relevant
information and thus improved diagnostic performance
for classification systems when used as input data. The
relevance of integrated diagnostic information is depen-
dent on the underlying relationship between structural
and functional measurements. Statistical approaches such
as the linear model constructed by Hood et al related
RNFLT values to sensitivity losses in SAP [16]. Other stu-
dies trying to map the individual visual field test points in
SAP to areas of the peripapillary RNFL through different
models, showed moderate correlations between visual field
sensitivity values and structural measurements [17,18].
More recent attempts to model the function - structure
relationship in glaucoma demonstrated that machine
learning algorithms, such as radial basis function artificial
neural networks (ANNs), improved the modelling accu-
racy compared to linear methods [19].
The use of machine learning classifiers (MLCs) in glau-

coma diagnosis using either functional or structural mea-
sures has been previously explored [20]. MLCs like
ANNs have been used for classification of tests based on
structural or functional measurements [21-28] and for
detection of glaucoma progression [29,30]. ANN-based
classification demonstrated better accuracy than linear
methods [23,24,31] and performed at least as well as
human experts [32].
Recent attempts to provide a combined evaluation of

structural and functional tests showed promising results
[33,34], though few studies have examined the diagnostic
performance of combining functional and structural data
with MLCs for glaucoma diagnosis [35,36]. One of the
main advantages of MLCs is their ability to learn a classi-
fication task by training on given examples. Such adap-
tive classification based on the available data is useful,
since a complete analytic theory of the structure-function
relationship in glaucoma does not yet exist. The perfor-
mance of MLCs can be influenced by a number of factors
including data selection bias, choice of input and classi-
fier architecture.
The purpose of this study was to investigate whether

the integration of information from SAP and OCT data
could improve the accuracy of glaucoma diagnosis, by
using the data as input in ANN based classifiers. We
evaluated the performance of simple combination of
OCT and SAP data as well as novel approaches based
on data fusion by utilizing á priori knowledge about the

physiologic relationship between the RNFL and visual
function in glaucoma.

Methods
This study is based on analysis of prospectively collected
data from randomly selected healthy individuals from a
defined catchment area and glaucoma patients followed
at the Department of Ophthalmology at Skåne Univer-
sity Hospital, Malmö Sweden. The study was conducted
according to the tenets of the Declaration of Helsinki
and was approved by the Regional Ethical Review Board
of Lund, Sweden. All healthy individuals and clinical
glaucoma patients included in the study provided
informed consent prior to any examinations.

Healthy Individuals
We performed a random selection from a population reg-
ister containing 4,718 persons over 50 years, living in two
primary care catchment areas of Scania, Sweden. This
selection yielded a sample of 307 individuals who were
invited to participate in the study. Of those, 170 indivi-
duals accepted the invitation and underwent a compre-
hensive ophthalmic examination.

Clinical Glaucoma Patients
We randomly selected 397 patients with a diagnosis of pri-
mary open angle glaucoma, normal tension glaucoma or
pseudo-exfoliation glaucoma, from a register of 2,174 visits
of patients having these diagnoses, followed at the Depart-
ment of Ophthalmology, Malmö University Hospital,
Sweden between January 2nd 2007 and March 13th 2008.
After review of the 397 patient medical records we
excluded patients with any history or additional diagnoses
of ocular or systemic pathology affecting the visual field or
the RNFL except glaucoma (e.g. neurological disorders or
retinal disease). Our reference for the diagnosis of glau-
coma was based on optic nerve head (ONH) topography
and/or examination of available ONH photographs. After
application of our exclusion criteria, 164 patients that ful-
filled our diagnostic reference for glaucoma were invited
to participate and underwent an ophthalmic examination.

