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Preface

In this thesis we present contributions to polynomial equation solving and model
fitting. The contribution to polynomial equation solving is a methodology to
simplify state-of-the-art methods for solving systems of multivariate polynomi-
als when the system displays symmetries. In the area of model fitting there are
two main topics. The first is methods for optimal model fitting for geometrical
problems. We give theoretical results and develop practical algorithms for several
problems in computer vision. All of these problems result in polynomial equa-
tions and solvers are derived, some of which have symmetry of the type mentioned
above. The second is sensor network calibration, being a model fitting problem
as well. We identify specific requirements for when the geometric structure of the
bipartite sensor networks can be obtained from sensor-to-sensor measurements
and derive solvers for these cases.
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Chapter 1

Introduction

The problem of fitting models to measured data has been studied extensively, not
least in the field of computer vision. A central problem in this field is the difficulty
in reliably finding corresponding structures and points in different images. This
difficulty results in large portions of outlier data. This thesis presents theoretical
results improving the understanding of the connection between model parameter
estimation and possible outlier-inlier partitions of data point sets. Using these
results a multitude of applications can be analyzed in respects to optimal outlier-
inlier partitions, multi-model fitting and model fitting under truncated norms.
Practical polynomial-time optimal solvers are derived for several applications, in-
cluding but not limited to multi-view triangulation and image registration.

The second major topic in this thesis is self calibration of sensor networks.
Sensor networks play an increasingly important role with the increased availabil-
ity of mobile, antenna-equipped devices. The application areas can be extended
with knowledge of the different sensors relative or absolute positions. We study
this problem in the context of bipartite sensor networks. We identify solvability
requirements for several configurations, and present a framework for how such
problems can be approached. Further we utilize this framework to derive several
solvers, whose usefulness we show in both synthetic and real examples.

In both these types of model estimation, as well as in the classical random
sampling based approaches minimal cases of polynomial systems play a central
role. A majority of the problems tackled in this thesis will have solvers based on
recent techniques pertaining to action matrix solvers. New application-specific
polynomial equation sets are constructed and elimination templates designed for
them. In addition a general improvement to the method is suggested for a large
class of polynomial systems. The method is shown to improve the computational
speed by significant reductions in the size of elimination templates as well as in
the size of the action matrices. In addition, the methodology improves the average

1



CHAPTER 1. INTRODUCTION

numerical stability of the solvers.

1.1 Organisation of the Thesis

Two main application areas have been studied and the thesis is structured to reflect
this. Common to both these areas are polynomial solving, and a central regarding
improving polynomial solving in general is given already in Chapter 3. This result
is utilized in both application areas.

Chapter 2 This chapter gives a brief and in no ways complete background to
the problems and concepts that the thesis builds upon.

1.1.1 Polynomial Equation Systems

Chapter 3 This chapter gives additional details on the methodology used to
solve the polynomial systems of the later chapters, and introduces the first main
contribution of the author; a method for exploiting symmetries in polynomial
equations.

1.1.2 Robust and Tractable Model Fitting

Chapter 4 One of the most common problems in computer vision is model
fitting in the presence of outliers. In this chapter this problem is analyzed and
theoretical results are given that allows for algorithms guaranteeing optimal so-
lutions in polynomial time. The mathematical formulation includes, but is not
limited to, the strict inlier-outlier problem.

Chapter 5 The ideas from Chapter 4 are adapted for optimal solutions of several
problems in inlier-outlier and truncated norm sense. A historical motivation of
this cost function and theoretical results of when the method is applicable are
given.

Chapter 6 The problem of image registration that was solved under truncated
L2-norm in Chapter 5, is further analyzed. A fast algorithm for minimizing the
L1-, and truncated L1-loss for the problem is presented and compared to previous
methods in regards to performance and speed.

2



1.2. CONTRIBUTIONS

1.1.3 Sensor Network Calibration

Chapter 7 In this chapter a subclass of sensor networks is studied, specifically
networks where one set of sensors reside in a lower dimension than the other. All
configurations for which sensor positions can be obtained from pairwise measure-
ments are identified, and solvers are derived for almost all of these.

Chapter 8 Sensor configurations where the measured distances are large in re-
lation to intra distance of the measuring sensors are analyzed. A far field approxi-
mation to the so called TDOA problem is introduced.

1.2 Contributions

The per paper contributions of the author are as follows

• Ask, Erik and Kuang, Yubin and Åström, Kalle, “Exploiting p-Fold Sym-
metries for Faster Polynomial Equation Solving”, Proc. International Con-
ference on Pattern Recognition (ICPR), 2012.

I came up with and developed the main ideas and methods with help from
Kalle Åström. I developed and implemented most of the solvers for the
experiments. Yubin Kuang was responsible for one of the synthetic experi-
ments and aided with the other solvers. I ran most experiments and wrote
the major part of the paper.

• Enqvist, Olof and Ask, Erik and Kahl, Fredrik and Åström, Kalle, “Ro-
bust Fitting for Multiple View Geometry”, Proc. European Conference on
Computer Vision (ECCV), 2012.

I worked on details on the central theoretical concepts. I was in charge of
deriving and implementing most of the equations and polynomial solvers
used. I ran most of the experiments and wrote the corresponding parts of
the paper.

• Ask, Erik and Enqvist, Olof and Kahl, Fredrik, “Optimal Geometric Fitting
Under the Truncated L2 -Norm”, Proc. Conf. Computer Vision and Pattern
Recognition (CVPR), 2013.

This is a continuation of the ideas in the previous paper. I participated in
formulating and proving the central concepts of the theory. I implemented

3



CHAPTER 1. INTRODUCTION

a majority of the solvers and ran most of the experiments. All authors
contributed equally to writing the paper.

• Ask, Erik and Enqvist, Olof and Svärm, Linus and Kahl, Fredrik and Lip-
polis, Giuseppe, “Tractable and Reliable Registration of 2D Point Sets”,
Proc. European Conference on Computer Vision (ECCV), 2014.

I sketched early version of the central proofs, and refined them together
with my co-authors. I ran most experiments and did most of the time and
complexity analysis. I wrote most part of the experimental sections of the
papers, and some parts of the theoretical section.

• Enqvist, Olof and Ask, Erik and Kahl, Fredrik and Åström, Kalle, “Tractable
Algorithms for Robust Model Estimation”, To Appear in Proc. Interna-
tional Journal of Computer Vision (IJCV), 2014.

This is an extended version of the ECCV 2012 paper and CVPR 2013 pa-
pers listed above. In addition to contributions stated above, I performed
new experiments to establish average runtimes for convergence of our meth-
ods and standard methods. In particular the break points at which our
methods outperform standard methods are established. I also wrote this
part of the paper.

• Ask, Erik and Burgess, Simon and Åström, Kalle, “Minimal Structure and
Motion Problems for TOA and TDOA Measurements with Collinearity
Constraints”, Proc. International Conference on Pattern Recognition Applica-
tions and Methods, 2013.

The idea to investigate this problem came from Kalle. I established the
requirements for solvable cases and derived all equations and implemented
all solvers. I did all the numerical stability experiments, Simon was in
charge of the real data experiments. I wrote most of the paper together
with Kalle.

• Ask, Erik and Kuang, Yubin and Åström, Kalle, “A Unifying Approach
to Minimal Problems in Collinear and Planar TDOA Sensor Network
Self-Calibration”, Proc. European Signal Processing Conference (EUSIPCO),
2014.

The idea to study the problems in this paper came from me and Kalle
Åström. I dervied the constraints for which configurations of dimension
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1.2. CONTRIBUTIONS

defficient sensor networks could be calibrated using TDOA measurements.
I adapted the rank constraint formulation from a previous paper from Yu-
bin to the dimension defficient case. Me and Yubin Kuang developed and
implemented all solvers. I did most of the experiments, both synthetic and
real data, together with Kalle Åström

• Kuang, Yubin and Ask, Erik and Burgess, Simon and Åström, Kalle, “Un-
derstanding TOA and TDOA Network Calibration using Far Field Ap-
proximation as Initial Estimate”, Proc. European Signal Processing Confer-
ence (EUSIPCO), 2014.

I contributed mainly to running experiments and some minor implemen-
tation work. I also wrote parts of the experimental section.

Other publications

During the course of my graduate studies, I have also contributed to the following
paper, which is thematically different from the rest and omitted from this thesis.

• Haner, Sebastian and Svärm, Linus, and Ask, Erik and Heyden, Anders,
“Joint Under and Over Water Calibration of a Swimmer Tracking System”,
Submitted to Proc. International Conference on Pattern Recognition Applica-
tions and Methods., 2015.

Sebastian was responsible for most of the theory and methods. I con-
tributed with discussions about the methodology, I also created a semi
automatic system for calibration marker detection, and wrote the corre-
sponding part of the paper.
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Chapter 2

Preliminaries

In this chapter we introduce the model fitting problem. For clarity we will limit
ourselves to the context of computer vision, but the most concepts translates di-
rectly to sensor network calibration. We also introduce a bare minimum of ge-
ometry required for computer vision and sensor networks. Finally we give a brief
overview of the current state-of-the-art techniques for multivariate polynomial
solving.

2.1 Model Fitting

The model fitting problem is at its core fairly straightforward.

Problem 2.1.1 Given a set of data X can we explain the data as a realization of
model M .

In this thesis we are specifically interested in adpating geometrical models to
measured data. A geometrical model could be a, e.g., a transformation of point
sets, positions of sensors, a 3D structure observed through known cameras. We
also have little or no interest in the model selection aspect of mathematical mod-
elling, i.e., we are not so much interested in questions like what model describes
the data as much as the question does specifically model M describe it. A very
simple example would be given a set of points, can we explain the points as val-
ues on a straight line. In the noise-free case one could take two points, find the
equation for the line through them and check if all other points coincide with the
line. If we are happy with the model, we can e.g. use it to obtain new points, all
points could be represented using only a few parameters. Note also that we did
not consider other models like sinusoidal, quadratic, cubic, i.e., we did not do
model selection.

7



CHAPTER 2. PRELIMINARIES

The example illustrates a common methodology. Assume a model type (line),
find a model (i.e., find the line equation), check for consistency. In real appli-
cations data is obtained through measurements, and is plagued by measurement
errors. In addition, some measurements are inherently bad and should ideally not
be considered at all. The later is generally refered to as outliers and they are very
common in computer vision. This complicates both the fitting of models and the
evaluation of its correctness. This raises the question of how one can identify and
remove outliers from the data. While some outliers can easily be discarded there
are fringe cases, when removing or keeping a data point is not obvious.

We will adress these issues throughout the thesis. We here give some back-
ground as to why outliers are so prolific in computer vision, and describe common
ways of dealing with them.

2.1.1 Image Correspondences

Given two images I1 and I2, an image correspondence is a pair of points (x, y) ∈
I1, (u, v) ∈ I2 that represents the same underlying structure, normally a point in
3D. While this is simple enough to say, autmatically finding such correspondences
has proven to be very difficult. The basic problem is that any points in the images
has to be identified by their appearance. Naturally two identical images would
result in no useful information, and so the appearance between the images must
be different. It could be a new modality of an MRI scan, a picture of a 3D
structure from another angle. The common approach is typically

• Find points that are likely well-defined spatially, e.g., corners. To avoid
multiple almost identical points one usually only selects the most prolific if
several candidates are identified too close to each other.

• Extract properties in a local region and vectorize. That is analyze things
like color content, gradients, similarities between pixels and quantize the
results.

• Compare vectors for different points.

The de-facto standard currently and for the last 10 years is the so called SIFT
descriptor [49]. It will be used for all our experiments.

8



2.1. MODEL FITTING

Data Noise

The first concern raised was data that would only almost fit a model. In practice
this is almost always the case for all applications, and computer vision is not an
exception. The common method of evaluating a datapoint x is to define a residual
function r(θ,x) that given model parameters θ, measures the conformance. A
concrete example could be to measure the reprojection error in an image for the
triangulation problem below. In addition one needs a loss function l(r(θ,x))
that relates the residuals to a cost that we wish to minimize, formally the problem
of model estimation then becomes

min
θ

∑

xi

l(r(θ,x)). (2.1)

The by far most common choice of loss function is the L2-norm.

Outliers

In addition to the small errors described above, there is in computer vision in
practice correspondences that are directly erroneous in that the corresponding
points are not related. A typical example would be attempting to match images of
repetitive structures. Even more concretely, given two images of a typical apart-
ment building, a majority of windows, doors and other structures are not unique.
As we will see later some problems are so difficult to obtain matches for at all that
the tolerance for what is similar has to be very forgiving, or no matches will occur
at all.

2.1.2 Random Sampling

A standard approach when fitting models in the presence of outliers is to randomly
select subsets of data, fit a model, and evaluate conformance with the full dataset.
This is commonly known as the RANSAC approach and was introduced in [27].
The common criteria for outlier is if the modelling error is larger or smaller than
a fixed threshold. There is an advantage of picking as small a set as possible, as
this increases the likelihood of all of the points being inliers. If a given dataset has
an inlier ratio of w, the probability that among n random points there is at least
one outlier is (1 − wn). If one wants a probability of p that, at least once, only
inliers are selected then one must select at least k samples, with k satisfying

1− p = (1− wn)k. (2.2)

9



CHAPTER 2. PRELIMINARIES

It is clear that the term (1− wn) should be as small as possible, and since w ≤ 1
we should select n as small as possible.

The RANSAC method has been highly succesful, but gives in general no guar-
antees on the solution. That is one can not be sure that the resulting outlier set is
the smallest possible given the criteria posed.

2.2 Computer Vision

This section will introduce projective geometry, the most common camera model
and some of the applications we study in the thesis.

2.2.1 The Projective Plane

A line in a 2D plane can be parametrized as ax + by + c = 0 and has a natural
representative in R3 by the vector (a, b, c)T . The correspondence between lines
and vectors in R3 is not one-to-one and there is an equivalence relation

(a, b, c) ≡ k(a, b, c) , (2.3)

as scaled versions of a vector correspond to the same line, for any non-zero k.
Formally

Definition 2.1. An equivalence class of vectors under equivalence relation (2.3) is
known as a homogeneous vector. Any particular non-zero vector (a, b, c)T is a repre-
sentative of this class.

A point (x, y) in a 2D plane lies on a particular line (a, b, c) if and only if
ax + by + c = 0 which we can express as (x, y, 1)(a, b, c)T = 0. Here we
introduced a representative of the 2D point in R3 by augmenting the point with
a 1. Points (x, y) then have a natural representative (kx, ky, k) in homogeneous
coordinates. We now introduce the Projective space P2 as

Definition 2.2. The projective space P2 is the set of homogeneous vectors in R3 \
(0, 0, 0).

The removal of the point (0, 0, 0) should be obvious as it does not describe
any line.

10
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C

X1

X2

X3

x′1

x′2

x′3

x1

x2

x3

Π′

Π

Figure 2.1: The geometry of a pinhole camera. points Xi in 3D are projected
through the point C and are intersected with the plane Π to give image points
xi. In a ”real” pinhole camera the rays would project onto a plane Π′ behind C
giving the coordinates x′i. The images are identical up to a choice of coordinate
system.

2.2.2 Pinhole Camera Model

The most common mathematical model of a camera is the pinhole camera model.
This model is a representation of an ideal pinhole camera, in which light passes
through a tiny hole onto a plane. The principle is illustrated in Figure 2.1. Rays
from Xi through C projects onto the plane Π′. For each Xi in 3D we get a point
x′i in the 2D subspace defined by Π′. It is also clear that intersections between
in the plane Π′ and intersections in the plane Π will result in the same image up
to a rigid transformation. Neither is more accurate than the other but the latter
is in general more convenient to work with. The line perpendicular to the image
plane through the pinhole, in this case the Z-axis is called the principal axis. Its
intersection with the image plane is the principal point and the perpendicular
distance between C and Π is the focal length, f .

11
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The intersection of a 3D point (X,Y, Z)T and the plane

Π = {(X,Y, Z) ‖Z = f},

is (fX/Z, fY/Z, f)T . Ignoring the final coordinate the mapping is

(X,Y, Z) 7→ (fX/Z, fY/Z) . (2.4)

This derivation is straightforward and follows from properties of similar triangles
as illustrated in Figure 2.2.

Using homogeneous coordinates for the points xi and Xi the mapping in
(2.4) can be written as



f 0

f 0
1 0







X
Y
Z
1


 =



fX
fY
Z


 . (2.5)

This expression assumes that the origin of the coordinates in the image plane is
the principal point. This is often not the case but is rectified by a translation and
the new mapping is

(X,Y, Z) 7→ (fX/Z + px, fY/Z + py) , (2.6)

with (px, py) the coordinates of the principal point. Including the principal
point, (2.5) is written



f px 0

f py 0
1 0







X
Y
Z
1


 =



fX + Zpx
fY + Zpy

Z


 . (2.7)

If we introduce

K =



f px

f py
1


 (2.8)

we can reformulate (2.7) as

x = K
[
I 0

]
X . (2.9)
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C
Z

Y

C
Π

f

f YZ

Figure 2.2: Projection of a point (0, Y, Z) into the image plane Π. The image
coordinate y is derived from the relation y/f = Y/Z.

Here all parameters relating to internal properties of the camera are collected in
K, the camera calibration matrix.

Another assumption above is that the camera center lies at the origin. As
the coordinate system can be choosen freely this is often a valid and preferable as
it simplifies the model. However the model is easily adapted to handle general
camera centres. If we have X a point in world coordinate frame, a camera centre
at C we can express the point as if we were in a camera coordinate frame as

Xcam = R(X− C) = RX + t . (2.10)

This gives us the camera equation as

λ



x
y
1


 = K

[
R t

]



X
Y
Z
1


 = PX . (2.11)

Here λ is the scaling factor that normalizes the left hand side so that the homoge-
neous image coordinate has a 1 as its last element.

One can include additional parameters accounting for non-uniform width
and height of pixels in CCD-sensors, and for modelling skew in the sensor. Nei-
ther of these will be relevant for the problems studied later. Additionally real
cameras have lenses causing radial distortions that are not linear and cannot be
described in a linear model.

For a more complete treatise on the pinhole camera model, general projective
cameras and homogeneous coordinates see [33].
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2.2.3 Epipolar Geometry

Given two uncalibrated cameras P and P̃ with image points xi, x̃i corresponding
to world points Xi, there exist a matrix F such that

xiFx̃i = 0 ∀i . (2.12)

The matrix F ∈ R3×3 is called the fundamental matrix and satisifes det(F) = 0
and is only defined up to scale. Conversely any 3×3 matrix with zero determinant
is a fundamental matrix for some cameras.

If the camera matrices K K̃ are known, coordinates can be pre-normalized as

K−1xi = x′i =
[
I 0

]
Xi (2.13)

K̃−1x̃i = x̃′i =
[
R t

]
Xi , (2.14)

where the coordinate system is chosen such that the first camera lies in the origin,
and the location of the second is determined by a rotation R ∈ SO(3) and
translation t ∈ R3. Then the bilinear constraint in 2.12 can be written as

x′iEx̃′i = 0 . (2.15)

with E = [t]×R ∈ R3×3 being the essential matrix. This matrix has the properties
of F but has only five degrees of freedom as opposed to seven for F.

2.2.4 Triangulation

Assume that a point Xi has been captured by two cameras cameras P1 and P2, as

points x(1)
i and x

(2)
i . If the internal as well as external parameters of the cameras

are known, Xi can ideally be determined as the intersection of the rays from the
respective camera centers Cj through the planes Πj at said points. Due to er-
rors as those described previously the rays will rarely intersect in real applications.
One method of finding a good candidate for Xi could be to find the shortest line
between the rays and select the midpoint. This has the drawback that depending
on the distance from the respective camera, the reprojected candidate point could
end up relatively far from the xi in either image. An alternate approach could
be to find a candidate point such that the reprojected difference of the point to
xi is minimized. Geometrically, for a fixed tolerance of the error and assuming
euclidean distance, the valid placements of a candidate Xi point lie in a cone,

14
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defined by the circle around xi. Several cameras gives several cones and the inter-
section, if any gives a valid region.

In later chapters we study triangulation in multiple cameras using reprojected
error as residuals.

2.2.5 Image Registration

Registration is the problem of transforming data into a common coordinate sys-
tem. Image registration then aims to relate images so that identical structures in
different images are mapped to the same pixel coordinates. Typical applications
however are aligning MRI slices, correlating stained tissue samples and similar
problems where the aquisition in itself is not projective in nature or performed
in such a way that the images can be related by mappings from R2 to R2. In
many instances the structures do not undergo any or very minor internal change
between images, and the problem is reduced to obtain a rotation and translation,
i.e., there are only three degrees of freedom. Formally

Definition 2.3. Rigid image registration is the problem of obtaining a rotation R ∈
SO(2) and translation t ∈ R2 such that for any two corresponding points x and x̃
we have

x = Rx̃ + t . (2.16)

2.3 Bipartite Sensor Networks

A sensor network is any collection of sensors that collect signals or data to facilitate
combined analysis. In this thesis we are interested in estimating positions of both
sensors and discrete events through time measurements of the events. Other than
the implied assumption that all sensors share data, there is no real meaning in
the distinction of sensors and events. For our purposes there is no difference if
we have handclaps and microphones, speakers and microphones, antenna arrays
or any other similar configuration. Therefore in the proceeding discussions and
throughout the remainder of the thesis all entities for which we wish to determine
positions will be denoted sensors and will be either of type receiver, denoted r,
or transmitter, denoted s. In this formulation the sensor network includes both
receivers and transmitters.

