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A novel atlas of gene expression in human
skeletal muscle reveals molecular changes
associated with aging
Jing Su1†, Carl Ekman2†, Nikolay Oskolkov2, Leo Lahti3, Kristoffer Ström2,4, Alvis Brazma1, Leif Groop2,
Johan Rung1,5 and Ola Hansson2*

Abstract

Background: Although high-throughput studies of gene expression have generated large amounts of
data, most of which is freely available in public archives, the use of this valuable resource is limited by
computational complications and non-homogenous annotation. To address these issues, we have performed a
complete re-annotation of public microarray data from human skeletal muscle biopsies and constructed a
muscle expression compendium consisting of nearly 3000 samples. The created muscle compendium is a
publicly available resource including all curated annotation. Using this data set, we aimed to elucidate the
molecular mechanism of muscle aging and to describe how physical exercise may alleviate negative
physiological effects.

Results: We find 957 genes to be significantly associated with aging (p < 0.05, FDR = 5 %, n = 361). Aging
was associated with perturbation of many central metabolic pathways like mitochondrial function including
reduced expression of genes in the ATP synthase, NADH dehydrogenase, cytochrome C reductase and
oxidase complexes, as well as in glucose and pyruvate processing. Among the genes with the strongest
association with aging were H3 histone, family 3B (H3F3B, p = 3.4 × 10−13), AHNAK nucleoprotein, desmoyokin
(AHNAK, p = 6.9 × 10−12), and histone deacetylase 4 (HDAC4, p = 4.0 × 10−9). We also discover genes
previously not linked to muscle aging and metabolism, such as fasciculation and elongation protein zeta 2
(FEZ2, p = 2.8 × 10−8). Out of the 957 genes associated with aging, 21 (p < 0.001, false discovery rate = 5 %, n = 116)
were also associated with maximal oxygen consumption (VO2MAX). Strikingly, 20 out of those 21 genes are
regulated in opposite direction when comparing increasing age with increasing VO2MAX.

Conclusions: These results support that mitochondrial dysfunction is a major age-related factor and also highlight the
beneficial effects of maintaining a high physical capacity for prevention of age-related sarcopenia.
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Background
Aging profoundly affects skeletal muscle, including loss
of muscle mass and strength and increasing the levels of
fat and connective tissue [1]. This condition, often
termed age-related sarcopenia, leads to a variety of phys-
ical conditions that reduce life quality and overall health

in aging individuals [2, 3]. As we age, we lose approxi-
mately 1 % of leg lean mass per year and approximately
2.5–4 % in leg strength, men to a higher extent than
women [4]. This indicates that sarcopenia is not only a
matter of loss of muscle mass but rather a concomitant
loss of muscle mass and a decline of muscle quality. In
order to efficiently delay the onset and severity of sarco-
penia, it is crucial to more in detail describe the molecu-
lar mechanisms causing this physiological deterioration
of muscle function.
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In one of the largest previous studies on gene expression
in aging muscle [5], muscle biopsies from 81 individuals
were investigated. Zahn et al. described a 250-gene signa-
ture for muscle aging, compared this to age-associated
gene regulation in other tissues and found increased ex-
pression of pathways regulating cell growth, complement
activation, and ribosomal and extracellular matrix genes
and decreased expression of genes for chloride transport
and mitochondrial oxidative phosphorylation (OXPHOS).
De Magalhaes and colleagues [6] conducted a meta-
analysis of microarray experiments on aging in mice, rats,
and humans across a variety of tissues. In this cross-
species, cross-platform analysis, gene orthologues were
meta-analyzed for approximately 400 samples, 42 of which
were from human skeletal muscle, comparing old to
young individuals. They found 73 genes with altered ex-
pression, with increased expression of genes involved
in inflammation and immune response, and consistent
with Zahn et al. reduced expression of genes associ-
ated with energy metabolism, particularly mitochon-
drial genes (accessible through the GenAge database,
http://genomics.senescence.info/genes/). It has also
been shown that aging individuals have increasing
levels of mitochondrial DNA damage leading to re-
duced expression of genes in the OXPHOS pathway
[7]. Taken together, a general finding is that mito-
chondrial dysfunction is partly responsible for reduced
muscle function with aging [8]. Reduced expression of
genes in the OXPHOS pathway, including the regulator
peroxisome proliferator-activated receptor gamma coacti-
vator alpha (PGC1α), has also been found to be reduced in
skeletal muscle from type 2 diabetic patients [9, 10], a
strongly age-related metabolic disorder. Another central
pathway previously associated with muscle aging is the
mammalian target of rapamycin (mTOR), including the
mTOR complex I (mTORC1) which plays a crucial role in
the regulation of translation in skeletal muscle [11]. A
metabolic link between mTOR and glycolysis has also been
described where low glycolytic flux leads to binding of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to
the mTORC1-regulator Rheb thereby inhibiting mTORC1
signaling and suppression of protein synthesis [12].
To understand more the molecular mechanisms of

aging in detail, larger sets of samples are required to
provide more power to detect regulatory patterns on the
gene level. We and others have previously combined
data for studies of global transcriptomic patterns across
thousands of samples [13–16], but in this study, we ad-
dress specific phenotype-related questions for skeletal
muscle with a collected compendium of 2852 samples.
Reuse of public data is however hampered by the use of
different experimental platforms and sample annotation,
and analysis is not straightforward when combining such
data [17].