Examinations
Upon examination a detailed medical history was taken,
including current medical conditions and treatments.
Individuals with systemic or non-glaucomatous ocular
diseases that could affect the ONH, RNFL and visual
field were excluded. Persons with lens opacities or
intraocular lenses were not excluded from the study.
One randomly selected eye from each eligible healthy
individual was chosen for inclusion in the study. For
glaucoma patients only the affected eye was included in
the study. In patients with bilateral disease, the eye with
the best Mean Deviation value (i.e. the less negative
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value denoting milder glaucomatous damage) on the
most recent SAP examination was chosen.
The clinical ophthalmic examination consisted of the

following parts:
1. Visual acuity was measured using an autorefractor

(Humphrey model 595 - Carl Zeiss Meditec, Dublin, CA,
USA). Manual refraction was performed when the autore-
fractor-measured visual acuity values were < 0.8. All parti-
cipants were required to have visual acuity ≥ 0.5 and
refractive error ≥ 5 dioptres (D) sphere and < 3 D cylinder
in order to be included in our subsequent analyses.
2. Intraocular pressure was measured by a Goldmann

applanation tonometer.
3. Fundoscopy was performed by a trained clinician with

a slit-lamp biomicroscope after the use of mydriatic agents
(tropicamide 0.5% and phenylephrine hydrochloride 2.5%).
All examined individuals underwent a battery of func-

tional and imaging tests, including:
1. Standard Automated Perimetry (SAP) with the Hum-

phrey Field Analyzer (Carl Zeiss Meditec, Dublin, CA,
USA) using the 24 - 2 SITA Standard program. Healthy
participants underwent a second SAP examination of the
study eye and the results of the second test were subse-
quently chosen. Perimetric tests were required to have
reliable fixation as assessed by the perimetrist and < 15%
of false positive answers to be included.
2. Time domain OCT examination after pupil dilation

with Stratus OCT (Carl Zeiss Meditec, Dublin, CA, USA)
using the Fast RNFL thickness protocol, which derives the
RNFLT values by averaging three 3.4 mm circumpapillary
scans, each with 256 measurement points (A-scans). All
included OCT tests were required to be of good quality as
defined by the manufacturer specifications (signal strength
> 5) and free of obvious artifacts from incorrect delinea-
tion of the RNFL by the instruments segmentation algo-
rithm. The same experienced ophthalmic photographer
performed all OCT examinations.
Inclusion of tests from healthy individuals and glau-

coma patients in further analyses was based on evalua-
tion of the optic disc during fundus examination.
Among healthy individuals only subjects having a nor-
mal appearance of the optic disc were included. For
inclusion of tests from the glaucoma patients, the elig-
ibility criteria of a glaucomatous optic disc described
on their records and/or present in previous optic disc
photographs, had to be confirmed during fundus
examination.

Structural and functional test Parameters
Our analyses in this study are based on the following
OCT and SAP parameters:
OCT RNFLT parameters
• RNFLT standard parameters The StratusOCT
RNFL analysis printout provides average thickness