Such a sensor network can be described by a graph, in which nodes are sensors,
and edges are communication paths, an example is given in Fig 2.3. Graphs in
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sj

ri

dij

Figure 2.3: A configuration of 3 transmitters (circles) and 2 receivers (squares)
with measured pairwise distances dij .

which edges only exist between two disjoint sets of nodes are called bipartite. As
all networks we are interested in have such a representation we have the following
definition

Definition 2.4. A bipartite sensor network with receivers, ri, and transmitters, sj ,
can be represented as a bipartite graph, where the setsR = {ri} and S = {sj} form
the disjoint sets of nodes.

We define the setting when the distances dij can be obtained directly as

Definition 2.5. Time of arrival (TOA) measurements are defined as the time it
takes for a signal sent from a specific location s to arrive at another location r in a
homogeneous medium. The relation between sensor locations r and s and the TOA
measurements f is

fvs = ||s− r||2 = dij , (2.17)

where vs is the signal speed.

In essence knowledge of f requires a setting in which r and s are synchronized
in some fashion. There are several scenarios in which this can be achieved; e.g.
microphones and speakers connected to a common source, internal clocks and
predefined transmission schedule or reflecting signal back to sender.

In scenarios when no common knowledge of when signals are sent and re-
ceived the TOA formulation is insufficient and needs to be generalized. More
precisely
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Definition 2.6. Time difference of arrival (TDOA) measurements are defined as the
relative difference in time it takes from a signal sent from a specific location s to arrive
at another location r in a homogeneous medium. The relation between locations and
measurements f is

fvs = ||s− r||2 + ovs = dij + ovs, (2.18)

where vs is the signal speed and o an unknown offset.

The name TDOA is motivated by that for two positions r1 and r2 and one
position s with associated o one gets

f1vs = ||s− r1||2 + ovs

f2vs = ||s− r2||2 + ovs

⇒
(f2 − f1)vs = ||s− r1||2 − ||s− r1||2 ,

i.e., the unknown offset is eliminated when taking the difference of measure-
ments.

This still requires synchronization in the sense that all positions ri must ad-
here to a common timeframe, however as all measurements needs to be collected
to a common device for any analysis this is in practice usually the case or easily
achievable.

For the remainder of the thesis we will, without loss of generality, assume ei-
ther that vs = 1 or that the conversion from time to distance is already performed
and that f has unit meters.

2.4 Minimal Cases

The notion of a minimal case is used throughout this thesis. It is central both
in classical outlier eliminiation schemes such as RANSAC and in the proposed
optimization methods of Chapters 4 and 5. We formally define a minimal case as

Definition 2.7. A minimal case to a problem is the case that consists of the minimal
set of constraints or equations such that the problem generally has finite number of
solutions.

In practice this means that we have sufficient correspondences to solve for all
of the model parameters.

17
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2.5 Algebraic Geometry

A majority of the minimal cases studied in this thesis are described by multivariate
polynomial systems or can be posed as such through appropriate choice of param-
eter space. To solve these we need tools and techniques as well as understanding
of algebraic geometry. For a more complete introduction or detailed proofs of the
concepts discussed in this section we refer to [19].

2.5.1 Multivariate Polynomial Systems

The basic building block is the monomial which is defined as

Definition 2.8. A monomial in x = (x1, x2, . . . , xn) is a product of the form

xα1
1 xα2

2 . . . xα1
1 , (2.19)

with αi ∈ N0. The total degree of a monomial is the sum α1 + α2 + · · ·+ αn.

We will use the notation

xα = xα1
1 xα2

2 . . . xα1
1 , (2.20)

for monomials and denote the total degree with

|α| = α1 + α2 + · · ·+ αn . (2.21)

Using this we get

Definition 2.9. A polynomial f in x = (x1, x2, . . . , xn) is a finite sum of the form

f(x) =
∑

α

cαx
α , cα ∈ C . (2.22)

The set of all such polynomials is denoted C(x).

The degree of a polynomial is the largest total degree of any of its monomi-
als. The concept of polynomial systems can now be introduced as the following
problem

18
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Problem 2.5.1 Given a set of polynomials fi(x) ∈ C(x) in n variables x =
(x1, x2, . . . , xn) determine the complete set of solutions to the equation system

f1(x) = 0
...

fm(x) = 0

. (2.23)

Univariate polynomials is a subclass of multivariate and not a subject of study
in this thesis. Unless stated otherwise a system of polynomial equations is always
a multivariate system. A system of polynomials can have no, finite or infinite
number of solutions. For example the system

x1 − 1 = 0 (2.24)

x2(x1 − 1) + x1 = 0 (2.25)

has no solutions whereas the system

x1 − 1 = 0 (2.26)

x2(x1 − 1) = 0 (2.27)

has infinite solutions x = (1, t)T for all t ∈ C.
To solve polynomial system some techniques and results from algebraic ge-

ometry are necessary. We start by introducing some central concepts. The zero
set (solution set) of a polynomial system defines an affine variety V . As stated in
Section 2.4 we are only interested in systems with finite, but non-zero, number of
solutions, i.e., systems with a finite variety. Given a polynomial system the set of
k polynomials {fi(x)} generates an ideal I as

Definition 2.10. The generated Ideal I of a set of polynomials is

I =

{
k∑

i=1

hi(x)fi(x) : ∀h1, . . . hk ∈ C(x)

}
. (2.28)

In particular, by setting

hi = 0 , ∀i 6= j (2.29)

we get that fj(x) ∈ I for all j, i.e., the original equations are part of the ideal.
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An ideal is said to be radical if I is identical to the set of all polynomials that
vanish on V . Two polynomials f and g are said to be equivalent with respect to
I iff f − g ∈ I . With this we define the quotient space as

Definition 2.11. The quotient space C(x)/I are all equivalence classes modulo I .

For a finite and radical ideal I the quotient space C/I is isomorphic to Cr
where r = |V | is the number of solutions to the set of polynomials that form I .
For a proof of this statement as well as a more complete introduction see [19].

2.5.2 The Action Matrix

In this section we will introduce one of the central concepts in solving multivariate
polynomial systems, the action matrix. As it can be viewed as a multivariate
extension of the companion matrix, we will introduce that first.

Companion matrix

The companion matrix is a construction that allows polynomial systems to be
solved using tools from linear algebra and matrix theory. Consider

h(x) = xn + cn−1x
n−1 + · · ·+ c1x+ c0, (2.30)

a univariate polynomial of degree n with coefficients ci, i = 1, n. In order to find
the roots of the polynomial we start from the simple observation that

x · xk = xk+1 , (2.31)

and that h(x) = 0 implies that

x · xn−1 = xn = −cn−1x
n−1 − · · · − c1x− c0 . (2.32)

If we introduce the vector b = [xn−1 xn−2 . . . x 1]T we can express the relations
in 2.31 and 2.32 on matrix form as




−cn−1 −cn−2 · · · −c1 −c0

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




︸ ︷︷ ︸
C




xn−1

xn−2

...
x
1




︸ ︷︷ ︸
b

=




xn

xn−1

...
x2

x




︸ ︷︷ ︸
xb

. (2.33)
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So any x that fulfills h(x) = 0 can be identified as an eigenvalue to C. As all
elements of C are known, solving the polynomial (2.30), is equivalent to solving
the eigenvalue problem (2.33).

Multivariate Extension

With some care the technique above can be extended to the multivariate case, as
was first done by Lazard in 1981 [45]. Consider the linear map

Ta : f(x)→ a(x)f(x) (2.34)

associated to some a(x) ∈ C((x). Since |V | < ∞ we can select a linear basis B
for the space C(x)/I . This allows us to represent Ta using a |V | × |V | matrix
ma. The matrix ma is known as the action matrix. The eigenvalues of ma are
a(x) evaluated on V and the eigenvectors are the elements of B evaluated on V .
Specifically if [1, x1, x2, . . . , xn] ⊂ B the eigenvectors gives the possible solutions
to Problem 2.5.1. There are no particular requirements on the polynomial a(x),
but for our purposes it will always be a monomial and is refered to as the action
monomial.

As a concrete example we return to the polynomial h(x) in (2.30). A rep-
resentative basis for C(x)/I is B = {1, x, x2, . . . , xn−1}. Too see this we first
make the observation that any polynomial of degree n − 1 is expressible in this
basis. In particular

g(x) = −cn−1x
n−1 − · · · − c1x− c0 (2.35)

is a polynomial of degree n−1. Secondly we consider the the simplest nth degree
polynomial f(x) = xn. In this construction it is clear that

f − g = h(x) ∈ I , (2.36)

and the nth degree polynomial f is equivalent to a polynomial represented in
the basis B. The argument can be extended to higher order polynomials in more
terms. A suitable choice of action monomial is x, and our linear map then be-
comes Tx(xk−1) = xk for k < n and for k = n we get the relation in (2.32).
The matrix representation mx of Tx is then the matrix C in (2.33).
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2.5.3 Constructing the Action Matrix

While the action matrix describes a relation that, in general, embeds the neces-
sary information for solving a multivariate system, both it and the basis needs
to be constructed. One approach is to use Buchberger’s algorithm to compute a
Gröbner basis for the ideal generated by the system. The obtained basis is used
to construct the action matrix. This approach is very slow, and due to round of
errors often not even feasible in floating point arithmetics.

The current method of choice is to use a technique called single elimination
with basis selection [26, 12, 11]. The central idea is to reduce the system using
techniques from linear algebra and matrix theory. The first step is to form a
expanded equation system and separate the coefficents and monomials as

CexpXexp = 0 (2.37)

with Cexp the coefficents of an expanded set of equations and Xexp a vector col-
lecting all monomials among these equations. For reasons that will be obvious in
the following discussions the set of original equations should only be expanded
with linearly independent equations that evaluate to zero on the variety V . This
is accomplished by multiplying the original set of equations with different choices
of monomials. For practical reasons often all possible monomials up to a certain
degree. The choice of how many equations should be added to the original set is
problem specific, but using this methodology the expanded set of equations is a
finite subset of the generated ideal of the original equations, and hence the variety
is unaltered. Unless relevant we will omit the distinction exp and by

CX = 0 (2.38)

always refer to a expanded set of equations. This formulation allows for elimina-
tion of leading terms by methods from numerical linear algebra.

Basis Selection

To construct a suitable basis while eliminations are performed, a basis selection
scheme was introduced in [12]. First the setM of all monomials in X are parti-
tioned as

M = E ∪ R ∪ P . (2.39)

22



2.5. ALGEBRAIC GEOMETRY

Specifically P contains the monomials that remain in M after multiplication
with the action monomial a(x) and is called the permissible set. The set R =
{a(x)xαk /∈ P : xαk ∈ P} is called reducible and finally the set E =M\ (P ∪
R) is the excessive set. Using this partition (2.38) can be written

[
CE CR CP

]


XE
XR
XP


 = 0 . (2.40)

The goal is to select B from the set permissible set P .
First the excessive monomials are eliminated through linear elimination, usu-

ally QR-factorization, resulting in



UE1 CR1 CP1

0 UR2 CP2

0 0 CP3





XE
XR
XP


 = 0 , (2.41)

with UE∞ and UR2 upper triangular. Since the set E gives us no information on
the mapping Ta(x) the top rows are removed, resulting in the system

[
UR∈ CP2

0 CP3

] [
XR
XP

]
= 0 . (2.42)

The final step is to reduce CP3 into upper triangular form, and from P select
a basis B. This is achieved by column pivoting QR factorization, resulting in a
reordering and subsequent split of XP into [XP ′ XB] with B the last |V | = r
elements after reordering. This gives

[
UR∈ CP ′ CB1

0 UP ′ CB2

]

XR
XP ′
XB


 = 0 . (2.43)

By a direct re-organization into

[
XR
XP ′

]
= −

[
UR2 CP ′
0 UP ′

]−1 [
CB1

CB2

]
XB , (2.44)

all actions Ta(x) on the basis B can now be identified and consequently, ma can
be constructed. For any monomial xα ∈ B either (i) a(x)xα ∈ B and the
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corresponding entry in ma is trivial or (ii) a(x)xα ∈ R2 ∪ P ′ and the entry in
ma can be extracted from (2.44).

Note here that we have assumed that all operations were possible including the
final matrix inversion. If some step fails, we can try generating more equations
or try another action monomial or even reformulating the original equations.
However, this only has to be once for every problem as these aspects only rely
on the structure of the polynomials. The scheme described above is the column-
pivoting method from [11] and is the basis for polynomial equation solving in
this thesis.

Example: Constructing an Action Matrix

We look at the system

x2 + 3x+ y + 1 = 0 (2.45)

x+ y + 9 = 0. (2.46)

We expand the lower equation with x, generating a third equation

x2 + xy + 9x = 0. (2.47)

Now we have the monomials x2, xy, x, y and 1. If we decide on the action
polynomial y we get 1 and x as permissible and xy and y as reducible and x2 as
excessive.




1 0 1 3 1
0 0 1 1 9
1 1 0 9 0







x2

xy
y
x
1




= 0. (2.48)

By QR methods we eliminate the excessive monomials from the other equations



−1.41 −0.707 −0.707 −8.49 −0.707

0 −0.707 0.707 −4.24 0.707
0 0 −1 −1 −9







x2

xy
y
x
1




= 0, (2.49)
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and drop the excessive monomials together with the first equation,

(
−0.707 0.707 −4.24 0.707

0 −1 −1 −9

)



xy
y
x
1


 = 0 (2.50)

and set B = {x, 1}
(
−0.707 0.707

0 −1

)(
xy
y

)
= −

(
−4.24 0.707
−1 −9

)(
x
1

)
. (2.51)

This system is solved, yielding

(
xy
y

)
=

(
−7 −8
−1 −9

)(
x
1

)
. (2.52)

From this we directly read the action on the basis monomials and hence the action
matrix

yB = y

(
x
1

)
=

(
−7 −8
−1 −9

)
B = maB. (2.53)

The eigenvalues of this matrix are−5 and−11. The eigenvector corresponding to
−5 is (0.970,−0.243)τ . This should be a rescaled version of the basis monomials
at evaluated at a solution, i.e.

(
x
1

)
= λ

(
0.970
−0.243

)
=

(
−4
1

)
. (2.54)

This gives us the first solution x = −4, y = −5 and by looking at the other
eigenvalue we find x = 2, y = −11.
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Chapter 3

Symmetries in Polynomial
Systems

In recent years tackling geometrical problems by polynomial equation solving has
shown great results. For instance so called minimal structure and motion prob-
lems, e.g. [15, 60], whose solutions are essential for RANSAC algorithms to find
inliers in noisy data [29, 65, 66]. These algorithms rely on the ability to efficiently
solve a large number of cases in order to find the best set of inliers. There is thus
a need for fast and numerically stable algorithms for solving particular systems of
polynomials. Once a large enough inlier set is found, local optimization is nor-
mally used to fit all data in a least squares sences. Many geometrical problems
found in computer vision or sensor networks have solutions that are only unique
up to a symmetry. A direct example would be sensor network calibration with
no known global coordinate system, described later. In some cases the choice
of parametrization itself results in symmetries. One example is the space SO(3)
parametrized using unit quaternions.

In this chapter we explore the effect of symmetries in polynomial equation
solving. We give a formal definition of what constitutes a symmetry and relate it
to desired properties of the eigenvalue problem described in Section 2.5.2. The
required modifications to the methods in the previous chapter is introduced in
order to exploit the symmetry for improved stability and speed in the derived
solvers.

The main contribution are simplifications that can be used (i) if the zero
vector is one of the solutions or (ii) if the equations display certain classes of
symmetries. Such structures are quite common. We evaluate the simplifications
on a few example problems and demonstrate that without losing accuracy, and
more commonly improving, significant solver speed improvements are possible.
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3.1 P-fold Symmetry

We illustrate the basic principle with the following toy example
{

x2
1 − x2

2 = 0
x3

2x1 + 1 = 0
, (3.1)

with solutions

(1,−1) , (−1, 1),
(i,−i) , (−i, i),

1√
2
(1 + i, i+ 1) , −1√

2
(1 + i, 1 + i),

1√
2
(1 + i, 1− i) , −1√

2
(1 + i, 1− i).

(3.2)

We see that the solutions are coupled and only differ in sign. If we were to
generate new equations using x1 or x2 we would get no equations that could
be used to eliminate or substitute in the original set. In fact if we multiply with
all monomials up to a total degree of n only the equations generated by even
monomials are connected to the original set in the context of eliminations as
described in Section 2.5.3.

We now give a formal definition of symmetry of a polynomial system.

Definition 3.12. A system of polynomials {fi(x)} is p-fold symmetric if for all
monomials in {fi(x)} the sum of the exponents on x has the same remainder q
modulo p.

The example in (3.1) is 2-fold as the monomials have degree either 0, 2 or 4.
We also note an ambiguity here in that a system with e.g. all monomials of degree
4 would be both 2-fold and 4-fold.

Symmetric system are of interest because of the structure of the solution set.
The definition of symmetry in solution set is as follows

Definition 3.13. A solution set is said to be p-fold symmetric if for each solution x∗

the points x∗k = ei2kπ/px∗ are also solutions for j ∈ Z.

The relation between symmetric polynomial system and symmetric solutions
is given by Theorem 3.14.

Theorem 3.14. A system of polynomial system with p-fold symmetry has a solution
set with p-fold symmetry.
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Proof. First assume the polynomial system {fi(x)} is p-fold symmetric. Then for
any monomial xα in this system, we have

|α|mod p = q . (3.3)

For any polynomial fi(x) =
∑

j cijx
αij the following is true

fi(e
i2kπ/px) =

∑

j

cije
i2kπ|αij |/pxαij

=
∑

j

cije
i2kπq/pxαij

= ei2kπq/p
∑

j

cijx
αij

= ei2kπq/pfi(x) ,

(3.4)

in particular for any x∗ s.t. fi(x∗) = 0 we also have fi(ei2kπ/px∗) = 0. This
proves the statement.

3.2 Zero Solutions

In cases where no equation has a constant, one solution is always the zero solution.
By necessity this happens when all monomials are of odd total degree, but is not
limited to this scenario. Nevertheless one can use the consant 1 as the n’th basis
monomial in B. Assume for simplicity that x1 is chosen as the n−1’th basis
monomial. Then we obtain an action matrix of type

M =




a1,1 . . . a1,n−1 0
. . . . . . . . . 0

an−1,1 . . . an−1,n−1 1
0 . . . 0 0


 .

Since the (0, . . . , 0, 1) is mapped to (0, . . . , 1, 0) and since no other reduction
involves the constant. From this it follows immediately that (0, . . . , 0, 1)T is an
eigenvector with eigenvalue 0, i.e. the zero solution. Furthermore any of the n−1
eigenvectors to A = [aij ] can be used to produce a corresponding eigenvector to
MT . Thus without loss of generality we can consider the eignevalue problem for
the matrix A instead. In practice if there is a 0 solution it can be extracted before
solving the full system.
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3.3 Solving p-fold Systems

We here present the modifications to the elimination technique described in Sec-
tion 2.5.3.

3.3.1 Symmetric Action Matrix

As we have established a p-fold symmetric system has p-fold symmetric solution
set. This of course implies that among the |V | = r solutions obtainable in the
eigenvectors and egienvalues of the action matrix ma only rp = p/r are necessary
to find all possible solutions. To exploit p-fold symmetries we aim to construct a
mapping Ta(x) : f 7→ fa(x) with a(x) any monomial that is p-fold symmetric
with q = 0. As the p ambigious solutions collapse into a single point on a(x) the
dimension of the solution space effectively becomes rp, and we denote that basis
Br. As a result ma is of size rp × rp instead of r × r. This reduction results in a
faster more stable eigenvalue problem when solving the system.

3.3.2 Expanded Equation Set

In the previous section we stated some properties of the modified action matrix
and connected basis Br. However, when determining suitable elements of Br
by the same methodology presented in 2.5.3 some care is required. As the action
matrix we construct only solves the system up to the symmetry, all of the elements
of Br must be p-fold symmetric. In short this means that no elements of the set
P can contain any monomial that breaks symmetry. By extension as the action
monomial a(x) is p-fold symmetric with q = 0, all monomials in R are p-fold
symmetric as well. In conclusion, should any non-symmetric monomials exist in
the expanded setM they would by necessity be members of E , the excessive set.

Conversely, supposing the original set is p-fold, generating with any mono-
mial not p-fold symmetric would make all monomials in the new equation break
symmetry, and the corresponding entries in a coefficent matrix C would have no
column-wise overlap with the original equations, i.e. it could not be used for any
reduction as per the operations from Section 2.5.3.

