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Signal Reconstruction with Generalized Sampling

Kaoru Yamamoto1, Masaaki Nagahara2, and Yutaka Yamamoto3

Abstract— This paper studies the problem of reconstructing
continuous-time signals from discrete-time uniformly sampled
data. This signal reconstruction problem has been studied
by the authors in various contexts, and led to a new signal
processing paradigm. The crux there is to employ a physically
realizable signal generator model, and design an (sub)optimal
filter via H∞(C+) optimal sampled-data control theory. The
present paper extends this framework to the situation where
sampling is more general having a generalized sampling kernel.
It is more consistent with a more general framework, for
example, wavelet signal expansion, and can lead to a more
general applications. We give a general setup along with a
solution via fast-sample/fast-hold approximation. A simulation
is presented to illustrate the result.

I. INTRODUCTION

A central problem in digital signal processing is that of
reconstructing the original analog signal from its sampled
data. When sampling is uniform and ideally performed, i.e.,
reading out the sampled values precisely at sampled points,
the celebrated sampling theorem, e.g., [13], gives a perfect
answer provided that the frequency contents are strictly
band-limited below the Nyquist frequency π/h [rad/sec],
where h is the underlying sampling period. Based on this
perfect band-limiting assumption, Shannon [6] proposed his
signal processing paradigm. In spite of various drawbacks
such as non-causal construction, slow convergence, etc., this
paradigm has dominated digital signal reconstruction until
today.

In contrast to such developments, the present authors
have developed and proposed a completely new methodology
based on H∞ sampled-data control theory: [12], [4], [5].

The central idea there is quite different from that of
the Shannon paradigm in that it does not assume perfect
band-limiting hypothesis on the original signals to be recon-
structed. Instead, we assume that the signal class obeys a
certain decay curve in its frequency energy distribution that
is governed by a linear finite-dimensional system. This is
a much more realistic assumption in that in many signals
produced by physical devices, e.g., musical instruments,
there is always a signal generator and associated signal
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models, and they mostly obey a certain frequency decay
curve induced by such a model.

This new method has been applied to sound and image
processing, and has proven quite successful [8], [11]. In
particular, it is implemented in a sound-processing LSI chips,
whose cumulative production has reached over 65 million
chips.

In these applications, however, sampling is still assumed
to be ideal, that is, we assume instantaneous signal values
{f(nh)}∞n=0 for a signal f . In reality, we often encounter a
variety of non-ideal sampling actions. For example, sampled
discrete-time values are obtained by integrating the signal
with a certain kernel function. Any physical sensing devices
are always accompanied with such an integration, and pure
ideal sampling is viewed as a limit when such an integration
occurs in a very short time. Another situation occurs with
wavelet expansion in which we expand functions in terms
of the sums of scaling or wavelet functions with suitable
expansion coefficients. Such coefficients are obtained as the
inner product with a scaling or wavelet function, and we
again encounter a sampling process with integration.

This paper studies the signal reconstruction problem in
the style of [12], however employing such a generalized
sampling induced by integration with a kernel function.

As noted above, this situation arises naturally in practice,
and is also quite compatible with the current wavelet anal-
ysis. For example, the Daubechies scaling function 2φ ([2])
has support in [0, 3h]. This means that in order to compute
the value of the generalized sampling, one has to hold the
input function for 3 sampling periods, and take the inner
product of the signal with the kernel function with 3 steps
of delay. The lifting technique [1], [9] gives a transparent
formulation of this setting. One can then modify the design
method given in [12] to the present context to design an
optimal filter. The detail of the problem formulation is given
in the subsequent section.