measurements for the whole scan circle, the four quad-
rants and the 12 clock hour sectors of each scan, while
highlighting the values that fall below the 5% and 1%
significance level, based on comparison to the instru-
ment’s normative database. Diagnostic accuracy of the
best performing from these parameters was compared
to ANN classification performance.
• A-scan measurements and PCA processing We used
the 256 averaged A-scan values of the 3 peripapillary
scan circles for each OCT test, after we decreased their
complexity by means of principal component analysis
(PCA). We adjusted PCA to maintain 99.9% of the var-
iation in the data. This was achieved by the first 22
principal components, which were then used as input to
the ANN classifiers. All OCT RNFLT data were cor-
rected for age and refractive status (spherical equivalent)
based on a separate normative database [37]. We have
previously treated the use of A-scan derived parameters
as input in automated classifiers [25].
• Fused OCT parameters The fused OCT parameters
were derived by weighting the OCT A-scan measure-
ments of each test with the corresponding scored pattern
deviation (PD) values from SAP. In the fusion process for
the OCT data we used the map constructed by Garway-
Heath et al [38] to represent the relationship between
RNFLT of OCT scan circle sectors and differential light
sensitivity in specific areas of the visual field, and divided
the OCT scan circle and the SITA standard 24-2 SAP
test points into 6 sectors accordingly (Figure 1). In each
OCT sector and for every A-scan position, we calculated
the distribution of RNFLT values based in a separate nor-
mative database described elsewhere [37]. The probability
values for each age-and refraction corrected OCT A-scan
measurement of our test dataset, were then calculated.
A-scan values falling below the fifth percentile of the dis-
tribution in our normal reference material were trans-
formed through multiplication with an exponential factor.
This factor was constructed by calculating the average
pattern deviation probability scores (i.e. the sum of all
pattern deviation scores divided by the number of SAP
test points) of the visual field sector corresponding to
each of the OCT scan circle sectors. The fused A-scan
values depended on the decrease in RNFLT for the speci-
fic A-scan position relative to the distribution of the nor-
mative reference material, and the status of the visual
field sector corresponding to that location. PCA was sub-
sequently applied on the fused OCT A-scan values. In
order to simplify the comparison between non-fused and
fused OCT data we included the principal components
that retained the same level of variation in the data
(99.9%) as in the processing of the previously described
non-fused A-scan measurements. In this way PCA pro-
vided 38 principal components that were then used as
input to the ANN classifiers.
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SAP test parameters
• Glaucoma Hemifield Test (GHT) The GHT index is
available in the standard analysis printout of SAP tests.
It is an expert system that classifies SAP tests as within
normal limits, borderline or outside normal limits, based
on the differences of PD values between test points in
mirror image areas of the upper and lower hemispheres
of the visual field. We measured the specificity and sen-
sitivity of GHT and compared it to the ANN classifiers.
• Pattern deviation probability scores from each of
the 52 SAP test point locations (52 parameters) For
each SAP test point, we provided numerical values to
the pattern deviation probability map values using a
probability scoring scale identical to that used in calcu-
lating the GHT [39]. We have previously demonstrated
the performance benefits of using pattern deviation
probability scores as input to ANNs [21].
• Fused SAP parameters (52 parameters) Fused SAP
parameters were derived by weighting each SAP PD
scored value with the corresponding OCT A-scan mea-
surements. In the fusion process for SAP data the OCT
scan circle and the SITA standard 24-2 SAP test points
were divided into six sectors based on the map by Gar-
way-Heath et al [38] (Figure 1). For every visual field sec-
tor, the pattern deviation probability score at each test
point was transformed by an additive factor. This factor
was derived from the age- and refraction-corrected A-
scan measurements of the corresponding OCT sector.
All A-scan measurements were identified in each OCT

sector, and their probability values were assigned a score
according to significance level of the deviation from the
values of our separate normative database. The probabil-
ity scoring scale was similar with that used in the calcula-
tion of the GHT [39]. The lowest scored probability
below the fifth percentile or the highest scored probabil-
ity above the ninetyfifth percentile of our normal RNFLT
distribution from each OCT sector was used as the factor
in the fusion process. The fused SAP parameters were
obtained by adding this factor to the SAP pattern devia-
tion probability score of each SAP test point in the corre-
sponding visual field sector. In the event that both high
and low scored probability values (outside the fifth or
ninetyfifth percentile of our normative RNFLT database)
existed in the same OCT sector, only the low value was
used in the summation process. The fused SAP measure-
ments thus depended on both the status of the visual
field sector reflected by the pattern deviation probability
scores, and the thickness of the corresponding OCT sec-
tor. Visual field defects as indicated by the pattern devia-
tion probability scores could be either accentuated or
attenuated during the fusion procedure, depending on
the factor of scored probability from the corresponding
OCT sector.
The ANNs were trained and tested using the peri-

metric pattern deviation probability scores and the age-
and refraction corrected OCT A-scan measurements
after PCA preprocessing, as well as the fused SAP and
OCT parameters (Figure 2). We also evaluated the
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Figure 1 Map representing the relationship between Standard Automated Perimetry visual field sectors and sections of the
peripapillary OCT scan circle. This map is based on the work of Garway-Heath et al and shows the correspondence between areas of the
visual field and peripapillary retinal nerve fiber layer due to the anatomical configuration of the retinal nerve fiber bundles.
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integration of the above parameters by simply combin-
ing them. We thus tested:

• Integration of the non-fused SAP and OCT para-
meters (74 parameters), and
• Integration of the fused OCT and SAP parameters
(90 parameters)

Artificial Neural Networks (ANN)
Our ANN classifier consisted of an ensemble of thirty-
five fully connected cascade-forward Multi Layer Per-
ceptrons (MLPs). The number of neurons in the input
layer of each cascade-forward MLP was equal to the
number of parameters used as input data. All MLPs
consisted of 2 hidden layers with tangent hyperbolic
transfer functions and an output layer of one neuron
with a logistic transfer function that provided the MLP
output. The number of neurons in the hidden layers
was chosen based on the type of input used in order to
achieve the best performance as judged by the results
derived from the 10-fold cross validation procedure.
Our ANNs were constructed with the MATLAB neural
network toolbox version 7 (The MathWorks Inc, Natick,
MA, USA) and trained with the scaled conjugate gradi-
ent algorithm described by Møller [40].
Training the Artificial Neural Networks
ANNs were trained and tested with the 10-fold cross-
validation procedure, to reduce bias from training and
testing on the same individuals, while fully utilizing our

data set. Data were randomly divided into ten subsets,
each containing test data from an approximately equal
proportion of glaucoma patients and healthy individuals.
One subset was used to test classification performance
while the remaining nine subsets were used for training
purposes. In our ANN ensemble, one out of the nine
training subsets was reserved for early stopping of the
ANNs in order to avoid overfitting. We additionally
used bagging [41] of the remaining eight subsets to cre-
ate the training sets used by the ANN ensemble. During
training, this process was iterated, each time using a dif-
ferent subset as the early stopping set, until all the data
subsets had been used to both train and stop the train-
ing of the ensemble. We further iterated the training
process using each time a different test subset, so that
all data could be used both for training and testing the
classifiers, and averaged the test results in order to pro-
duce a single performance measure for each ANN.
Analyses
To measure the classification performance of the ANN
ensemble and the diagnostic ability of the compared
parameters, we calculated the area under the ROC curve
(AROC). The cut off values for all ANNs were calcu-
lated based on the best performing specificity-sensitivity
pairs (i.e. pairs that provided the largest area under
ROC when their values were multiplied) from the 10-
fold cross-validation procedure. Significance testing
between the AROCs was conducted with DeLong’s non-
parametric method [42]. We evaluated the agreement in
classification between the OCT and SAP based ANNs
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by calculating odds ratios, which in this case signified
the odds that tests classified by the SAP-based ANN
receive the same classification by the OCT-based ANN,
based on the same classification threshold of 0.5 for
both OCT and SAP based classifiers.
The Chi square test was used to find significant differ-

ences in the distribution of gender between the healthy
individuals and patients with glaucoma, whereas the
Mann-Whitney test was used for the continuous vari-
ables age, visual acuity and refractive error. Diagnostic
accuracy of the SAP and OCT parameters was compared
using the McNemar test for correlated proportions.

Results
Thirty-four healthy individuals and 36 glaucoma patients
were excluded because of ophthalmic, neurological and
metabolic disorders affecting the visual field and/or the
retina, refractive errors and visual acuity outside the
defined range for inclusion, erroneous estimation of the
RNFL by the OCT segmentation algorithm, and due to
inability to complete the examination. Only three healthy
persons were excluded based on optic disc criteria (one
with optic disc drusen, one with an optic disc hemor-
rhage and and one with a peripapillary membrane). One
patient with glaucoma but normal ONH appearance was
also excluded. After application of all exclusion and
inclusion criteria, OCT and SAP data from 125 healthy
individuals and 135 patients with glaucoma were used in
our analyses. Eight of the 135 glaucoma patients were
initially part of the healthy population invited to partici-
pate in the study, but were diagnosed with glaucoma dur-
ing the clinical examination and were included in the
glaucoma group. The diagnosis for these 8 patients was
based on a second clinical examination that included
imaging of the ONH and RNFL, SAP testing and evalua-
tion of the fundus and ONH. All OCT tests were of good
quality, with mean (±SD) signal strength of 9.95 (±0.23)
and 9.36 (±0.97) for the healthy and glaucoma groups