One quickly realises that the only modification necessary is to ensure that no
polynomial in the expanded set breaks the symmetry. This is easily achieved by
only multiplying the original equations with monomials with p-fold symmetry
with q = 0. This will in general reduce the size of C, automatically ensure
that P and by extension R has the desired properties, and that E is not larger
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than necessary. Moreover, a suitable basis for Br can be generated using column
pivoting as before.

3.3.3 Extracting Solutions

We assume that the system has no 0-solution, either in itself or by the technique
described above. While the modified elimination technique reduces the compu-
tational load in the elimination scheme and eigenvalue extraction, we have not
arrived at the final solution. If we denote the resulting eigenvectors v extracting
the solution x from v can be understood in the following sense. Each element vi
is up to a constant λ equal to the value of a monomial, i.e.

λvi = xαi1
1 xαi2

2 . . . xαin
n . (3.5)

If 1 is one of the monomials we can find the scale factor λ directly. Otherwise we
treat it as one of the unknowns by setting xn+1 = 1/λ, αi,n+1 = 1 and work
with

vi = xαi1
1 xαi2

2 . . . xαin
n x

αi,n+1
n+1 (3.6)

Let A be a matrix with elements Aij = αij . For vectors x of size a×1 and
integer matrices A of size b×a define the exponential xA as

xA :=




xα1

xα2

...
xαb


 =




xα11
1 xα12

2 . . . xα1a
a

xα21
1 xα22

2 . . . xα2a
a

...
xαb1

1 xαb2
2 . . . xαba

a


 . (3.7)

This definition is analogous to the definition of monomials for a vector x of
unknowns, and in particular xI = x. As x takes values in C the elementwise
logarithm of x is only defined up to a choice of branch. More concretely, for
xi = r exp(iθ) one logarithm is w = log(r) + iθ and adding multiples of 2πi
gives the others. However since A is an integer matrix,

xA = exp(A log(x)), (3.8)

with exp and log elementwise operations, does not depend on the choice of
branch. The problem of calculating x from v can thus be written. Find all x
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such that v = xA. If there exists an integer matrix B, such that BA = I , then
there is only one solution and it can be written as x = vB , since

vB = (xA)B

= (exp(A logx))B

= exp(B log(exp(A log(x)))

= exp(BA log(x))

= xBA = xI .

(3.9)

One way of generating such a matrix is to search for submatrices in A of size
a× a with determinant 1 or −1. Given such a submatrix As, its inverse

A−1
s =

1
detAs

adjA,

is also an integer matrix and can be used to construct an inverse B as above.
In the general case, one may search for an invertible submatrix As, whose

absolute value of the determinant is as low as possible. For the p-fold cases we
wish to solve, the lowest possible determinant (other than 0) is p, and we have
observed in practice that we can always find a submatrix with p = |detAs|. For
this submatrix let

B = |detAs|A−1
s = ± adjAs, (3.10)

Then B is clearly an integer matrix and

As = | detAs| I = pI. (3.11)

This gives

vBs = (xAs )B = x(BAs) = xpI , (3.12)

here vs is the part of v corresponding to As. Now it is possible to solve for x up
to an unknown phase of type

x = x0 · exp(ik2π/p), (3.13)

where k is a n×1 vector in Zp. Thus the absolute value of x is well defined and
the phase is known up to a p-fold uncertainty. By plugging in this solution in the
original equations we obtain

log(v) = A log(x0) +A(ik2π/p) + ij2π, (3.14)
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which can be written

Ak = p(log(v)−A log(x0))/(i2π)︸ ︷︷ ︸
z

+pj, (3.15)

which can be interpreted as a system of linear equations Ak = z in Zp. It is
straigtforward to write a solver for such problems. In the case of p being prime
is particularily simple. The solution has in general 1 free parameter and can be
written

k = k0 + sk1 , with s ∈ Zp , (3.16)

which when substituted in (3.13) gives the solutions.

Direct Extraction

While the method from the previous section shows a general method of extracting
the solutions under p-fold symmetry, it is often unnecessarily complex. There was
a caveat in the description of the action matrix method, that if

(1, x1, x2, . . . , xn) ⊂ B , (3.17)

the solutions could be extracted directly from the basis. The analogous situation
for a p-fold system is that the basis Br contains elements necessary to uniquely
determine the solutions by no or simple arithmetic. An example could be for a
2-fold system in x and y a basis such that

(1, x2, xy) ⊂ Br . (3.18)

then given v the position corresponding to 1 is used to normalize v̄ = v/‖v‖,
after that one solves x2 = v̄i and for the possible solutions solves xy = v̄j ,
with i and j the elements of v corresponding to x2 and xy respectively. In our
experience finding this type of elements have always been possible.

3.4 Experimental validation

In this section, we test our proposed methods on both synthetic and real problems.
We compare with the technique from [11].
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3.4.1 Applications

We give here some examples where p-fold symmetries occur in real problems.

Problem 3.4.1 Panoramic stitching with unknown focal length and radial dis-
tortion, presented and solved in [10]. This system is symmetric only in the focal
length f and it is sufficient to set f2 = f̃ and use a standard solver to exploit the
symmetry.

Problem 3.4.2 Estimating positions on a line given relative distance measure-
ments to points in space, from Chapter 7 where it is used to solve structure from
sound problems. It can be shown that the minimal case systems only include
monomials of odd total degree and no constants.

Problem 3.4.3 Estimating rotations from 3 correspondences at a preselected
residual, from Chapter 4. This system contains only monomials of even total
degree, including constants.

3.4.2 Synthetic 2- and 3-fold systems

We first study a 2-fold system with synthetic examples:





x4
1 + c12x

2
2 + c13x1x2 + c14 = 0
x4

2 − c22x
2
2x

2
3 + c23 = 0

x2
1 + c32x2x3 + c33 = 0

, (3.19)

where cij are chosen randomly in [0.2, 1.2]. This system has 16 solutions by anal-
ysis with Macaulay. For the standard solver, 1092 equations in 796 monomials
are needed to find stable solutions. For our p-fold solver, only 234 equations in
210 monomials are required giving a 6 times speed up. We use the root mean
square error of our solutions in the equations 3.19 as residuals. Solving 100 sys-
tems gives 1600 evaluations and the per evaluation difference is shown in Figure
3.1. Approximately 85 percent of the times the p-fold solver performs better. On
average the log10(res) was -11.1 for the standard and -12.1 for the p-fold solver.

We also study the 3-fold system





x3
1 + c12x

2
2x3 + c13x1x2x3 = 0

x3
2 − c22x1x

2
3 = 0

x3
3 + 1 = 0

, (3.20)
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Figure 3.1: Performance difference for the System 3.19
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Figure 3.2: Performance difference for system 3.20

where cij are chosen randomly in [0.2, 1.2]. This 3-fold system has 27 solutions.
For the standard solver a total of 660 equations and 455 monomials were required
for the solver to consistently find solutions. For the p-fold solver 282 equations
and 185 monomials were sufficient giving a speedup of a factor 5. With residuals
as above and 100 systems, the per evaluation difference is shown in 3.2. In about
75 percent of the times the p-fold solver has better performance. On average the
log10(res) was -9.3 for the standard and -10.2 for the p-fold solver.

3.4.3 Real applications

For the real applications we generate examples of Problems 3.4.2 and 3.4.3 and
compare solutions to ground truth. In the case of 3.4.2 we limit us to the cases
with 5 points on a line and 2 off line. Performance for a standard solver and a
pfold solver is shown in Figure 3.3. On average the standard solver has residuals
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Figure 3.3: Performance solving the Problem 3.4.2.
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Figure 3.4: Performance solving Problem 3.4.3.

0.31 orders of magnitude less. The size of the standard solver is 1008 equations
and 486 monomials, for the p-fold solver 648 equations in 312 monomials and it
is 3.5 times faster.

For the Problem 3.4.3 we use the quaternion q for our parametrization of the
rotation matrix Rq and get the system

{
xiRqx̃i − cos(ε) = 0 , i = 1, 2, 3

‖q‖2 − 1 = 0.
(3.21)

Which is quadratic in q, four equations for four unknowns and xi, x̃i vectors to
map. Comparison results for 100 such examples are shown in figure 3.4. The
accuracy is essentially unchanged. The problem size was reduced from 280 equa-
tions and 210 monomials to 184 equations and 130 monomials. Speedup is a
factor 1.7 .
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3.5 Conclusions and Remarks

In this chapter we have shown methods for easily reducing problem sizes for whole
classes of polynomial systems. We show significant speed increases on both real
problems and synthetic equation sets, without sacrificing numerical stability. In
addition the specifics of implementation has changed barely at all, and consists
of only a modification in how systems are expanded, the final size of the action
matrix, and some extra steps in extracting the final solution from the eigenvectors.

As it turns out, several of the problems studied in subsequent chapters have
polynomials that are p-fold symmetric, and in such cases solvers utilizing these
techniques have been derived.
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Part II

Robust and Tractable Model
Fitting





Chapter 4

Outlier-Inlier Partitions on the
Model Parameter Space

Many important problems in computer vision, such as structure from motion
and image registration, involve the estimation of model parameters given mea-
sured point coordinates. As described in Chapter 2 matching such points is prone
to outliers and data noise. In this chapter we present important results on the
connection between the model parameter space and the possible inlier-outlier
partitions. In particular we will show that, for many problems, all possible inlier-
outlier partitions can be found in polynomial time. While we leave the applica-
tion of this theory to later chapters, we give a motivating example for why this
understanding is important.

Figure 4.1 shows two consecutive slices of prostate tissue with different stain-
ings routinely used to diagnose cancer. To utilize the information obtained from
the different stainings, the two images first have to be registered. As the images
originate from different tissue slices, the local structure may look quite different
in different images. Therefore, in order to obtain at least some correct corre-
spondences, the acceptance threshold for the feature detector must be generously
set. The downside is that this produces a considerable amount of false correspon-
dences. The example in Figure 4.1 is the most difficult case in a database of 88
image pairs. More than 97% of the matches are outliers. There is little hope
of finding a solution using a standard RANSAC approach. And as we will see in
Chapter 5 and 6 that even if a solution is found, it is often not optimal.

The results are quite general and can be applied to a diversity of model fitting
problems. From a practical perspective, our algorithms are not computationally
attractive for high-dimensional model estimation. Even though the worst-time
computational complexity is polynomial, one should bear in mind that a high-
degree polynomial grows quickly and for such problems, one is forced to rely on
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Figure 4.1: (Left) Images of two different stainings from a prostate biopsy with
791 hypothetical correspondences (cyan) obtained from SIFT. (Right) The same
images, with 21 inlier correspondences (green) of the optimal truncated L2-fit.
The running time of our MATLAB implementation is 3s. See text for details.

more heuristic approaches.

4.1 Related work

The most frequently used methods for dealing with outliers are based on RANSAC [28].
The basic assumption is that all minimal inlier-samples will produce an acceptable
solution. However, it has been empirically observed that this is not valid in prac-
tice [46] and therefore numerous improvements of the basic technique have been
proposed. For example, guided sampling methods have been proposed in [64, 17]
and a strategy for local model refinement was developed in [46]. RANSAC and its
variants have also been applied to multi-model estimation [70, 63]. Other ro-
bust loss functions have also been investigated, for example, M-estimators in [50]
where an iterative algorithm is given. Still, the fact remains that the estimators
have no guarantee of finding the optimal solution.

Recent work have focused on computing an optimal estimate based on branch-
and-bound. In [24], a robust estimator for camera pose is proposed and in [48],
a formulation based on mixed integer programming is given. Similar ideas are
presented in [5] for line clustering and vanishing point detection. One of the first
approaches in this line of research was given by [8] for low-dimensional match-
ing problems. These methods do not depend on initialization and converge to a
global optimum. However, as they are based on branch-and-bound, the run times
of the algorithms are unpredictable.

A different paradigm that has turned out to be useful in the context of multiple-

44



4.2. PRELIMINARIES

view geometry is the L∞-framework [39]. In [40], a heuristic relaxation method
is proposed to remove outliers. In [58], it is shown how to detect outliers but the
method tends to remove a lot of inliers as well. In [47], a triangulation method is
presented, but it is only practical for a few outliers due to its high computational
complexity. Further extensions have been explored in [54, 69]. The approach
works well for large-scale problems with few outliers, but cannot handle large
rates of outliers.

The most similar works to ours are [14, 53] where the aim is to develop
algorithms which provably minimize the number of outliers. In [14], registration
problems dealing mainly with 2D transformations are considered. In the case
of linear constraints on the transformation space (for example, when optimizing
over translations), it is concluded that in order to obtain the optimal solution,
one only needs to examine the intersections of the constraints. This is equivalent
to what our approach boils down for this specific setting. However, in the case
of non-linear constraints (more specifically, in the case of rotations), specialized
solutions are proposed which do not apply to the general setting that we consider.
For quasiconvex residual functions, an O(nd+2) algorithm is presented in [53],
where n is the number of points and d the dimension of the model. We improve
on this result by showing it is possible to solve the same problem in O(nd+1).
Further, our result holds for a larger set of residual functions and we can handle
other cost functions than the cardinality of the inlier set.

In the case of multiple models, the above methods (optimal or not) for esti-
mating a single model can be applied sequentially. The sequential (or greedy) ap-
proach removes all correspondences that are deemed inliers for the most dominant
model, and then the process is repeated. This, however, will not produce the op-
timal solution [70]. The approach may even produce “phantom” solutions [68].
Several heuristics have been proposed to overcome such artefacts, though there is
no guarantee of optimality.

4.2 Preliminaries

We will work with a set of n residual functions

S = {ri : D → R+}ni=1 (4.1)

defined on a d-dimensional manifold, D. These functions describe how some
model fitting error depends on model parameters θ ∈ D. In general we will look
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for model parameters that minimize some robust loss function of the residuals; cf.
Problem 4.2.1.

Problem 4.2.1 Given a set of residual functions S : D → R and a loss function
`, estimate a model θ ∈ D such that

∑

ri∈S
`(ri(θ)) (4.2)

is minimized.

The simplest choice of a loss function is the number of outliers, also known
as the zero-one loss function, since it can be written

`(r) =

{
0 if r ≤ ε,
1 otherwise.

(4.3)

Later on we will consider other loss functions as well, but even so the notion of
inliers and outliers will be crucial.

Definition 4.15. Given model parameters θ and a threshold ε, an outlier is a resid-
ual function such that ri(θ) > ε and an inlier is one such that ri(θ) ≤ ε.

Example. Given two sets of points in R2, {xi} and {yi}, we want to find a rotation

R =

(
θ1 −θ2

θ2 θ1

)
and a translation t =

(
θ3

θ4

)
(4.4)

mapping one point set to the other. Here D is a 3-dimensional manifold that we embed
in R4 using the equality constraint,

h(θ) = θ2
1 + θ2

2 − 1 = 0. (4.5)

The residuals are simply the Euclidean distances

ri(θ) = ||R(θ)xi + t(θ)− yi||. (4.6)

Through Definition 4.15, each parameter vector, θ, induces a partition of
the set of residuals into inliers, I , and outliers, O. The key to solving many
robust fitting problems will be a method to enumerate all feasible partitions into
inliers and outliers. One way to approach this is to find a finite set of θ’s which
is guaranteed to induce all feasible partitions, and this is the path we will pursue.
The following definition will be useful.
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parameter space

Figure 4.2: Each residual divides the parameter space into two parts. One con-
sisting of θ’s such that this residual is an inlier and the complement making it an
outlier.

parameter space

Figure 4.3: If we consider all residuals, then the parameter space is turned into a
complex map. To be sure to find all feasible inlier-outlier partitions, we want to
find one θ from each section of this map.

Definition 4.16. Given two subsets, I and O, that partition the residual functions,
let D(I,O) denote the set of parameter values θ ∈ D such that the residuals in I are
inliers and the residuals in O are outliers.

In terms of Definition 4.16 we want a finite set of θ’s to contain at least one
point from each non-empty D(I,O). Figures 4.2 and 4.3 illustrate the idea.

Consider a feasible partition, that is, a partition such that D(I,O) is non-
empty. In order to specify one θ in this set, we construct and solve a dummy
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optimization problem, see the definition below. This problem and the goal func-
tion, f , are introduced merely as an analytical tool.

Definition 4.17. Given a differentiable f , and a partition (I,O) of the residuals
in S, we define DUMMY(I,O) as the optimization problem:

min
θ
f(θ) s.t. θ ∈ D(I,O), (4.7)

where the D(I,O) refers to the closure of this set.

4.3 Main theorem

We assume that the following technical conditions are fulfilled.

Condition 1. (a) The domain D is a d-dimensional differentiable manifold em-
bedded in Rm using m − d polynomial constraints, hj(θ) = 0. (b) Constraints
ri(θ) ≤ ε can be written as gi(θ) ≤ 0 with gi being a polynomial defined on Rm.
(c) The goal function, f , is a polynomial s.t. f →∞ as |θ| → ∞.

Note that in the subsequent analysis we will be working with the polynomials
gi instead of the residual functions ri as they may not be originally stated as
polynomial functions. The following example enlights why this is necessary.

Example. Recall, for the rigid registration problem we have

ri(θ) = ||R(θ)xi + t(θ)− yi||. (4.8)

This is, however, not a polynomial in the unknowns, but writing

gi(θ) = r2
i (θ)− ε2 ≤ 0 (4.9)

we get the desired polynomial inequality.

As a consequence of Condition 1(b), ri(θ) ≥ ε can be written −gi(θ) ≤
0. In the sequel, we will work with gi instead of ri. To simplify notation we
introduce

si =

{
1 if i ∈ ind(I)
−1 otherwise,

48



4.3. MAIN THEOREM

where ind(I) denotes the index set of the residual set I . Now we can rewrite
DUMMY(I,O) as

min
θ
f(θ)

sigi(θ) ≤ 0 i = 1, . . . , n

hj(θ) = 0 j = 1, . . . ,m− d. (4.10)

We will show that under mild conditions, the solution to this problem can also be
found by analyzing a class of much smaller subproblems. The idea is illustrated
in Figure 4.4.

Definition 4.18. A parameter vector θ ∈ D is critical to a set of residuals B ⊂ S if

gi(θ) = 0 ∀ i ∈ ind(B) (4.11)

and

{∇gi(θ) : i ∈ ind(B)} ∪ {∇f(θ),∇h1(θ), . . .} (4.12)

is linearly dependent and no proper subset of B has this property.

Lemma 4.19. If θ ∈ D is critical to a set of residuals B, then |B| ≤ d.

Proof. Assume contrary, that B contains more than d residuals. Then, 4.12 con-
tains m+ 2 vectors. If we remove one it still contains m+ 1 vectors in Rm so it
is still linearly dependent. Hence θ was not critical.

The set B of residuals may be thought of as a base set as there is no proper
subset to which θ is critical.

An FJ-point to an optimization problem is a point that satisfies the Fritz-John
conditions for local optimality, see [4]. The conditions are closely related to the
more well-known Karush-Kuhn-Tucker (KKT) conditions. For the optimization
problem 4.10, a feasible point θ is an FJ-point if there is a non-trivial solution to

µ0∇f(θ) +
∑

µisi∇gi(θ) +
∑

λj∇hj(θ) = 0 (4.13)

with µi ≥ 0 and µigi(θ) = 0 for all i.

Theorem 4.20. Let (I,O) be a feasible partition of the residuals and suppose that
Conditions 1 are satisfied. Then, (i) DUMMY(I,O) has at least one FJ-point, and
(ii) this point is critical to a residual set B of size ≤ d.
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Figure 4.4: The residual functions trace out regions in D and for all θ in such
a region, the inlier-outlier partition is constant. In order to find one point in
the orange region (left), it is enough to consider a subproblem with only d = 2
residuals (right).

Proof. Pick any θ0 in D(I,O). As f →∞ when |θ| → ∞, there exists a ρ such
that f(θ) > f(θ0) whenever |θ| > ρ. Hence we can restrict the minimization in
DUMMY(I,O) to

D(I,O) ∩ {θ : |θ| ≤ ρ}. (4.14)

This set is compact so a minimizer, θ∗, exists. As the involved functions are
polynomials, they are continuously differentiable, and by Theorem 4.3.2 in [4],
θ∗ will satisfy the Fritz-John conditions, which shows the first assertion. It remains
to show that θ∗ is critical.

