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Abstract

Background: The genetic background may influence methylmercury (MeHg) metabolism and neurotoxicity. ATP binding
cassette (ABC) transporters actively transport various xenobiotics across biological membranes.

Objective: To investigate the role of ABC polymorphisms as modifiers of prenatal exposure to MeHg.

Methods: The study population consisted of participants (n = 1651) in two birth cohorts, one in Italy and Greece (PHIME)
and the other in Spain (INMA). Women were recruited during pregnancy in Italy and Spain, and during the perinatal period
in Greece. Total mercury concentrations were measured in cord blood samples by atomic absorption spectrometry.
Maternal fish intake during pregnancy was determined from questionnaires. Polymorphisms (n = 5) in the ABC genes ABCA1,
ABCB1, ABCC1 and ABCC2 were analysed in both cohorts.

Results: ABCB1 rs2032582, ABCC1 rs11075290, and ABCC2 rs2273697 modified the associations between maternal fish intake
and cord blood mercury concentrations. The overall interaction coefficient between rs2032582 and log2-transformed fish
intake was negative for carriers of GT (b= 20.29, 95%CI 20.47, 20.12) and TT (b= 20.49, 95%CI 20.71, 20.26) versus GG,
meaning that for a doubling in fish intake of the mothers, children with the rs2032582 GG genotype accumulated 35% more
mercury than children with TT. For rs11075290, the interaction coefficient was negative for carriers of TC (b= 20.12, 95%CI
20.33, 0.09), and TT (b= 20.28, 95%CI 20.51, 20.06) versus CC. For rs2273697, the interaction coefficient was positive when
combining GA+AA (b= 0.16, 95%CI 0.01, 0.32) versus GG.

Conclusion: The ABC transporters appear to play a role in accumulation of MeHg during early development.
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Introduction

The environmental pollutant methylmercury (MeHg) originates

from methylation of inorganic mercury by bacteria in aquatic

systems [1]. It accumulates in the aquatic food chain and humans

are mainly exposed to MeHg from fish intake. MeHg is effectively

absorbed from the human gastrointestinal tract and readily crosses

the placenta and blood–brain barrier [2]. Thus, there is a
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relationship between fish intake of pregnant women and total

mercury concentrations in their newborns [3–6]. Exposure

especially affects the nervous system. Hence, low-level exposure

during pregnancy may cause impaired development in infants and

children [7].

The type and the amount of fish consumed influence the

maternal, and in turn the prenatal, dose of MeHg [5]. However, as

with other metals [8–11] genetics probably influences uptake,

distribution, and excretion of MeHg, and thus also the prenatal

MeHg dose. The few genetic variants that have been associated

with MeHg toxicokinetics identified to date have mainly been in

glutathione-related genes [12–15].

Transporters proteins are related to the cellular intake and

uptake of several types of substances; however no specific MeHg

transporters have been identified yet. Mercury is capable to form

complexes with small molecules such as amino acids that can

mimic essential molecules recognized by transporter proteins [16].

It is important to note that a significant number of protein carriers

have been identified in the placenta and it has been suggested that

they may play a role in the uptake and/or efflux of MeHg

complexes [17]. Therefore, genes that potentially affect MeHg

metabolism include the ones encoding the superfamily of ATP

binding cassette (ABC) transporters, a large and widely expressed

protein family responsible for the active transport of various

compounds, including drugs (e.g., anticancer agents) and xenobi-

otics, across biological membranes. ABCB1, ABCC1, and ABCC2

(also known as the multidrug resistance-associated proteins

MDR1, MRP1 and MRP2), are the best-characterized ABC

transporters. All three proteins are found at relatively high levels in

the blood–brain barrier, placenta, liver, gut, and kidney and they

may participate in cellular export of metal complexes [18].

ABCC1/MRP1 has been related to the extracellular transport of

glutathione-conjugates in cultured astrocytes [19] and the

upregulation of ABCC1 in primary mouse hepatocytes decreased

the accumulation of MeHg [20]. ABCC2/MRP2 has been shown

to participate in renal export of mercuric ions in rats [21], and

polymorphisms in ABCC2/MRP2 were associated with the urinary

excretion of inorganic mercury in populations exposed to mercury

vapour from gold mining [22]. Potential roles of ABCB1/MDR1

or the cholesterol transporter ABCA1 in mercury metabolism or

toxicity remain unexplored.