Based on this muscle expression compendium, we
present the largest study to date of gene expression in
human skeletal muscle related to aging. We address the
concerns of data heterogeneity by an extensive manual
re-annotation of all samples and a variety of computa-
tional methods described below. In our meta-analysis,
we find 957 genes significantly associated with aging.
The data provides substantially more detail to gene-
specific effects of the transcriptome and shows more
widespread regulation of gene expression associated with
aging than previously reported. We further study the
pleiotropic associations of the 957 genes associated with
aging and show for example that 20 out of the 21 aging
genes are also associated with physical capacity but regu-
lated in the opposite direction with increased physical
capacity as compared to increased age.
The skeletal muscle expression compendium is publicly

available at ArrayExpress (http://www.ebi.ac.uk/arrayex-
press/) with accession number E-MTAB-1788.

Methods
Data collection and annotation
Experiments stored in the ArrayExpress archive [18]
were identified by keyword searching aimed at identify-
ing experiments that contained microarrays done on
skeletal muscle tissue from living human individuals and
with interventions limited to training and glucose/insu-
lin regulation, excluding for example drug treatments.
Samples were annotated using the categories and factor
values in Table 1.

Preprocessing and quality control
Data normalization was done on the raw .cel files for
HG-U133A and HG-U133 + 2 using Robust Probabilistic
Averaging (RPA) [19, 20]. Custom array definition files
were created using the customCDF R/Bioconductor
package (v16), removing probes mapping to known
SNPs, and summarizing probes for each gene with an
ENSG identifier. Quality control was carried out using
the R/Bioconductor package array QualityMetrics [21]
removing detected outlier arrays.

Statistical analysis
Linear regression analysis for the effect of age and phys-
ical capacity and removal of study effects was carried
out using the limma R/Bioconductor package and the
eBayes function. A linear model

x ∼ ageþ sexþ study

was fitted to the RPA-normalized, gene-summarized
data for all genes on each of the two platforms. The
“study” parameter was represented by the original
ArrayExpress accession number. Model coefficients and
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p values were estimated using the eBayes function in
limma. For genes present on both arrays, the minimum
p value and the maximum of the β values for the

regression slope of the age parameter were calculated. p
value correction for false discovery rate (FDR) < 0.05 was
done using the Benjamini-Hochberg method using N =
31,523 (the total number of p values calculated for the
two arrays).
To calculate profiles of gene expression as a function

of age across the studies, we adjusted the original data
for study effects by subtracting the effect quantified in
the regression model. For each gene i and sample j, we
calculated

xij ¼ ci þ βage;i � agej þ βsex;i � sexj þ εi

where ci is the intercept of the linear regression above, βage
and βsex are the slopes for the age and sex factors, and εi is
the gene-specific residual from the previous regression.
In the analysis of physical capacity, we used 116 sam-

ples from the HG-U133 + 2 array with harmonized an-
notation for physical capacity, measured as VO2MAX in
liters per minute to kilogram (L/(min × kg)). For these,
we fitted a linear model

x ∼ physical capacity þ Saturday

to the RPA-normalized, gene-summarized expression
data. We estimated p values and regression coefficients
for the model using the limma package with the eBayes
function, as above.
We tested the significance of the overlap between sub-

sets of the 957 genes with database lists using the hyper-
geometric test and a background of N = 19,597 genes.
Differential expression between subjects with type 2 dia-

betes (T2D) and normal glucose tolerance (NGT) individ-
uals for the 957 age-associated genes was estimated by
meta-analysis of three datasets with full annotation for
these groups: E-GEOD-18732, E-GEOD-19420, and E-
GEOD-25462, including 102 T2D and 87 NGT samples.
The datasets were individually normalized with RPA
and meta-analyzed using the geneMeta R/Bioconduc-
tor package (www.bioconductor.org/packages/release/
bioc/html/GeneMeta.html). Association to body mass
index (BMI) was calculated by retrieving all samples
within the seven selected datasets with annotation for
BMI from the HG-U133 + 2 arrays and normalized as a
single dataset using RPA, followed by a linear regression
for BMI adjusted for sex and study, as identified by
ArrayExpress accession number and analogously as de-
scribed for age and physical capacity.