As θ∗ is an FJ-point, it satisfies

µ0∇f(θ∗) +
∑

µisi∇gi(θ∗) +
∑

λj∇hj(θ∗) = 0, (4.15)

where µi ≥ 0 and µigi(θ
∗) = 0, i = 1, . . . , n. As the hj ’s embed a d-

dimensional manifold in Rm, the set {∇hj} will span a (m − d)-dimensional
subspace perpendicular to the manifold tangent space at θ∗. Let P be the projec-
tion operator onto this tangent space. By projecting 4.15 we get

µ0P∇f(θ∗) +
∑

µisiP∇gi(θ∗) = 0. (4.16)
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Elementary linear algebra tells us that we only have to use at most d of the pro-
jected vectors P∇gi(θ∗) which have non-zero µ-coefficients. Let ind(B) be a
smallest such index set (and corresponding residual set B) so that we can write

µ̃0P∇f(θ∗) +
∑

i∈ind(B)

µ̃iP∇gi(θ∗) = 0, (4.17)

where the coefficients µ̃i’s include the si’s as well, thus they may be negative. It
follows that

µ̃0∇f(θ∗) +
∑

i∈ind(B)

µ̃i∇gi(θ∗) (4.18)

is perpendicular to the tangent space of D at θ∗ and hence there exist λ̃j ’s such
that

µ̃0∇f(θ∗) +
∑

i∈ind(B)

µ̃i∇gi(θ∗) +
∑

λ̃j∇hj(θ∗) = 0. (4.19)

From the construction of B, it also follows that gi(θ∗) = 0 for all i ∈ ind(B),
and we can conclude that θ∗ is critical to B.

Note that requirement that f , gi and hj are polynomials can be replaced with
a smoothness constraint, see [4] for details. However, it is only for polynomials
that we will have a simple way to find the critical points.

4.4 Finding all critical points

The previous sections establish a link between critical points and the possible
inlier-outlier partitions. This is to little use unless the number of critical points to
a given set of residuals is small, and we have means to compute them. According
to Theorem 4.20, to find the critical points we can go through all subsets, B, of
the residuals with |B| ≤ d. The number of such sets is

d∑

k=0

(
n

k

)
= O(nd), (4.20)
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Figure 4.5: A line which is a critical point as two residuals equal ε.

where d is the dimension of the parameter manifold. If |B| = d, we can find the
critical points by solving the system of polynomial equations

gi(θ) = 0 ∀ i ∈ B
hj(θ) = 0 j = 1, . . . ,m− d. (4.21)

Bezout’s theorem tells us that the number of solutions is either infinite or bounded
by the product of the degrees of the polynomials. If the polynomials are in general
position, then the latter is true. If residuals are in some sense random, then the
probability of degeneracy is negligible, but more about this soon.

Example. Given a set of points {xi} in the plane R2, we want to fit a line to these points.
The line can be parameterized by θ ∈ R3 with the embedding constraint

h(θ) = θ2
1 + θ2

2 − 1 = 0. (4.22)

Then, the point to line distance is given by

ri(θ) = |xi,1θ1 + xi,2θ2 + θ3|. (4.23)

This can be turned into a polynomial inequality constraint by setting gi(θ) = ri(θ)
2 −

ε2 ≤ 0. A typical critical point θ∗ is illustrated in Figure 4.5 for a base set of size two.

There can also be less than d active constraints. In that case, we need to add
the constraint that

{∇gi(θ) : i ∈ ind(B)} ∪ {∇f(θ),∇h1(θ), . . .} (4.24)

is a linearly dependent set. This can be enforced using determinants which will
also result in polynomial equations. Once again, the number of solutions is either
infinite or bounded by the product of the degrees. In this case we should choose
f to avoid infinite number of solutions. We state this as an assumption.
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4.4. FINDING ALL CRITICAL POINTS

Condition 2. For any subset of ≤ d residuals, the set of critical points is finite.

In order to compute the critical points for a given subset B with |B| ≤ d,
we need to solve a (small) system of polynomial equations. We are only interested
in the real solutions of this system, so any complex solutions can be discarded.
This means that for certain subsets B there may be no real solutions, but from
Theorem 4.20, we know that there will be at least one critical point in one of the
subsets.

Note that the number of polynomials in the system is independent of the
number of residual functions n (only dependent on d and m), so the computa-
tional complexity is O(1) as both m and d are regarded as fixed constants. In the
same way, also note that any valid choice of goal function f will not affect the
complexity.

Example. A detailed analysis of Condition 2 is a rather delicate matter, similarly to the
analysis of critical configurations in structure from motion estimation [38]. In prac-
tice, a probabilistic understanding of the risk of degeneracy is normally sufficient. Once
again taking the registration problem as an example, consider three pairs of corresponding
points (x1, y1), (x2, y2) and (x3, y3). We expect degeneracy if the pairwise distances are
exactly equal in the two images,

|xi − xj | = |yi − yj |. (4.25)

If the process used to generate points has some special structure, for example, if all coor-
dinates are integers, then the probability of this occuring is non-zero and our analysis is
not sufficient to prove optimality. But in the standard case of interpolated feature point
positions, the probability of degeneracy is neglible.

A Speed-Up. The critical points are the real-valued solutions to a set of poly-
nomial equations. Sometimes it might be possible to easily determine that the
system has no real-valued solutions. Hence we can avoid running the (costly) al-
gorithm for computing the solutions. The following example illustrates the idea.

Example. Recall the problem of registering two point sets, {xi} and {yi}. Assume we
want to find the critical points to

B = {r1, r2, r3}. (4.26)

If, for example,

||x1 − x3|| − ε > ||y1 − y3||+ ε (4.27)
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then there will not be any real-valued solutions to the system of equations, r1(θ) =

r2(θ) = r3(θ) = ε. That is, there are no critical points to this set.

More generally, we can use the following simple result.

Lemma 4.21. If there are no critical points to B, then there are no critical points to
B̄ ⊃ B.

Proof. Consider the set

{θ : ri(θ) ≤ ε , ∀ ri ∈ B}. (4.28)

Using the argument from Theorem 4.20, f will have a minimizer in this set and
this minimizer is a critical point. Hence for B not to have any critical points this
set has to be empty. Clearly the corresponding set for B̄ is empty as well so B̄
cannot have any critical points.

To find all critical points we need to go through all subsets B of the residuals
in S with |B| ≤ d. The above lemma shows that we should start with the smallest
B’s and note whenever a real-valued solution is missing.

4.5 Enumerating all partitions

Our main theorem links each feasible inlier-outlier partition to a critical point,
but it is still not clear how to find the partitions linked to a critical point. As usual
in computational geometry special cases arise if the data is not in general position.
In our setting, general position refers to the FJ-points.

Condition 3. (a) If θ is a critical point to a set of residuals B, then there are no
active residuals outside B. (b) If θ is a critical point, then the gradients of the active
constraints are linearly independent.

For most problems there exist degenerate cases with respect to these condi-
tions. The task for the user is to verify that these configurations have neglible
probability. Even the rare degenerate cases are solvable, but in order to avoid a
too detailed and technical analysis, these cases are deferred to Appendix 4.7.

As shown previously, for a feasible partition of the residuals (I,O), there
exists an FJ-point which is critical to a subset B ⊂ S with |B| ≤ d. Now,
we are interested in the reverse task: Given some θ∗ which is critical to a set B,
find all partitions (I,O) such that θ∗ is also an FJ-point to DUMMY(I,O). If
Condition 3 holds, there will be a unique partition satisfying this.
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Step 1. For θ∗ to be an FJ-point it has to be feasible, i.e., it has to lie inD(I,O).
Hence we compute gi(θ) for all i. If gi(θ∗) < 0 then we know that residual i
belongs in I and if gi(θ∗) > 0 then it belongs in O. By Condition 3 all residuals
outside B will have gi(θ∗) 6= 0 and hence this step will label all residuals outside
B as either inliers or outliers.

Step 2. As θ∗ is critical

γ0∇f(θ∗) +
∑

i∈ind(B)

γi∇gi(θ∗) +
m−d∑

j=1

λj∇hj(θ∗) = 0, (4.29)

where both γi’s and λj ’s might be negative. Condition 3(b) says that the con-
straint gradients are linearly independent so γ0 6= 0. Hence after rescaling

∇f(θ∗) +
∑

i∈ind(B)

γi∇gi(θ∗) +
m−d∑

j=1

λj∇hj(θ∗) = 0. (4.30)

By Definition 4.18, removing one of the ∇gi’s will create a linearly independent
set. This means that all γi’s must be non-zero. Moreover, linear independence
means that all coefficients are unique. Therefore, we can compute the gradients
and then uniquely solve for γi’s and λj ’s.

Step 3. Now, 4.30 looks like the constraint on an FJ-point, except that some
of the γi’s might be negative. In fact the sign of the γi’s tells us whether to put
residual i in I or in O. If γi is negative, we add residual i to the outlier set O and
set si = −1. If γi is positive then we add residual i to the inlier set I and set
si = 1. Thus

∇f(θ∗) +
∑
|γi|si∇g̃i(θ∗) +

∑
λj∇hj(θ∗) = 0. (4.31)

Comparing with 4.13, we see that θ∗ is a FJ-point for DUMMY(I,O).
Algorithm 1 gives an overview on how to compute all feasible partitions.

Theorem 4.22. If Conditions 1-3 hold, then Algorithm 1 finds all partitions in
O(nd+1)-time.

55



CHAPTER 4. OUTLIER-INLIER PARTITIONS ON THE MODEL
PARAMETER SPACE

Algorithm 1 Enumerating all partitions

For each subset B of the residuals with |B| ≤ d
Compute all critical points to B (see Section 4.4).
For each critical point θ∗

Set I = ∅.
For each gi /∈ B

If gi(θ∗) < 0, add gi to I .
Compute the γi’s of 4.30.
For each gi ∈ B

If γi > 0, add gi to I .
Store the partition (I,O), where O = S \ I .

Proof. The number of subsets of size ≤ d is O(nd). For a given problem the
number of critical points to a given S is constant w.r.t. n, so the total number of
critical points is also O(nd). For each of these we need to compute gi(θ∗) for
i = 1, . . . , n. Hence the total complexity is O(nd+1).

As a consequence, the complexity of the outlier minimization will beO(nd+1).
Note that for a given problem, d is normally fixed and the complexity is polyno-
mial. In theoretical computer science, such problems are called fixed-parameter
tractable with respect to the dimension of the parameter space. In contrast, when
both n and d are regarded as input, the above complexity bound yields worst-case
exponential running times. In fact, with this viewpoint, the class of problems is
NP-hard as it includes, for example, the densest hemisphere problem, known to
be NP-complete [37]. When d is regarded as a constant (as in our setting), the
densest hemisphere problem is fixed-parameter tractable since it can be solved in
O(nd log n) [37].

From a practical point of view, note that we are solving a fixed number of
identical subproblems. This means that the exact running time can be predicted
and that the algorithm can be easily parallelized by distributing the outer for-loop
of Algorithm 1 over multiple cores.
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4.6 Choice of goal function f

In practice, we want to choose f that yields simple polynomial equations. Typi-
cally, with parameter manifold embedded in Rm the best we can do is to choose
f as a linear function on Rm. However, a linear goal function does not satisfy
Condition 1(c). To work around this we need harder constraints on the residual
functions.

Condition 4. If I is non-empty, then D(I,O) is bounded.

Example. It is not hard to show that this condition holds for registration. Given
a corresponding point pair (xi, yi), assume that the translation ||t|| > ||xi|| +
||yi||+ ε. By the triangle inequality

||Rxi + t− yi|| ≥ ||t|| − ||Rxi|| − ||yi|| > ε. (4.32)

Hence the translation is bounded as long as there is at least one inlier, and as the
rotation part has unit length this shows that D(I,O) is bounded.

We needed Condition 1(c) at the start of the proof of Theorem 4.20 to ensure
that there exists a minimizer for f over the closure of D(I,O). With the stronger
constraint on the residuals, it follows that D(I,O) is bounded and hence any
continuous f will have a minimizer.

4.7 Handling degeneracies

Essentially, Condition 3 states that constraints are in some sense random. For
example, it will normally not happen that more than d residuals will be exactly
equal to ε at the same θ—and numerical accuracy will make it impossible to
securely detect it. Having said that, assume that the problem has some special
structure which makes degeneracies possible (and which makes it possible for us
to detect them). With a little extra work we can still compute all inlier-outlier
partitions. As we are not aware of any applications with this type of degeneracy
we will only briefly sketch the solution.

Consider a critical point, θc, such that Condition 3 does not hold. We want
to find all partitions (I,O) that such that θc ∈ D(I,O). Place a ball around θc
such that all other critical points are outside this ball. We will now show that this
D(I,O) intersects this ball for all the desired partitions.
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Assume the contrary, that there exists a partition (I,O) such that D(I,O)
(or at least a subset of it) is completely contained in this ball. Then that set is
compact and hence f has both a maximizer and a minimizer on this set. These
two cannot coincide and they will both be critical points. Hence there is another
critical point inside the specified ball, which is a contradiction.

A strategy to find the partitions at θc is to enumerate all the partitions on the
specified ball. If necessary this process can be iterated.
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Chapter 5

Optimal Model Fitting

The main contribution of the previous chapter was an algorithm that allowed all
possible inlier-outlier partitions to be enumerated. In this chapter we will show
how this result can be used to

• Solve the model fitting problem in strict inlier-outlier sense.

• Solve multiple model fitting in strict inlier outlier sense.

• Solve the model fitting problem under the truncated L2 loss function for a
large class of problems.

• Solve the model fitting problem approximately under any loss function,
not limited to but including truncated L2.

It is widely accepted that the truncated L2-norm is a good way to model noise
and outliers [7], but its use has been hindered by the difficulty in solving the
resulting optimization problem.

All algorithms and techniques introduced are extensively evaluated on real
problems in computer vision and image registration. In particular we show that
the proven theoretical guarantees on the optimality of our solution translates to
better solutions in practice. To better understand the tradeoff in regards to time
complexity we analyze the practical running times, and compare the performance
of our minimal solvers to standard exact solvers in a RANSAC scheme.

5.1 Outlier minimization

Explicitly enumerating all possible inlier-outlier partitions allows us to find the
partition which minimizes the number of outliers. In fact, a slightly simplified
algorithm can be applied, see Algorithm 2.
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Algorithm 2 Outlier minimization

For each subset B of the residuals with |B| ≤ d
Compute all critical points to B.
For each critical point θ∗

Compute all gi(θ∗).
Count the outliers gi(θ∗) > 0.
If this is the lowest number so far, store θ∗.

Theorem 5.23. If Conditions 1-3 hold, then Algorithm 2 finds an optimal solution
θ∗ that minimizes the number of outliers in O(nd+1) time.

In conclusion, we have solved Problem 4.2.1 with the zero-one loss function.
Let us turn our attention to another loss function.

5.2 Multiple models

In many cases the data is well-described by a small set of low-dimensional models.
Perhaps the best example application is motion segmentation. It is clear that this
setting is significantly harder than single-model fitting. Therefore we will only
consider the zero-one loss

`(r) =

{
0 if r ≤ ε,
1 otherwise.

(5.1)

Problem 5.2.1 defines the problem more precisely.

Problem 5.2.1 Let D be a d-dimensional differentiable manifold, embedded
in Rm (m ≥ d). Given a set of residual functions S, estimate a set of k models
{θ1, . . . , θk} with θj ∈ D, such that

n∑

i=1

min
j=1,...,k

`(ri(θj)) (5.2)

is minimized.
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This corresponds to minimizing the number of outliers. Let us first note that
the previous results also hold in the multi-model case, as fitting k d-dimensional
models can be viewed as fitting one kd-dimensional model. However, we get a
more practical approach by using the following result.

Theorem 5.24. Assume that we would like to estimate k models and that Condi-
tions 1-3 are satisfied. Then, an optimal solution to Problem 5.2.1 consists of k critical
points to residual sets with size ≤ d.

This means that among the same critical points as for the single-model case,
we can form an optimal solution to the multi-model case by picking a subset of k
such critical points.

Proof. As the goal function in (5.2) can only attain a finite number of values, a
minimizer is guaranteed to exist. Consider such a minimizer, {θ∗1 , . . . , θ∗k}. We
will study θ∗1 more closely, but note that the discussion holds for any θ∗j . Let I1

and O1 be the set of inliers and outliers, respectively, to θ∗1 . Note that a residual
can be an inlier to more than one model, but this will not matter. Consider the set
D(I1, O1) as in Definition 4.16. Clearly this set is non-empty since it contains θ∗1 .
Moreover, for any θ in this set, {θ, θ∗2 . . . , θ∗k} is a solution to Problem 5.2.1. By
Theorem 4.20 at least one point in D(I1, O1) is critical to a set of ≤ d residuals.
This argument can be repeated for indices 2, . . . , k.

The maximum k-cover problem. Assume that we have computed all critical
points to residual subsets of size ≤ d. Recall that the number of such points
is O(nd). The remaining problem is to choose k of these hypotheses such that
Problem 5.2.1 is solved. Each hypothesis (or critical point) can be represented by
its set of inliers Ii and we want to find a maximum k-cover,

max
|C|=k

∣∣ ⋃

i∈C
Ii
∣∣. (5.3)

This is a well-known NP-hard problem, but it is easy to see that it is fixed-
parameter tractable with respect to the number of models. More precisely, let
H be the set of hypotheses, and assume that we want to fit k models. Since there
are only

(|H|
k

)
possible choices, an exhaustive search can be done in polynomial

time as long as k is fixed. Normally, a more efficient solution is to formulate the
max k-cover problem as an integer linear program, and use standard solvers for
this type of problem.
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In summary, in order to optimally estimate a set of k models (Problem 5.2.1),
one can use Algorithm 3. The worst-case running time is O(nkd+1).

Algorithm 3 Multi-model estimation

For each base set B of at most d residuals.
Compute all critical points to B.
For each critical point θ∗,

Save the index set { i | ri(θ∗) ≤ ε }.
Solve MAX k-COVER for the family of index sets.

Maximal Sets. A set of inliers is maximal with respect to an instance of a fitting
problem if it is not a true subset of any other inlier set to that instance. It is
easy to see, that only maximal inlier sets need to be considered in the maximum
covering problem. This also means that the number of maximal sets is crucial
to the complexity of multi-model fitting rather than the total number of inlier
sets. One might wonder if this is a significant difference. From a computational
complexity perspective, the answer is no.

5.3 Model Estimation under Truncated L2-norm

5.3.1 Noise Modelling.

Minimizing the number of outliers is a simple approach that generally yields good
results, but it does have its limitations, see [33]. One problem is that the method
might be sensitive to the choice of ε, but also that the distribution of the inlier
errors is not modelled. In [7] a more refined loss function is proposed. The
assumption is that inlier residuals have a bell-shaped error distribution similar to
the Gaussian distribution, whereas outlier residuals have approximately uniformly
distributed errors. These assumptions lead to the loss function

l(r) = − log
(
c+ exp (−r2)

)
(5.4)

where r is the residual error, see Figure 5.1. It is also noted that a good approxi-
mation can be obtained by truncating the ordinary squared error.
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Figure 5.1: A robust loss function (orange) as suggested in [7], and the truncated
L2-error (green) which can be optimized using the proposed framework; in this
case truncated at ε = 1.

5.3.2 Truncated L2-norm.

For a residual r we compute the loss as

`(r) =

{
r2 if r ≤ ε,
ε2 otherwise.

(5.5)

Lemma 5.25. A minimizer θ∗ to Problem 4.2.1 under the truncated L2-loss func-
tion (5.5) is also a global minimum to

min
θ

∑

ri∈I
r2
i (θ), (5.6)

where I = {ri : ri(θ
∗) ≤ ε}.

Proof. Assume to the contrary there exists a θ′ such that

∑

ri∈I
r2
i (θ
∗) >

∑

ri∈I
r2
i (θ
′). (5.7)

LetO denote the set of residuals that are not in I . If we add ε2|O| to the left hand
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side, then we get the total loss at θ∗,

n∑

i=1

`(ri(θ
∗)) >

∑

ri∈I
r2
i (θ
′) + ε2|O| ≥

∑

ri∈I
`(ri(θ

′)) +
∑

ri∈O
`(ri(θ

′)) =

n∑

i=1

`(ri(θ
′)), (5.8)

which is a contradiction.

This lemma shows that minimizing the truncated L2-loss is closely linked
to minimizing the standard L2-loss. If the standard L2-loss is easy to minimize
we can also handle the truncated loss. Simply compute all possible inlier-outlier
partitions and for each inlier set, compute the optimal L2-solution(s). Therefore,
we can apply Algorithm 1 in order to enumerate all partitions.

5.3.3 Using approximated norms

The previous section shows how to optimize the truncated L2-norm, but only
given an efficient algorithm for optimizing the standard L2-norm. In many cases
no such algorithm exists. Then it is not possible to optimize the truncated L2-
norm exactly but we can approximate that or other loss functions with a piece-
wise constant function (see Figure 5.2) and optimize this instead. As for standard
outlier minimization, the loss only changes value when one of the residuals ri
passes a threshold εk, see Figure 5.3.

To see how we can optimize a piecewise constant loss, consider Figure 5.4. It
shows how the parameter space is divided in a case with two residual functions and
a loss function with three discontinuities. Just like before, we want to sample each
of the different regions in this plot. We can use Algorithm 1 for this, if we simply
treat each combination of residual function and a threshold as a separate function.
More precisely, for each residual function ri, i = 1, . . . , n and threshold εk,
k = 1, . . . , κ, we introduce a new function ri,k = ri − εk. Then we have a set
of residual functions and we want to sample all feasible inlier-outlier partitions
for these functions. This can be done with Algorithm 1. As the number of input
functions is nκ, the number of critical points that are generated in Algorithm 1 is
O((nκ)d). To optimize the piecewise constant loss, we simply evaluate it for each
of these critical points. The total complexity of this approach is O((nκ)d+1),
where κ is the number of discontinuities of the loss function.
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Figure 5.2: A general loss function (orange) is approximated with a piece-wise
constant loss function (green).

parameter space

Figure 5.3: With only one residual and three discontinuities in the loss function,
the parameter space is divided into four regions. In each part the loss is constant.

