Signaling and regulation of cysteinyl leukotriene receptors in intestinal epithelial cells and colon cancer

Bengtsson, Astrid

2009

Citation for published version (APA):
From the Department of Laboratory Medicine,
Division of Cell Pathology,
Lund University, Malmö, Sweden

Signaling and regulation of cysteinyi
leukotriene receptors in intestinal epithelial
cells and colon cancer

Astrid Bengtsson

Academic dissertation
By due permission of the Faculty of Medicine, Lund University, Sweden, to be publicly defended in the lecture hall, Clinical Research Center, Entrance 72, Malmö University Hospital (UMAS), Malmö on Friday, May 15, 2009, at 1 p.m. for the degree of Doctor of Philosophy, Faculty of Medicine

Faculty opponent: Professor Maikel Peppelenbosch, Department of Cell Biology, University Medical Center Groningen, The Netherlands
Organization
LUND UNIVERSITY

Cell and Experimental Pathology
Department of Laboratory Medicine
Clinical Research Center
Entrance 72, house 91, floor 11
UMAS, 205 02 Malmö

Author(s)
Astrid Bengtsson

Title and subtitle
Signaling and regulation of cysteinyI leukotriene receptors in intestinal epithelial cells and colon cancer

Abstract
Colorectal cancer is the third most common type of cancer, and the second leading cause of cancer-related deaths in the Western world. Chronic inflammation, such as inflammatory bowel diseases (IBD), increases the risk of cancer. CysteinyI leukotrienes are pro-inflammatory lipid mediators that are involved in IBD. They are ligands to the G-protein coupled receptors CysLT1R and CysLT2R, of which CysLT1R is associated with poor prognosis and CysLT2R with good prognosis for colorectal cancer patients. Signaling through CysLT1R results in increased proliferation, survival and migration of intestinal epithelial cells, whereas signaling through CysLT2R leads to differentiation of colorectal cancer cells. My main findings have been that 1) Leukotriene D4 (LTD4) induces intestinal epithelial cell proliferation by activating the mitogenic JNK/AP-1 pathway; 2) The mitogen EGF, involved in cancer progression, down-regulates CysLT2R expression and is inversely correlated with CysLT2R in a colorectal cancer tissue array, while 3) the anti-tumorigenic agents all-trans retinoic acid and interferon α up-regulate CysLT2R expression in colorectal cancer cells; 4) LTC4, a ligand for CysLT2R, inhibits migration of colorectal cancer cells; 5) Intestinal epithelial and colorectal cancer cells express enzymes and receptors of the cysteinyI leukotriene and prostaglandin pathways; and 6) The pro-tumorigenic cytokine TNFα up-regulates CysLT1R while down-regulating CysLT2R.

These studies provide more evidence that CysLT1R and CysLT2R have opposite functions in colon cancer progression, and we now know how to regulate their expression. This thesis provides a basic understanding on the role and regulation of cysteinyI leukotriene receptors, which is useful for designing future therapies of colorectal cancer.

Key words: Leukotriene; CysLT1R; CysLT2R; colorectal cancer; inflammation; EGF; all-trans retinoic acid; interferon; COX-2; TNF alpha

Classification system and/or index terms (if any):

Supplementary bibliographical information:
Language
English

ISSN and key title:
1652-8220 CysteinyI leukotriene receptors in colon cancer

Recipient’s notes
Number of pages
152
Price

Security classification

Distribution by (name and address)
I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature
Date 2009-04-15
To my family
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of contents</td>
<td>5</td>
</tr>
<tr>
<td>List of papers</td>
<td>7</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>8</td>
</tr>
<tr>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>Background</td>
<td>13</td>
</tr>
<tr>
<td>Anatomy of the intestines</td>
<td>13</td>
</tr>
<tr>
<td>The intestines under normal conditions</td>
<td>13</td>
</tr>
<tr>
<td>Differentiation of colon epithelial cells</td>
<td>13</td>
</tr>
<tr>
<td>The intestines under pathological conditions</td>
<td>15</td>
</tr>
<tr>
<td>Inflammatory bowel diseases</td>
<td>15</td>
</tr>
<tr>
<td>The link between inflammation and cancer</td>
<td>17</td>
</tr>
<tr>
<td>How tumors arise and progress</td>
<td>19</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>21</td>
</tr>
<tr>
<td>Current treatment</td>
<td>22</td>
</tr>
<tr>
<td>Classification of colorectal cancer</td>
<td>23</td>
</tr>
<tr>
<td>The role of epidermal growth factor in cancer</td>
<td>23</td>
</tr>
<tr>
<td>The role of NF-κB in cancer</td>
<td>24</td>
</tr>
<tr>
<td>The role of AP-1 in cancer</td>
<td>26</td>
</tr>
<tr>
<td>Eicosanoids in inflammation and cancer</td>
<td>28</td>
</tr>
<tr>
<td>Prostaglandin biosynthesis</td>
<td>28</td>
</tr>
<tr>
<td>Leukotriene biosynthesis</td>
<td>29</td>
</tr>
<tr>
<td>LTC₄ synthase</td>
<td>30</td>
</tr>
<tr>
<td>The cysteinyl leukotrienes and their receptors</td>
<td>30</td>
</tr>
<tr>
<td>CysLT₁R</td>
<td>31</td>
</tr>
<tr>
<td>CysLT₂R</td>
<td>32</td>
</tr>
</tbody>
</table>
Other cysteinyl leukotriene receptors .. 33
The role of eicosanoids in cancer .. 33
Eicosanoids with anti-inflammatory / anti-tumorigenic functions ... 35
Antitumor agents and tumor suppression 36
 Interferons ... 36
 Type I interferons ... 36
 Interferon regulatory factors (IRFs) .. 37
 Retinoids .. 37
 Retinoic acid receptors (RARs) .. 39
Transcription factors and cancer .. 40
 Transcriptional activation .. 42
 Transcriptional repression ... 42

Present investigation ... 43
 Aim .. 43
 Paper I ... 44
 Background ... 44
 Results and discussion .. 44
 Paper II ... 45
 Background ... 45
 Results and discussion .. 46
 Paper III .. 46
 Background ... 46
 Results and discussion .. 47
 Paper IV .. 48
 Background ... 48
 Results and discussion .. 48
Concluding remarks and future perspectives 50

Populärvetenskaplig sammanfattning ... 52

Acknowledgments .. 54

References ... 57
LIST OF PAPERS

This thesis is based on the following papers:

II. Cecilia Magnusson, **Astrid M Bengtsson**, Jian Liu, Roy Ehrnström, A. Yvonne Olsson Ceder and Anita Sjölander. EGF down-regulates the expression and functional response of the tumor-suppressing cysteiny1 leukotriene 2 receptor in colon cancer cells. Submitted manuscript

III. **Astrid M Bengtsson**, Cecilia Axelsson, Cecilia Magnusson, Gunilla Jönsson and Anita Sjölander. The cysteiny1 leukotriene 2 receptor is involved in all-trans retinoic acid-induced differentiation of colon cancer cells. Manuscript

Reprints of paper I and IV were made with permission from the publisher.
ABBREVIATIONS

AA Arachidonic acid
AP-1 Activator protein 1
5-ASA 5-aminosalicylic acid
APC Adenomatosis polyposis coli
APL Acute promyelocytic leukemia
ATRA All-trans retinoic acid
Bcl-2 B-cell lymphoma 2
CDX2 Caudal-type homeobox 2
COX-2 Cyclooxygenase-2
cPLA2 Cytosolic phospholipase A2α
CRBII Cellular retinol binding protein II
CRC Colorectal cancer
CRE cAMP-responsive element
CREB cAMP-responsive element-binding protein
CysLT Cysteinyl leukotriene
CysLT1R Cysteinyl leukotriene receptor 1
CysLT2R Cysteinyl leukotriene receptor 2
DR Direct repeat
E-box Enhancer box
ECM Extracellular matrix
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
EMT Epithelial to mesenchymal transition
ERK1/2 Extracellular signal-regulated kinase 1 or 2
FAP Familial adenomatous polyposis
FLAP 5-lipoxygenase activating protein
5-FU 5-fluorouracil
GPCR G-protein coupled receptor
HAT Histone acetyltransferases
HDAC Histone deacetylase
HIF Hypoxia-inducible factor
5-HPETE 5-hydroperoxyeicosatetraenoic acid
HUVEC Human umbilical vein endothelial cells
IAP Intestinal alkaline phosphatase
IBD Inflammatory bowel disease
IFN Interferon
IFNAR type 1 interferon receptor
IκB-α Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha
IKK IκB kinase
IL Interleukin
iNOS Inducible nitric oxide synthase
IRF Interferon regulatory factor
ISRE Interferon-stimulated response element
JAK Janus kinase
JNK c-Jun N-terminal kinase
5-LO 5-lipoxygenase
15-LO 15-lipoxygenase
LPS Lipopolysaccharide
LT Leukotriene
LTC₄S Leukotriene C₄ synthase
MAPK Mitogen-activated protein kinase
MRP Multidrug resistance-associated protein
MMP Matrix metalloprotease
MUC2 Mucin 2
NaBT Sodium butyrate
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NIK NF-κB-inducing kinase
NLS Nuclear localization sequence
N-CoR Nuclear receptor corepressor
NSAID Non-steroidal anti-inflammatory drug
PCR Polymerase chain reaction
PDGF Platelet-derived growth factor
PG Prostaglandin
PGE₂ Prostaglandin E₂
PI3K Phosphatidylinositol-3-kinase
PKC Protein kinase C
PPAR peroxisome proliferator-activated receptor
p90RSK 90-kDa ribosomal S6 kinase
Raf-1 v-raf-1 murine leukemia viral oncogene homolog 1
RANTES Regulated on activation T cell expressed and secreted
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAR</td>
<td>Retinoic acid receptor</td>
</tr>
<tr>
<td>RARE</td>
<td>Retinoic acid response element</td>
</tr>
<tr>
<td>ROR</td>
<td>RAR-related orphan receptor</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RTK</td>
<td>Receptor tyrosine kinase</td>
</tr>
<tr>
<td>RXR</td>
<td>Retinoid X receptor</td>
</tr>
<tr>
<td>SMRT</td>
<td>Silencing mediator of retinoid and thyroid receptors</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal transducer and activator of transcription protein</td>
</tr>
<tr>
<td>TAM</td>
<td>Tumor-associated macrophage</td>
</tr>
<tr>
<td>TBP</td>
<td>TATA-binding protein</td>
</tr>
<tr>
<td>TF</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor β</td>
</tr>
<tr>
<td>Th</td>
<td>T helper cell</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor α</td>
</tr>
<tr>
<td>UDP</td>
<td>Uridine diphosphate</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
</tbody>
</table>
INTRODUCTION

The gastrointestinal tract is one of the fastest dividing organs in the body. In the mucosal lining of the gut, epithelial cells constitute a barrier against pathogens while at the same time the cells facilitate digestion of and provide transport of nutrients and water. The colon is colonized by commensal bacteria, which live in symbiosis with the host. Colorectal cancer afflicts individuals primarily in the Western world and is a multifactorial disease, where genetic predisposition, chronic inflammation and environmental factors all have been shown to play a role in the pathogenesis of this cancer. One of the environmental factors modulating the risk of colorectal cancer is our diet.