Comparison with public RNA sequencing data
RNA sequencing expression data on human skeletal
muscles from n = 157 donors from Genotype-Tissue Ex-
pression (GTEx) project (http://www.gtexportal.org/)
were used [22]. Across-samples normalization was per-
formed using the TMM normalization method [23].

Table 1 Defined terms and value ranges used to annotate the
compendium

Parameter Value Arrays

Sex Male 1085

Female 691

Mixed 443

Unknown 85

Age Age given 993

Age group 642

Age range 518

Unknown age 151

T2D status Non-T2D 1269

NGT 321

IGT 86

IGT or T2D 89

T2D 124

Unknown 415

BMI BMI given 207

BMI group 637

BMI unknown 1460

Physical capacity PC given 175

PC group 81

PC unknown 2048

Family history of diabetes FH+ 24

FH− 159

FH unknown 2121

Muscle type Quad 1970

Other muscle 242

Unknown 92

Interventions Clamp 316

Longer training 158

Shorter training/damage 213

Immobilization 2 days 72

Immobilization 4–14 days 100

Immobilization 60 days 170

Protein intake 88

Other 196

Immobilized/trained Trained 108

Immobilized 175

Acute trained >24 h 106

2852 samples were annotated. As far as possible, exact values were recorded
for numerical parameters. For some studies, individual records were not
resolvable, and instead a group average and dispersion measure was given
T2D type 2 diabetes
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Association of gene expression for each gene with age
was calculated with linear regression using an additive
model adjusted for gender. The obtained p values were
FDR corrected for multiple testing (FDR < 0.05,
Benjamini-Hochberg). All calculations were done using
R language for statistical computations.

Results
Building the skeletal muscle data compendium
From ArrayExpress [18], microarray datasets from hu-
man skeletal muscle biopsies were selected and manu-
ally curated based on the original publications,
including available supplemental data (see “Methods”
section). The selected experiments contain data from
2852 microarrays from 20 different array platforms
(Figure S1 in Additional file 1). Affymetrix-manufactured
arrays dominate, represented by 11 different array types
and in total 2475 arrays. Using a controlled vocabulary,
sample and experimental parameters selected for re-
annotation were defined. We retrieved the original papers
along with supplemental material to re-annotate each
microarray using our newly defined parameters and
their value ranges (Table 1). To define a generic control
set, representing a normal, healthy population, a set of
1188 “super controls” were selected. In this group, sam-
ples were excluded if the individual had any kind of dis-
ease, was obese (BMI > 30), or was subjected to any severe
intervention.
To avoid the strong bias introduced by differences in

individual probe sequences when combining data from
different array platforms [24], we restricted this study to
data from each platform independently. We used a sub-
set of the compendium based on the two most common
platforms: 568 arrays from the Affymetrix HG-U133A,
and 1174 arrays from the HG-U133 + 2 platform. The
probe effects were addressed by normalizing each data-
set with RPA [19, 20], which models the affinity of each
individual probe, assuming it to be a stochastic variable
with a normal distribution with probe set-specific mean
and variance rather than a constant, as in many other
normalization methods including RMA and MAS5. To
avoid biases introduced by genetic diversity in the stud-
ied individuals, we removed all probes mapping to
known human SNPs with a minor allele frequency
higher than 5 % in a Western European population. Out
of 604,258 probes on the HG-U133 + 2 array, 4840
probes were removed; on the HG-133A array, 2157 out
of 247,965 probes were removed. Oligonucleotide probes
were summarized to gene level probe sets rather than
transcript specific ones, also to minimize biases intro-
duced by probe sequences and their representation on
different arrays. After quality control [21], 1236 arrays
from the two platforms remained: 758 from HG-U133 +
2 and 485 from HG-U133A. The two resulting data

matrices contain data for 19,597 genes tested on the
HG-U133 + 2 array and a subset of 11,926 of these on
the HG-U133A array. The two resulting cross-study data
matrices are also available from ArrayExpress, accession
number E-MTAB-1788.
These comprehensive data sets represent comparable

human skeletal muscle expression data over a vast array
of different experimental conditions. In order to identify
constitutively expressed genes, we analyzed the variance
of expression only removing the study effect. The genes
with most stable expression are presented in Table S1
(see Additional file 1) and are not likely to be influenced
by the experimental conditions. The most stable genes
found were myoglobin (MB), GAPDH, and alpha 1 actin
(ACTA1) and could serve as candidates for “housekeep-
ing” endogenous control genes in quantitative real-time
PCR experiments.