5.4 Fast outlier rejection

It would naturally be a great advantage if outliers could be discarded early and not
even considered as input to Algorithm 1, and later Algorithm 2. This section will
present such a method for fast outlier rejection which works both for registration
and stitching. Our presentation is focused on the zero-one, but it can easily be
adapted to the truncated L2-norm as well. Note that only correspondences that
can be shown to not be part of an optimal inlier set will be discarded.

The technique iterates through the correspondences, or in our terminology,
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Figure 5.4: With two residuals and three discontinuities in the loss function, the
parameter space is divided into several regions, but in each of these the loss is still
constant.

the residuals. For each residual function ri ∈ S, we obtain a bound of the
following type: If ri is an inlier to the (unknown) optimal solution θ∗, then the total
loss l(θ∗) is larger than some number, say lbound. If this bound lbound is higher
than the best solution found so far, we get a contradiction and we can draw the
conclusion that ri must be an outlier. The residual ri can then be permanently
removed from the discussion (that is, removed from S).

Let us assume that residual ri is below the threshold at optimum, that is, the
ith correspondence is an inlier. Under this assumption, we will produce a bound
on the optimal solution.

Proposition 5.26. Suppose that for a set of corresponding points there exists a trans-
formation T represented with parameters θ (for registration or stitching) such that
all residuals are less than ε, that is, rj(θ) ≤ ε for all j. Then there exists another
transformation T ′ with parameters θ′ such that ri(θ′) = 0 and all other residuals are
less than 2ε, that is, rj(θ′) ≤ 2ε for all j but i.

Proof. (Registration) Set t′ = yi −Rxi and R′ = R. Then

ri(θ
′) = ||R′xi + t′ − yi|| = 0.

Further,

||t− t′|| = ||t+Rxi − yi|| ≤ ε
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and hence for any j,

rj(θ
′) = ||R′xj + t′ − yj ||
≤ ||Rxj + t− yj ||+ ||t− t′|| ≤ 2ε.

Proof. (Stitching) Let α = ∠(yi, Rxi). Then a rotation Rα about Rxi × yi will
map Rxi exactly to yi and ||Rα|| ≤ ε. So, set R′ = RαR and hence

ri(θ
′) = ||R′xi − yi|| = ||RαRxi − yi|| = 0

and for any j,

||R′xj − yj || ≤ ||RαRxj −Rxj ||+ ||Rxj − yj ||
≤ ||Rα||+ ε ≤ 2ε.

This means that a bound for the number of 2ε-inliers given that ri = 0 is
also a bound for the number of ε-inliers given that ri ≤ ε. For both registration
and stitching, computing the former bound is fairly easy as the constraint ri = 0
fixes the transformation up to a one-dimensional rotation using correspondence
(xi, yi). We can parameterize this rotation with an angle α. Each of the re-
maining correspondences yields an interval constraint on this α (which should be
interpreted modulo 2π) for which it is an inlier. To get a bound on the number
of inliers we need to find a point that lies in as many of these intervals as possible.
This can be done by sorting the intervals and going through the sorted list. The
computationally most costly part here is the sorting and hence the cost of this
algorithm is O(n log n). If we do this for each correspondence we get a cost of
O(n2 log n), which is significantly cheaper than the optimal algorithm.

5.5 Application I: Registration

We return to the image registration problem introduced in Section 4.2. Given
two sets of 2-vectors, {xi} and {yi}, find a rotation R and a translation t that
minimizes the truncated L2-norm. An example of two image pairs that we would
like to align are given in Figure 4.1.
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Figure 5.5: Image pairs of prostate tissues in two different stainings.

As per previous discussions we need to find all critical points for subsets B of
the residuals. We write the residual constraints gi as

gi(θ) = (R(θ)xi + t(θ)− yi)T (R(θ)xi + t(θ)− yi)− ε2. (5.9)

Clearly these are differentiable. As goal function we choose a linear function,
f(θ) = θ1.

We will need different polynomial solvers depending on the size of B. With
|B| = 3 we get three equations of type 5.9 and the embedding h(θ) = θ2

1 +θ2
2−

1 = 0. This amounts to four quadratic polynomial equations in four unknowns.
Using methods presented in Chapter 3 we have implemented a minimal solver in
MATLAB that runs in about 0.6 ms on a standard computer (Intel I5).

For problems of size < 3 we also need to consider the constraint posed on the
gradients of gi, h and f in 4.13. This constraint implies linear dependence of the
gradients. These gradients are easy to calculate and using

det
(
∇f ∇g1 ∇g2 ∇h

)
= 0 , (5.10)

we obtain the necessary extra equations.
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5.5.1 Experiments

For the registration experiments the problem of matching two differently stained
tissue slices of a prostate biopsy is addressed. Examples of such images are shown
in Figure 5.5(a) out of a database of 88 pairs. These images vary greatly in the
number of reliable matches, and can have high ratios of outliers (recall the example
in Figure 4.1).

The outlier rejection method of 5.4 is applied as a preprocessing step to Al-
gorithm 2. Normally 90% to 98% of the outliers are eliminated in this step, but
in rare examples this ratio drops and in the two worst examples only 0.2% and
11% are eliminated, respectively. Truncation level is set at ε = 3 pixels. Com-
pared with standard RANSAC which optimizes the size of the inlier set and in
the end, computes a least-squares fit on this set, there were eight pairs with no
difference. The improvement for the other 80 pairs is shown in the upper, left
of Figure 5.6. Compared with RANSAC that uses the same truncated quadratic
loss, 42 pairs gave no difference. The improvement for the remaining 46 pairs is
shown in the upper, right of Figure 5.6. The scaling of the x-axis is normalized
by the squared threshold ε. This allows one to interpret the result as number of
additional outliers. It is clear from the histograms that the optimal method sig-
nificantly outperforms the best possible obtainable result from a standard inlier
optimizing RANSAC approach. Even though the truncated L2-RANSAC performs
considerably better, it is still not optimal in half of the cases.

Runtimes and time complexity. By randomly selecting subproblems of differ-
ent sizes from the registration data, we examined the running times of the fast
outlier rejection and Algorithm 2 as a function of problem size. The results are
shown in Figure 5.7. As most of the outliers are removed by the outlier rejection
step and the runtime of the second step depends mainly on the number of inliers.
This means that the total execution time of our algorithm varies from a couple of
seconds to slightly over three hours even if the number of input points is fixed. In
practice though, there would be no need to run Algorithm 2 exhaustively in cases
with hundreds of inliers.

The practical complexity for Algorithm 2 is cubic rather than the theoretical
O(n4). It shows that for this problem size, the dominant cost is that of computing
the critical points. The runtime of RANSAC is about 1 s for all experiments.
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Figure 5.6: Histogram of performance differences between our optimal method
and standard RANSAC (left) and RANSAC which evaluates the truncated L2-error
for each sample (right). The x-axis shows the difference in truncated L2 loss
normalized with a factor 1/ε2 such that 1 corresponds to the cost of an extra
outlier.
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Figure 5.7: Timing experiments for registration. (Left) Runtime as a function of
the number of correspondences for the fast rejection method. (Right) Runtime
for Algorithm 2 as a function of problem size (≈ the number of inliers). The
dashed line is a y = cx3-curve.

5.5.2 Random sampling

Algorithms 1 and 2 involve an exhaustive search over a high number of minimal
subsets. For large problems this will make the entire approach infeasible. In
such scenarios the RANSAC family of algorithms, testing only a limited number
of minimal subsets, are still feasible. What happens if we use our new polynomial
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solvers that compute critical points in order to generate hypotheses in the inner-
loop of RANSAC?

We illustrate the relative performance with respect to RANSAC through syn-
thetic experiments on registration. In this case we use up to three correspondences
to generate hypotheses while the standard solvers need only two. Data is gener-
ated by randomly selecting a rotation, translation and point set of 100 points as
well as a fixed threshold ε. The point set is then transformed and Gaussian dis-
tributed random noise with standard deviation ε is applied to all points to model
potential inliers. Additional random noise with standard deviation 5ε was added
to 40 of the points to model potential outliers.

After applying the fast rejection algorithm described in section 5.4 we ran
RANSAC using both our and standard solvers. As the standard solver produces a
single hypothesis for each random subset and our solver generates up to 6 solu-
tions, the standard solver was allowed six times as many iterations. The process
is repeated 500 times and the average results are presented in Figure 5.8. Some-
what surprisingly the new solvers outperform the standard ones already after a few
hundred iterations. This indicates that it is better to compute critical points with
ri(θ) = ε as hypotheses in RANSAC rather than the standard error-free hypotheses
from ri(θ) = 0.

The difference is small, but we believe it is an important observation. By just
modifying the standard RANSAC procedure to compute critical points instead,
one can achieve better results. Moreover, it has a sounder theoretical basis as
the optimum solution will eventually be obtained, which is not guaranteed for
RANSAC.

5.6 Application II: Triangulation

Given n cameras with known camera matrices we wish to determine the coordi-
nates of a scene point θ ∈ R3. For this case no efficient algorithm for optimizing
the standard L2 loss is known. Hence we restrict ourselves to the zero-one loss,
i.e., to minimizing the number of outliers.

The reprojection residual functions are given by

ri(θ) =

∥∥∥∥
(
xi −

aTi θ + āi

cTi θ + c̄i
, yi −

bTi θ + b̄i

cTi θ + c̄i

)∥∥∥∥ , (5.11)

provided cTi θ + c̄i ≥ 0 where (aTi , āi), (bTi , b̄i) and (cTi , c̄i) denote the first,
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Figure 5.8: A comparison of performance of RANSAC using standard solvers
(which assume zero noise) and our solvers based on critical points. The figure
shows an average over 500 synthetic experiments. The x-axis shows the number
of iterations of our solver. To be fair, the standard solver was allowed six times as
many iterations.

second and third rows, respectively, of Pi. Note that all points that satisfy ri(θ) ≤
ε form a convex cone.

To solve for the critical points we need to enforce constraints of the type
ri(θ) ≤ ε which is a convex cone in R3. Since the intersection of convex sets is
convex, the optimization in DUMMY(I,O) is over a convex set. Any convex set
has a unique point with minimal norm, so we choose the auxiliary goal function
to be f = ||θ||2. This ensures that a minimizer exists and in practice ensures that
Condition 2 is satisfied.

To find the critical points we need to consider the active constraints ri(θ) =
εji , which can be rewritten as gi(θ) = 0, with quadratic function

gi(θ) =
(
θT (xici − ai) + xic̄i − āi

)2

+
(
θT (yici − bi) + yic̄i − b̄i

)2 − ε2 (θT ci + c̄i
)2
.

(5.12)

We have to consider subsets of up to three residuals. If there are exactly three,
then we get a system of three quadratic equations as in 5.12. As predicted by
Bezout’s theorem there will be up eight solutions. If there are only two active
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constraints, then we add an equation by forcing the gradients to be linearly de-
pendent,

0 = det
(
∇gi ∇gj ∇f

)
.

which is a cubic equation. This also yields a reasonable system with up to 12
solutions.

Basically the case of just one active constraint can be handled analogously.
Note that ∇gi = 0 at the camera centre for camera i, so the camera centre itself
is a critical point. Finally we need to check θ = 0, since then∇f = 0.

5.6.1 Experimental validation

Algorithm 2 was implemented in MATLAB. The polynomial equations were
solved using a generic polynomial solver based on [11]. Experiments were run us-
ing the step loss function to minimize the number of outliers on the well-known
Dinosaur turn-table sequence with automatically tracked points in 36 images.
An image point is tracked in up to 10 consecutive views. We compare our results
with a standard minimal solver. We used the optimal two-view triangulation from
[32]. To get a fair comparison that solver was tried for all possible choices of two
views. Hence the result is the best possible that could be achieved with RANSAC.
Figure 5.9 shows a comparison to the proposed method. For most of the trian-
gulated points in the Dinosaur sequence there are no outliers - only cases with at
least one outlier are reported.

Error threshold
1 pixel 2 pixels

Same result 108 51
1 outlier less 156 82
2 outliers less 10 2

Figure 5.9: Comparison between the proposed method and the best possible result
using a standard solver. For two different thresholds, the number of times that a
certain improvement was achieved is presented. For example, with a threshold of
1 pixel, our method had one outlier less in 156 cases.

The running times for the generic solver were around 0.1 s per minimal case
on a desktop computer. A specialized solver can solve the same problem in a few
milliseconds [11].
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5.7 Application III: Stitching

We formulate the problem as Horn et. al. [34]. Given two sets of unit 3-vectors,
{xi} and {yi}, find a rotation R such that

n∑

i=1

`(||Rxi − yi||) (5.13)

is minimized. As before, `(r) = min{r2, ε2}. Unless the threshold ε is large, this
is basically equivalent to minimizing squared angular errors.

The relevant inequality constraints for this problem are gi(R) = yTi Rxi +
ε2/2−1 ≥ 0. The parameter space is 3-dimensional, one angle around each axis.
We avoid trigonometry in the unknowns and embed the rotation matrix using a
unit quaternion q. This does not alter the form of gi(R(q)) ≥ 0 but introduces
an equality constraint h(q) = ||q||2 − 1 = 0. Here R(q) merely denotes a
rotation matrix parameterized by the quaternion q.

For problems defined by three active constraints we again have a system of
four equations in four unknowns. Using methods presented in 3 a polynomial
solver exploiting the symmetry of the quaternion representation was constructed.
For problems where only two inequality constraints are active we can no longer
formulate a solvable system. Again we need 4.13 to obtain a fourth equation
necessary to solve for the four unknowns in q. Just as for the case of registra-
tion we use the implied linear dependence and det(∇f ∇g1 ∇g2 ∇h) = 0
to obtain this equation. To simplify this expression we select f(q) = q1, giving
us ∇f = (1, 0, 0, 0)T reducing the above determinant calculation to a subde-
terminant calculation. Single active constraints can be handled similarly. Our
MATLAB implementation of the polynomial solvers runs in about 10 ms.

5.7.1 Experiments

A stitching example of a pair of images taken by different photographers at differ-
ent times, downloaded from FLICKR with keywords “view from the Eiffel tower”
is given in Figure 5.10(b). In total, a database of 53 image pairs were tested. The
images were of size 640× 480 and had very narrow overlap. The truncation was
set to ε = 0.001 corresponding roughly to 1.5 pixels. Compared with standard
RANSAC, there were five pairs with no difference. The other 48 pairs are summa-
rized in the lower, left of Figure 5.11. Similarly with the truncated L2-RANSAC,
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Figure 5.10: Stitching example from FLICKR showing the view from the Eiffel
Tower. This challenging example consists of two images taken under very differ-
ent illumination conditions and resolutions, resulting in poor matching.

there were 38 pairs with no difference while 15 pairs obtained improved results
compared with the optimal method, see the lower, right of Figure 5.11.

The relative performance between our optimal method and RANSAC follows
the same pattern as for the registration experiment. There is a significant dif-
ference compared to standard RANSAC while for the truncated L2-RANSAC the
performance difference is smaller. These findings are consistent with [46] where
a truncated quadratic loss is also found to perform better than simply counting
inliers in the RANSAC-loop.

5.8 Application IV: Multi-model registration

For the experiments on simultaneous multiple model registration we emulate
structures as the one displayed in Figure 5.12(c). The image shows a lung biopsy
with three components, matched to adjacent layers of the same tissues. Due to the
lack of availability of such data we use our prostate data to generate multi-model
cases with close to the same number of inliers. For the cases with two models we
used 20 inliers per model, and in total 40 outliers. For the three model case we
used models of different dominance and set the inlier sizes to 10, 20 and 30. The
number of outliers was set to match the total number of inliers. The results for
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Figure 5.11: Histogram of performance differences between our optimal method
and standard RANSAC (left) and RANSAC which evaluates the truncated L2-error
for each sample (right). The x-axis is scaled such that 1 unit corresponds to the
cost of 1 outlier.

both methods, compared to using a sequential RANSAC is displayed in Table 5.1.
Average running times were 18 s and 90 s for the two-model examples and the
three-model examples, respectively.

For multi-model registration, we use Algorithm 3 with CPLEX for max k-
cover, but before running the polynomial solver we use a simple test as discussed
in Section 4.4 to determine if there will be any real-valued solutions.

difference in # inliers

# models 0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +13

2 2 7 13 9 8 6 2 1 1 1 0
3 1 3 4 8 5 10 5 4 5 4 1

Table 5.1: The improvement of our method compared to sequential RANSAC.
Note that RANSAC hardly ever finds the optimal solution even though the sam-
pling of minimal sets is exhaustive.

5.9 Conclusions

We have shown how to perform model estimation under robust loss functions
that model both inlier and outlier noise. Our experiments demonstrate that this
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Figure 5.12: (c) Image pair of a lung tissue biopsy which has three components.
(Top) Hypothetical correspondences (cyan) obtained from SIFT. (Bottom) Inlier
correspondences (green, blue and red) from the three estimated motions.

yields a practical approach when combined with a fast outlier rejection scheme.
One weakness is that for large number of inliers, it becomes infeasible to compute
the optimal estimate. On the other hand, in such a case, it is not crucial to find
all inliers in order to get an accurate estimate. Instead one can use our solvers
in a random sampling framework. As experimentally demonstrated in the case
of registration, this gives better results compared to applying standard minimal
solvers.

The proposed work opens up the possibility to develop new feature detectors.
Current detectors such as SIFT are optimized to find a good inlier/outlier ratio,
but since we are able to handle large amounts of outliers, one can design new
detectors that are optimized to find many inliers.
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Chapter 6

Tractability and Fidelity of
Optimal Fitting: A Case Study

Image registration is a classical problem in computer vision and it appears as a sub-
routine for many imaging tasks. For example, it is a prerequisite for shape analysis
and modelling [18] and for automated analysis of multi-modal microscopy im-
ages [44]. It is also an important component in image guided surgery where often
fiducial markers are used for estimating the transformation [30, 21]. In this chap-
ter, we will evaluate the techniques introduced in the previous chapter on a real
medical application. Instead of evaluating the improvement using the same goal
function that we have theoretical guarantees of optimizing, we will compare to
manually obtained ground truth. We will demonstrate that in this setting our
methods frequently outperforms standard approaches. In addition we will de-
rive additional optimal solvers, based on observations on the properties of rigid
registration. More specifically cost functions based on the truncated and non-
truncated L1-norms are utilized.

The particular type of problem we are interested in is estimating rigid image
transformations under less controlled situations where there may be a substantial
number of mismatches and where it is important to obtain reliable results. For
example, the method should not be dependent on a good initialization.

Naturally, the registration problem has been studied in depth. When choosing
the method of preference, one is often faced with the following dilemma. Using
a simplified, mathematical model of the problem enables efficient computations,
but sacrifices realism. While using a more realistic model incurs the computa-
tional cost of hard inference. As an example, consider the case of feature-based
registration under the assumption that measurement noise in the target image can
be modeled by independently distributed Gaussian noise. This is in fact the stan-
dard Procrustes problem which can be solved in closed form. However, the model
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Figure 6.1: Examples from our two benchmarks with 10 manually marked cor-
respondences. Left: Prostate tissue stained with H&E and p63/AMACR. Right:
Prostate tissue stained H&E and TRF (fluorescent). The goal is to find a rigid
transformation that aligns the two images using features from an automated
method such as SIFT.

is not so realistic as there are typically erroneous measurements - outliers - among
the feature correspondences. This makes the registration estimates very unreli-
able. On the other hand, modelling outliers leads to a much more complicated
optimization problem and solving this problem exactly is sometimes dismissed as
infeasible. Heuristic methods based on random sampling and expectation max-
imization dominate the field. We show that one can achieve a method which is
both efficient (in terms of speed) and reliable (with respect to outliers).

In our first setting, the objective is to perform histologic analysis of biopsies.
Prostate cancer is the second most common cancer in men worldwide [36] and
whose gold standard of diagnosis and prognosis is based on histologic assessment
of tumours in images stained with Hematoxylin and Eosin (H&E). Several au-
tomatic pattern recognition prototypes exist [51, 22]. In order to improve the
accuracy in clinical practice, considerable research efforts have been directed to
complement the analysis with additional types of stainings and imaging modali-
ties [44]. One example is given in the left of Fig. 6.1 where two adjacent tissue sec-
tions have been stained with H&E and antibodies directed against p63/AMACR,
respectively. Another example is given in the right of Fig. 6.1 with one H&E stain-
ing and one Time Resolved Fluorescence (TRF) image measuring the Androgen
Receptor (AR) obtained from the same section. This type of images is quite chal-
lenging for any automated approach because reliable feature correspondences are
hard to obtain and there are image degradations due to imperfect acquisition.