We have learned that the essential unsaturated omega-3 fatty acids are protective, while omega-6 counterparts are unfavorable in, e.g., heart diseases and colorectal cancer. However, that omega-6 fatty acids are harmful is a truth with modification. Omega-6 derivatives of arachidonic acid can give rise to both beneficial and harmful signaling pathways, depending on which enzymes and receptors are activated.

The most important omega-6 fatty acid is arachidonic acid, an essential constituent of the plasma membrane. In response to certain stimuli, arachidonic acid is released from the plasma membrane and metabolized into eicosanoids. These are potent lipid mediators, some of which encompass pro-inflammatory properties while others have anti-inflammatory modes of action. Leukotrienes are a family of pro-inflammatory eicosanoids, first discovered in the 1930s as a slow-reacting substance of anaphylaxis. Since then, they have been found to be involved in the pathogenesis of several inflammatory disorders and in cancer. Antagonists of enzymes and receptors of the leukotriene pathway are successfully used as treatment for asthma.

In my thesis, I have examined how intracellular signaling mediated by leukotrienes affects intestinal epithelial cells and colorectal cancer cells. The work has been focused on the role of cysteinyi leukotriene receptors (CysLTR) 1 and 2 in colorectal cancer. In a cancer setting, CysLT1R mediates pro-tumorigenic pathways while CysLT2R mediates
differentiation. Previous studies from our group have shown that high expression of CysLT₁R while low expression of CysLT₂R in colon tumor tissue correlate with poor patient survival. I have elucidated the mechanisms behind how leukotriene D₄, a pro-inflammatory eicosanoid, induces proliferation of intestinal epithelial cells. Moreover, I have investigated how CysLT₂R may be modulated by the anti-cancer agents interferon α and all-trans retinoic acid and the pro-tumorigenic epidermal growth factor. Colorectal cancer is a disease treated by surgery in combination with chemotherapy. Pharmacologic fine-tuning of the eicosanoid pathways may be a way to meet the existing needs for pharmaceutical treatment in the future.
BACKGROUND

Anatomy of the intestines

The intestines under normal conditions

The mucosal lining of the colon is formed into crypts and is composed of simple columnar epithelial cells, mucus-secreting goblet cells and Paneth cells [2]. The epithelial cells are renewed about every 5 days from stem cells residing in the bottom of the crypts. The progenitor cells generate rapidly proliferating cells, which undergo differentiation while migrating up the crypt [3]. One human crypt contains roughly 2,000 cells and is believed to harbor about 19 stem cells [4]. The apical surface of the epithelial cells has 1-μm-long microvilli, also called the brush border, that increase the surface area for the digestion and transport of molecules from the intestinal lumen [5]. Goblet cells are bell-shaped cells of endocrine origin whose main function is to secrete mucins [6,7]. Paneth cells are a part of the innate immune system and release granules rich in β-defensins into the intestinal lumen as a defense against pathogens [8]. The cells adhere to a basement membrane consisting of a network of collagen IV fibrils, laminins, nidogen and proteoglycans that attaches the cells to the underlying submucosa [9].

Differentiation of colon epithelial cells

The transcription factor caudal-type homeobox 2 (CDX2) is important in governing embryonic development of the colon and in maintenance of the epithelial lining of both the small and the large intestine [10]. CDX2 is most active in differentiated epithelial cells above the crypts and regulates transcription of genes representative of differentiated colonocytes, including lactase and carbonic anhydrase-1 [11]. The Wnt signaling pathway is perhaps the most dominant in controlling cell fate along the crypt–villus axis. Nuclear β-catenin, a key component in Wnt signaling, is observed in the intestinal crypts [12]. Differentiated colon epithelial cells can be characterized morphologically by the presence of apical brush borders and basolateral junctional complexes, and biochemically by the
presence of brush border enzymes, e.g., intestinal alkaline phosphatase (IAP), aminopeptidase, lactase, and sucrase-isomaltase [13]. Sodium butyrate (NaBT), a natural metabolite from intestinal microflora fermentation, is a strong inducer of differentiation of colonocytes and colon cancer cells via a mechanism of histone hyperacetylation [14,15], allowing induction of expression of brush border enzymes such as IAP [13]. IAP is important in digestion in that this phosphatase hydrolyses monophosphate-esters from food [16]. Recently, IAP was also found to protect the gut against bacterial invasion across the gut barrier by detoxifying bacterial lipopolysaccharides (LPS) through blocking the transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) [17]. IAP has been found to be down-regulated in tissue from patients with inflammatory bowel disease [18].

Similar to goblet cells, the epithelial cells of the colon are also able to produce mucus, which is composed of secreted mucins. Mucins are high-molecular-weight glycoproteins that act as a barrier of the intestinal wall, to protect the mucosa from harmful pathogens [19]. Mucins 1-6 are expressed by the colorectal epithelium [19]. Mucin 2 (MUC2) has been found down-regulated in tissue samples from patients with Crohn’s disease [20] and colorectal cancer [21].

Figure 1. Colon tissue morphology. Labels show surface epithelium (SE), colon crypts (CC), goblet cells (GC), lamina propria (LP), and muscularis mucosa (MM). From Frank, 2007 [22].
The intestines under pathological conditions

Inflammatory bowel diseases

The gastrointestinal tract is a major site for pathogen entry. During homeostatic conditions, the intestines are in a state of controlled inflammation. In the colon, antigen-presenting cells such as dendritic cells and macrophages reside just beneath the surface epithelium where they are exposed to antigens, and in lymphoid follicles together with B and T cells [23]. The dendritic cells have protrusions extending through the epithelium and are mainly responsible for the tolerance to pathogens [24]. However, homeostasis is disrupted in chronic inflammatory conditions such as inflammatory bowel diseases (IBDs). IBD is a common name for several chronic pathologies affecting the gastrointestinal tract, including Crohn’s disease and ulcerative colitis. The highest incidence rates and prevalence of Crohn’s disease and ulcerative colitis have been reported from the Western world (3 to 7 per 100,000 individuals) [25]. What causes IBD is not known, but the epithelial layer has increased permeability in both Crohn’s disease and ulcerative colitis [26].

Crohn’s disease manifests as ulcers and chronic inflammation that can occur anywhere along the gastrointestinal tract [27]. The pathogenesis depends on a combination of genetic susceptibility factors, the composition of the enteric microflora and immune cell-mediated tissue damage [28]. In Crohn’s disease, antigen-presenting cells such as macrophages and dendritic cells produce e.g. interleukin-12 (IL-12), resulting in an excessive T helper cell type 1 (T\(_{H1}\))-type of immune response [29]. In addition, LTE\(_4\), a metabolite of the cysteinyl leukotrienes (CysLTs) has been detected in urine from patients with Crohn’s disease [30]. Recently, the role of IL-23-driven T\(_{H17}\) cells has also been discussed, and polymorphisms in the gene encoding the IL-23 receptor have been linked to both Crohn’s disease and ulcerative colitis [31,32]. T\(_{H1}\) and T\(_{H17}\) cells release mediators such as interferon-\(\gamma\) (IFN-\(\gamma\)), tumor necrosis factor \(\alpha\) (TNF-\(\alpha\)) and IL-6, which enhance the inflammation [27,31]. These processes trigger the recruitment of neutrophils, change the epithelial barrier and activate matrix metalloproteases (MMPs) that degrade the stromal extracellular matrix (ECM). Upon chronic exposure to these cytokines and other factors, tissue damage is eventually induced. Apoptosis-resistant T cells have also been suggested to take part in the chronicity of Crohn’s disease [33], but more recent evidence proposes that
defective recruitment of neutrophils results in inadequate clearance of bacteria and initiation of disease [34].

Chronic exposure to inflammatory mediators induces the epithelial cells to become more inflammatory-like. In addition, cytokines such as TNF-α sustain the inflammation by inducing the production of other pro-inflammatory mediators. As an example, we found that TNF-α induces expression of the leukotriene-converting enzyme 5-lipoxygenase (5-LO) and up-regulates the LTD₄ receptor CysLT₁R in intestinal epithelial cells [35]. Moreover, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are increased in epithelial cells in active inflammatory foci of inflammatory bowel disease [36,37]. COX-2 is an enzyme responsible for generating prostaglandins (PGs) and is linked to carcinogenesis, and will be discussed more in detail below [38,39]. About 10-15% of patients with Crohn’s disease carry a mutation in the gene for the intracellular pattern recognition receptor NOD2, presumably resulting in altered Toll-like receptor (TLR) signaling [24].

Figure 2. Cells and mediators of inflammatory bowel diseases.
In contrast to Crohn’s disease, ulcerative colitis has a T_{H2}-type cytokine profile, where IL-5 and IL-13 are secreted by natural killer T cells in increased amounts [24]. The inflamed mucosa releases not only cytokines but also eicosanoids such as prostaglandins and leukotrienes [40,41]. High levels of leukotriene B_4 (LTB$_4$) and LTD$_4$ have been detected in inflamed colonic mucosa from patients with ulcerative colitis [42,43]. Ulcerative colitis is a relapsing non-transmural inflammatory disease that is restricted to the colon [44].

Conventional treatment of IBD consists of sulfasalazine, mesalazine (5-ASA [5-aminosalicylic acid], which inhibits eicosanoid production [45]) and immunosuppressive drugs such as corticosteroids. However, all of these drugs have drawbacks such as toxicity and high relapse rates [28]. Lately, treatment also includes the monoclonal antibody infliximab, which antagonizes the effects of TNF-α [46].

The link between inflammation and cancer

In 1863, Rudolf Virchow observed leukocytes in tumor tissue. He proposed a theory that the origin of cancer was at sites of chronic inflammation. Since then, much evidence has been presented that supports his theory. Infiltrating leukocytes in the tumor microenvironment participate in the neoplastic process [47]. During tissue injury and subsequent wound healing, cell proliferation is enhanced. In a normal situation, inflammation and proliferation discontinue once the tissue has been repaired. In the case of chronic inflammation, proliferation is sustained, the stroma is activated and releases reactive oxygen and nitrogen species which induce DNA damage. Thus, the features of a tumor resemble those of a wound that does not heal. These factors together promote neoplastic risk [47]. Furthermore, released inflammatory mediators trigger the epithelial-derived tumor cells to acquire properties of inflammatory cells. The mediators utilize adhesion molecules, cytokines, chemokines and chemokine receptors to proliferate and spread to other sites of the body [48]. The strongest association of chronic inflammation with malignant disease is in individuals with IBD, where colorectal cancer accounts for 15% of all deaths of IBD patients [49]. After 30 years of ulcerative colitis, the risk of developing colon cancer is 18%, which corresponds to a 2.6- to 5.4-fold greater risk than in the average population [50]. Interestingly, alteration in the p53 gene has been found in ulcerative colitis, and is considered an early event in colitis-associated dysplasia [51].
The connection between inflammation and cancer is also evident in other malignancies, as cancers of the liver, cervix and bladder often have an inflammatory component involved (see Table 1). It is estimated that 15-20% of cancers globally arise from chronic inflammatory conditions [47]. Convincingly, long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) including aspirin reduces colon cancer risk by 40-50% [52,53]. The inflammatory infiltrate consists primarily of tumor-associated macrophages (TAMs) [54]. In contrast to classically activated macrophages, which often have an M1 phenotype rendering them capable of killing microbes and tumor cells, TAMs have been polarized into the M2 phenotype and are as a consequence poor antigen-presenting cells and produce immunosuppressive factors [55]. Dendritic cells in tumors have an immature phenotype, defective in mounting a proper T-cell response [56].