This method has an added advantage: In practice, we
generally do not have real continuous-time data but only
sampled values. This makes it difficult to apply standard
wavelet expansion analysis due to the lack of information
with higher resolution (referred to a wavelet crime in [7]).
The present method can be used to optimally interpolate the
intersample behavior yielding the lost information in detail.
The objective here is then to reconstruct the original analog
signal including the intersample behavior (sub)optimally in
the sense of H∞. Then one obtains an optimal reconstruction
including the intersample behavior, enabling a higher-order
expansion. The overall analog information is controlled by
a high-frequency decay rate peculiar to the signal generator



we consider. The detail will be described below.
The paper is organized as follows: Section II gives the

basic signal reconstruction formulation. The difficulty here
is that the generalized sampling induces a certain amount of
delays, and this requires further modifications in the design
formulas. This will be discussed in the subsequent two sec-
tions. We give formulas for design via the fast-sample/fast-
hold approximation in Section III. A design example is given
in Section IV using Daubechies 2 scaling function. Aside
from the fact that this treatment is new in this context, we
also see that while for the bare expansion it gives a rather
poor approximation result, it will be substantially improved
by introducing upsampling and corresponding filter design.
Some concluding remarks are given to indicate issues for
future study in Section V.

II. PROBLEM FORMULATION

Consider the sampled-data system depicted in Fig. 1.

F (s)

S̃h ↑M K(z) Hh/M P (s)

e−mhs

wc

−
+ ec

Fig. 1: Signal reconstruction error system

The exogenous signal wc goes through a linear time-
invariant system F (s), and gets band-limited to become
the actual target analog signal y. This F (s) models the
physical characteristic of the signal generator, e.g., a musical
instrument, and governs the decay rate of high frequency in
the signal y. The totality of such y constitute the signal class
to be reconstructed. We take F to be rational and strictly
proper so that the resulting filter has a low-pass characteristic.
The filtered y is then processed by the generalized sampler
S̃h whose definition is given as follows:

(S̃h(y))[k] :=
∫ Lh

0

φ(t)y(kh+ t)dt (1)

=

L−1∑
i=0

∫ (i+1)h

ih

φ(t)y(kh+ t)dt,

where the kernel function φ is assumed to have support in
[0, Lh]. In the case of the Haar scaling function L = 1,
but for many applications, L is greater than 1. For example,
Daubechies N scaling function, L = 2N − 1; likewise for
other wavelet or scaling functions. Hence we must allow
step L delays to obtain the actual sampled values yd[k], k =
0, 1, 2 . . .. This is what is defined in (1).

Figure 2 (left) shows an example of the sampling kernel
φ(t).

The discrete-time signal yd is first upsampled by ↑M :

↑M : yd 7→ xd : xd[k] =

{
yd[l], k =Ml, l = 0, 1, . . .
0, otherwise

by factor M , and becomes another discrete-time signal xd
with sampling period h/M . The discrete-time signal xd is

0

φ(t)

t

0

φ(t)

t
Lh Lh

ih+
jh

N
ih+

(j + 1)h

N

αi,j

Fig. 2: Sampling kernel φ(t) (left) and fast discretization of
φ(t) (right)

then processed by a digital filter K(z) to be designed, and
becomes a continuous-time signal uc by going through the
zero-order hold Hh/M (which works in sampling period
h/M ), and then becomes the final signal zc by passing
through an analog buffer filter P (s). Here P (s) can be
assumed to be 1 for simplicity. An advantage here is that
one can use the fast hold device Hh/M thereby making
possible more precise signal restoration. The objective here
is to design a digital filter K(z) for a given F (s), M and
P (s), to optimally reconstruct the filtered signal y.

Fig. 1 shows the block diagram for the error system for
the design. The delay in the upper portion of the diagram
corresponds to the fact that we allow a certain amount of
time delay for signal reconstruction. Let Tew denotes the
input/output operator from wc to ec(t) := zc(t)−y(t−mh).
Our design objective is as follows:

Problem 1: Given stable F (s) and P (s) and an attenua-
tion level γ > 0, find a digital filter K(z) such that

‖Tew‖∞ = sup
wc∈L2[0,∞)

‖Tewwc‖2
‖wc‖2

< γ.