respectively. Based on the Mean Deviation of the SAP
visual fields, the glaucoma group consisted of 49 patients
(ca 36%) with early, 32 patients (ca 24%) with moderate
and 54 patients (ca 40%) with advanced glaucomatous
visual field loss. The demographic characteristics of the
healthy subjects and glaucoma patients can be seen in
Table 1. The significantly lower visual acuity of the glau-
coma group could be attributed to the higher incidence
of lens opacities in this group.
The integration of fused data offered higher diagnostic

accuracy compared to the best performing SAP and
OCT algorithms that exist in the available analysis
packages of each instrument. For SAP, the GHT (with
borderline results signifying glaucoma) provided an
accuracy of 86.92%. For OCT, RNFLT abnormally
depressed in at least one quadrant at the 5% significance
level, had an accuracy of 91.54%. The combination of
non-fused data led to a diagnostic accuracy of 93.85%,
significantly better than GHT (McNemars test: p =
0.006), whereas the accuracy of combined fused data
was 95.39%, higher than the accuracy of both the GHT
(McNemars test: p < 0.0001) and OCT RNFLT algo-
rithm (McNemars test: p = 0.031).
The two ANNs with input based on the fused OCT and

the combined fused OCT and SAP data respectively pro-
vided almost identical AROC values of 0.978, performing
significantly better than the ANN based on the SAP mea-
surements alone. Utilizing input based on the combined
non-fused OCT and SAP measurements did not lead to
similar significant improvements. The AROCs of ANNs
based on the fused and non-fused parameters are shown
in Figure 3. Significance testing between the compared
parameters is shown in Table 2.
The ANN with input based only on the processed

OCT A-scan data (AROC: 0.970) had larger AROC
compared to the ANN based on PD probability scores
(AROC: 0.945). Even though this difference was not sta-
tistically significant, the higher performance of the

Table 1 Demographic data of included healthy subjects and patients with glaucoma

Healthy
(n = 125)

Glaucoma
(n = 135)

p - value
(Mann-Whitney test)

Gender
(female/male)

66/59 79/56 NS*(c2 test)

Age
(years)

64.65 ± 8.11 73.36 ± 7.81 < 0.0001

Visual Acuity
(decimal scale)

1.00 ± 0.15 0.86 ± 0.19 < 0.0001

Refractive error
(spherical equivalent)

+0.53 ± 1.74 -0.15 ± 1.82 0.0015

Visual Field
(MD)†

-0.66 ± 1.77 -11.04 ± 8.21 < 0.0001

All values except for gender are represented as mean ± standard deviation.

* NS: non significant

† MD: mean deviation value in decibel, as measured by 24-2 SITA Standard program
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OCT-based ANN prevented any differences from reach-
ing statistical significance when comparing the OCT-
based ANN to ANNs trained on the integrated or fused
input data. At high specificities fused OCT parameters
provided the highest sensitivity values (Figure 3)
The agreement in classification (reflected by the odds

ratios) between ANNs based on SAP and OCT mea-
surements improved when using the fused parameters
as input. The improved agreement led to a larger num-
ber of individuals correctly classified by both function-
and structure-based ANNs (Figure 4). Examples on such

classification improvements are given in Figure 5. The
missclassified tests belonging to glaucoma patients, did
not exhibit discernable visual field or RNFLT defects in
neither the SAP nor the OCT tests.