Table 1. Inflammation-associated cancers. MALT, mucosa-associated lymphoid tissue. Modified from Balkwill, 2001 and Coussens, 2002 [47,48].

<table>
<thead>
<tr>
<th>Inflammatory component</th>
<th>Associated neoplasms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papillomavirus</td>
<td>Cervical carcinoma</td>
</tr>
<tr>
<td>H. Pylori induced gastritis</td>
<td>Gastric adenocarcinoma, MALT lymphoma</td>
</tr>
<tr>
<td>Bronchitis</td>
<td>Lung carcinoma</td>
</tr>
<tr>
<td>Inflammatory bowel disease</td>
<td>Colorectal carcinoma</td>
</tr>
<tr>
<td>Hepatitis virus B and C</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>Chronic pancreatitis</td>
<td>Pancreatic carcinoma</td>
</tr>
<tr>
<td>Bladder inflammation</td>
<td>Bladder carcinoma</td>
</tr>
<tr>
<td>Chronic cholecystitis</td>
<td>Gall bladder cancer</td>
</tr>
<tr>
<td>Human herpesvirus type 8</td>
<td>Kaposi's sarcoma</td>
</tr>
<tr>
<td>Barrett’s oesophagus</td>
<td>Oesophageal carcinoma</td>
</tr>
<tr>
<td>Epstein-Barr virus</td>
<td>Burkitt’s lymphoma, B-cell non-Hodgkin’s lymphoma</td>
</tr>
<tr>
<td>Gonorrhoea, chlamydia</td>
<td>Ovarian carcinoma</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>Bladder, liver, rectal carcinoma, follicular lymphoma of the spleen</td>
</tr>
</tbody>
</table>
In addition, eosinophils, mast cells and lymphocytes are present, all of which may secrete cytokines, reactive oxygen species and MMPs. The latter degrade the extracellular matrix, which facilitates metastasis of malignant cells [47]. TAMs are key producers of the factors just mentioned. In addition, TAMs are a major source of angiogenic and growth factors and cytokines including transforming growth factor β (TGF-β), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), TNF-α and IL-1 [57]. The broad capacity of TAMs makes them powerful mediators of tumor cell proliferation, metastasis and angiogenesis [55]. Evidence from several mouse models indicates that TNF-α acts as a tumor promoter [58]. TNF-α mediates its effects intracellularly primarily via NF-κB, which is a major inducer of proliferation and anti-apoptotic genes [1]. The role of NF-κB will be discussed in more detail below.

How tumors arise and progress

Extra- and intracellular signaling are highly complex and diverse processes that in addition are context-dependent. During homeostasis, there is a delicate balance between tumor suppressors inducing cell cycle arrest, apoptosis and differentiation and factors that promote cell cycle initiation, survival, angiogenesis and migration of the cells. In addition, the interplay between cells and the cells-extracellular matrix is of importance in regulating intracellular events. The more than 100 distinct types of cancer tells us that there is a great diversity in the signals that lead to neoplasia [59].

Tumors arise as a consequence of multiple events. Tumors may originate from spontaneous or familial mutations in tumor suppressor genes such as p53 [60] or in oncogenes such as Ras [61] or, as in the case of familial adenomatus polyposis (FAP), the adenomatosis polyposis coli (APC) gene [62]. For an individual tumor to develop, an accumulation of different mutations must occur [63]. Carcinogens may be the triggering factors behind mutagenesis, and these include chemicals from fossil fuel, cigarette smoke and pesticides, radiant energy and microbial agents such as oncogenic viruses [25].

Accumulating evidence indicates that tumors arise from cancer stem cells [64]. Cancer stem cells have been detected in leukemic, brain, breast and colon cancers [65]. It has been suggested that normal colonic stem cells might be the targets for early carcinogenesis events and
that dysregulation of the tightly regulated process of stem cell self-renewal might give rise to colon cancer stem cells [4].

Tumors are characterized by a high grade of proliferation. The reason may be a combination of excessive activation of proliferative pathways and a disrupted action of growth-suppressive signals. In contrast to normal cells that require a mitogenic signal for cell division to occur, tumors do not rely on exogenous stimuli but use oncogenic proteins to substitute for these actions. An example of self-sufficient growth of tumors is autocrine generation of the mitogen PDGF within glioblastoma tumors [59].

Another property of cancer cells is that they exhibit enhanced survival. The mechanisms behind can be either a disruption of pro-apoptotic signaling (e.g., the Fas death receptors of Bax), or by overexpression or mutation of anti-apoptotic proteins in the phosphatidylinositol-3 (PI3) kinase-AKT pathway or Bcl-2 (B-cell lymphoma 2), all of which have been found activated by LTD4 in intestinal epithelial cells [59,66,67]. The most common way cancer cells can evade apoptosis is by a loss-of-function mutation in the tumor suppressor gene p53 [68].

Once tumors grow large, they become hypoxic in the interior. Hypoxic tumors are generally more aggressive, presumably because these cells to a higher extent need to migrate to more oxygenated areas. The transcription factor family hypoxia-inducible factors (HIFs) orchestrate the up-regulation of VEGF, for example, which induces endothelial cells to promote angiogenesis, resulting in the sprouting of new blood vessels [69,70].

Furthermore, VEGF is a growth factor also capable of changing the properties of the extracellular matrix (ECM), and causing endothelial cells to switch to express more invasive-competent integrins [59]. Activation of integrin α2β1, a receptor for laminin and collagen present in the basement membrane, induced COX-2 expression in intestinal epithelial cells, which in turn resulted in elevated generation of reactive oxygen species (ROS) and increased cell migration [71]. Invasive cancer cells also switch their integrins from integrin α2β1 to, e.g., αVβ3, which enables the cell to migrate on almost any matrix protein the cell may encounter [72]. In this way, tumor cells can bind to the underlying stroma that has been loosened up by matrix metalloproteases such as MMP-2, MMP-7 and MMP-9, thereby facilitating metastasis [73]. Another feature of tumor invasion and metastasis is the phenomenon called epithelial to
mesenchymal transition (EMT). During this process, phenotypic changes occur where immotile epithelial cells are converted to motile mesenchymal cells. EMT requires a loss of cell-cell adhesion and apical-basal polarity, along with acquisition of a stromal cell phenotype [74]. Loss of function of the cell-cell junction protein E-cadherin is a frequent characteristic of epithelial cancers [75].

Loss of E-cadherin function can generate de-differentiation, where expression of embryonic markers increases, while markers of differentiated cells (in the case of colon cancer, e.g., MUC2) decrease [21]. Many tumors encompass overexpression of the oncogene c-myc, a transcription factor that is suppressed during development of normal cells. Hence, differentiation is impaired, and growth is promoted [59].

Often, more aggressive cancer cells evade the immune system, which has a tumor surveillance function. Tumor cells, including colon cancer cells, often up-regulate co-inhibitory B7 molecules that are used to dampen T-cell responses. These B7 family members have immune-suppressive capacities. Aberrant expression of these coinhibitory molecules might therefore negatively interfere with the host immune response, leading to disease progression. Indeed, they are associated with poor prognosis [76].

Colorectal cancer

Colorectal cancer (CRC) is the third most common form of cancer, and the second leading cause of cancer-related death in the Western world with 639,000 deaths per year worldwide. About 5-10% of the cases of colorectal cancer are hereditary and due to a germline mutation in the tumor suppressor gene adenomatosis polyposis coli (APC), which typically gives rise to 500-2,500 polyps along the colon, resulting in familial adenomatous polyposis (FAP) [77]. The resulting 90-95% of CRC cases result from a combination of a series of mutational events and environmental factors. APC mutations occur as often as in 60% of the cases of sporadic CRC [78]. This protein is part of a complex that binds β-catenin. In the absence of binding and degradation of β-catenin by the proteasome, β-catenin translocates to the nucleus, where it activates the TCF/LEF transcription factors [79]. The constitutive β-catenin–TCF complex drives expression of genes involved in proliferation, such as cyclin D1 and c-myc, in colorectal cancer cells, a process identical to the Wnt cascade in crypt stem cells [12]. Mutations in APC typically give rise to COX-2 induction, which is
overexpressed in many colorectal tumors [80]. Ras mutations occur in about 50% of the cases of CRC [77]. Risk factors are smoking, a diet high in red meat or cholesterol, heavy alcohol intake, a history of IBD and a family history of CRC. The mean age of onset for IBD-associated CRC is lower than that for sporadic CRC (45 versus 60 years) [81]. Fewer than 20% of cases of sporadic CRC occur before the age of 50 years. Males are 20% more often affected than females [25].

<table>
<thead>
<tr>
<th>Dukes stage</th>
<th>TNM stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dukes A</td>
<td>T0</td>
<td>No primary tumor</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>Invasion through submucosa</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>Invasion into muscularis propria</td>
</tr>
<tr>
<td>Dukes B</td>
<td>T3</td>
<td>Invasion through subserosa</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>Invasion through other organs</td>
</tr>
<tr>
<td></td>
<td>N0</td>
<td>No lymph node involvement</td>
</tr>
<tr>
<td>Dukes C</td>
<td>N1</td>
<td>1-3 lymph nodes involved</td>
</tr>
<tr>
<td></td>
<td>N2</td>
<td>4 or more lymph nodes involved</td>
</tr>
<tr>
<td></td>
<td>N3</td>
<td>Involvement of lymph nodes along the vascular trunk</td>
</tr>
<tr>
<td></td>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>Dukes D</td>
<td>M1</td>
<td>Distant metastasis</td>
</tr>
</tbody>
</table>

Table 2. Colorectal tumor classification.

Current treatment

Surgical resection is the general treatment for colorectal cancer patients. However, approximately 30% of postoperative patients have a recurrence within 5 years [82]. To reduce this risk, patients receive irinotecan or 5-fluorouracil (5-FU) adjuvant chemotherapy. Additional treatment includes the VEGF inhibitor bevacizumab, which blocks angiogenesis, and the epidermal growth factor (EGF) receptor inhibitor cetuximab, which targets
metastasis and tumor cell growth [83]. The COX-2 selective inhibitor Rofecoxib (Vioxx) was taken off the market in 2004 due to the risk of severe cardiovascular side effects. Meta-analyses show that cardiovascular risk increases significantly upon long-term high-dose (>400 mg) exposure to NSAIDs [84]. However, another COX-2 inhibitor, Celecoxib (Celebra) is used in the treatment of FAP.