Expression levels of 957 genes are associated with age
We selected a subset of 361 arrays from the compendium
to study the effect of aging on gene expression, i.e., 211 ar-
rays from the HG-133A array and 150 from the HG-
U133 + 2 array that had specific annotation of age and
gender, ranging from <1 year up to 83-year-old individuals
(Figure S2 in Additional file 1). Using a linear model with
sex and study ID as covariates, 957 genes were signifi-
cantly associated with age (p < 0.05, Benjamini-Hochberg
correction for multiple testing) (top-50 genes are shown
in Table 2). Of these, 484 were upregulated and 473 down-
regulated with increasing age. We verify the removal of
study effects by principal component analysis (PCA) be-
fore and after study adjustment. Whereas samples from
the same study primarily cluster together in the PCA of
the unadjusted dataset, this effect is removed in the
adjusted one (Fig. 1). Similarly, we use PCA to verify the
absence of gender biases in the dataset after the adjust-
ment for study effects (Figure S3 in Additional file 1). A
significant overlap (N = 13, p = 1.0 × 10−5) and complete
concordance for the direction of the expression for all 13
genes found in our data set out of the 73 genes detected
in the multispecies de Magalhaes study [6] were observed.
Twenty-five of the 957 genes are reported in the GenAge
database of 288 genes linked to aging, an overlap of the
two lists which is significant at p = 0.0020 using a hyper-
geometric test. The GenAge database has also collected
and curated a list of genes in loci detected in genome-
wide association studies for longevity. They report 886
genes, 353 of which were significantly associated in the
original studies. Out of this list, we detect an overlap of 25
out of 957 genes (p = 0.024). Seventeen of the 957 aging
genes have been previously reported in the top 250 genes
by the Zahn study [5] (overlap p = 0.065). Using publicly
available RNA sequencing data (n = 157) from the GTEx
project (http://www.gtexportal.org/), 91 genes out of the
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957 were found associated with age, a significant overlap
at p = 2.2 × 10−16.
The genes with the strongest association to aging in

the current study are H3F3B (p = 3.4 × 10−13) and AHNAK
(p = 6.9 × 10−12), both showing increased expression with
increased age. AHNAK is a large protein localized to the
sarcomere of skeletal muscle and increased expression of
AHNAK with aging is in line with the study by de Magal-
haes et al. [6]. Increased expression of AHNAK has previ-
ously also been associated with a low VO2MAX and poor
muscle fitness [25]. The two genes most strongly showing
reduced expression with increasing age are homeobox B2
(HOXB2, p = 1.0 × 10−11) and deleted in lymphocytic
leukemia 1 (DLEU1, p = 8.6 × 10−10). The full list of 957
genes is available in Table S2 (see Additional file 2).

Aging significantly alters genes involved in inflammation
and mitochondrial metabolism
We analyzed the lists of 484 genes upregulated and 473
downregulated with aging for enrichment of specific
pathways and processes using gene set enrichment ana-
lysis (GSEA) (Table 3) [9]. We find enrichment of genes
with increased expression in six pathways, connected to
the complement system, indicating an inflammatory re-
sponse with aging (p < 0.05, Bonferroni adjusted). This is
in line with Zahn et al. that also reported increased
expression of genes in the complement system with
aging [5]. Thirteen pathways were enriched in genes
with decreased expression associated with increasing
age (p < 0.05, Bonferroni adjusted). Eight of these rep-
resent mitochondrial components, supporting a per-
turbation of mitochondrial function with aging. Four
groups connected to metabolism were also found, in-
dicating reduced expression of genes in the electron
transport chain (ETC)/OXPHOS pathway, in the citric
acid/tricarboxylic acid cycle (TCA), and in pyruvate
metabolism. We observe significant downregulation with
increasing age of all four major complexes of the ETC

Table 2 Top 50 genes significantly associated with age across
361 samples

Gene Min (p) Max |β|

H3F3B 3.39E-13 0.0098

AHNAK 6.87E-12 0.0086

HOXB2 1.01E-11 −0.0184

CRIM1 5.34E-11 0.0124

NAP1L1P3 9.74E-11 0.0154

ARFGAP2 3.56E-10 0.0069

WDR6 4.47E-10 0.0069

DLEU1 8.61E-10 −0.0117

USP6 1.43E-09 0.0133

TCF25 2.70E-09 0.0064

SCN4B 3.13E-09 −0.0289

ZNF274 3.87E-09 0.0129

HDAC4 4.04E-09 0.0155

SH3BP5 5.04E-09 0.0114

SART3 5.32E-09 0.0050

CASC3 9.73E-09 0.0061

CIRBP 1.14E-08 0.0091

HIST1H2BN 1.49E-08 −0.0065

FUBP1 1.74E-08 0.0058

FAM171A1 1.94E-08 −0.0113

NPPA 1.97E-08 −0.0048

TMEM59L 2.39E-08 −0.0080

UBE2O 2.79E-08 −0.0060

FEZ2 2.83E-08 0.0126

ALS2CL 3.15E-08 −0.0063

C1S 3.22E-08 0.0137

RXRG 3.23E-08 −0.0095

NT5C2 3.64E-08 0.0115

TRMT112 4.42E-08 0.0116

PRNP 4.68E-08 0.0094

NOL9 6.31E-08 0.0049

RBM10 6.66E-08 0.0056

ANP32B 6.71E-08 0.0092

TOMM40L 6.74E-08 −0.0144

HTR5A 7.21E-08 −0.0051

SEC24C 7.78E-08 0.0060

BUB3 7.98E-08 0.0036

DAAM2 8.92E-08 −0.0091

HSPA1A 8.93E-08 0.0091

SEZ6L2 9.12E-08 −0.0046

MRPL4 9.38E-08 −0.0080

CMC2 1.04E-07 −0.0091

NR1D1 1.04E-07 −0.0054

Table 2 Top 50 genes significantly associated with age across
361 samples (Continued)