Remark 2.1: The above L2-induced norm ‖Tew‖∞ is in-
deed the H∞-norm of the operator Tew [10].

III. SOLUTION METHOD VIA FAST-SAMPLE/FAST-HOLD
APPROXIMATION

The system given by Figure 1 can be cast into a single-rate
sampled-data system via lifting [1], [9], and the H∞ control
problem can be solved. Particularly, it is practical to employ
the fast-sample/fast-hold (FSFH, hereafter) approximation to
obtain an approximate solution. The details can be found in
[12].

However, there is an extra issue here. Since the generalized
sampler (1) induces an extra delay term in obtaining sampled
values, we must derive the formula for the fast discretization
of S̃h.

Let us first discretize the sampling intervals
[0, h), [h, 2h), . . . with the fast sampling grid
{0, h/N, 2h/N, . . . , (N − 1)h/N}, {h, h + h/N, h +
2h/N, . . . , h + (N − 1)h/N}, etc. See Figure 2 (right) for
the fast sampling approximation of φ. Then Figure 3 shows
the block diagram for the fast discretization on these grids
to obtain the operator S = S̃hHh/N .



Hh/NSh/N S̃h

y
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Fig. 3: Fast discretization S of S̃h

According to this figure, we have

yd[k] = S̃h(y)

=

L−1∑
i=0

∫ (i+1)h

ih

φ(t)y(kh+ t)dt

=

L−1∑
i=0

N−1∑
j=0

∫ ih+(j+1)h/N

ih+jh/N

φ(t)y(kh+ t)dt

=

L−1∑
i=0

N−1∑
j=0

y(kh+ ih+ jh/N)

∫ ih+(j+1)h/N

ih+jh/N

φ(t)dt︸ ︷︷ ︸
=:αi,j

=

L−1∑
i=0

[
αi,0 αi,1 . . . αi,N−1

]
ỹi[k],

where αi,j is defined as

αi,j :=

∫ ih+(j+1)h/N

ih+jh/N

φ(t)dt (2)

and ỹi[k] as

ỹi[k] :=


y(kh+ ih)

y(kh+ ih+ h/N)
...

y(kh+ ih+ (N − 1)h/N)

 .
See Figure 2 (right) for αi,j . We assume (2) can be easily
computed. For example, by using the trapezoidal rule, we
can numerically compute αi,j by

αi,j =
φ(ih+ jh/N) + φ(ih+ (j + 1)h/N)

2
· h
N

Summarizing, we have the fast discretization of general-
ized sampler S̃h given by the matrix

Si =
[
αi,0 αi,1 . . . αi,N−1

]
.

Finally, we have

yd[k] =

L−1∑
i=0

Siỹi[k].

Figure 4 shows the block diagram of the discretized
operator S for L = 3 in Figure 3. Here LN is the discrete-
time lifting by down-sampling ratio N defined by

LN := (↓N)


1
z
...

zN−1



LN

z−1

z−1

S0

S1

S2

+

+

yd[k]

Fig. 4: Realization of fast discretization S for L = 3

where (↓N) denotes the downsampler

↓N : xd 7→ yd : yd[k] = xd[Nk].

We are now ready to employ the fast sample/hold approx-
imation to solve the H∞ control problem. For brevity of
notation, we adopt the following shorthand notation for the
transfer function D + C(zI −A)−1B:[

A B
C D

]
:= D + C(zI −A)−1B.

Consider the generalized plant shown in Figure 5. The filter
K̃(z) is an LTI (linear and time-invariant), single-input /M -
output system that satisfies

K(z) =
[
1 z−1 . . . z−M+1

]
K̃(zM ).

Define also H̃h := Hh/ML−1M where L−1M is the inverse
discrete time lifting by upsampling ratio M defined by

L−1M :=
[
1 z−1 . . . z−M+1

]
(↑M).