Classification of colorectal cancer

Colorectal tumors have been traditionally assessed according to Dukes’ classification [85]. The TNM staging system is more commonly used today where the primary tumor (T), regional nodes (N) and metastasis (M) are followed by a number, where 0 indicates undetectable, and 1-4 indicate a progressive severity (see Table 2). Thus, a tumor may be described as T1, N2, M0 [86]. Recently, a gene expression profiling study of large cohorts of colorectal cancers showed that immunological data (the type, density and location of immune cells within the tumor samples) were a better predictor of patient survival than the histopathological methods described above [87]. Perhaps these findings may lead to revision of the current indicators of clinical outcome in colorectal cancer.

The role of epidermal growth factor in cancer

Epidermal growth factor (EGF) is a growth factor for variety of cells of both ectodermal and mesodermal origin. For example, EGF is involved in normal stem cell renewal in colon crypts [88]. EGF binds specifically to the EGF receptor (EGFR), a receptor tyrosine kinase (RTK) of the ErbB family [89]. Apart from EGFR (also known as ErbB-1/HER1), ErbB-2 (neu, HER2), ErbB-3 (HER3) and ErbB-4 (HER4) also belong to this family. EGF and EGFR are often overexpressed in carcinomas, and amplification of the EGFR gene and mutations of the EGFR tyrosine kinase domain have been found in carcinoma patients. Upon ligand binding, homo- or heterodimerization of EGFR leads to tyrosine kinase activation and intrinsic trans-phosphorylation. This results in activation of multiple signaling pathways including the Ras/Raf/MEK/mitogen-activated protein kinase (MAPK) pathway through either Grb2 or Shc adaptor proteins, PLCγ and PI3 kinase activation. These mediators activate various transcription factors such as c-fos, c-Jun, c-myc, NF-κB or the transcriptional repressors SNAI1 (Snail), SNAI2 (Slug) and Twist [88]. These repressors bind to target
sequences called E-boxes (Enhancer boxes) in the promoters of genes, which are conserved elements with the consensus sequence CANNTG. As mentioned above, EMT is a major event in tumor metastasis and is characterized by loss of E-cadherin, which is a crucial protein in the maintenance of adhesion and polarity of epithelial cells. The transcriptional repressors SNAI1, SNAI2 and Twist drive EMT by repressing E-cadherin [74,90,91]. The expression of SNAI1 is associated with distant metastasis, and SNAI2 is a marker of poor prognosis in CRC [90]. Interestingly, SNAI1 expression can be induced by the COX-2–PGE2 pathway, which highlights the importance of inflammatory components present in the tumor microenvironment, on the induction of EMT [92].

The role of NF-κB in cancer

Bacterial invasion in the gut or presence of inflammatory mediators such as IL-1 and TNF-α in the intestinal wall is a common feature in IBD. These mediators converge intracellularly in the NF-κB signaling pathway. Expectedly, NF-κB is active in the colonic mucosa of ulcerative colitis patients [93]. The transcription factor NF-κB targets a vast number of genes, among which many are involved in inflammation (IFN-γ, IL-6, IL-8), others in tumor promotion (COX-2, iNOS), proliferation (Cyclin D1), survival (Bcl-2), angiogenesis (VEGF) and metastasis (ICAM-1, VCAM-1, MMP-9) [1,94,95]. This array of evidence points to a dual role of NF-κB in pathogenesis, where one is to sustain inflammation and another is to promote tumor development. Indeed, deletion of the NF-κB signaling machinery, such as in the IkB kinase β (IKK-β) null mouse, has resulted in inhibition of colitis-associated colon cancer growth and failure of tumor progression in an experimental model of inflammation-induced hepatocellular carcinoma [96,97]. NF-κB thus plays an important role not only in inflammatory responses but also in cancer, and has been postulated to be “the link between inflammation and cancer” [1].
NF-κB was first discovered in B lymphocytes, where it was shown to play a role in B-cell differentiation in response to LPS [98]. The mechanisms of NF-κB signaling have been extensively studied throughout the years, and more than 20 different mouse models targeting proteins in the NF-κB pathway have been developed [99]. Two pathways leading to NF-κB activation are known, the classical, which includes activation of the IKK complex, and the alternative pathway. The classical pathway is activated by a number of stimuli, including viruses, pro-inflammatory cytokines, UV irradiation, hypoxia and oxidative stress [95]. The activation initiates a cascade of events through phosphorylation of the IKK complex, which is composed of two catalytic subunits (IKK-α and IKK-β) and a regulatory subunit (IKK-γ/NEMO). The IKK complex in turn phosphorylates the inhibitory protein IκB-α, whose role is to retain the NF-κB subunits inactive in the cytoplasm. Upon phosphorylation, IκB-α becomes ubiquitinated and consequently becomes degraded in the proteasome [94]. Thereby, the NF-κB subunits are able to enter the nucleus to bind to target genes in homo- or heterodimer formation of five known subunits: RelA (p65), c-Rel, RelB, NF-κB1 (p105/p50) and NF-κB2 (p100/p52) [100]. The alternative pathway is induced by LPS and

Figure 3. Model of NF-κB as a link between inflammation and cancer. Adapted from Karin, 2006 [1].
lymphotoxin, and activates NF-κB-inducing kinase (NIK) to phosphorylate the precursor forms of NF-κB1 (p105) and NF-κB2 (p100). This results in proteolytic cleavage and the generation of the DNA-binding p50 and p52 subunits [101,102]. The p50/p52-dependent transcription of genes is induced by transactivation of this NF-κB dimer by Bcl-3, a proto-oncogene and a member of the IκB family [103,104].

Figure 4. NF-κB signaling pathways.

The role of AP-1 in cancer

Activator protein-1 (AP-1) was one of the first transcription factors to be discovered [105]. It can be activated by a wide range of stimuli, including growth factors, cytokines, neurotransmitters, cell-matrix interactions, bacteria, viruses, UV light and chemical stress. These stimuli activate the MAPK pathways, of which extracellular signal-regulated kinases (ERKs) respond to growth factors, whereas pro-inflammatory cytokines and stress induce activation of c-Jun N-terminal kinase (JNK) and p38. Upon
activation, the MAPKs translocate to the nucleus where they phosphorylate AP-1 proteins [106]. AP-1 is a family of transcription factors composed of homo- or heterodimers of Jun (c-Jun, JunB, JunD), Fos (c-Fos, FosB, Fra1 and Fra2), Maf (c-Maf, MafA, MafB, MafG/F/K and Nrl) or ATF (ATF2, ATF3, B-ATF, JDP1 and JDP2) subunits, of which c-Jun and c-Fos were originally described as proto-oncogenes and homologs of the retroviral oncoproteins v-Fos and v-Jun [106-108]. While ERK phosphorylates c-Fos, JNK can activate c-Jun and ATF2, and p38 induces activation of ATF2. The AP-1 proteins are basic region-leucine zipper dimers that bind to TPA- or cAMP-responsive elements (CREs) in promoter regions of genes [106].

Figure 5. AP-1 in liver tumorigenesis. Adapted from Eferl, 2003 [108].

Depending on the context, i.e., the local environment or cell type, AP-1-induced transcription of genes can result in responses involved in proliferation, survival and differentiation. In general, it seems that c-Jun and c-Fos drive tumorigenesis, while JunB and JunD mediate apoptosis.
c-Jun, c-Fos and FosB can transform cells in culture, whereas JunB and JunD lack this capacity. c-Jun induces Cyclin D1 expression and down-regulates p53 expression, thereby contributing to proliferation and survival. Moreover, c-Fos and c-Jun can induce EMT, and up-regulate CD44 and matrix metalloproteases, which promotes invasiveness.

There are many examples linking AP-1 to carcinogenesis. In the liver, c-Jun is required for early stages of tumorigenesis in a mouse model of hepatocellular carcinoma. c-Jun’s mechanism of action was found to be through inhibiting apoptosis by antagonizing p53. In the APCMin mouse model of intestinal cancer, c-Jun cooperates with the transcription factor TCF4 of the Wnt signaling pathway in driving tumorigenesis. Overexpression of c-Jun, JunB, Fra-1 and Fra-2 was found in a study with human colorectal cancer tissue from 75 donors.

Leukotrienes can induce AP-1 activation. Previous studies show that LTB4 can induce c-Fos mRNA in human monocytes, and cysteinyl leukotrienes can induce c-Jun phosphorylation in fibroblasts. Moreover, 5-LO is required for EGF-mediated induction of JunB expression in human squamous carcinoma cells.

Eicosanoids in inflammation and cancer

Arachidonic acid (AA) is a key component of the plasma membrane and is cleaved off upon activation of the enzyme cytosolic phospholipase A2 (cPLA2). As shown in Figure 6, AA can be converted to prostaglandins, lipoxins or leukotrienes.

Prostaglandin biosynthesis

Prostaglandins are generated in response to cytokines, growth factors, thrombin or mechanical trauma. AA is metabolized into the intermediate prostaglandin PGH2 by the cyclooxygenases COX-1 or COX-2, where COX-1 is constitutively expressed and COX-2 is induced during inflammation or cancer. The subsequent generation of thromboxane, prostacyclins and prostaglandins by multiple enzymes gives rise to various biological actions in different organs. For example, thromboxane A2 aggregates platelets and mediates vasoconstriction, whereas prostacyclin is produced in endothelial cells and counteracts these functions.
Prostaglandin \(E_2 \) (PGE\(_2\)) is a ligand to four G-protein coupled receptors (GPCRs) termed EP1-4 and mediates numerous effects, including uterus contraction during labor, fever and proliferation of tumors overexpressing COX-2.

Figure 6. Eicosanoid biosynthesis. EET, epoxyeicosatrienoic acids; HETE, hydroxyeicosatetraenoic acids; HPETE, hydroperoxyeicosatetraenoic acids. Adapted from Heckmann, 2008 [117].

Leukotriene biosynthesis

For the generation of leukotrienes, AA is converted to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and subsequently to the unstable intermediate LTA\(_4\) through the action of 5-lipoxygenase (5-LO). 5-LO translocates from the cytosol to the outer nuclear membrane where 5-
LO is activated by 5-LO-activating protein (FLAP) [118]. LTA₄ is converted to the chemotactic LTB₄ via the action of LTA₄ hydrolase, or to cysteinyl leukotrienes (CysLTs), which will be described below [116]. LTB₄ binds to the GPCR BLT₁ and BLT₂. BLT₁ is a high-affinity receptor specific for LTB₄, whereas BLT₂ is a low-affinity receptor that also binds other eicosanoids [119]. LTB₄ causes adhesion and chemotaxis of leukocytes and stimulates aggregation, enzyme release and generation of superoxide in neutrophils [120]. The BLTRs play a role in neutrophil recruitment, as demonstrated in the BLTR⁻/⁻ mouse model [121]. Enhanced levels of LTB₄ occur in a number of diseases such as cystic fibrosis, glomerulonephritis, psoriasis, rheumatoid arthritis and IBD [122].