ENDOG 1.11E-07 −0.0126

MRPL48 1.25E-07 −0.0066

FRAT2 1.31E-07 −0.0064

SYNRG 1.31E-07 0.0040

PPIC 1.38E-07 −0.0076

POMT1 1.47E-07 0.0061

DECR2 1.65E-07 0.0043

The minimum p and maximum β values were calculated for genes present in
both array datasets, adjusted for sex and study effect. A positive β value
implicates increasing gene expression with age. For the full list of 957 genes,
see Table S2 in Additional file 2

Su et al. Skeletal Muscle  (2015) 5:35 Page 5 of 12



located in the inner mitochondrial membrane (Figure S4
in Additional file 1). Subunits of NADH dehydrogenase
(NDUFAF5, p = 1.0 × 10−4; NDUFS3, p = 8.8 × 10−5), cyto-
chrome c reductase (UQCR10, p = 2.6 × 10−4; UQCR11,
p = 7.7 × 10−4) and oxidase (COX10, p = 4.3 × 10−5;
COX4I1, p = 1.7 × 10−4; COX7B, p = 3.1 × 10−4; COX7C,
p = 6.1 × 10−4; COX5B, p = 1.1 × 10−3), and ATP synthase
(ATP5G3, p = 1.1 × 10−6; ATPAF1, p = 3.6 × 10−5; ATP5G1,
p = 8.0 × 10−5; ATP5C1, p = 2.0 × 10−4; COX10, p = 4.3 ×
10−5) are all downregulated with increasing age. We also
find that the expression of C-x(9)-C motif containing 2
(CMC2) is decreased with aging (p = 1.0 × 10−7). CMC2 is
required for respiratory growth, and mutants with CMC2
deletion are unable to assemble the cytochrome c oxidase
complex [26]. In the pyruvate dehydrogenase complex
(PDC), proteins A1, B, and X (p = 4.1 × 10−6; 4.2 × 10−5;
1.3 × 10−3) show reduced expression with aging. In
connection to carbohydrate metabolism, the expression of
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1

(PFKFB1) is increased with aging (p = 9.4 × 10−5). Fur-
thermore, glucose uptake through GLUT4 in skeletal
muscle is known to be dependent on TBC1 Domain
Family Member 1 (TBC1D1) [27, 28], the expression
of which is decreased with aging (p = 3.6 × 10−4).

High physical capacity counteracts age-related changes in
muscle expression
Decline in muscle mass and performance with aging
can be prevented by exercise. Therefore, we explored
whether expressions of any of the genes associated
with aging also were influenced by physical capacity
assessed as VO2MAX.
In a subset of 116 samples with information on

VO2MAX, we find 39 genes associated with physical cap-
acity (FDR < 0.05, Benjamini-Hochberg, Table 4), but given
the relatively low number of samples included in the
VO2MAX analysis, we restricted our analysis to the 957
genes associated with age. Of them, 21 were also

Fig. 1 Principal component analysis of the 211 HG-U133A arrays, before (a) and after (b) removal of study effects and corresponding plots for the
150 HG-U133 + 2 arrays (c and d). Different studies (identified by database accession numbers) are represented with different colors, and increasing
age of the individual from whom the biopsy was taken is indicated by the increasing dot size. The relatively strong study effect seen even after
normalization is removed after the adjustment
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associated with VO2MAX (Table 5). It is striking, but not
unexpected, that aging and increased physical capacity af-
fects gene expression in opposite directions for 20 of the
21 genes. Two of these, the suppressor of cytokine signal-
ing 2 (SOCS2) and the fasciculation and elongation pro-
tein zeta 2 (FEZ2) are also associated with BMI (FEZ2:
pBMI = 5.9 × 10−4, SOCS2: pBMI = 7.3 × 10−4); increasing
BMI affects gene expression in the same direction as in-
creasing age (FEZ2: page = 2.8 × 10−8, SOCS2: page = 5.5 ×
10−7) and in the opposite direction with increased physical

capacity (FEZ2: pVO2max = 3.5 × 10−5, SOCS2: pVO2max =
6.3 × 10−8) (Fig. 2).