The sampled-data error system Tew can be approximated
by a discrete-time LTI system as in the following theorem.

Theorem 1: Let state-space realizations of F (s) and P (s)
be given by

F (s) =

[
AFc

BFc

CFc
DFc

]
, P (s) =

[
APc

BPc

CPc
DPc

]
.

Let N = Ml where l is a positive integer, and define the
discrete-time LTI system TN as follows:

TN (z) = z−mFN (z)− PN (z)HK̃(z)S(z)FN (z),

where

FN =



AN
F AN−1

F BF AN−2
F BF . . . BF

CF 0 0 . . . 0

CFAF CFBF 0
. . .

...
...

...
...

. . . 0
CFA

N−1
F CFA

N−2
F BF CFA

N−3
F BF . . . 0

 ,

PN =



AN
P AN−1

P BP AN−2
P BP . . . BP

CP DP 0 . . . 0

CPAP CPBP DP

. . .
...

...
...

...
. . . 0

CPA
N−1
P CPA

N−2
P BP CPA

N−3
P BP . . . DP

 ,



[
e−mhsF (s) −P (s)

F (s) 0

]
H̃hS̃h

K̃(z)

Gs

ec wc

yd ud

Fig. 5: Sampled-data control system

AF = eAFch/N , BF =

∫ h/N

0

eAFc tBFc
dt,

AP = eAPch/N , BP =

∫ h/N

0

eAPc tBPc
dt,

H := diag {Il} ∈ RN×M , Il := [1, 1, . . . , 1]T ∈ Rl,

S(z) :=

L−1∑
i=0

z−iSi ∈ R1×N .

Then, for each fixed K̃ and for each ω ∈ [0, 2π/h), the
frequency response

‖TN (ejωh)‖ → ‖Tew(ejωh)‖,
as N →∞, and this convergence is uniform with respect to
ω ∈ [0, 2π/h). Furthermore, this convergence is also uniform
in K̃ if K̃ ranges over a compact set of filters.
The proof is almost the same as in [12, Theorem 1].

IV. DESIGN EXAMPLE

In this section we demonstrate the effectiveness of the
present framework via two numerical examples.

Example 4.1: We design the filter K(z) with upsampling
factor M = 8, sampling period h = 1, and delay step m = 4.
The analog filters F (s) and P (s) are given by

F (s) =
1

(Ts+ 1)(0.1Ts+ 1)
, T = 7.0187, P (s) = 1.

Reflecting a typical energy distribution of orchestral music,
the time constant T = 7.0187 is taken to be equivalent to 1
kHz with sampling frequency 44.1 kHz. It corresponds to an
energy distribution that decays by −20 dB per decade from
1 kHz and −40 dB per decade from 10 kHz.

The simulation results are shown in Figures 6a – c.
Figure 6a shows the response of the designed filter against

the input sin(π/8)t. This is below the Nyquist frequency π,
and the response shows a good tracking performance. (The
original sinusoid is delayed to accommodate the delay in-
duced by the sampling and reconstruction process.) However,
comparing this with Figure 7a, we see that the advantage of
the current framework where the approximation is quite poor
without upsampling.

This is still for tracking in low frequency. In order to really
ensure the approximation quality of the present method, we

show the response against a signal that contains components
above the Nyquist frequency. This is not very adequate for
conventional Shannon paradigm where the reconstruction is
limited below the Nyquist frequency. Figure 6b shows the
response against the input signal sin(π/8)t+0.05 sin(9π/8)t.
It is seen that this result shows tracking to this signal
with such a high-frequency component. While this shows
a fairly good tracking, its non-upsampled counterpart Fig-
ure 7b shows a very poor tracking performance, almost
indistinguishable from the one shown in Figure7a, ignoring
the high-frequency component 0.05 sin(9π/8)t. This clearly
exhibits the advantage of the present framework allowing
the intersample interpolation with upsampler and signal
generator F (s).