The purpose of this study was to evaluate the effect of

polymorphisms in ABC genes on prenatal exposure to MeHg in

two Mediterranean birth cohorts.

Methods

2.1 Ethics Statement
Women participating in the study signed a written informed

consent form in each phase. The Ethics Committees of La Fe

Hospital in Valencia, the Institut Municipal d’Assistència Sanitaria

in Barcelona, the Burlo Garofolo in Trieste, the Institute of Child

Health in Athens, and Lund University in Lund approved the

study.

2.2 Study populations
Study subjects were participants in two birth cohorts from three

Mediterranean countries, one cohort from the Adriatic Sea region,

encompassing Italy and Greece (PHIME, Public Health Impact of

long-term, low-level Mixed Element Exposure in susceptible

population strata), and one cohort from Spain (INMA, in Spanish,

Environment and Childhood). PHIME is a multicenter project

that aims to evaluate the health effects of long-term exposure to

low levels of metals. One part of PHIME addresses the effects of

MeHg on the nervous system in populations from Italy, Slovenia,

Greece and Croatia [23]. This study included participants from

Italy and Greece; the study population consisted of 1,384 women

recruited in the province of Trieste (Italy) and the Greek islands of

Lesvos, Chios, Samos and Leros in the Eastern Aegean. The

pregnant women eligible for recruitment were permanent

residents of the study areas for at least 2 years, were at least 18

years of age, and had no absence from the study area for more

than 6 weeks during pregnancy, no history of drug abuse, no

serious health problems or complications of pregnancy, and no

twin gestation. At recruitment, eligible women were approached

for consent after their routine morphologic ultrasound scan

between 20 and 22 gestational weeks (Italy, 2007–2009), or during

their hospital stay for delivery (Greece, 2006–2009). Mixed

umbilical cord blood mercury concentrations were analyzed in

all 1,125 samples (81%) and DNA was obtained from 1,008

samples (73%).

INMA is a multicenter birth cohort study, which aims to

investigate the effect of environmental exposures and diet during

pregnancy on fetal and child development in different geograph-

ical areas of Spain (http: www.proyectoinma.org). Details of the

INMA project and sampling procedures have been described

elsewhere [24]. Briefly, pregnant women in this study were

recruited during the 1st trimester of pregnancy (n = 1,512) and

followed until delivery (n = 1,409) in two regions of Spain,

Valencia and Sabadell (2003–2007). The inclusion criteria were:

an age of 16 years or over; 10–13 weeks of gestation; singleton

pregnancy; intention of undergoing follow-up and delivering in the

corresponding centre of reference; no impediment for communi-

cation; and no chronic disease prior to the pregnancy. Venous

cord blood samples were available for analysis of mercury

concentrations in 1014 (72%) newborns, and genetic analysis for

745 newborns (53%).

The final study population consisted of 1,651 mother-child pairs

with complete data on mercury concentrations in cord blood and

DNA available for genetic analysis.

2.3 Study variables
Fish intake during pregnancy was assessed using a semi-

quantitative validated food frequency questionnaire (FFQ) in both

studies [4,5]. In the PHIME study, the FFQ was administered

during the third trimester of pregnancy (30–32nd week) in Italy and

3–6 months after delivery in Greece. The questionnaire in Italy

covered until the third trimester of pregnancy and the question-

naire in Greece the whole pregnancy period. The FFQ included

questions about the following different types of seafood: fresh fish,

crustaceans, molluscs, tuna, mackerel, and sardines in oil. The

frequencies in this FFQ ranged from ‘‘never’’ to ‘‘3 or more times

per day’’.

In the INMA study, the FFQ was administered during the first

(10–14th week) and the third (28–32nd week) trimesters of

pregnancy and it covered average seafood intake from the last

menstrual period until the third trimester of pregnancy. The FFQ

included questions about intake of different types of seafood:, lean

fish, large oily fish, small oily fish, smoked or dry fish, mixed fried

fish, canned tuna, canned sardines or mackerel, crustaceans,

bivalves, cephalopods and processed fish. The frequencies in each

fish category ranged from ‘‘never’’ or ‘‘less than once per month’’

to ‘‘6 times or more per day’’. For the present study, we used the

average of the intakes from the FFQ at each time point.