In our second setting, we are dealing with images of the human brain and
the goal is to study the perfusion of blood flow through small vessels, so-called
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capillaries in the white and gray matter regions of the brain. This is impor-
tant for patients with hydrocephalus which are treated by placing a drainage tube
(shunt) between the brain ventricles and the abdominal cavity to eliminate the
high intracranial pressure, see wikipedia/hydrocephalus [67]. To capture
the anatomy of the region of interest, MR-Flair images have been obtained. The
perfusion data is obtained via contrast-enhanced CT images taken at one second
apart during a two-minute session. To acquire good temporal resolution, only a
couple of slices can be captured at each time instant. The challenge here is to
register single slices from the CT image to the full 3D volume of the MR im-
age. As the head of the patient is in an upright position, the mapping from one
CT slice to the corresponding (but unknown) slice in the MR-Flair volume is
well described by a rigid 2D transformation after having adjusted for known scale
differences.

The methods are compared and extensively evaluated on The focus of our
evaluation is on two important desiderata that a satisfactory solution should pos-
sess, namely tractability and reliability. The first term refers to the computational
complexity. We investigate both the performance in practice and derive theoret-
ical complexity bounds as a function of the number of feature correspondences.
The second one concerns the reliability of the estimate. We are interested in
methods that produce provably optimal estimates under a robust loss function. If
the registration fails, then it can either due to lack of good correspondences or the
algorithm’s inability to find a good solution. In our approach, the latter source of
error is removed from the process.

Note that the set of algorithms we propose is restricted to rigid point set
registration in the plane, and other settings are not considered.

6.1 Choice of Loss Function

It is a common and reasonable assumption that there exist correct but noisy point
correspondences as well as complete mismatches or outliers. The errors in the po-
sitioning of correct correspondences follow approximately a normal distribution,
whereas the outliers are uniformly spread over the image. In [7] it is shown that
in order to find a maximum likelihood estimate, a sum of loss functions of the
following type

`(r) = − log
(
c1 + exp

(
−r2/c2

))
(6.1)

81



CHAPTER 6. TRACTABILITY AND FIDELITY OF OPTIMAL FITTING:
A CASE STUDY

0 10 20
0

Figure 6.2: The robust loss function (red) suggested in [7], the truncated L2-
error (green) and the truncated L1-error (blue) that can be optimized using the
proposed framework.

should be minimized, where r is the residual error for one correspondence and
the constants depend on the amount of inlier noise as well as on the rate of out-
liers; see Fig. 6.2. In the previous chapter an approximation wass obtained by
truncating the squared error. However, the quality of this approximation depends
heavily on the rate of outliers in data. At higher rates the loss function levels out
much more slowly. In this case a truncated L1-loss can be a more appropriate
choice. All these loss functions lead to a non-convex problem with many local
minima. One may even wrongly conclude that the problem is intractable to solve
optimally, that is, that no polynomial-time algorithm exists. The possibility to
solve for truncated L2-norm has already been proven, and we will now look at the
the truncated L1 -loss.

6.2 Fast Optimization of the Truncated L1-Norm

Given corresponding point coordinates in two images, xi = (xi, yi)
T and x′i =

(x′i, y
′
i)
T , i = 1, . . . , n, consider the following problem

min
R,t

n∑

i=1

`(‖Rxi + t− x′i‖1) , (6.2)
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where R is a 2× 2 rotation matrix and t a translation vector, parameterized as

R(α) =

[
cosα − sinα
sinα cosα

]
and t =

[
t1
t2

]
, (6.3)

respectively and where ` is the loss function `(r) = min{r, ε} for some given
threshold ε, that is, the truncated L1-norm.

The following observation allows us to simplify the problem.

Lemma 6.27. For any fixed rotation R, consider the minimization of (6.2) over t

min
t

n∑

i=1

l
(
|xi cosα− yi sinα+ t1 − x′i| + |xi sinα+ yi cosα+ t2 − y′i|

)
.

(6.4)

Then there exist two indices j and k in {1, . . . , n} such that

t∗1 = x′j − xj cosα+ yj sinα

t∗2 = y′k − xk sinα− yk cosα
(6.5)

is an optimal choice of t.

In order to get a geometric intuition why the above lemma is true, consider
the graph of the loss function in (6.4). Note that it is piecewise linear in t and
a global minimum can be found by examining all break points, that is, points
which are non-differentiable in all directions. There are two different causes for
non-differentiability in our objective function. One is due to truncation and
one is due to taking absolute values. Our proof shows that break points that
are also local minima are given by (6.5). This means that break points caused by
truncation need not be examined since all local minima are due to taking absolute
values.

Proof. The optimal t∗ to the truncated L1-loss, denoted L(t∗), is also a global
minimizer to the L1-loss on the set of optimal inlier correspondences (those that
have residuals less than ε). To see this, let Linliers(t∗) be the optimal loss on
the inliers and Loutliers(t∗) the loss on the outliers. Assume that there exists a
different solution t with

Linliers(t) < Linliers(t
∗) . (6.6)
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Clearly,

Loutliers(t) ≤ Loutliers(t∗) , (6.7)

as this is already maximal. Hence

L(t) = Linliers(t) + Loutliers(t) < Linliers(t
∗) + Loutliers(t

∗) = L(t∗)
(6.8)

which is a contradiction. This shows that an optimal t∗ is a local optimum to the
L1-loss. The formula for the L1-loss is given by

n∑

i=1

|xi cosα− yi sinα+ t1 − x′i|+ |xi sinα+ yi cosα+ t2 − y′i|. (6.9)

As no absolute value contains both t1 and t2 we can write this as a function
of t1 plus a function of t2 and the minimization with respect to t1 and t2 can
be analyzed separately. Consider the t1-part. We have a piecewise linear function
that tends to infinity as |t1| tends to infinity and thus a minimizer of this function
is at a break point. The break points are due to the absolute values - there is a
break point whenever one of the absolute values is exactly zero. Hence a minimizer
exists for which at least one absolute value is zero, so t∗1 = x′j−xj cosα+yj sinα
for some j as stated in the lemma. The same argument for t2 proves the lemma.

The lemma shows that if the two indices j and k are given (for example, by
exhaustively trying all possibilities), we can reduce the problem via substitution
of t∗ in (6.5) to a one-dimensional search over rotation angle α,

min
α

n∑

i=1

`(|δxij cosα− δyij sinα− δx′ij |+ |δxik sinα+ δyik cosα− δy′ik|),

(6.10)

where δxij = xi−xj , δyij = yi− yj , etc. Let us denote the resulting, piecewise
smooth objective function in (6.10) by L(α), see Fig. 6.3 for an illustration. It
has optimum either at a break point or at a stationary point. The break points are
places where the derivative L′(α) is discontinuous and occur when an absolute
value is exactly zero or the number in an input to ` is exactly ε. Hence the number
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Figure 6.3: Sketch of the objective function in (6.10), denoted L(α), which is
piecewise smooth.

of break points grows linearly with n. Given the break points α1, α2, . . . , αM ,
consider an interval [αi, αi+1] of L(α). It can be described by

L(α) = w1 cosα+ w2 sinα+ w3, (6.11)

for some constants w1, w2 and w3. By examining all intervals, we can compute
the optimal rotation angle α∗ using Algorithm 4.

Algorithm 4 Finding the rotation angle

Set L∗ :=∞.
Compute all break points of L(α) for α ∈ [0, 2π).
Sort the break points α1, α2, . . ., αM .
for i = 1, . . . ,M

Compute L(αi) and compare with L∗.
Compute w1, w2 and w3 of (6.11) for [αi, αi+1].
Compute local minimum αlocal of (6.11).
if αlocal ∈ [αi, αi+1],

compute L(αlocal)
compare with L∗.
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6.2.1 Complexity

There are two important things to note here. First, that each time we compute
w1, w2 and w3 for [αi, αi+1] in (6.11), we can take advantage of the constants
from the previous interval [αi−1, αi]. Only the coordinates xi and x′i that gave
rise to αi are required for computing the update. Second, that there is only one
local minimum to

w1 cosα+ w2 sinα+ w3,

being

(cosα, sinα) = ±(w1, w2)/
√
w2

1 + w2
2, (6.12)

given by the minus sign. Hence each step in the for-loop of Algorithm 4 is O(1)
so the computationally heaviest step is the sorting. Given the indices j and k, we
can find an optimal α∗ inO(n log n). If we consider all possible index pairs j and
k exhaustively, the total complexity is O(n3 log n). Note that the most complex
arithmetic operations in the algorithm consists of computing square roots.

6.2.2 Fast Outlier Rejection

To increase the speed even more we propose a fast outlier rejection step as prepro-
cessing, analoguous to the approach from Chapter 5. For this we need a variant
of Algorithm 4 that works with the zero-one loss (denoted by L0), that is, count-
ing the number of outliers rather than truncated L1-norm. First note that the
zero-one loss has the same break points as truncated L1 and that the loss function
only changes values at these break points. There, it either increases with one or
decreases with one. Algorithm 5 lists the details.

We will use this algorithm together with the following observation.

• Assume that for the optimal transformation (R∗, t∗), correspondence k is
an inlier and there are N outliers, i.e. residuals larger than ε. If we change
the translation to t so that rk(R∗, t) = 0, then, since ‖t − t∗‖ ≤ ε, the
error on inliers has increased with at most ε so there are at mostN residuals
larger than 2ε.

This means that we can use Algorithm 5 with threshold 2ε to produce a bound
of the following kind: If correspondence k is an inlier, then there are at least N
outliers. This also yields a bound on the truncated L1 loss, as if N residuals are
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Algorithm 5 Upper bound on inliers

Initialize best loss, L∗0 =∞.
Compute all break points of L0(α) for α ∈ [0, 2π).
Sort the break points α1, α2, . . ., αM .
Compute L0(α1) and update L∗0.
for i = 2, . . . ,M

Depending on the type of αi
Set L(αi) = L(αi−1)± 1 and update L∗0.

> ε, then the truncated L1 loss is at least Nε. If this is a higher loss than one we
have already found, we can discard correspondence k from further consideration.

Algorithm 6 Fast Outlier Rejection

Given an upper bound Lc on the optimal loss.
for i = 1, . . . , n

Set t = x′i − xi
Use Algorithm 5 with threshold 2ε to compute L∗0
(The output L∗0 is a bound on the number of outliers)
if L∗0ε > Lc ,

discard correspondence i

A value forLc can be found by running Algorithm 6 using ε in place of 2ε and
simply storing the best loss function value rather than discarding points. As the
dominating cost inside the loop is the sorting in Algorithm 5 running this scheme
to remove outliers costs onlyO(n2 log n) and can be used as a preprocessing step
while keeping guaranteed optimality.

6.3 Fast Optimization of the L1-Norm

Optimizing the L1-norm is a simpler problem compared to the truncated case.
In fact, one can set ε := ∞ and use the same algorithm, but we can do better.
Lemma 6.27 still applies, so we can eliminate the translation and only consider
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the rotation problem, which simplifies to

min
α

n∑

i=1

|δxij cosα− δyij sinα− δx′ij |+ |δxik sinα+ δyik cosα− δy′ik|.

(6.13)

An important difference here is that we can compute the break points for the first
term and the second term independently. This means that we can precompute
and sort all the break points for j, k = 1, . . . , n in O(n2 log(n)) and then use
the for-loop of Algorithm 1 to find the optimal α∗. Now, the heaviest part is no
longer the sorting. The total time complexity isO(n3) since the for-loop isO(n)
and exhaustively trying all combinations of j and k is O(n2).

6.4 Experiments

The proposed methods have been evaluated on two challenging registration tasks.

6.4.1 Registering Histology Sections

The first set of experiments is concerned with the registration of histology sec-
tions of prostate tissue, and also serves as a quantitative evaluation. We used one
dataset with 88 image pairs of adjacent slides of prostate tissue, stained using
H&E and p63/AMACR, respectively. Another dataset consists of 103 images of
H&E stained slides, in which sub-parts are also analyzed with TRF. Examples can
be seen in Fig. 6.1. The size of the stained images are on the order of 1100x1100,
while the TRF images are 368x546.

We used SIFT features as the basis of our point-to-point correspondences.
Matching was restricted to the same scale octave and we used Lowe’s ratio criterion
with a threshold at 0.9 to discard poor matches. This yielded 800-1500 matches
for the first dataset, and, due to TRF images being smaller, 40-500 matches in the
second dataset. The inlier rate varies from 1% to 40% with a 10% average for the
H&E-p63/AMACR set and from 4% to 54% for the H&E-TRF set with a 28%
average.

The proposed algorithms from this and the previous chapter were compared
to standard L2-minimization and RANSAC followed by L2-minimization on the
inlier set. For each problem instance, 10 correspondences were manually picked
by an expert and used to compute an optimal transformation under the L2-loss.
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Reported results are compared to the rotation and the translation of this estimate.
We have also selected two failure criteria based on these comparisons. The first
being that the rotation error is larger than 5◦, the second that the translation
error is larger than 25 pixels. The percentage of results that fail according to these
criteria are presented.

RANSAC Truncated norms
ε 500 iter. 1000 iter. L1 L2

1p 8.38◦ 221p 27% 8.14◦ 105p 28% 2.72◦ 61p 11% 2.47◦ 58p 8%
5p 2.85◦ 53p 9% 1.94◦ 28p 5% 1.21◦ 7p 3% 0.43◦ 6.4p 2%
10p 1.23◦ 42p 6% 2.24◦ 43p 6% 0.29◦ 4.8p 1% 0.28◦ 4.6p 1%
20p 2.43◦ 34p 8% 0.91◦ 23p 3% 0.27◦ 4.0p 0% 0.26◦ 3.9p 0%
∞ - - 2.43◦ 6.5p 5% 6.54◦ 94p 69%

Table 6.1: The results for the H&E - p63/AMACR benchmark. In the left
column, the inlier threshold ε is varied. Then, for each of the methods (RANSAC

with varying number of iterations, and the truncated L1- and L2-norms), three
numbers are reported: average rotation error (degrees), average translation error
(pixels) and failure rate. A failure case is one with error in rotation larger than 5◦

or in translation larger than 25 pixels. When ε =∞, no truncation takes place.

The experimental results on H&E-p63/AMACR are shown in Table 6.1. The
most accurate results are obtained by the truncated L2-method. Truncated L1-
norm performs poorly on the lowest threshold, but at more reasonable levels for
this task performance is similar to truncated L2. None of the methods based
on RANSAC succeeds on all examples, although the accuracy is good at higher
thresholds with 1000 iterations. We also note that regular L1-norm (marked∞)
succeeds much more frequently than L2-norm and with better accuracy than a
majority of the RANSAC variants—on a dataset with only 10% inliers on average.
For the highest threshold level (20p), we have also performed a test exhaustively
trying all possible hypotheses ransac could generate. The accuracy is slightly worse
but comparable to the L1- and L2- truncated methods. However, as the time
complexity isO(n3), close to the complexity of truncatedL1 with more expensive
operations and no fast rejection method, it is in practice as slow or slower as the
L1- method while having no theoretical guarantees.

Results from the benchmark experiment on H&E-TRF registration are shown
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RANSAC Truncated norms
ε 100 iter. 500 iter. L1 L2

1p 2.53◦ 30.6p 6% 0.40◦ 6.2p 1% 0.34◦ 2.9p 0% 0.31◦ 2.6p 0%
2p 2.27◦ 31.2p 5% 0.29◦ 2.6p 0% 0.29◦ 2.6p 0% 0.28◦ 2.6p 0%
3p 1.75◦ 23.4p 4% 0.29◦ 2.7p 0% 0.28◦ 2.6p 0% 0.28◦ 2.6p 0%
4p 0.66◦ 8.5p 3% 0.28◦ 2.6p 0% 0.28◦ 2.6p 0% 0.27◦ 2.6p 0%
5p 1.14◦ 7.4p 2% 0.26◦ 2.5p 0% 0.27◦ 2.5p 0% 0.26◦ 2.6p 0%
10p 0.76◦ 7.8p 1% 0.27◦ 2.4p 0% 0.26◦ 2.5p 0% 0.26◦ 2.4p 0%
∞ - - 15.6◦ 173p 57% 33.6◦ 341p 100%

Table 6.2: The results for the H&E - TRF benchmark. See Table 6.1 for expla-
nation.

in Table 6.2. This dataset has significantly fewer matches per image pair and
higher inlier ratios, making it more suitable for RANSAC. With 1000 iterations,
RANSAC performs on par with truncated L1-norm and truncated L2-norm, but
with fewer iterations there are still some failures. The poor results for regular
L1-norm and L2-norm show that for this task, aligning a sub-image to a larger
image, using truncated norms is essential.

We also tested the intensity-based Image Regsitration Toolkit [61], using nor-
malized mutual information. For the first dataset, the toolkit failed to produce a
correct registration (less than 5◦ rotation and 25 pixels translation error) in 86%
of the experiments. For the second dataset it failed to produce any corrrect re-
sults. The poor results are not surprising as these methods often are sensitive to
initialization and to outlier structures in the images.

6.4.2 Registering CT to MR-Flair

This experiment is a demonstration of the applicability of the method. For more
quantitative results, see Sections 6.4.1 and 6.4.3. The dataset consists of 44 image
slices captured using the MR-Flair methodology and 4 image slices from a CT-
scan of one single subject. To correlate the information provided by the different
modalities, one would like to register each of the CT slices to the MR-Flair vol-
ume. As the CT slices are roughly aligned with the slices of the MR-Flair volume,
we try to register each of the CT slices to each of the MR-Flair slices and then try
to find the sequence of four MR-Flair slices that best match the four CT slices.
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Figure 6.4: Left: Runtime as a function of number of matches is graphed for
truncated L1-norm (green), truncated L2-norm (red) and regular L1-norm. The
L1-method follows closely aO(n3)-curve (blue). Right: Runtime as a function of
number of inlier matches is graphed. The truncated methods are more correlated
to the number of inliers, see the O(n4)-curve (red) and the O(n3 log(n))-curve
(green), respectively. (ε = 10 pixels.)

We use standard 2D SIFT to obtain correspondences. To improve the matching
performance, all descriptors were extracted at a fixed scale instead of using the
estimated scale from the difference of Gaussians detector. The motivation is that
in very noisy images the scale estimation tends to be uncertain.

Due to the small dataset we only present qualitative results for our truncated
L1-approach. Different slice-matches have different number of potential inliers,
making the truncated L1-cost skewed. However this is easily rectified by using
a modified cost ci defined as ci = Niε − l∗i where Ni is the combined number
of correspondences for subsequence i, epsilon the truncation level, and l∗i the
combined optimal truncated L1-solution. Using this criterion and ε = 10 the
best subsequence evaluated at c19 = 397, with closest runners up c18 = 362,
c17 = 367. All other sequence-matchings had significantly lower score. We show
the found matchings for the best matching in Fig. 6.5.

The frequently used intensity-based method called NIFTYREG [55] using mu-
tual information was also tested, but without any reasonable registration results at
all. Note that this method was also developed to cope with outlier structures by
using robust estimation techniques.

6.4.3 Speed

The theoretical worst time complexities are stated in Table 6.3. In practice RANSAC

is not run exhaustively but with a fixed number of k iterations, giving a complex-
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Figure 6.5: The found inliers for the best subsequence obtained using our trun-
cated L1 algorithm.

ity of O(nk). For average-size problems (280 matches) and k = 1000, RANSAC

required 73 ms. The fastest (but worst-performing) method is the closed-form
L2-method with a typical runtime of 0.2 ms. For the remaining methods timing
plots are shown in Fig. 6.4. Because of the fast outlier rejection scheme discussed
in Section 6.2.2, runtimes of the truncatedL1-norm andL2-norm depend mainly
on the size of the inlier sets. The full L1-method has no such advantage. These
numbers clearly show the advantage in runtime for the truncated L1-method
over both the regular L1-norm and the truncated L2-norm. However, on datasets
consisting of a majority of inliers, the lower complexity of the L1-norm would
give faster runtimes as all operations are identical apart from the sorting strate-
gies. The timing statistics is from experiments on H&E-TRF, though the same
analysis holds for H&E-p63/AMACR.

6.5 Discussion

So what is the right way to attack feature-based image registration in presence of
outliers? The literature provides us with a vast amount of choices, but many of
these are based on local optimization and require a reasonable starting solution,
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Algorithm complexity tractability reliability reference

RANSAC O(n3) high medium [27]
Truncated L1-norm O(n3 log(n)) high high Our

L1-norm O(n3) high medium Our
Truncated L2-norm O(n4) medium high Our

L2-norm O(n) high low [35]

Table 6.3: Characteristics of the algorithms presented or discussed in this and
previous chapters. Note that the stated complexity for RANSAC is for exhaustive
selection of all minimal subsets which can be thought of as a worst time complex-
ity bound.

which means that the outlier problem is already more-or-less solved. To handle
really difficult outlier problems, RANSAC-type algorithms are the standard against
which others are measured. However, as our experiments show, they are sub
optimal both in terms of accuracy and with respect to the risk of failure. Some
of the failures could be avoided by increasing the number of iterations - even
up to exhaustively searching all the minimal subsets. But, that will increase the
complexity to O(n3), being practically the same as the algorithms proposed here
(Table 6.3). More importantly, even then there is no guarantee as to the solution
quality (Fig. 6.6). Hence, we would only recommend RANSAC when the amount
of outliers is known to be low and the available runtime is very limited.