Figures 6c and 7c also further show the tracking results
for sin(π/8)t with phase-shifted 0.05 sin((9π/8)t + 10).
Again the upsampled result Figure 6c shows a better result
compared to Figure 7c.

On the other hand, the present generalized sampling,
particularly with a continuous kernel, does not necessarily
work well for discontinuous signals or signals with much
high frequency. For example, the Daubechies kernels do not
work well for some discontinuous functions like rectangular
waves. This is not surprising since such kernel functions
were developed to allow for more efficient expansion for
continuous or smooth signals. The following example gives
some ideas.

Example 4.2: Figure 8 shows their responses against a
rectangular wave. The filters are designed with the same
F (s) as Example 4.1, but here we take h = 0.1 and M = 2
for simulation. Figure 8a shows the result with the 2nd
order Daubechies kernel 2φ while Figure 8b shows the result
using a sampled-data filter with ideal sampler by the method
developed in [12]. The result by the Daubechies kernel shows
larger errors, particularly at discontinuities, which are a result
of the continuity of the kernel function, and also of the
difference between the ideal sampler and the length of the
kernel of this generalized sampler. For comparison, we also
show the result by the 32-tap Johnston filter in Figure 8c;
this shows more ringing than Figure 8b due to the Gibbs
phenomenon ([12]). More discussions follow in the next
section.

V. DISCUSSION AND CONCLUDING REMARKS

We have generalized the sampled-data filter design
methodology given in [12] to the more general context
involving generalized sampling. In particular, we have seen
that for some generalized sampling devices such as the
one induced by the Daubechies 2 scaling function, we can
improve the approximation quality by the present method
with upsampling. While the approximation is not satisfac-
tory without upsampling, it can be substantially improved
by interpolating the intersample behavior using the present
method. This suggests the following: In practice, it is often
the case that we cannot have sufficient resolution in the given
data, it is possible to go over to the higher order expansion
by optimally interpolating the intersample behavior, and in
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Fig. 6: Reconstruction of sinusoids with upsampling factor
M = 8

particular, higher-order wavelet expansion. This can have
some interesting consequences in signal analysis or system
identification.

On the other hand, we have also noted in Figure 8 that
the present generalized sampling method with continuous
kernels does not necessarily work well for some signals that
contain much high frequency, for example rectangular waves.
This is in contrast with the method developed in [12]. There
are two reasons. First, the generalized samplers considered
here are continuous, and hence not adequate for tracking
discontinuous signals, or those with much high-frequency.
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Fig. 7: Reconstruction of sinusoids without upsampling

Secondly, the sampling kernels have support spreading over
multiple sampling periods, thereby limits resolution in time.
This is particularly prevalent in Figure 8, although this
limitation can be circumvented to some extent as noted
above, e.g., as contrasted in Figure 6 vs Figure 7.

To remedy the problem above, one can resort to expand
the residual error via higher-order wavelets, or employ
scaling/wavelet functions that are more adequate for high-
frequency reconstruction, for example, coiflets ([2]). Some
related aspects were discussed in [3], but a more elaborate
study is a topic for future study.

We also note that it is possible to extend the present



0 5 10 15

Time [sec]

-2

-1

0

1

2

(a) Response against a rectangular wave (Daubechies)

0 5 10 15

Time [sec]

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Response via a sampled-data filter with ideal sampler

0 5 10 15

Time [sec]

-1.5

-1

-0.5

0

0.5

1

1.5

(c) Response via the Johnston filter with ideal sampler

Fig. 8: Response against a rectangular wave

framework to the more general context with non-orthogonal
scaling functions, in particular, box splines. In such a case,
although the scaling functions have compact support, the
corresponding expansion cannot be obtained by an inner
product with such scaling functions, but rather with their
duals. This was discussed partly in [3] as well, but it needs
to be explored also in detail in our future study.
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