LTC₄ synthase

LTC₄S is an 18 kDa enzyme that resides in a trimer formation in the outer nuclear membrane [123]. LTC₄S’s function is to conjugate LTA₄ and glutathione to form LTC₄ [124]. The LTC₄S gene is located on chromosome 5q and has five exons. Binding sites for the Kruppel-like and Sp-1 transcription factors have been found in LTC₄S’s promoter [125]. Studies on LTC₄S⁻/⁻ mice have focused on its role in inflammation, and these mice have reduced vascular permeability and reduced passive cutaneous anaphylaxis in an *in vivo* inflammation model [126]. In a model of bleomycin-induced pulmonary fibrosis, LTC₄S⁻/⁻ mice have less macrophage and neutrophil recruitment, fibroblast accumulation and collagen deposition [118]. Clearly, LTC₄S seems to play a role in inflammation.

The cysteinyl leukotrienes and their receptors

After export out of the cell via an energy-dependent step that requires multidrug resistance-associated proteins (MRP) 1 and 4, LTC₄ is metabolized by cleavage removal of glutamic acid and then glycine to provide LTD₄ and LTE₄, respectively [116]. The CysLTs are ligands of the GPCRs CysLT₁R, CysLT₂R and GPR17 and have been implicated in asthma, allergic rhinitis, atopic dermatitis, stroke, cardiovascular diseases, rheumatoid arthritis, inflammatory bowel diseases and cancer (see above) [127,128]. CysLTs have many modes of action, including bronchoconstriction, to increase vascular permeability in postcapillary
venules, to induce proliferation and to stimulate mucus secretion in the bronchi [120].

CysLT1R

CysLT1R was molecularly and functionally characterized by two independent groups in 1999 [129,130]. It responds to cysteinyl leukotrienes with a calcium mobilization response, and the binding affinities are LTD$_4$ \gg LTE$_4$ $=$ LTC$_4$ $>$ LTB$_4$. Several CysLT1R antagonists exist, e.g., montelukast (Singulair), zafirlukast (Accolate) and pranlukast (Onon), and these are used as therapy for asthma [127]. The CysLT1R gene is localized on the X chromosome [129,130]. The human and mouse CysLT1R share 87% homology [131]. Only one isoform exists in humans whereas the mouse gene has two splice variants, giving rise to one short and one long isoform [118]. CysLT1R is expressed in a large number of cells, including leukocytes, smooth muscle cells of the bronchi and heart, endothelial cells and epithelial cells of the small intestine, colon and lung. In addition, CysLT1R is expressed in organs such as the prostate, ovary, brain and thymus and in skeletal muscle [132]. CysLT1R can be induced by IL-4 (through STAT6 binding to its promoter) and IL-13 in macrophages, by IL-5 in eosinophils, by IL-13, IFN-γ and TGF-β in airway smooth muscle, and by IL-1β in human umbilical vein endothelial cells (HUVEC), respectively [132-134].

CysLT1R$^{-/-}$ mice show reduced vascular permeability, but neutrophil recruitment was unaffected in a zymosan-induced peritonitis model [118]. Somewhat surprising, in a model of bleomycin-induced pulmonary fibrosis, CysLT1R$^{-/-}$ mice showed features of exaggerated fibrosis and secreted more CysLTs in the bronchoalveolar lavage fluid than wild-type mice [118]. The functions of CysLT1R seem in part to depend on the cell type, but proliferation is a recurrent feature of LTD$_4$ signaling through CysLT1R observed in different contexts. As an example, LTD$_4$ induces astrocyte proliferation and mediates brain edema through the CysLT1R [135,136]. In addition, CysLT1R signaling results in ERK-induced proliferation of mast cells [137]. LTD$_4$ induces proliferation, survival and migration of colorectal cancer cells by signaling via CysLT1R, and the mechanisms behind this will be described in detail below [66,67,116,138].
CysLT$_2$R

The CysLT$_2$R gene is mapped to chromosome 13q14, a region linked to atopic asthma [139]. CysLT$_2$R belongs to the same family of GPCRs as CysLT$_1$R, although they have only 38% homology in humans. The human and mouse CysLT$_2$R are 74% identical [140]. Two splice variants exist in mice whereas humans have only a single isoform [118]. Similar to CysLT$_1$R, the low affinity receptor CysLT$_2$R responds to cysteinyl leukotrienes with a calcium mobilization response, and the binding affinities are LTC$_4$=LTD$_4>>$LTE$_4$ [139]. Until recently, no specific CysLT$_2$R antagonist was available. For this reason, many studies have used the dual CysLT$_1$R and CysLT$_2$R antagonist Bay-u9773 [141]. The expression pattern of CysLT$_2$R in cells and organs is in principle identical to that of CysLT$_1$R [132]. IFN-γ can up-regulate CysLT$_2$R in eosinophils [142] and in endothelial cells [143]. CysLT$_2$R expression can also be augmented by IL-4 in mast cells and by TNF-α in HUVEC [132].

The CysLT$_2$R gene has a TATA-less promoter with several transcription start sites. It has six variably spliced exons that were found variably spliced in eight alternative transcripts identified in endothelial cells, monocytes, and monocytic cell lines. This gene contains several binding sites for transcription factors such as Sp-1 and GATA. The gene also has putative interferon-regulatory sites. Although IFN-γ stimulation induced CysLT$_2$R mRNA, no reporter gene activity could be detected [143].

Similar to CysLT$_1$R, signaling through CysLT$_2$R also results in calcium release. However, the functional role of CysLT$_2$R seems to depend on the cell type in which CysLT$_2$R is expressed. CysLT$_2$R mediates the death of astrocytes after ischemic damage \textit{in vitro}, whereas in endothelial cells, which hardly express any CysLT$_1$R at all, CysLT$_2$R is thought mainly to act pro-inflammatory during vascular injury [135,144,145]. That CysLT$_2$R mediates a pro-inflammatory phenotype has also been observed in CysLT$_2$R$^{-/-}$ mice exposed to bleomycin-induced pulmonary fibrosis and in a passive cutaneous anaphylaxis model [146]. CysLT$_2$R seems to have a function that is distinguished from that of CysLT$_1$R. In mast cells, CysLT$_2$R promotes a cytokine profile different from that induced by CysLT$_1$R [147]. Moreover, it was recently shown that CysLT$_2$R antagonizes CysLT$_1$R-driven proliferative signaling in mast cells [137].
Other cysteinyl leukotriene receptors

The CysLT receptors belong to the purine receptor cluster of the rhodopsin family [127]. The P2Y receptors are also members of this cluster. Ligands for the P2Y are extracellular purinergic or pyrimidinergic nucleotides and, through P2Y receptors, regulate a variety of functions, including development, differentiation, proliferation and immune responses. CysLT$_1$R and P2Y receptors are co-expressed in a number of inflammatory cells. Functional crosstalk has been observed between the nucleotide and the CysLT systems in the monocytic cell line U937 [148]. Moreover, CysLT$_1$R antagonists inhibit P2Y receptor signaling in the same cell line [149]. Likewise, crosstalk between P2Y1 and CysLT$_1$R/CysLT$_2$R has been suggested in rat microglia cells [150]. It has also been reported that CysLT$_1$R expressed in mast cells also responds with calcium flux to uridine phosphate (UDP) [151]. The human orphan receptors GPR17 and GPR23 are situated at the intermediate phylogenetic position between P2Y and CysLT receptors, and have 33-35% homology to CysLT$_2$R [139]. Recently, it was discovered that GPR17 is specifically activated by both uracil nucleotides and CysLTs. Inhibition of GPR17 function reduced ischemic damage in a rat focal ischemia model, suggesting that GPR17 mediates brain damage caused by nucleotides and CysLTs [128]. Another recent study proposes the existence of a new receptor with preference for LTE$_4$ that mediates vascular leakage in mice. The authors have named the receptor CysLT$_{E4}$R [152].

The role of eicosanoids in cancer

Epidemiologic studies show that aspirin and other NSAIDs have an established protective effect against colon cancer [25]. Inhibition of COX-2 is likely responsible for the observed effect of NSAIDs. As mentioned above, COX-2 is an enzyme responsible for the generation of prostaglandins. Of particular importance is PGE$_2$, which has tumor-promoting properties, in that it favors epithelial proliferation and angiogenesis and inhibits apoptosis [25]. COX-2 mRNA and protein, and PGE$_2$ are elevated in colorectal cancers [153]. Up to 90% of colorectal carcinomas overexpress COX-2 [25].

Patients with ulcerative colitis who take 5-aminosalicylic acid (5-ASA) reduce their cancer risk by as much as 75% [50]. 5-ASA inhibits the 5-LO enzyme [154]. In accordance with this observation, 5-LO and its products leukotrienes have been found to play a role in tumor-associated
events. 5-LO metabolites promote proliferation, and 5-LO antagonists inhibit lung, breast, colon and prostate cancer development [155,156]. 5-LO and 12-LO are highly expressed in human bladder cancer [157]. Previous members of our group showed that 5-LO expression is elevated in colorectal cancer and correlates with poor prognosis [158].

LTB4 is endogenously produced by colon epithelial cells and promotes proliferation of colon and pancreatic cancer cells, and its receptors BLT1 and BLT2 are overexpressed in pancreatic cancer [159-162]. Our group has shown that elevated expression of CysLT1R in colorectal cancer tissue is associated with poor prognosis [158]. High CysLT1R expression has also been detected in high-grade prostate cancer, transitional cell carcinoma of the bladder, neuroblastoma, astrocytoma and classical Hodgkin’s lymphoma [163-167].

The studies performed by our group will be summarized here. LTD4 induces proliferation via activation of CysLT1R. The pathway includes activation of 90-kDa ribosomal S6 kinase (p90RSK) as well as cytosolic phospholipase A2 α (cPLA2-α). The activation of p90RSK is a PKC/ERK1/2-dependent process while cPLA2-α activation can be blocked by inhibitors against PKC (protein kinase C), ERK1/2, p38 MAPK and NF-κB [168].

Moreover, LTD4 increases cell viability and prevents apoptosis by up-regulating the anti-apoptotic protein Bcl-2 and decreasing caspase-3 activity in non-transformed intestinal epithelial cells [66]. The LTD4-mediated survival in intestinal epithelial cells seems to rely on PKC-α and cAMP-responsive element-binding protein (CREB) [138]. In the same cells, LTD4 activates the β-catenin–TCF/LEF pathway, and induces an association of β-catenin with Bcl-2 [169].

In addition to the above properties, LTD4 has a capacity of promoting colorectal cancer cell migration. It was shown that LTD4 via CysLT1R augmented adhesion to collagen I via the ECM binding integrin α2β1, in the colorectal adenoma cell line Caco-2 [170]. Furthermore, LTD4 induces migration of non-transformed intestinal epithelial cells by a PI3-kinase (PI3K) and Rac-dependent mechanism [67].