Discussion
We evaluated the effect of combining SAP and OCT mea-
surements on the ability of ANN classifiers to discriminate
between normal and glaucomatous tests. We have pre-
viously demonstrated that the use of pre-processed
RNFLT measurements based on A-scans improved the

Figure 3 Performance measured as Area Under the Receiver Operating Characteristic Curve (AROC) for the compared parameters.
Artificial Neural Network (ANN) AROCs for the different input types used. The upper quadrant of the diagram (shaded area) is shown in
magnification. The largest AROCs were created by Artificial Neural Network (ANN) ensembles with input based on the fused OCT data and the
combined fused OCT and SAP data. Figure abreviations: SAP data: Standard Automated Perimetry data, based on Pattern Deviation (PD)
probability scores. F-SAP data: Fused SAP data, based on weighted transformation of PD probability scores with OCT-derived probability scores.
OCT data: Age- and refraction corrected OpticalCoherence Tomography A-scan data, optimized by principal component analysis (PCA). F-OCT
data: Fused OCT data, based on weighted transformation of A-scan measurements with PD probability scores and optimized by PCA.

Table 2 Performance Comparison between Artificial Neural Networks based on fused, combined and single types of
data

F-SAP data
(AROC:0.958)

F-OCT data
(AROC:0.978)

SAP & OCT Data
(AROC:0.968)

F-SAP & F-OCT data
(AROC:0.978)

SAP data
(AROC: 0.945)

0.502 0.047 0.147 0.047

OCT data
(AROC: 0.970)

0.431 0.576 0.879 0.562

Significance (p) values of Area under Receiver Operating Characteristic (AROC) curves were calculated by DeLongs non-parametric method.

SAP data: Standard Automated Perimetry data, based on Pattern Deviation (PD) probability scores

F-SAP data: Fused SAP data, based on weighted transformation of PD probability scores with OCT-derived probability scores

OCT data: Age - and refraction corrected Optical Coherence Tomography A-scan data, optimized by principal component analysis (PCA)

F-OCT data: Fused OCT data, based on weighted transformation of A-scan measurements

with PD probability scores and optimized by PCA

Bold indicates statistical significance (i.e. p < 0.05)
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diagnostic performance of MLCs compared to the conven-
tional RNFLT parameters presented by the instrument
[25]. For SAP, the Pattern Deviation probability plots and
maps provide probability values of all test points, high-
lighting those points with values falling outside the age
corrected normal limits and also account for effects of
media opacities on light sensitivity across the visual field.
The performance benefits of pattern deviation score -
based input data have been shown [21].
The combination of structural and functional informa-

tion contained in the OCT and SAP test data respectively,
can be viewed as a type of information integration. The
simplest way to integrate the different types of data is to
construct a vector that consists of all OCT and SAP mea-
surements. We additionally attempted to construct and
evaluate the performance of novel input parameters that
fuse both structural and functional measurements. Inte-
grating information about the structure-function relation-
ship of glaucomatous damage through data fusion,
presents some advantages over the simple combination of

the two different types of data. Instead of relying on MLCs
to learn about the structure-function relationship based
on limited training data, the fusion process allows for
direct incorporation of prior knowledge obtained in other
independent large datasets about the topographic relation-
ship between structural and functional measurements into
the classification problem. Controlling the incorporation
of knowledge into MLCs can also counteract the lack of
insight on the way stochastic processes like ANNs repre-
sent and use the acquired knowledge in their classification
decisions. Our ANNs with input based on the novel para-
meters showed a high degree of agreement in their classifi-
cation decisions, reflected on the presented odds ratio
values (Figure 4). The higher odds ratios for the ANNs
based on fused input data could indicate that these classi-
fiers are more robust since the likelihood of a false positive
or false negative test result by both fused OCT and SAP
based ANNs was significantly lower.
Bowd et al has previously shown that MLCs trained on