Effect of body mass index and type 2 diabetes on
the expression of age-associated genes
We find that three of the age-associated genes also were
associated with T2D, CD163 (page = 2.2 × 10−4, pT2D =
2.0 × 10−4), ZNF415 (page = 8.9 × 10−5, pT2D = 8.5 × 10−5),
and GADD45A (page = 5.4 × 10−4, pT2D = 1.1 × 10−4)
(Table 6). Of these, GADD45A and CD163 have

Table 3 Gene set enrichment analysis for the 484 genes upregulated with age and the 473 downregulated

Upregulated sets ES NES FDR q value

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 0.80 2.32 0.0047

REACTOME_INITIAL_TRIGGERING_OF_COMPLEMENT 0.89 2.18 0.0133

REACTOME_COMPLEMENT_CASCADE 0.89 2.15 0.0138

BIOCARTA_COMP_PATHWAY 0.86 2.21 0.0148

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 0.75 2.07 0.0288

BIOCARTA_CLASSIC_PATHWAY 0.90 2.04 0.0361

Downregulated sets

REACTOME_TCA_CYCLE_AND_RESPIRATORY_ELECTRON_TRANSPORT −0.76 −2.90 0.0000

MITOCHONDRION −0.59 −2.70 0.0000

REACTOME_PYRUVATE_METABOLISM_AND_CITRIC_ACID_TCA_CYCLE −0.81 −2.48 0.0008

MITOCHONDRIAL_ENVELOPE −0.74 −2.39 0.0010

MITOCHONDRIAL_MEMBRANE −0.74 −2.37 0.0011

MITOCHONDRIAL_PART −0.74 −2.39 0.0012

KEGG_PARKINSONS_DISEASE −0.73 −2.40 0.0013

ORGANELLE_INNER_MEMBRANE −0.74 −2.30 0.0014

ORGANELLE_ENVELOPE −0.68 −2.33 0.0015

MITOCHONDRIAL_INNER_MEMBRANE −0.74 −2.30 0.0015

ENVELOPE −0.68 −2.26 0.0019

KEGG_OXIDATIVE_PHOSPHORYLATION −0.64 −2.23 0.0024

REACTOME_PYRUVATE_METABOLISM −0.81 −2.22 0.0025

COFACTOR_METABOLIC_PROCESS −0.69 −2.19 0.0037

KEGG_ALZHEIMERS_DISEASE −0.60 −2.07 0.0117

MITOCHONDRIAL_MEMBRANE_PART −0.74 −2.08 0.0123

REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_
COUPLING_AND_HEAT_PRODUCTION_BY_UNCOUPLING_PROTEINS_

−0.70 −2.02 0.0161

REACTOME_GLUCOSE_METABOLISM −0.70 −2.03 0.0162

REACTOME_GLUCONEOGENESIS −0.77 −2.01 0.0187

ION_TRANSPORT −0.82 −1.99 0.0199

COENZYME_METABOLIC_PROCESS −0.82 −2.00 0.0200

REACTOME_REGULATION_OF_PYRUVATE_DEHYDROGENASE_PDH_COMPLEX −0.81 −1.96 0.0246

HYDROGEN_ION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY −0.78 −1.94 0.0283

INORGANIC_CATION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY −0.78 −1.91 0.0340

ION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY −0.50 −1.90 0.0378

MONOVALENT_INORGANIC_CATION_TRANSMEMBRANE_TRANSPORTER_ACTIVITY −0.78 −1.89 0.0380

KEGG_CITRATE_CYCLE_TCA_CYCLE −0.77 −1.89 0.0385
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previously been shown to be associated with T2D in
GWAS [29, 30]. Interestingly, GADD45A has also been
shown to reduce energy production and to stimulate pro-

atrophy mechanisms in skeletal muscle [31]. ZNF415 is
known to inhibit AP1 and p53 transcriptional activity [32],
whereas increased concentration of serum sCD163 is a
risk factor for developing T2D [33]. Two of the 957 age-
associated genes were also associated with BMI, i.e.,
EIF4EBP1 (pBMI = 1.8 × 10−6) and AKR1C3 (pBMI =
4.7 × 10−5).

Discussion
Because of differences in annotation standards, analysis
of public gene expression data is often hampered by an
inability to combine large sets of arrays for new studies.
A major benefit of the data set presented here is that it
has been manually annotated using a harmonized vo-
cabulary, enabling a more comprehensive and detailed
analysis to be performed. We show that through a
strong manual curation effort, we could increase the
combinability and utility of public data, deriving the
until now largest study on aging in human skeletal
muscle, and from the same compendium address add-
itional questions regarding physical capacity, BMI, and
T2D. This skeletal muscle compendium is publicly
available to allow further studies on gene expression in
skeletal muscle.