Our group has shown that both non-transformed intestinal epithelial cells and colorectal cancer cells are capable of producing CysLTs. Moreover, treatment with CysLT1R antagonists significantly reduced proliferation, but had no effect on apoptosis in several colorectal cancer cell lines [171]. Based on this and previous findings, we conclude that it is
likely that constitutive CysLT₁R signaling mediates both survival and proliferation in colorectal cancer cells.

Eicosanoids with anti-inflammatory / anti-tumorigenic functions

Lipoxins, generated by the action of 5-LO, were discovered in 1984 as arachidonic acid-derived anti-inflammatory mediators. They take part in the resolution phase of inflammation by controlling neutrophil entry to sites of inflammation and reducing vascular permeability. The switch from pro- to anti-inflammatory eicosanoids is an active process that is vital for the inflammation to terminate [172,173]. Lipoxin A₄ (LXA₄) has been shown to decrease pro-inflammatory cytokine production and disease symptoms in mouse models of inflammatory bowel disease, asthma and cystic fibrosis, to name a few [174].

Some studies suggest that 15-lipoxygenase (15-LO) might have anti-tumorigenic effects, particularly by antagonizing other LO products. 15-LO has been shown to counteract the pro-tumorigenic effects of 5-LO by inhibiting cellular responses to LTB₄ [175]. 15-LO converts linoleic acid and arachidonic acid to form 15-S-HETE. 15-S-HETE inhibits proliferation of prostate cancer cells, and induces apoptosis of colorectal cancer cells [176]. Prostate carcinomas often display reduced expression of 15-LO-2 [175,176]. In addition, colorectal tumor specimens from FAP patients exhibit decreased levels of the 15-LO-1 enzyme in adenoma tissue compared to non-neoplastic tissue [176].

Decreased expression of CysLT₂R is a feature of many colorectal tumors, and this is associated with poor prognosis. Signaling via CysLT₂R in colon cancer cells has recently been found to lead to cellular differentiation [177]. Interestingly, LTC₄ was unable to mimic the LTD₄-induced effect on cell adhesion and survival of colorectal cancer cells and non-transformed intestinal epithelial cells, respectively [66,170]. To summarize the findings in colon cancer and the effects on the cell types described under the CysLT₂R section, it seems that CysLT₂R may antagonize the proliferative pathways of CysLT₁R regardless of the cell type where CysLT₂R is expressed.
Antitumor agents and tumor suppression

Interferons

Interferons (IFNs) were discovered 50 years ago [178]. These are widely expressed cytokines that take part in the first line of defense against viral infections and have important roles in the immune surveillance of malignant cells [179]. The human type I interferons are IFN-α, IFN-β, IFN-ε, IFN-κ and IFN-ω, and they bind to the type I interferon receptor (IFNAR), which is composed of IFNAR1 and IFNAR2 [180]. IFN-γ is the only type II interferon, and binds the type II receptor IFNGR [179]. Less is known about the type III interferons, which are IFN-λ1-3, also known as IL-29, IL-28A and IL-28B, respectively. They also have antiviral properties, but bind a different receptor, which is a dimer of IL-28Rα and IL-10Rβ [181].

Type I interferons

Type I interferons are a part of the innate immune defense and are rapidly secreted in response to viruses and TLR signals. In addition to the antiviral role, type I interferons display anti-tumorigenic properties [182]. IFN-α acts anti-proliferatively and is capable of inducing apoptosis [183]. Recombinant IFN-α is used in therapy for metastatic myeloma, Kaposi’s sarcoma, cervical cancer, renal cell carcinoma, head and neck tumors and melanoma [178,183]. Signaling through the IFNAR results in receptor dimerization and phosphorylation of receptor-associated Janus kinases (JAKs). Sequentially, signal transducers and activators of transcription protein (STATs) become activated and translocate to the nucleus [180]. As indicated above, the biological effects of type I interferons are many. For example, IFN-α augments the cytotoxic response of NK cells against tumor cells. In the colon cancer cell lines SW480 and HT-29, IFN-α has an anti-proliferative effect by inducing p21 activation [184]. Of interest for our studies is that IFN-α treatment can give rise to fever, which can be ameliorated by COX-2 inhibition. The likely cause behind this is that IFN-α is able to mediate activation of phospholipase A2 in vitro and as a consequence arachidonic acid release [178]. Combined 5-FU and IFN-α treatment of CRC patients has shown promising effects in some, but not other, clinical trials [185-187].
Interferon regulatory factors (IRFs)

Interferon regulatory factors (IRFs) are a family of nine transcription factors, IRF-1-9, which can interact with STATs or with each other [188]. The complex that IRFs form bind to interferon-stimulated response element (ISRE) where it initiates gene transcription [189]. Viral infection induces the activation of IRF-3, which results in rapid formation of IFN-α and IFN-β. The induced IFN cause a transcription of the IRF-7 gene. Sustained infection activates IRF-7 to translocate to the nucleus, to mediate a second induction of IFN genes and the cytokine RANTES (regulated on activation, normal T expressed and secreted). The phenomenon of an early and a late phase of IFN induction may be a way to amplify the response to viral infection. Transcription of IRF-7 can also be induced by phorbol esters, LPS and sodium butyrate, but not by IFN-γ [188].

Retinooids

In our diet, liver, carrot, spinach and broccoli leaves are major sources of vitamin A (retinol). Vitamin A and its metabolites constitute the family of retinoids. All-trans retinoic acid (ATRA) is one of the most potent derivatives of retinol. By binding to the retinoic acid receptor (RAR), ATRA influences the process of embryonal development, vision and inflammation (see review [190]). In addition, ATRA acts as a tumor suppressor and a differentiating agent, and can promote apoptosis and growth inhibition of different cell types. Individuals with a low dietary intake of vitamin A are at higher risk of developing cancer [190].

ATRA (tretinoin) is successfully used as a treatment of acute promyelocytic leukemia (APL). APL patients lack mature myelocytes in the peripheral blood due to a chromosomal translocation t(15;17) resulting in the PML-RAR-α fusion protein, which induces a blockage of myeloid differentiation. This inhibition of maturation of myelocytes is efficiently restored by ATRA [191].

Retinoic acid has been shown to be promising in the treatment of other diseases as well. A combination therapy of IFN-α and 13-cis-RA in a clinical trial of metastatic renal carcinoma showed longer progression-free and overall survival of patients compared to those who received IFN-α alone [192]. A combination of human IFN-β and ATRA inhibited growth in vitro of human breast carcinoma, ovarian carcinoma and malignant
melanoma cell lines to a greater extent compared to IFN-β or ATRA alone. The same study showed that established ovarian carcinomas in nude mice underwent regression when treated with the combination of IFN-β and ATRA but not with single-agent therapy [193]. Several synthetic analogues of retinoic acid are currently being tested in clinical trials of glioblastoma, neuroblastoma, non-Hodgkin’s lymphoma, ovarian and prostate cancers [192].

RAR-α and RAR-β mediate ATRA-induced growth inhibition of colon carcinoma cells [194,195]. RAR-β is decreased or down-regulated in a number of human tumors, including colon, lung, esophageal, breast and head and neck cancers [196-199]. Retinoids suppress tumorigenesis in a many animal models, including those of the skin, breast, oral cavity, lung, prostate, bladder, liver, bladder and pancreas [199]. The growth inhibitory effects of ATRA may be due to its repression of β-catenin-TCF/LEF signaling, induction of E-cadherin expression and reduction of AP-1 and Cyclin D1, shown both in colon cancer and in breast cancer cell lines [200-202]. ATRA induces apoptosis of keratinocytes by up-regulating p53 and caspase-3 [203]. Moreover, ATRA is capable of inhibiting breast cancer cell invasion, presumably through the inhibition of MMPs [204]. Similarly, ATRA inhibits the migratory capacity of rat invasive prostate adenocarcinoma cells and of squamous cell carcinoma cell lines by inhibition of MMP-2 and MMP-9 activity [205,206].

Colorectal cancer cells can be made to differentiate upon ATRA treatment. Upon stimulation with ATRA, colon cancer cells increased their alkaline phosphatase activity [207]. Colorectal cancer cells with a mutation in APC have reduced levels of the enzymes necessary for retinol metabolism into ATRA. The same study reported that APC and CDX2 are responsible for inducing a retinoid-mediated program of colonocyte differentiation [208]. Moreover, ATRA is able to induce RAR-β and the retinol transport protein cellular retinol binding protein II (CRBPII) in colon cancer cells, suggesting that ATRA treatment can restore its own synthesis in cancer cells [209,210].

ATRA has been shown to act on the eicosanoid pathway as well. ATRA stimulated LTC₄S promoter activity, increased LTC₄S mRNA and protein and LTC₄ production, resulting in differentiation of rat basophilic leukemia myeloid cells [211-213]. In addition, ATRA causes inactivation of the pro-tumorigenic LTB₄ by inducing its breakdown [214]. Interestingly, treatment of human carcinoma cell lines with ATRA reduces COX-2 expression [215]. Similarly, induction of RAR-β suppresses COX-2
in esophageal cancer cells [216]. As mentioned above, mutations in APC and overexpression of COX-2 occur frequently in colorectal cancers. One recent study explained the COX-2 overexpression in APC mutant cells depends on the lack of ATRA biosynthesis [215]. In summary, ATRA may have the capability of shifting the eicosanoid balance from pro-tumorigenic to anti-tumorigenic properties.

ATRA-resistance is unfortunately a feature of some solid tumors [217]. Strategies to overcome resistance include combination therapy and the use of non-classical retinoids. Another option is to identify target genes that mediate ATRA’s beneficial effects.

It is not clear what mechanisms lie behind ATRA resistance, but it has been suggested that it may occur through increased P450 catabolism, decreased production of ATRA-converting enzymes, decreased RAR expression through promoter methylation, mutations in RAR, or by alteration in coactivator or corepressor complexes, by persistent histone deacetylation [217]. Retinol can, independently of RAR, to some extent compensate for ATRA in that retinol inhibits growth and migration, but retinol cannot induce differentiation or apoptosis in ATRA-resistant colon cancer cells [218,219]. There are also reports on the existence of non-classical ATRA pathways that are independent of the RAR/retinoid X receptor (RXR). In this way, ATRA can activate CREB bronchial epithelial cells, induce extracellular signal-regulated kinase 1 or 2 (ERK1/2) and AP-1 in Sertoli cells and activate another nuclear receptor, PPARβ/δ, which instead results in pro-survival gene activation [220-222].

Retinoic acid receptors (RARs)

ATRA and its synthetic analogs bind two families of nuclear receptors: RAR-α, -β, -γ and RXR-α, -β, -γ, which heterodimerize and bind to DNA on retinoic acid-responsive elements (RARE) in promoters of genes. There are several splice variants of RAR: two α, four β and two γ. RXRs can, in addition to RAR, heterodimerize with PPARs (peroxisome proliferator-activated receptors) and other members of the nuclear hormone receptor class II family. Novel retinoic acid receptors are the RAR-related orphan receptors (RORs) [223].