combinations of OCT and SAP derived input performed

SAP data:  Standard Automated Perimetry data, based on Pattern Deviation (PD) probability scores
F-SAP data:  Fused SAP data, based on weighted transformation of PD probability scores with OCT-derived probability scores
OCT data:  Age and refraction- corrected Optical Coherence Tomography A-scan data, optimized by principal component analysis (PCA)
F-OCT data:  Fused OCT data, based on weighted transformation of A-scan data with PD probability scores and optimized by PCA
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at least as well as MLCs trained on each input type alone,
while the use of data with reduced complexity (by means
of the backward elimination technique), further improved
MLC performance [35]. Our results did not show signifi-
cant improvement using input that simply combined
OCT and SAP measurements compared to when using
SAP or OCT measurements separately. However, the
combination of fused OCT and SAP parameters showed
significant improvement compared to the use of ANNs
based on SAP parameters alone, and to the best perform-
ing commercially available algorithms in both the SAP
and Stratus OCT instruments. This improvement was
not specific to our ANN, but could be also seen with
another MLC, a relevance vector machine (RVM) classi-
fier, that we constructed and tested for comparison pur-
poses. We did not report the results of our RVM since its
performance was very similar to that of our ANN.
The use of principal component analysis for dimen-

sionality reduction of the OCT and fused OCT data

instead of a non-linear dimensionality reduction algo-
rithm could have affected the results. Even though non-
linear dimensionality reduction techniques might pro-
vide better representations of complex data, their exten-
sions to new data are iterative in nature without exact
numerical solutions in most cases.
The performance of Machine learning classifiers is

dependent on their training process. During training, it
is important to present learning examples with a known
outcome (i.e. ‘true’ normal and ‘true’ glaucoma cases)
and with all disease stages in order for the MLC to cre-
ate representative classification decision boundaries. The
inclusion of cases with an uncertain condition (i.e.
patients characterized as glaucoma suspects) would
adversely affect the false positive and negative rates of
classification and our evaluation of specificity and sensi-
tivity rates of the classifier.
The recruitment of healthy persons was based on a ran-

dom population sample with the majority of individuals
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OCT data:  Age and refraction- corrected Optical Coherence Tomography A-scan data, optimized by principal component analysis (PCA)
F-OCT data:  Fused OCT data, based on weighted transformation of A-scan data with PD probability scores and optimized by PCA
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having no previous experience in ophthalmic examina-
tions. In our attempt to include healthy individuals that do
not represent supernormal subjects, we did not exclude
persons with cataract since it is a condition often seen in
older population groups and in patients with glaucoma.
The rates of missclassifed tests could be partly explained
by our choice of reference standard based on ONH mor-
phology, which did not exclude patients with normal SAP
and OCT test results. The bias in selecting a structure-or
function-related reference standard, affects the accuracy of
combinatorial analyses by erroneous estimations of specifi-
city, sensitivity and correlation measures of the examined
structural and functional parameters. We did not base the
definition of normality and glaucoma on either SAP or
OCT test indices. Our choice of reference standard was
instead based on clinical examination of ONH morphol-
ogy. Even though this structure based reference standard
relates more to RNFL morphology than function as mea-
sured by the visual field, it has not shown a high degree of
correlation with OCT measurements [43]. The significant
differences in age and refraction between healthy indivi-
duals and glaucoma patients are accounted for both in the
pattern deviation probability based SAP input and the age-
and refraction-corrected OCT input. Even though the 10-
fold cross-validation process can account for certain bias
pertaining to sample variability, further evaluation on an
independent group of subjects is needed to support the
general applicability of our findings. Future studies should
also evaluate the fusion process with data based on the
new generation of spectral domain OCT that provide
higher spatial resolution and improved algorithms for
detecting and analyzing the RNFL.
The incorporation of knowledge about known rules

into black box classifiers could enable the construction of
ANN-based systems that are more closely related to grey
box models (i.e. models with known general structure
but also unknown parameters), allowing for greater
insight into the classification process and more effective
sensitivity analyses of the test input parameters. Such
advantages could facilitate the practical deployment of
ANNs as decision support systems in glaucoma
diagnostics.

Conclusions
Our study showed that the combination and fusion of
data from OCT and SAP has the potential to increase the
accuracy of glaucoma diagnostics compared to para-
meters from either instrument alone. Moreover, fusion of
test measurements could lead to test parameters that bet-
ter reflect both the structural and functional glaucoma-
tous changes that occur during the course of the disease,
providing more relevant information to glaucoma diag-
nostic systems.
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