Table 4 Thirty-nine genes genome-wide significantly associated
with physical capacity across 116 samples

Gene Min (p) Max |β|

SOCS2 6.28E-08 0.014

SLC16A10 8.53E-07 −0.024

HOMER1 1.02E-06 −0.018

ZMYND17 1.84E-06 −0.021

BCKDHB 3.06E-06 0.010

INADL 4.99E-06 −0.011

MAST2 5.28E-06 −0.011

BDH1 5.76E-06 0.015

ZNF133 6.37E-06 −0.008

METTL7A 1.22E-05 −0.022

ZNF57 1.30E-05 0.011

TMEM56 1.61E-05 −0.021

RALGAPA1 1.66E-05 −0.010

CALU 1.89E-05 0.009

SYNPO2L 2.11E-05 −0.014

RP11-304 L19.5.1 2.33E-05 −0.018

AQP1 2.79E-05 0.014

SCPEP1 2.96E-05 −0.014

KIAA1109 3.02E-05 0.004

HYI 3.46E-05 −0.008

FEZ2 3.46E-05 −0.020

EIF4E2 3.79E-05 −0.016

LPL 3.85E-05 0.028

ZNRF1 3.89E-05 −0.010

YPEL2 3.98E-05 −0.013

DMRT2 4.37E-05 0.019

UGGT1 4.61E-05 −0.007

MPP7 4.79E-05 0.012

SUN1 5.37E-05 −0.008

BRD8 5.77E-05 −0.008

PRKAG3 6.04E-05 −0.025

SLC38A1 6.10E-05 0.047

ITGA6 6.32E-05 0.018

CMBL 6.74E-05 −0.011

NANOS1 8.65E-05 −0.035

SCGB1D2 8.80E-05 0.027

MESP1 8.97E-05 −0.008

HSPA2 9.31E-05 −0.022

HEMK1 9.56E-05 −0.008

A positive β value implicates increasing gene expression with increased
physical capacity, adjusted for study effect

Table 5 Of the 957 aging genes, 21 were significantly
associated with physical capacity across 116 samples

Gene p (age) p (PC) β (age) β (PC)

SOCS2 5.51E-07 6.28E-08 −0.0034 0.0143

SLC16A10 0.000785 8.53E-07 0.00354 −0.02369

METTL7A 0.001265 1.22E-05 0.011168 −0.02183

CALU 0.00086 1.89E-05 −0.00311 0.009051

FEZ2 2.83E-08 3.46E-05 0.012589 −0.01958

DMRT2 0.000223 4.37E-05 −0.01035 0.018518

ITGA6 0.000564 6.32E-05 −0.00607 0.017743

MESP1 0.000246 8.97E-05 −0.00638 −0.00767

IP6K2 2.32E-06 0.000112 0.005743 −0.00807

ANKRD27 0.000118 0.000121 0.006005 −0.02111

MPC1 0.000705 0.000148 −0.00478 0.010666

PAF1 1.07E-06 0.000258 0.006852 −0.01292

SLIT2 0.000698 0.000297 0.009127 −0.01342

DDX24 2.01E-05 0.000318 0.004313 −0.00869

FAM53C 0.001351 0.000342 0.003416 −0.00845

CPSF7 0.000491 0.000405 0.003669 −0.00789

DGKD 0.000456 0.000838 0.00429 −0.01153

PHF20 0.001338 0.000871 0.00284 −0.00665

ABRA 0.001011 0.000952 0.014313 −0.01971

NT5C2 3.64E-08 0.000954 0.011521 −0.01262

DNAJB2 9.22E-07 0.000956 0.007196 −0.01217

A positive β value implicates increasing gene expression with increased
physical capacity, adjusted for study effect
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In the current analysis, we present a detailed descrip-
tion of age-related differences in gene expression in hu-
man skeletal muscle and identify 957 genes significantly
associated with age. In line with Zahn et al., we find that
genes in the complement system show increased expres-
sion and mitochondrial genes show decreased expression
with aging [5]. Expression of genes in all the major com-
plexes in the ETC, as well as several genes in the PDH
complex decreased with aging (Fig. 3). These results
together with those of others [34, 35] support the
view that elderly subjects have a nearly 50 % lower
oxidative capacity per volume of muscle than younger

subjects [36]. At the cellular level, this decrease has
been ascribed to a reduction in mitochondrial content
and lower oxidative capacity of the mitochondria [36],
i.e., this decrease of mitochondrial constituents could
either reflect defective mitochondria or decreased number
of mitochondria or both. Several potential regulators of
mitochondrial mass and function were identified among
the 957 age-associated genes in the current study. For ex-
ample, ENDOG is a protein regulated by PGC1A, shown
to interact with the mitochondrial genome to regulate
mitochondrial mass [37]. TOMM40 is a crucial subunit of
the translocase responsible for import of nuclear-encoded
mitochondrial precursor proteins [38], which has previ-
ously been associated with aging and with exercise-
induced mitochondrial biogenesis [39]. MRPL4 and
MRPL48 are components of the mitochondrial ribosome,
responsible for the production of essential oxidative phos-
phorylation proteins and CMC2 is required for mitochon-
drial cytochrome c oxidase assembly [26]. HCCS and
TFRC are other proteins associated with aging that are re-
quired for proper functioning of the ETC [40, 41]. Among
other potential regulators associated with aging are two