RARs and RXRs activate or repress transcription. In the absence of ligands, RARs are in complex with corepressors such as nuclear receptor corepressor (N-CoR), preventing gene transcription (see below). The RAR/RXR dimers bind constitutively to retinoic acid response
elements (RARE) in promoters of genes; these are characterized by two consensus half sites AGGTCA generally arranged as direct repeats (DRs), but can also occur in the reverse orientation, and are most often separated by 2 to 5 nucleotides [217,224]. Receptor selectivity depends on the arrangement of, and the spacing between, the direct repeats.

Transcription factors and cancer

Transcription factors (TFs) are proteins that bind to specific parts of DNA using DNA binding domains. TFs control the initiation of transcription of a specific target gene. They are often in a complex with an activator, activating, or a repressor, preventing, the presence of RNA polymerase, which induces the transcription of genes.

TFs have at least three domains. First, a DNA binding motif recognizes a DNA sequence, often referred to as a response element. Second, a trans-activating domain is pivotal for the transcription or repression to occur; this part enables interaction with the TATA-binding protein (TBP) and accordingly the RNA polymerase complex [225]. Third, a protein interaction domain is often present, allowing modulation by TBP-associated factors such as histone acetyltransferases (HAT) or by other TFs [226]. The majority of the known transcription factors recognize short DNA sequences (5-15 bp) called response elements [227]. Binding of one transcription factor to a response element is rarely sufficient to induce transcription. The combination and orientation of transcription factors are crucial. Transcription factors often bind to genes in homo- or heterodimer formation, and the corresponding response elements can be direct repeats or palindromic sequences.

Many TFs reside in the cytoplasm and need a ligand to go to the nucleus. Some of these, such as NF-κB and β-catenin, carry a nuclear localization sequence (NLS), and are retained in the cytoplasm by an inhibitory complex. They are released upon upstream signal activation. Other TFs, such as AP-1 and STAT, require a ligand-induced phosphorylation for to be able to bind DNA or cofactors.

Most promoters of genes contain at least three features: the transcription start site, the TATA box and the sequences bound by transcriptional regulators. The transcriptional regulators include activators, enhancers, repressors and silencers [228]. While activators and repressors
bind at close proximity to the transcription start site, enhancers and silencers can be situated as far away as 85 kb.

Figure 7. Mechanisms of transcriptional repression and activation by RAR–RXR heterodimers. DBD, DNA-binding domain; apo-LBD, ligand-binding domain; CoRs, corepressors; HDACs, histone deacetylases; HATs, histone acetyltransferases; TRAP, thyroid-hormone-receptor associated protein; DRIP, vitamin D receptor-interacting protein; SMCC, Srb and mediator protein-containing complex; RAR, retinoic-acid receptor; RARE, retinoic-acid response element; RXR, rexinoid receptor. Adapted from Altucci, 2001 [192].
Transcriptional activation

As described above, TFs such as IRF and RAR induce activation of genes by binding to consensus sequences in the genome, most often in the promotors of genes. However, coactivators are also needed for successful gene transcription to occur. They do not have a DNA binding domain but instead bind to the TF. The same coactivator can act on many different genes, since it is the TF that provides the specificity. Enhancers are coactivating binding sites for TFs that can be at great distance from the start site and regulate the cell-type specific expression of genes [229,230]. Gene activation can also be regulated on an epigenetic level, by histone acetyltransferases (HAT). HAT, as exemplified by the p300/CREB protein, destabilize nucleosomes so that TFs and the RNA polymerase complex can bind the DNA [231].

Transcriptional repression

Transcriptional repression can be mediated by corepressors [228]. Similar to coactivators, corepressors bind transcription factors, unable to bind DNA by themselves. Their role is to down-regulate gene expression. The first corepressors identified were the nuclear receptor corepressor (N-CoR) and the silencing mediator of retinoid and thyroid receptors (SMRT). Both the N-CoR and SMRT were discovered as corepressors for retinoid and thyroid-hormone receptors [232,233]. Upon ligand binding, the corepressor complex is removed, and replaced by a coactivator complex, allowing gene transcription to occur (see Figure 7) [192]. On certain elements, the N-CoR remains associated with RAR/RXR heterodimers even in the presence of RAR ligands, resulting in constitutive repression [234]. An example of such repression is RAR-mediated promoter inhibition on the EGFR gene, by binding to a 36 bp fragment 5’ of the gene [235]. Silencers are another tool to repress gene transcription. Similar to enhancers, silencers may act from a vast distance in an orientation-independent manner [228]. Histone deacetylases (HDACs) block access to genes by causing the DNA to wrap more tightly around the histones. In turn, HDACs themselves can be inhibited, e.g., by the colonocyte differentiating agent butyrate [15]. Yet another means of inhibiting gene transcription is by epigenetic silencing. This is achieved through promoter hypermethylation at CpG sites in the genome, or by micro-RNAs binding to mRNA to inhibit translation, both of which are known to often be involved in cancer.
PRESENT INVESTIGATION

Aim

The main objective of this thesis has been to explore the role of pro-inflammatory cysteinyl leukotrienes and their receptors in colorectal cancer. Whereas CysLT1R is up-regulated in colorectal cancer and promotes mitogenic pathways, CysLT2R seems to play a more protective role in human colorectal cancer. The specific aims have been the following:

To examine the role of pro-tumorigenic transcription factors in leukotriene D4-mediated proliferation in intestinal epithelial cells

To determine the expression of enzymes and receptors of the eicosanoid pathway in intestinal epithelial and colon cancer cells

To investigate the function and regulation of CysLT2R in intestinal epithelial and colon cancer cells
Paper I

Background

The transcription factor NF-κB is a powerful mediator of inflammation-driven pathways, and has been linked to tumorigenesis. Leukotrienes are potent pro-inflammatory mediators involved in many inflammatory processes, and LTD₄ promotes proliferation, survival and migration of intestinal epithelial and colorectal cancer cells via CysLT₁R. LTD₄ has previously been shown to be able to activate NF-κB in HEK293 cells and in lung mononuclear cells of BALB/c mice [236,237]. Since we observed that LTD₄-induced cPLA₂ activation could be repressed by an NF-κB inhibitor, we hypothesized that NF-κB would be a pathway that is activated by LTD₄ in intestinal epithelial cells. Similar to NF-κB, AP-1 is a transcription factor that is linked to tumorigenesis. We therefore sought to investigate whether LTD₄ in addition could activate the AP-1 pathway and if this is one of the means by which LTD₄ induces proliferation. We used the intestinal epithelial cell line Int 407.

Results and discussion

We analyzed NF-κB activation by the following means. By using Western blot, we evaluated the protein expression of IκB-α, an inhibitory protein in the classical NF-κB cascade. Upon activation, IκB-α is phosphorylated, ubiquitinated and targeted for the proteasome for degradation, to allow the release the p50 and p65 subunits of NF-κB. These are then free to enter the nucleus, where they bind as a transcription factor heterodimer to target genes. We used TNF-α as a positive control for activation of the classical pathway. Upon TNF-α treatment, IκB-α was completely degraded after 30 minutes, whereas no degradation occurred after LTD₄ treatment irrespective of the time-point studied (5 minutes up to 2 hours). Further, we studied activation of NF-κB by means of a luciferase reporter construct containing an NF-κB consensus sequence. Upon TNF-α treatment, NF-κB activity was induced, resulting in a luciferase luminescence signal, but no signal was induced upon LTD₄ treatment. We also analyzed microscopically the translocation of the NF-κB subunit p65 by immunofluorescent labeling. TNF-α, but not LTD₄, induced a translocation of p65 from the cytosol to the nucleus of the cells. To exclude that NF-κB activation did not occur
through an alternative pathway, which can be induced by bacterial lipopolysaccharide triggering of TLR and MyD88, we analyzed translocation of the alternative NF-κB subunit p52, by means of immunofluorescent labeling and by Western blot of nuclear and cytosolic fractions. LPS, but not LTD₄, was able to induce p52 translocation. We then investigated activation of the AP-1 pathway. Five minutes of LTD₄ treatment induced phosphorylation of the MAPK JNK, which is a known activator of AP-1. Moreover, LTD₄ induced activation of AP-1, as examined by using a luciferase reporter construct containing a consensus AP-1 sequence. Furthermore, we were able to repeat what had been observed before, that LTD₄ was able to induce proliferation. This was determined by the Alamar blue method. The LTD₄-induced proliferation could be reduced by adding a JNK inhibitor prior to LTD₄ stimulation. Taken together, these results indicate that the JNK-AP-1 pathway mediates LTD₄-induced proliferation of intestinal epithelial cells, but that the NF-κB pathway is not induced by LTD₄ in these cells. The result from this paper sheds light onto how LTD₄ exerts its proliferative effects in intestinal epithelial cells.

Paper II

Background

In this study, we focused on how the expression of CysLT₂R can be regulated in colorectal cancer cells. In contrast to CysLT₁R, which is implicated in the progression of colon cancer, high CysLT₂R expression in colorectal tumors is associated with a better survival prognosis. Upon stimulation with LTC₄, CysLT₂R was found to induce differentiation of colon cancer cells. When performing a bioinformatic search of the CysLT₂R promoter region, we found a response element for IRF-7, an IFN-α-induced transcription factor. We also found E-box elements in the promoter region. These findings led us to investigate the role of IFN-α and EGF in the regulation of CysLT₂R expression in colorectal cancer cells. We also investigated whether CysLT₂R can regulate cell migration of colorectal cancer cells. As mentioned above, previous results indicate that CysLT₂R has an antagonizing function to that of CysLT₁R, which induces cell migration [67,137,177].
Results and discussion

We described four major findings as follows: 1) IFN-α up-regulates promoter activation, mRNA and protein expression of CysLT₂R in the intestinal epithelial cell line Int 407, but not in the colorectal cancer cell line Caco-2, which expresses low basal levels of CysLT₂R. We observed IFN-α-induced differentiation of colon cancer cells, but it cannot be attributed to CysLT₂R. IFN-α-induced CysLT₂R promoter activation could be reduced by deleting the known IRF-7 response element. However, additional elements are also required for IFN-α-induced CysLT₂R promoter activation. 2) EGF induces phosphorylation of Snail, which represses genes by binding to E-boxes. Moreover, EGF represses CysLT₂R promoter activity, mRNA and protein expression in both Int 407 and in SW480 colorectal cancer cells. The repression is to some extent E-box dependent, although other factors are also needed. 3) LTC₄ inhibits colorectal cancer cell migration, including both basal migratory capacity and EGF-induced migration. 4) We found that the expression of EGFR, which frequently is overexpressed in carcinomas and drives tumorigenic processes, is negatively correlated to CysLT₂R expression in a tissue array from colorectal cancer patients (p<0.001). There was no statistically significant correlation between IFN-α/β-R1 and CysLT₂R expression in the colorectal tumor material. We can speculate that CysLT₂R, in addition to, e.g., p21 and TRAIL up-regulation, is one of the mechanisms by which IFN-α exerts its anti-tumor effects [178,238]. We showed for the first time that LTC₄ has the capability to inhibit migration of colorectal cancer cells. Moreover, the mitogen EGF represses CysLT₂R, and there is an inverse correlation between its receptor EGFR and CysLT₂R. The reduced expression of CysLT₂R in tumors that overexpress EGFR could perhaps be a result of aberrant EGF signaling, resulting in repression of the CysLT₂R. In summary, these findings draw attention to ways to sustain CysLT₂R function in tumors.