This contrasts sharply to the typical setting for medical image registration

Figure 6.6: Left: 13 inliers among 1179 hypothetical SIFT matches of the trun-
cated L1-method (success). Right: 8 inliers of RANSAC with 1000 iterations (fail-
ure). This was the hardest case to register among all pairs. (ε = 20 pixels.)
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where the process is performed offline. With different image modalities, the rates
of outliers are usually high. In these cases the increased reliability of optimizing
a truncated norm is valuable and the L1-based methods, although slower than
RANSAC, should be efficient enough for most applications. Our experiments
indicate only a small gain in accuracy for the truncated L2-norm, so using the
truncated L1-norm would be the general recommendation.

In many applications, the actual improvement in terms of accuracy and failure
rates of these methods might not be huge. This is compensated by the value of
removing a possible error source and not having to tune the parameters of the
algorithm. We believe that the choice between a tractable, reliable algorithm
with guaranteed high-quality solutions and a fast algorithm with no guarantees
whatsoever should be an easy one.
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Chapter 7

Difference in Dimension TDOA
Measurement Calibration

Sound ranging or sound localization are used to determine the sound source us-
ing a number of microphones at known locations and measuring the time dif-
ference of arrival of sounds. Such techniques are used today with microphone
arrays to enable beamforming and speaker tracking. Calibration of a sensor net-
work using only TOA or TDOA measurements is a nonlinear optimization prob-
lem, for which proper initialization is essential. Several previous works rely on
prior knowledge or extra assumptions of locations of the sensors to initialize the
problem. In [6], the distances between pairs of microphones are manually mea-
sured and multi-dimensional scaling is used to compute microphone positions.
Other options include using GPS [52] to get approximate locations, or using
transmitter-receiver pairs (radio or audio) that are close to each other [23, 57, 20].
In [16] it is shown how to estimate additional microphones, once an initial esti-
mate of the positions of some microphones are known. Another line of work focus
on solving the initialization without any additional assumptions. Initialization of
TOA networks has been studied in [59], where solutions to the minimal case of 3
transmitters and 3 receivers in the plane is given and in [43], where solutions to
the minimal cases of (4, 6), (5, 5) and (6, 4) receiver-transmitter combinations
are presented. Initialization of TDOA networks is studied in [56], where solutions
were given to non-minimal cases in 3D (10 receivers, 5 transmitters) for TDOA
and in [9] where four cases of (9, 5), (7, 6) and (6, 8) receiver-transmitter com-
binations are presented. However solvers for the minimal cases (10, 5), (7, 5),
(6, 6) and (5, 9) are still open research problems. A related work that is based on
iterative solvers and similar rank constraints as we use is [31].

In this chapter we study the initialization network calibration problem from
only TDOA measurements for the case where there is a difference in dimension

97



CHAPTER 7. DIFFERENCE IN DIMENSION TDOA MEASUREMENT
CALIBRATION

between the spaces spanned by the receivers and by the transmitters. We combine
the techniques developed in [43] and [9]. This makes it possible to solve for many
(almost all) of the relevant minimal cases. Solving these cases is of theoretical
importance. The solvers can also be used in RANSAC [29] schemes to remove
outliers in noisy data. The methods are validated both on synthetic and real data.
The node localization is cross-validated against computer vision based approaches.

7.1 Problem Formulation

Under the assumption that signals travel at constant speed measuring time of ar-
rival (TOA) is equivalent to measuring distance. TOA requires synchronization
between transmitters and receivers in the sense that both transmitting time and
time of arrival is available for analysis. This is often not the case and only differ-
ences in time or distance is measurable, with either only synchronized transmitters
or receivers. In the following discussions we will always assume that the receivers
are synchronized.

Given a set {ri} of receivers and a set of {sj} of transmitters a TDOA mea-
surement is

fij = ||ri − sj ||2 + oj , (7.1)

where oj is an unknown offset, compensating for the lack of synchronization
between transmitters and receivers.

If the size of the set {ri} is k and the size of {sj} is n, we have kn mea-
surements {fij}. Assuming all positions are unknown, the basic TDOA problem
is

Problem 7.1.1 Given all pairwise measurements {fij} find all positions ri ∈
RDr and all positions sj ∈ RDs .

Note that solving Problem 7.1.1 implicitly includes solving the unknown off-
sets oj .

The topic of this chapter is to determine for what choices of k and n Prob-
lem 7.1.1 is solvable when transmitters and receivers live in spaces with different
dimension and provide solvers for these cases. To do this we first need some
understanding of how the difference in dimension limits the uniqueness of the
solution. We look at an illustrative configuration of 3 receivers, ri, on a line and
1 transmitter placed arbitrarily in the plane; see Figure 7.1. We choose coordinate
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C

Y

Xri

s = (x, y)

s̃ = (x,−y)

d

d̃

Figure 7.1: Ambiguity in the line-plane case. The point s and s̃ are indistin-
guishable in regards to distances to ri.

system such that the receivers lie on the x-axis. It is clear that s = (x, y) results in
the exact same measurements as s = (x,−y). As long as additional r sensors re-
main on the line all transmitters sj will be individually ambiguous in this respect.
We will see later that this is representative of all difference in dimension cases.
In practive, we will handle this ambiguity by only solving up to a suitable half-
space, i.e. among the possible solutions we select one where e.g. all ambiguous
coordinates are positive.

With these insights regarding solvability, we can define the subproblems

Problem 7.1.2 Ds −Dr = 1, and structure as in Problem 7.1.1.

Problem 7.1.3 Dr −Ds = 1, and structure as in Problem 7.1.1.

Here Dr is the dimension of measurements r and Ds the dimension of s.
Since all obtained measurement in both the TOA and TDOA setting depend

only on relative distances between points, subjecting all points in any given con-
stellation to a common isometric transformation will not affect the measurements.
This observation has two important implications, summarized in the following
lemma.

Lemma 7.28. Problems of type 7.1.1 with Ds −Dr > 1 or Dr −Ds > 1 can be
reduced to Problem 7.1.2 and Problem 7.1.3 respectively.

Proof. Since one set of points span a lower-dimensional space the transformation
that allows us to express these points as (xT ,0T ) exists. Assuming the higher
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dimension is m and the lower is k de distance dij between points xi and yi fulfill

||(xTi ,0T )T − yj)||2 =
k∑

h=1

(x
(i)
h − y

(j)
h )2 +

m∑

h=k+1

y
(j)2
h = d2

ij .

Assume now that for any fixed j and arbitrary number of points xi all true coor-
dinates for h = 1, · · · , k are known, implying that the first sum is known in each
equation, and we want to determine the remaining coordinates for yj, the above
is then

k∑

h=1

(x
(i)
h − y

(j)
h )2

︸ ︷︷ ︸
eij

+
m∑

h=k+1

y
(j)2
h = d2

ij ⇒

m∑

h=k+1

y
(j)2
h = d2

ij − eij ∀ i.

But since the left hand side only depend on j, we only have 1 independent
equation (per j) regardless of how many points xi we have. Since we don’t mea-
sure distances between points yj , adding more such points does not help. Thus
only the norm of the last (m− k) coordinates can be computed, i.e., the distance
from y to the lower dimensional subspace. As this does not depend on m, we
only need a solver for the case m = k + 1.

Naturally this also mean that for differences larger than 1, we get even more
ambiguous solutions. If for example the lower dimension is 1 and the higher is 3
each higher-dimensional point can lie anywhere on a specified circle around the
line.

7.2 Minimal Cases in Difference in Dimension

Each pair (ri, sj) give a measurement fij and there are Dr unknowns for each
r and Ds + 1 unknowns for every s. The number of unknowns per sensor is at
mostD∨ = max(Dr,Ds). If we setD∧ = min(Dr,Ds) the following must hold
for Problems 7.1.2 and 7.1.3 to be solvable

kn ≥ Drk + (Ds + 1)n− (D∧ + 1)D∧
2

. (7.2)

100



7.3. SOLUTION

The kn, Drk and Ds terms are straightforward. The final term comes from the
ambiguity in coordinate system and is as follows: Place the first lower dimensional
coordinate at the origin, place the second along the first axis, the third in the plane
spanned by the first and second axis, continue until the entire subspace is defined
and place all remaining lower dimensional points in the subspace.

It is shown in [9] that the underlying TOA difference in dimension case re-
quires

1 +D∧ +D∧(D∧ + 1)/2, (7.3)

of sensors in the lower dimension to be solvable. It is straightforward to con-
firm that the generalization with offsets does not alleviate this requirement. This
together with (7.2) give us the necessary requirements on k and n and all solv-
able cases for Problem 7.1.2 and 7.1.3 are summarized in Figure 7.2a and 7.2b
respectively.

7.3 Solution

To derive solvers for feasible k and n we will employ rank constraint strategies
introduced in [43] and [42] and modify them for the difference in dimension
setting. In the cases where the offsets can be completely solved separately from
the remaining unknowns we will use methods from [9] to solve for the remaining
unknowns. For cases where the offset cannot be computed separately we will
show how the rank constraints can be used in conjunction with other constraints
to obtain the full solution. The implementations are based on techniques from
[13].

7.3.1 Rank Constraints

From now on, we will assume that ri ∈ RD∧ , i.e., the receivers are placed in the
lower dimension. As per Lemma 7.28, we restrict ourselves toD∨−D∧ = 1. The
rank constraint strategy requires a reformulation of the measurement equations,
as well as some observations on their relations to the locations of the sensors.
Assuming the coordinates of the lower dimension is "zero-padded", i.e. ri =
[x1, . . . , xDr , 0]T , as per the previous discussions we have

(fij − oj)2 = (ri − sj)
T (ri − sj). (7.4)
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Case (k, n) Solutions

i (9, 3) 75
ii (7, 4) 1
iii (6, 5) 10
iv (5, 2) 10
v (4, 3) 6

(a) Solvable configurations for Problem
7.1.2.
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Case (k, n) Solutions

vi (5, 6) 5
vii (4, 9) NA
viii (5, 3) 1
ix (4, 4) 5
x (3, 5) 16

(b) Solvable configurations for Problem
7.1.3.

Figure 7.2: Summary of all solvable cases for difference in dimension TDOA.
All configurations (k, n) below the green curves mark solvable cases when the
lower dimension is 1, all configurations below the blue lines mark solvable con-
figurations when the lower dimension is 2. The table gives the properties of the
configurations.
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If we introduce vectors

Ri =
[
1 rTi rTi ri

]T
and Sj =

[
sTj sj−o2

j sTj 1
]T
, (7.5)

and collect the Ri vectors into an (D∨ + 2) × k matrix R and the Sj in an
n× (D∨ + 2) matrix S, we get

F = RTS , (7.6)

where F is a matrix containing {f2
ij − 2fijoj}. Due to the zeros in rj we get

a a row of zeros in R. This shows that the rank of the matrix F is bounded
by (D∨ + 2), constraining the offsets oj without involving the other unknowns.
Using a trick from [42], it is possible to exploit the structure of R and S to
obtain tighter rank constraints. We introduce two matrices CR and CS both on
the form [−1 I]T that by the operations R̂T = CT

RR
T and Ŝ = SCS turns the

rows of ones into zeros. In essence this operation will subtract the first column
of R from the remaining columns, and the first column of S from the remaining
columns of S. By the construction of R, the row of zeros caused by the 0 entries
in ri is not in the last, nor the first row of R. We have then after the above
operations two rows of zeros in R̂.

Applying the above matrices we get the final system

CT
RFCS = R̂T Ŝ , (7.7)

As the last row in R̂ is multiplied with the row zeros in Ŝ we can remove both
without affecting the product. The same holds for the 2 rows of Ŝ corresponding
to the 2 rows of zeros in R̂ and all 4 can be removed. This leaves only D∨ − 1 =
D∧ rows in Ŝ and consequently F̂ has at most rank D∧ = Dr.

The entries of F̂ are of the form

f̂ij = gij − g0j − gi0 + g00, (7.8)

where

gij = f2
i+1,j+1 − 2fi+1,j+1oj+1. (7.9)

It is straightforward to confirm that if sj would lie in the lower dimension, a row
of S would be zero, and would remain after reduction of Ŝ. This would again
result in a matrix F̂ of rank D∧, but with D∧ = Ds.
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We can enforce the rank constraint on the sub-matrices of F̂. Specifically all
submatrices of size (D∧+1)×(D∧+1) will have rankD∧. This gives equivalently
constraints on the determinants of the set of (D∧ + 1)× (D∧ + 1) sub-matrices
ΛD∧+1 :

detQ = 0, ∀Q ∈ ΛD∧+1. (7.10)

For a (k − 1)× (n− 1) matrix F̂, the number of constraints Nc is

Nc = |ΛD∧+1| =
(
k − 1
D∧ + 1

)(
n− 1
D∧ + 1

)
.

As can be seen from (7.8) and (7.9) the entries of F̂ are linear in the unknown
offsets {o1, . . . , on}, so each constraint of type (7.10) is a polynomial equation
of degree D∧ + 1.1

In general, for a case with k receivers and n transmitters, with the minimal
affine span of the two as D∧, there are No = (k − 1 − D∧)(n − 1 − D∧)
linearly independent constraints of type (7.10), see [43, 42]. For cases where
n = No, determining the offsets using only the rank constraints is minimal and
well-defined. For D∧ = 1 cases, these correspond to (4, 4), (5, 3). And for the
D∧ = 2 cases, (7,4) and (5,6) are the two minimal problems for determining the
offsets. Note that such properties are independent of Ds and Dr.

For cases where No > n, the rank constraints are overdetermined for the
offsets. There are two ways to estimate the offsets using these overdetermined
set of equations. The first one is to utilize the fact that there exist a unique
solution to the overdetermined system, using techniques from [56], the offsets can
be solved linearly. The second scheme is to ignore a subset of constraints such that
the remaining constraints render the problem minimal and well-defined. One
possible drawback of this scheme is the possible existence of multiple solutions.

For the minimal TDOA cases where offsets can be determined using only the
rank constraints, i.e. (4,4), (5,3), (7,4) and (5,6), the full problem can be solved
by combining the corresponding linear difference in dimension TOA solver from
[9]. Again accounting for the inherent ambiguity of the last coordinate in the
high dimensional space, the linear solver is unique and the number of solutions
is entirely dependent on the number of solutions of the offset equation. These

1Note that in the (5,2) case no such submatrices exist. We will deal with this case in Sec-
tion 7.3.3.
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are summarized in Figure 7.2. In a few cases there are multiple valid solutions to
a given set of measurements, but in general the excess solutions are complex and
can be directly discarded.

As for the cases where the rank constraints give under-determined systems,
one needs to exploit other, often non-linear constraints.

7.3.2 Distance Equations

We here derive additional non-linear equations on the offsets. Just like before, we
assume that the receivers lie in the lower-dimensional space. The opposite case
can be handled analogously.

According to [43], each factorization of F̂ = R̂T Ŝ provides the receiver and
transmitter coordinates up to an coordinate change described by a full rank matrix
L and translation b. Let R̃ be the first D∧ columns of the rank-D∧ matrix F̂
which is parameterized by the offsets o. This then corresponds to a choice of
factorization that has the identity matrix on the corresponding places in Ŝ. Based
on this and the formulation in (7.7), we can write the positions of the receivers
ri = Lr̃i(o). Following the derivation in [43] this gives the following constraints
on the unknown transformation H and translation b for i = {1, . . . ,m− 1} ,

d2
i+1,1 − d2

11 = r̃Ti Hr̃i − 2bT r̃i, (7.11)

where dij = fij − oj , H = (LTL)−1 ∈ RD∧×D∧ and b ∈ RD∧ . Since the
equations are linear in the entries in H and b, the system can be rewritten as

W



h
b
1


 = 0, (7.12)

where W is a (m−1)×k matrix parameterized by the offsets and h is the vector
representation of the unknowns in H. Here k = D∧(D∧ + 1)/2 + D∧ + 1.
From (7.12), we know that all k × k sub-determinants of W are equal to 0. By
forming these equations, we remove the unknowns h and b and reduce (7.11) to
a polynomial system of only n unknowns. Combining these equations with the
rank constraints, one arrives at a set of well-defined equations for the offsets. In
principle, both the (3,5) (9,3) as well as the (4,9) cases can be solved using this
formulation. Fast and stable solvers have been implemented based on Gröbner
basis methods for (3,5) and (9,3) cases. Efficient solvers for the (4,9) case is still
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difficult to derive due to the large number of unknowns (9 offsets) and high degree
(degree 9). Such idea can also be extended to cases where D∧ = 3. The number
of solutions for these cases using the above solving strategy are presented in Figure
7.2.

7.3.3 The (5,2) Case

As mentioned above, the case (5,2) has no 2 × 2 submatrices. The reason is
that the compacted version of its measurement matrix is of size 4 × 1. To work
around this, we solve it using manipulations of its equations directly. Let the 5
ri be placed on the x-axis with at u1 = 0, u2−5, and sj at coordinates (xj , yj)
Equation (7.4) is

f2
ij − 2fijoj + o2

j = x2
j − 2xjui + u2

i + y2
j . (7.13)

Subtracting the first equation, u1 = 0 this can be written in matrix form as




f2j − f1j u2 u2
2 − f2

2j + f2
1j

f3j − f1j u3 u2
3 − f2

3j + f2
1j

f4j − f1j u4 u2
4 − f2

4j + f2
1j

f5j − f1j u5 u2
5 − d2

5j + f2
1j






−2oj
2xj
−1


 = 0, (7.14)

i.e. each transmitter gives us a rank deficient matrix only dependent on the po-
sitions of the receivers. Using determinants of the submatrices we get equations
only in u2−5, that allows us to solve for these unknowns. The linear case (4,3)
has a similar constraint, but with one less row for its matrices.

7.4 Summary

The classification of all cases is shown in Figure 7.2. Two cases were solved using
direct manipulation of the distance equations in [1]. Some cases are overdeter-
mined by one equation, however further reducing either k or n would make the
system underdetermined and thus unsolvable. As described above this sometimes
allows for linear solvers to be employed. In general the resulting systems have
relatively low total degree and few solutions, with the exception of case (i). Case
(vii) is even more complex and using the presented strategy we were unsuccesful
in constructing a solver that displayed good numerics.
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7.5 Experiments

We will present the numerical stability for all implemented solvers using generated
examples. We further will present results on real data using a microphone setup
in 2D, with sounds in 3D. The accuracy of the solution will be measured by
comparing it to a 3D reconstruction from images. The visual reconstruction is
obtained using standard techniques from computer vision.

7.5.1 Numerical Stability

Synthetic data is generated by randomly placing sensors in a [0, 1] cube, meeting
the requirements of dimesnionality assumed by the solvers. The solver for case
(i) requires that the original equations are expanded to a 1400 by 500 coefficient
matrix, and it has very poor stability even if no noise is added. Typical accuracy
without noise is RMS on the order of 10−4. All other solvers had consistent accu-
racy of the order 10−10 to 10−13 with the exception of (x) that on rare occasions
had values of 10−2, skewing its mean quite severely. We believe this is caused by
close to degenerate configurations. This behavior is also visible in the presence
of noise, as illustrated in Figure 7.3. The figure shows the mean over 200 cases
for different levels of relative added gaussian noise, applied to the measurements.
The RMS is calculated against the generated ground truth (GT). Again the poor
performance of (x) is due to single events with substantially less accurate result.

7.5.2 Reconstruction of Microphone Array

A total of 8 microphones are placed on a floor (2D), see Figure 7.4, and sequences
of distinct sounds generated from several locations in the room (3D). The sounds
are far enough apart to be distinct in the matching, but due to echoes, distur-
bances exact time differences are unavailable, and in some cases the matches are
bad enough to be considered outliers. We then use the (6,5) minimal solver in a
RANSAC-like algorithm. As a final step the solution is locally optimized using all
found inliers. The result is very promising with an RMS of 6.7cm in microphone
positions between the visual and audio based reconstructions. The reconstructed
path for the sound source is consistent with the dimensions of the room, and form
a smooth track. The reconstructed layout is illustrated in Figure 7.5.
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Figure 7.3: Stability of the derived solvers, except (i),(iv) and (v).