Fig. 2 Expression levels of SOCS2 (a), FEZ2 (b), MPC1 (c), and NT5C2 (d) in relation to age. Batch effect-adjusted expression levels are shown

Table 6 Of the 957 aging genes, three were associated with
type 2 diabetes

Gene p (age) p (T2D) β (age) Z (T2D)

CD163 0.00022 0.000195 0.009341 3.725788

ZNF415 8.93E-05 8.49E-05 −0.01078 −3.9301

GADD45A 0.000541 0.000112 0.011251 3.862089

Analysis of 102 samples with type 2 diabetes (T2D) versus 87 normoglycemic
individuals. A positive Z value implicates increasing gene expression with T2D,
adjusted for study effect
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forkhead transcription factors, i.e., FOXO1 and FOXO3.
Both of these have also previously been implicated for
roles in aging, longevity, and muscle atrophy [42, 43]. In
summary, deterioration in skeletal muscle mitochondrial
function is already well recognized as a major factor con-
tributing to age-related muscle degeneration [34, 35], and
our findings support this claim on a broad molecular level,
identifying a large number of potential regulators.
We find that genes that have a function in glucose up-

take and energy sensing are strongly affected by aging.
For example, we see reduced expression of the γ1 regu-
latory unit of AMPK with increased age. AMPK is a
major energy sensor in skeletal muscle, controlling cru-
cial steps of both glucose and lipid metabolism through
the ability to sense AMP levels [44]. Reduced AMPK ex-
pression is known to result in lower ability of the muscle
to utilize glucose through the GLUT4 transporter and to
reduce the effectiveness of exercise as a stimulant of glu-
cose uptake and ATP generation through glycolysis, with
negative effects on glycemic control and regeneration of
muscle mass. Induction of NT5C2 expression with in-
creased age is a possible explanation to the age-associated
reduction in AMPK activity, which in turn could be an
important contributing factor to reduced mitochondrial
function associated with aging [45]. Silencing of NT5C2
expression in cultured human myotubes increased the
AMP/ATP ratio and AMPK activity and promoted palmi-
tate oxidation and glucose transport [46], and endogenous
expression of NT5C2 is known to inhibit basal lipid

oxidation and glucose transport in skeletal muscle.
AMPK, in turn, appears to regulate GLUT4 expression via
the HDAC4/5-MEF2 axis [47], and in this study, we de-
tected an increased expression of HDAC4 with increased
age. The importance of the regulation of GLUT4 levels by
AMPK in skeletal muscle is supported by this study show-
ing regulated levels of NT5C2 with age, which can be re-
versed by physical capacity. Together, the interactions
between age-associated changes in gene expression in
these key pathways may explain the reduced ability to
both generate energy for muscle contraction during exer-
cise and to utilize circulating glucose in the aging muscle.

Muscle aging and physical capacity
Strikingly, we find that genes that are associated with both
aging and physical capacity are largely counteracting. The
presented data thereby support efforts to maintain high
physical fitness in an aging population to counteract nega-
tive effects on mitochondrial function [48]. In particular,
we hypothesize that SOCS2 and FEZ2, which show signifi-
cant associations with age, BMI, and physical capacity and
acting in the same direction for BMI and age but in the
opposite direction for increasing physical capacity, have
key regulatory functions in processes that link these three
factors. SOCS2 interacts strongly with the activated IGF1R
and may play a regulatory role in IGF1 receptor signaling
[49]. Age-associated difference in the mRNA level of
SOCS2 has previously been demonstrated in muscle from
rat, where it was suggested to reflect resistance to the

Fig. 3 Schematic illustration of major metabolic effects of aging in human skeletal muscle. A subjectively selected set of effector and regulatory
genes from the 957 age-associated genes are shown with their direction of regulation shown with respect to increasing age
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effect of growth hormone [50]. Also, an acute bout of re-
sistance exercise is capable of upregulating SOCS2 in hu-
man skeletal muscle [51]. FEZ2 is to our knowledge a
novel age-associated gene, the expression of which was al-
tered in the opposite direction with physical capacity.

Conclusions
We show that through a strong manual curation effort,
we could increase the combinability and utility of public
data, deriving the until now largest study on aging in hu-
man skeletal muscle. This skeletal muscle compendium
is publicly available, with applications for further studies
on transcriptional regulation in skeletal muscle for a
number of physiological and biological questions. Over-
all, our results paint a convoluted picture with many
age-related pathways affecting a wide range of funda-
mental cellular processes. These results support that
mitochondrial dysfunction is a major age-related factor
and also highlight the beneficial effects of maintaining a
high physical capacity for prevention of age-related
sarcopenia.
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