Paper III

Background

All-trans retinoic acid (ATRA) is a mediator of differentiation, apoptosis and growth inhibition in many cell types and cancers. ATRA is an effective treatment of acute promyelocytic leukemia. We found a retinoic acid
response element (RARE) in the CysLT₂R promoter. As mentioned above, CysLT₂R promotes differentiation of colorectal cancer cells.

Results and discussion

Stimulation with ATRA up-regulates CysLT₂R mRNA and protein within 3-24 hours in the two colorectal cancer cell lines Caco-2 and SW480. The effect persisted, and continued to increase during long-term treatment even after treatment with ATRA. ATRA induced MUC2 mRNA expression and alkaline phosphatase activity, and this could be reduced by pre-treatment with a CysLT₂R inhibitor. This indicates that ATRA-induced differentiation is to a certain extent mediated through CysLT₂R. ATRA did not induce apoptosis or growth inhibition, suggesting that the main function of ATRA in these cells is to induce differentiation. The ATRA-induced up-regulation of CysLT₂R could not be confirmed in the ATRA-resistant colorectal cancer cell line HCT-116, which has a dysfunctional RAR. This finding, together with a preliminary indication that ATRA induces CysLT₂R promoter activity, suggests that ATRA-induced CysLT₂R expression is mediated through RAR binding to the RARE in its promoter. In addition to CysLT₂R, ATRA up-regulates mRNA expression of LTC₄S, the enzyme responsible for generation of the CysLT₂R ligand LTC₄. On the contrary, ATRA did not up-regulate CysLT₁R mRNA or protein expression. ATRA thus provides both a ligand and a receptor for an eicosanoid pathway that can induce differentiation of colorectal cancer cells. ATRA can also modulate other mediators of the eicosanoid pathway. ATRA up-regulates the anti-tumorigenic 15-LO enzyme, and down-regulates the pro-tumorigenic enzymes 5-LO and COX-2 [239,240].

In conclusion, we found that ATRA up-regulates expression of LTC₄S and CysLT₂R, and that the CysLT₂R pathway is partially responsible for ATRA-induced differentiation of colorectal cancer cells. ATRA is able to shift the balance from pro- to anti-tumorigenic eicosanoids, and this knowledge can be used therapeutically.
Figure 8. A hypothetical model based on the findings in paper II and III.

Paper IV

Background

The aim of this study was to determine whether intestinal epithelial cells have the capability of expressing enzymes and receptors of the eicosanoid pathways. We exposed the cells to TNF-α and LTD₄, inflammatory mediators present during IBD. We analyzed mRNA and protein expression of the eicosanoid biosynthesis enzymes 5-LO, LTC₄S and COX-2 and cysteinyl leukotriene receptors CysLT₁R and CysLT₂R by real-time quantitative PCR (polymerase chain reaction) and Western blot. In addition, we analyzed cysteinyl leukotriene production.

Results and discussion

In this study, we showed that intestinal epithelial cells, as well as colorectal cancer cells, express the enzymes and receptors necessary for endogenous
Figure 9. Schematic illustration of cysteinyl leukotriene receptors and eicosanoid biosynthesis in an intestinal epithelial cell. cPLA$_2$, cytosolic phospholipase A$_2$; PKC, phospholipase C; AA, arachidonic acid; COX-2, cyclooxygenase-2; 5-LO, 5-lipoxygenase; FLAP, 5-lipoxygenase activating protein; LTC$_4$S, LTC$_4$ synthase; MRP, multidrug resistance-associated protein.

eicosanoid production and signaling, along with CysLT production. We thereby confirmed earlier findings of an autocrine loop of CysLT production [171]. LTD$_4$ up-regulates all of the studied enzymes and receptors in intestinal epithelial and colon cancer cells. TNF-α induces expression of 5-LO, LTC$_4$S, CysLT$_1$R and COX-2 in both non-transformed intestinal epithelial cells and in colorectal cancer cells. TNF-α was unable to induce CysLT$_2$R mRNA and protein in intestinal epithelial cells, and down-regulated CysLT$_2$R mRNA in colorectal cancer cells.

Taken together, inflammation, once induced by pro-inflammatory and mitogenic mediators such as TNF-α and LTD$_4$, can lead
to autocrine production of eicosanoids in intestinal epithelial cells. With the knowledge that COX-2, 5-LO and their products and CysLT1R are powerful mediators of tumor progression [241,242], once triggered by pro-inflammatory mediators, the endogenous production of eicosanoids by epithelial cells could be a mechanism of inflammation-induced cancer.

Concluding remarks and future perspectives

The four studies in this thesis have paved way for an understanding of the regulation and function of cysteinyl leukotriene receptors in colorectal cancer. We have observed that CysLT1R and CysLT2R play different roles in colorectal cancer. Whereas CysLT1R promotes proliferation, here shown via the JNK/AP-1 pathway, CysLT2R mediates differentiation and inhibits migration. The expression of CysLT1R is enhanced by TNF-α and LTD4, which both mediate proliferation of cancer cells. The expression of CysLT2R is suppressed by the mitogenic stimuli EGF, and enhanced by ATRA and IFN-α, which are anti-tumorigenic agents. These studies provide more evidence that CysLT1R and CysLT2R have opposite functions in colon cancer progression, and we now know how to regulate their expression.

As our clinical data in paper II showed a negative correlation between CysLT2R and EGFR, it would be interesting to investigate whether this correlation has functional consequences. For example, we could analyze CysLT2R levels in tumor samples from patients who undergo treatment with an EGFR antagonist such as cetuximab. In that way, we would find an answer to if EGF represses CysLT2R in patients, as indicated by our in vitro data.

Furthermore, it would be of interest to study the role of CysLT2R in tumor progression, differentiation and migration in vivo. This could be achieved by establishing a model of colitis-induced colorectal cancer in CysLT2R-/- mice (e.g., by dextran sodium sulphate and azoxymethane). We would analyze if CysLT2R-/- mice were more prone to developing tumors, and whether these mice displayed more metastases compared to wild-type mice. The knock-out mouse exists, but has not previously been used in cancer research.

CysLT1R antagonists are successfully used in asthma treatment, and show few side effects. It would also be of importance to investigate whether CysLT1R antagonists can reduce tumor development in the model described above. Considering the successful combination of
retinoids and IFN-α in cancer therapy, it would be worthwhile in the future to evaluate a combinatorial approach with CysLT1R antagonists as treatment of colorectal cancer.

In summary, we have shown the following:

- The JNK/AP-1 pathway mediates LTD4-induced proliferation in non-transformed intestinal epithelial cells, whereas the NF-κB pathway is not involved.
- IFNα and ATRA are able to up-regulate CysLT2R in colorectal cancer cells.
- LTC4 suppresses migration of colorectal cancer cells.
- ATRA-induced differentiation of colorectal cancer cells is in part mediated through CysLT2R.
- EGF is able to down-regulate CysLT2R in colorectal cancer cells.
- EGFR and CysLT2R expression is negatively correlated in a tissue array from colon cancer patients.
- TNF-α and LTD4 can up-regulate eicosanoid enzymes and receptors in intestinal epithelial and colorectal cancer cells.
Tjocktarmscancer är den tredje vanligaste cancerformen, och den näst vanligaste orsaken till cancer-relaterad död. Att kosten är viktig för hälsan är välkänt. Fettsyror av typen omega-3 skyddar mot hjärt-kärlsjukdom och cancer i tjocktarmen medan omega-6-fettsyror kan spjällkas till både metaboliter som skyddar mot cancer och sådana som can påskynda cancer. Likaså finns det ett känt samband mellan intag av vitamin A och minskad risk för cancer.

I min första studie har jag visat att leukotrien D₄ orsakar en ökad celldelning av tarmceller i cellodlingskultur, och att detta sker genom att ett protein inuti cellen kallat aktivatorprotein-1, känt för att vara aktivt i cancer, aktiveras. I nästa studie visade vi att tillsats av en tillväxtfaktor kallad EGF, som är känt för att kunna bidra till den ökade celldelningen i cancer, ger en minskning av antalet CysLT₂-receptorer i tarmceller. Vi har

ACKNOWLEDGMENTS

Labbet: Cecilia, min närmaste kollega, vi har delat kontor så länge så det går inte att minnas hur det var utan dig. Tack för gott samarbete och utomordentligt resesällskap och tack Benni för alla fantastiska kvällar på konserthuset, såväl i publiken som backstage. I wish to thank Yuan, for having the patience to teach me Chinese despite that I never did my homework and for being such a gentle person. I truly enjoyed sharing office with you. Thank you Liang Gang, for your company at the lab all around the clock. Caroline & Jeff, tack för alla asiatiska rispappersrullar, australiensiskt vin, maskerader, uggleprojekt med mera galna upptåg. Vicky & John, för roliga utekvällar och en underbar dialekt. Caja, jag gillar att du är en så skönt avslappnad och självständig person. Jill, för att du har en sådan fantastisk humor. Anders och Rikard, för delat musikintresse och bra drinktips. Tack Gina för att du valt att stanna hos oss, din positiva attityd smitter av sig vart du än går. Tack Maria för att du delar min uppfattning om ordning, Ladan, för givande forskningsdiskussioner och för din fantastiska matlagning. Hala, pour de la possibilité de pratiquer la langue Français, et pour de l’ inspiration de manger plus organique. Oliver för att du uppskattar rockmusik. Elin, Maryna, Julie, Jian, Raji and Gunilla for fun times in the lab corridors.

Mina studenter Cissi och Josefin som kämpat tappert och visat gediget intresse för forskning. Jag håller tummarna för er! Tack Alva, Monica,
Anki och Ulla för att ni tagit hand om så många viktiga papper åt mig och för att ni är ett så sprudlande glatt gäng!
Tack alla vänner som funnits där när det varit tufft. Tack alla som jag inte nämnt men inte glömt och som gör mitt liv så mycket rikare och roligare.
att du startade programmet Studio EttNollEtt på RadioAF med mig och för att du uppmuntrade mig att bli DJ.
Magnus. Du är underbar.

This work was supported by grants from the Swedish Cancer Foundation, the Swedish Medical Research Council, the Foundations at Malmö University Hospital, the Julin Foundation, Gunnar Nilsson Foundation, Österlund Foundation and from the Royal Physiographic Society in Lund.
REFERENCES

the Cdx2 activation domain mediates its transactivation capacity. *Gastroenterology*, 121, 1437-50.

ulcerative colitis and their effects on colonic secretion. Gut, 34, 503-8.

induces cysteinyl leukotriene receptor 2 expression and enhances the responsiveness of human endothelial cells to cysteinyl leukotrienes. J Immunol, 178, 5262-70.

221. Zanotto-Filho, A., Cammarota, M., Gelain, D.P., Oliveira, R.B., Delgado-Canedo, A., Dalmolin, R.J., Pasquali, M.A. and Moreira,