Figure 7.4: Microphones placed on office floor.
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Figure 7.5: Reconstructed layout of microphone positions (red stars) and motion
trajectory of sound sources (blue circles and line), all units in meter.
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7.6 Conclusions

We have classified all solvable minimal cases in a difference in dimension TDOA
setting. Further we have devised solution strategies and implemented solvers for
most of these cases. With the exception of 2 solvers the overall performance is
excellent, and one of the bad solvers still maintain a very high success rate.
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Chapter 8

Far Field Approximation as
Initialization for TDOA Based
Calibration

In the previous chapter we used a limitiation in dimension of one set of sen-
sors to reduce the number of unknowns and derive solvers for the true minimal
cases. In this chapter we will study another specific setup that allows for the con-
struction of efficient solvers, far field approximation. This approximation is used
for initialization to the calibration problem. We use a similar factorization as [62]
but in three dimensions, and show that far field approximation requires at least
four measurement positions, i.e. three motions, and measurements to at least six
real or virtual transmitters. Apart from this we also describe the failure modes of
the algorithm and show what can be done when such configurations are present.
We further propose two optimization strategies for more thorough calibration and
evaluate them with regard to accuracy and convergence rate. Several test cases are
simulated in which we validate the far field approximation and the performance
of the proposed algorithms.

8.1 Determining pose

In the following treatment, we make no difference between real and virtual trans-
mitters or receivers. Assume that the transmitters are stationary at positions
sj ∈ R3 and that the receiver are moving with position r(t) ∈ R3 at time t.
As we are only interested in discrete time points we will use the notation ri. This
makes a moving receiver directly analogous to the formulation in earlier chap-
ters where several different transmitters and receivers at different fixed positions
where used. By measuring the signal with known base band frequency one obtains

111



CHAPTER 8. FAR FIELD APPROXIMATION AS INITIALIZATION FOR
TDOA BASED CALIBRATION

a complex constant, whose phase depends on the distance d = |r − s| between
the transmitter and the receiver. Furthermore if during measurements we have for
any r, r0 and s that

‖r− r0‖ � ‖r− s‖, (8.1)

it is reasonable to approximate the distance

di,j = ‖ri − sj‖
≈ ‖r0 − sj‖+ (ri − r0)Tnj

= rTi nj + (‖r0 − sj‖ − rT0 nj)︸ ︷︷ ︸
ōj

.
(8.2)

Here r0 is any choice of the receivers such that Equation (8.1) holds, and nj is the
direction from this receiver towards the transmitter, now assumed to be constant
with unit length. As stated in previous chapters a TDOA measurement has the
form

fi,j = ‖ri − sj‖+ õj , (8.3)

and by setting oj = õj + ōj one obtains the far field approximation

fi,j ≈ rTi nj + oj . (8.4)

The central problem is the following far field time difference of arrival (FFT-
DOA) type problem that arise from this approximate relative distance measure-
ment.

Problem 8.1.1 Given measurements Fi,j , i = 1, . . . ,m and j = 1, . . . , k
fromm receiver positions to k transmitters, determine both the positions r1, . . . , rm
and the directions n1 . . .nk from the so that

Fi,j = rTi nj + oj

||nj ||2 = 1,
(8.5)

where oj is a constant distance offset for each transmitter.

This is the far-field approximation of the full TDOA problem seen in previous
chapters.

From the formulation above we see that unknowns offsets occur already in the
basic distance equations, and hence we have offsets for both the far-field TDOA
and far-field TOA problems. This leads us to the following lemma.
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Lemma 8.29. A problem with m receivers and k transmitters with unknown offset
oj can be converted to a problem withm−1 receivers and k transmitters with known
offset.

Proof. Note that because of the unknown constant oj the problem does not
change in character by modification Di,j = Fi,j −Kj . For simplicity we set

Di,j = Fi,j − F1,j = rTi nj + oj − rT1 nj − oj . (8.6)

Since the coordinate system is arbitrary we can set r1 = 0, yielding

Di,j = rTi nj , for i = 2, . . . ,m (8.7)

For simplicity we will in the sequel assume that one receiver has been used
to eliminate the offsets. Denote by D the resulting measurement matrix. This
converts the FFTDOA problem into a FFTOA problem, i.e.

Problem 8.1.2 Given measurements Di,j , i = 1, . . . , (m− 1), j = 1, . . . , k
from receivers at m− 1 different positions to k transmitters, determine both the
positions ri of the receivers and the directions to the transmitters nj so that

Di,j = rTi nj

||nj ||2 = 1.
(8.8)

Lemma 8.30. If ri and sj lie in R3, then the matrix D with elements Di,j is of
rank at most 3.

Proof. The measurement equations are Di,j = rTi nj . By setting

Z =




rT1
rT2
...
rTm


 (8.9)

and

N =
(
n1 n2 . . . nk

)
(8.10)

we see that D = ZN . Both Z ∈ R(m−1)×3 and N ∈ R3×k have at most rank 3,
therefore the same holds for D.
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Assuming that k and m are large enough and assuming that the motion ri
and the directions nj are in general enough constellation the matrix D will have
rank 3. If so it is possible to reconstruct both Z and N up to an unknown
linear transformation. This can be done using singular value decomposition,D =
USV T . Even with noisy measurements, the closest rank 3 approximation in the
L2-norm can be found using the first 3 columns of U and V . By setting Z̃ = U3

and Ñ = S3V
T

3 we get all possible solutions by N = AÑ , with A a general
full rank 3 × 3 matrix. Changing A corresponds to rotating, affinely stretching
and possibly mirroring the coordinate system. The true reconstruction also fulfills
nTj nj = 1, which gives constraints on A of type

ñTj A
TAñj = 1, (8.11)

which after substitution B = ATA becomes linear

ñTj Bñj = 1 (8.12)

in the unknown elements of B. Since symmetric 3× 3 matrices have 6 degrees of
freedom we need at least 6 transmitters to determine the matrix uniquely. We have
no additional requirements on m other than Z being a rank 3 matrix so atleast
m=4 recievers are necessary. Once B has been determined A can be determined
by Cholesky factorization. This gives the transformation A up to an unknown
rotation and possible mirroring of the coordinate system. We summarize the
above in the following theorem.

Theorem 8.31. The minimal case for reconstructing m positions ri and k orienta-
tions nj from relative distance measurements Fi,j as formulated in Problem 8.1.1 is
m = 4 and k = 6.

Accordingly a solver for the minimal case is given in Algorithm 7. Note that
using minimal information m = 4 and k = 6 results in estimates that fulfill
the measurements exactly (up to machine precision) even if the measurements are
disturbed by noise.

8.1.1 Failure modes of the algorithm

It is interesting and enlightening to know the failure modes of the algorithm. This
is captured by the following theorem.
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Algorithm 7 Minimal case solver

Given the measurement matrix D of size 4× 6.

1. Set Di,j = Fi,j − F1,j

2. Remove the first row of D

3. Calculate a singular value decomposition D = USV T .

4. Set Z̃ to first 3 columns of U and Ñ to first three columns of SV T .

5. Solve for the six unknowns in the symmetric matrix B using the 6 linear
constraints ñTj Bñj = 1.

6. Calculate A by Cholesky factorization of B, so that ATA = B.

7. Transform motion according to Z = Z̃A−1 and structure according to
N = AÑ .

Theorem 8.32. The minimal case for reconstructing k orientations nj and m po-
sitions ri from relative distance measurements Fi,j as formulated in Problem 8.1.1
is for m = 4 and k = 6. As long as the orientations nj do not lie on a common
quadratic cone nTj Ωnj = 0 and the measurement positions ri do not lie on a plane,
there will not be more than one solution to the problem of determining both structure
nj and motion ri up to an unknown translation, orientation and reflection of the
coordinate system.

Proof. The algorithm can fail if the transformed measurement matrix D has rank
2 or lower. This happens if Z or N in D = ZN has rank 2 or lower. Let us start
with the first case. The rows of Z contains ri − r1 for three different i, so it has
full rank unless all four involved receivers lie in a plane. Similarly N fails to have
full rank if all directions nj are coplanar.

The algorithm can also fail if there are two solutions to the matrix B in
nTj Bnj = 1. But then the difference Ω = B1 − B of these two solutions is
a three by three matrix for which

nTj Ωnj = 0, (8.13)
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which in turn implies that the directions nj lie on a common conic as represented
by the matrix Ω.

Yet another type of failure mode of the algorithm is if the data is corrupted
by noise or far field approximation is not valid, so that the matrix B obtained
is not positive definite. Then the algorithm fails because there is no Cholesky
factorization of B into ATA. If B was uniquely determined, there are no real
solution to the problem in this case.

8.1.2 Analysis of failure modes

If the rank of the matrix D is 2, this could be because the points ri lie on a plane
or that nj lie on a plane.

In the case of coplanar ri it is still possible to estimate the planar coordinates
Z = U2A and N = AS2V

T
2 up to an unknown 2 × 2 matrix A representing a

choice of affine coordinate system. Here we do get inequality constraints that

∣∣∣∣A
(
nj,x
nj,y

)∣∣∣∣ ≤ 1. (8.14)

Each suchA is a potential solution. It is possible to extend with a third coordinate
in the normal direction according to

nj,z = ±
√

1− n2
j,x − n2

j,y. (8.15)

Another possibility is that the directions nj lie on a plane. In this case it is
possible to reconstruct two of the coordinates for both the positions ri and the
directions nj . Since the normals are assumed to lie in a plane, we can exploit the
equality constraints nTj A

TAnj = 1 similar to the rank 3 case. In this particular
case we only need three directions nj , i.e. the minimal case is for m = 3 and
k = 3. This gives the full reconstruction of both points and directions up to
an unknown choice of Euclidean coordinate system and unknown choice of z-
coordinate for the points ri.

If the rank is 1, this could be because the directions are parallel. In this
case. Similar to the discussions above we can obtain one of the coordinates of the
positions ri, but this is trivial since the measurements Di,j are such coordinates
by definition.
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If the rank is 1 because the points lie on a line, we obtain a one-parameter
family of reconstructions based on Z = U1a and N = aS1V

T
1 , where a is an

unknown constant that has to fulfill a ≤ 1/l, where l = maxi |S1V1,i|. For each
such a it is possible to extend the directions nj so that they have length one, but
there are several such choices.

8.1.3 Overdetermined Cases

When more measurements are available than the minimal case discussed in the
previous section, we need to solve an overdetermined system in least-square sense
or with robust error measures e.g. L1-norm. Here we focus on the following
least-square formulation for the pose problem:

Problem 8.1.3 Given measurements Di,j , j = 1, . . . , (m − 1) and i =
1, . . . , k from receivers at m different positions to k transmitters, determine both
the positions ri and the directions nj so that

minZ,N ||D − ZTN ||2Frob (8.16)

s.t. ||nj ||2 = 1, i = 1, . . . , k.

where ||.||Frob denotes the Frobenius norm.
For the over-determined cases, that ism > 4 and k ≥ 6 orm ≥ 4 and k > 6,

it is possible to modify Algorithm 7 to obtain an efficient but not necessarily
optimal algorithm that finds a reconstruction that fits the data quite good using
the following three modifications

(i) The best rank 3 approximation can still be found in Step 4-5 using the
singular value decomposition.

(ii) The estimate of B in Step 6 can be performed in a least squares sense and

(iii) re-normalize the columns of N to length 1.

This results in a reconstruction that differs from the measurements, but both steps
are relatively robust to noise. The problem of B not being positive semi-definite
can be attacked by non-linear optimization. Here we try to optimize A so that∑k

i=1(ñTj A
TAñj − 1)2 is minimized. This can be achieved e.g. by initializing

with A = I and then using non-linear optimization of the error function.
Clearly, we lose any guarantee on the optimality of the solution when we en-

force the constraints as in Step (iii). However, the solution can serve as a good
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initialization for subsequent optimization algorithms we present in this section.
We discuss how to use alternating optimization and Levenberg-Marquardt algo-
rithm (LMA) to obtain better solution. The first algorithm starts with an initial
feasible solution for Z and N, and then it alternates between optimizing Z given
N and vice versa. The latter is essentially a method combining Gauss-Newton
algorithm and a gradient descent that improve the solution locally. For both
methods, we need to treat the constraints on the direction vectors properly to
ensure convergence.

Alternating Optimization

In order to find the local minima of Problem 8.1.3, we can use a coordinate de-
scent scheme. Specifically, we would like to iteratively optimize the cost function
in Problem 8.1.3 with respect to Z given N , and then find the optimal feasible
N with fixed Z. If we initialize N such that it satisfies the norm constraints, we
can easily see that the alternating procedure is converging (Algorithm 8).

Algorithm 8 Alternating optimiziation

Given the measurement matrix D with m > 4 and k ≥ 6 or m ≥ 4 and k > 6,

1. Construct D and initialize Z and N as in Algorithm 7

2. Fix N , find optimal Z

3. Fix Z, solve the constrained minimization for each ni, i = 1, ..., k

4. Repeat (2) and (3) until convergence or predefined number of iterations is
reached

To enable the alternating optimization, we need to solve two separate opti-
mization problems. The first one is to find the optimal Z given N . This is the
classic least squares problem and is known to be convex and can be solved effi-
ciently. On the other hand, solving for optimal nj given Z is not always convex
due to the additional norm constraints on the nj ’s. In this case, we seek the lo-
cal minima for each nj as a constrained minimization problem. We solve the
small constrained problems (3 variables each) independently with interior point
method. Alternatively, we can solve the constrained optimization as solving poly-
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nomial equations. This can be related to the fact that for a given Z, level sets of
the cost function with respect to nj are surfaces of a ellipsoid in R3 (the centers
are in this case the solution from singular value decomposition). The norm 1
constraints on nj geometrically means that the feasible solutions lie on the unit
sphere centered at origin. Therefore, the optimal solution of nj is one of the
points that the ellipsoid is tangent to the unit sphere, which can be found by
solving polynomial equations. While there could exist multiple solutions, we can
choose the one with minimum euclidean distances to the center of the ellipsoid.
Unlike interior point solver, we always find the global optimum. However, in
practice, we found that in the alternating procedure, interior point method and
polynomial solving give similar performance.

Levenberg-Marquardt Algorithm

It is well-known that alternating optimization as a coordinate descent scheme con-
verges slowly in practice. Alternatively, we can solve the minimization problem
by iteratively finding the best descent direction for N and Z simultaneously. The
difficulty here is again the constraints on the direction vectors nj . The key idea
here is to re-parameterize the orientation vectors. Given a direction vector n hav-
ing unit length, any direction vectors can be represented by n · exp(S), where
S is a 3 × 3 skew-symmetric matrix. This is due to the fact that the exponential
map of any such matrix is a rotation matrix. In this case, if we use the (current)
orientation n as axis direction, any local change of the orientation on the sphere
can be easily parameterized via the exponential map. Therefore, the gradient of
Dij with respect to nj can be expressed without any constraints. We can then
construct the Jacobian for the Levenberg-Marquardt algorithm to compute the
optimal descent direction. In the following, we use y to denote the vector formed
by stacking variables in Z and N , d̄ is the vectorized version of D based on the
ordering of g. The algorithm is given in Algorithm 9

8.2 Experimental Validation

In this section, we present comprehensive experimental results for simulated data.
We focus on the performance of the minimal solver, verification of the far field ap-
proximation as well as the comparisons between solvers for overdetermined cases.
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Algorithm 9 Levenberg-Marquardt

Given the measurement matrix D (over-determined), initialize y and construct d̄
as in Algorithm 7,

1. Compute the Jacobian of d̄ with respect to y, J =

(∂D̄11
∂y , . . . ,

∂D̄ij

∂y , . . . ,
∂D̄(m−1)k

∂y )

2. Calculate ∆y = (JTJ+λ·diag(JTJ))−1JT∆d̄, where ∆d̄ is the residue
and λ a damping factor.

3. y = y + ∆y

4. repeat (1),(2) and (3) until convergence or predefined number of iterations
is reached

8.2.1 Minimal Solver Accuracy

The numerical performance of the algorithm was evaluated by generating prob-
lems where the far field approximation is true and not degenerate. In essence this
constitutes generating directions nj and relative distance measurements Di,j and
culling cases where the three largest singular values of the measurement matrix
are below a threshold or the directions lie on a conic. The error is then evaluated
as the average norm-difference of the estimated receiver positions. The receiver
positions were selected as the corners of a tetrahedron with arc-length one. The
average error of 10000 such tests was 6.8 · 10−15, close to machine epsilon.

8.2.2 Far Field Approximation Accuracy

Minimal Case

To evaluate the performance of the assumption that transmitters can be viewed as
having a single common direction to receivers, data was generated using 3D posi-
tions for both transmitters and receivers at different relative distances in-between
receivers and transmitters to receivers. The constellation of receivers is again the
tetrahedron and transmitters are randomly placed on a sphere surrounding it. A
graph showing the error, as defined in Section 8.2.1, as a function of radius of the
sphere (that is relative distance), as well as the failure rate of the solver is shown
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Figure 8.1: Performance on minimal case solver. Bars show failure rate (left y-axis)
and curve shows the mean error in estimated position as a function of distance
(right y-axis). Note that bar height has linear scale.

in Figure 8.1. A failure constitutes a case in which the B matrix in algorithm
7 is not positive definite. As can be seen this is infrequent even at small relative
distances in when one would not expect a far field approximation to work. As can
be expected the approximation gets better when the relative distance increases.

Initialization for Overdetermined Cases

As described in Section 8.1.3, Algorithm 7 can with some modifications be used
on overdetermined cases without guarantees on optimality of the solution. In
these situations the solutions serves as an initial guess of some other optimiza-
tion method. The additional information should however give some numerical
stability and it is interesting to evaluate the algorithm for initial guess estimates
in overdetermined cases. To do this the synthetic dataset is augmented with ad-
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Figure 8.2: Performance on non-minimal cases. Bars show failure rates, line is
error as a function of distance in loglog scale. Size of test-cases are noted in figure
with rx-sy denoting x receivers and y transmitters. This plot is best viewed in
color. Note the scale difference to the graph in Figure 8.1.

ditional randomly placed transmitters and receivers. The four first receivers are
again the tetrahedron and the rest are randomly uniformly distributed within the
unit cube. Senders are again placed on a sphere around the receivers. Results for
different problem sizes are shown in Figure 8.2. One immediately notices that the
failure ratio drops, in many cases to zero. One can also see that adding more data
will (in general) result in smaller errors, for the cases shown here up to one order
of magnitude smaller than a min case.

8.2.3 Overdetermined Cases

We also investigate the performance of the two schemes for over-determined cases.
In all experiments below, we initialize both the alternating optimization and LMA
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Figure 8.3: Convergence of alternating optimization and LMA on simulated
TDOA measurements with gaussian white noise (σ = 0.1). Here m = 10 and
k = 10.

based on the minimal solver modified for over-determined case. The simulated
data is of a true far field approximation with gaussian white noise, i.e. measure-
ments are simulated as Di,j = zinj + εi,j where εi,j ∈ N(0, σ) i.i.d. In Fig-
ure 8.3, we can see that alternating optimization and LMA all decrease the re-
construction errors compared to the minimal solver. On the other hand, from
figure 8.3, LMA converges much faster than alternating scheme (20 vs. 150) and
obtains relatively lower reconstruction errors. This verifies the superiority of LMA
over coordinate descent. This observation is consistent over different m and k as
well as a variety of noise levels. Note that here for all the experiments, we set the
damping factor λ to 1.

It is also of interest to view the complete system when the measurements Di,j

does not fulfill the far field approximation and when disturbed by noise. The
relative distances of the simulated transmitters and receivers are set to 102 for
a mediocre far field approximation and 107 for a good far field approximation.
TDOA measurements Di,j are then simulated, perturbed with gaussian white
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noise. Figure 8.4 shows the results. The pictures show that the initialization
method is fairly good, but in many cases the LMA brings down the position
error. The system is also fairly robust to noise.

8.3 Conclusions

In this chapter another simplification of the full general 3D TDOA problem has
been analyzed. It was solved through reformulation into a TOA formulation, and
solving of that problem. The proposed far field approximation to the calibration
of TDOA and TOA sensor networks results in a factorization algorithm with
constraints. The failure modes of the algorithm is studied and particular emphasis
is made on what can be said when any of these failure conditions are met. The
experimental validation gives a strong indication that a far field approximation
is a feasible approach both for getting direct estimates as well as initial estimates
for other solvers. Even considering that there are cases when the algorithm fails,
obtained solutions are good even at small relative distances. This validation is
done on 3D problems and confirms findings in [62] where evaluation was done
in 2D.

Further two optimization schemes are analyzed and what difficulties may arise
when employing them. Both of these schemes are experimentally evaluated and
confirmed to successfully optimize the initial guess on a problem fulfilling the
far field assumptions, although at quite different convergence rates. The faster of
the two is also employed on cases when transmitters are given true locations and
measurements are subject to noise with good results.

It would be interesting in future work to study to what extent it can be shown
that the local optimum obtained to the problem can be proven to be global opti-
mum. To integrate the solvers with robust norms is also worth studying to handle
situations with outliers. It would also be interesting to verify the algorithms on
real measured data and investigate the possibilities of using our algorithms in a
RANSAC approach to remove potential outliers that may occur in real life set-
tings.
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Figure 8.4: Performance on non-minimal cases with simulated TDOA measure-
ments with gaussian white noise. The mean error in position of the receivers are
plotted against the noise standard deviation. Here m=5 and k=10, and the rela-
tive distance to receivers and transmitters are 107 (top) and 102 (bottom). Failure
rates for the initialization are also shown for completeness.
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