The average daily intake for each fish item was added up to

compute the total fish intake per week in the three countries

(weekly servings). In order to have a comparable estimation of fish

intake during pregnancy between countries, frequencies were
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homogenized and the categories of smoked or dry and processed

fish in the INMA study were excluded.

Information about socio-demographic characteristics was also

obtained through questionnaires at the same time points as the

FFQ in the three countries. The covariates used in this study were:

maternal age at delivery, maternal and paternal educational level,

maternal employment status during pregnancy, country of birth,

parity, and child’s sex. The number of maternal amalgam fillings

was also obtained for the INMA participants.

2.4 Mercury exposure
Total mercury concentrations were measured in cord whole

blood samples as a measure of the child’s exposure to MeHg

during pregnancy. The analytical procedure has been described

elsewhere [4,5]. The analysis of the PHIME samples was carried

out in the laboratory of the Department of Environmental

Sciences at the Jožef Stefan Institute in Ljubljana, Slovenia and

the INMA samples in the Public Health Laboratory in Alava

(LSPPV), Basque Country, Spain. Briefly, total mercury was

measured by thermal decomposition, amalgamation, and atomic

absorption spectrometry. PHIME used a Direct Mercury Analyser

(Milestone, USA). The INMA study used an AMA-254 (LECO

Corporation, St. Joseph, Michigan). The limit of quantification

(LOQ) of the procedure was 0.07 ppb in PHIME and 2.0 ppb in

INMA. For measurements below the LOQ in the INMA study

(n = 34) we used the approximation LOQ/!2.

In the PHIME cohort, MeHg was measured in cord blood

(n = 221 in Italy and n = 196 in Greece) for all mothers with total

Hg in hair exceeding 1 mg/g. The analytical procedure is found in

the Supplemental Material Part S1 in File S1.

For quality control in both laboratories the reference material

‘‘Seronorm Trace Elements in Whole Blood’’ was used to check

the accuracy of the results (LOT no. MR4206 at the Jožef Stefan

Institute, and LOT no: 0503109 and no. 201605 at the LSPPV).

The average recovery for reference materials in LSPPV was 93%

(85% to 104%) and in Jožef Stefan Institute was 95% (from 90 to

100%).

Additionally, both laboratories participated in inter-laboratory

comparisons. The Jožef Stefan Institute laboratory participated in

three inter-laboratory comparisons organised within the PHIME

project (Mazej et al. 2008). Since 2009, LSPPV has participated (3

times per year) in inter-laboratory comparisons organized by the

New York State Department of Health in the Wadsworth Center.

Both laboratories obtained satisfactory results.

2.5 Genetic analysis
This is a candidate gene approach where we have analysed

SNPs in main ABC transporters of potential importance for MeHg

retention. We selected SNPs based on functional impact according

to the literature, potential functional impact according to position

and type of SNP (specifically, non-synonymous SNPs that may

affect the protein structure/enzyme activity or 59 SNPs at putative

promoter sites that can affect gene expression) [25]; or tagSNPs

that capture as much of the genetic variation within a gene

segment as possible due to linkage disequilibrium (LD) with other

SNPs. TagSNPs were selected according to HapMap data [26] for

CEU (CEPH, Utah residents with ancestry from northern and

western Europe). Here 5 SNPs were analyzed in genes coding for 4

different ABC transporters: rs3905000 (ABCA1), rs3213619 and

rs2032582 (ABCB1), rs11075290 (ABCC1), and rs2273697

(ABCC2). The SNPs were analyzed by mass spectrometry in the

PHIME cohort and by beadchip analysis in the INMA cohort.

In the PHIME cohort, DNA was extracted from cord blood

using the Qiagen DNA Blood Mini kit (Qiagen, Hilden,

Germany). SNPs were genotyped by using the iPLEX Gold assay

on the MassARRAY platform (Sequenom, San Diego, CA, USA).

Five percent of the samples were re-analyzed for quality control

purposes with perfect agreement between original and repeat

genotyping runs for all SNPs. The following quality control

thresholds were applied: population call rate .60% (n = 8

individuals from Greece and n = 12 from Italy were excluded),

SNP call rate .90% and MAF.5% (n = 36 SNPs from Greece

and n = 34 from Italy were excluded). The final genetic data

consisted of 1009 subjects (656 from Italy and 352 from Greece).

In the INMA cohort, DNA was obtained from cord blood using

the Chemagen protocol (Baesweiler, Germany) at the Spanish

National Genotyping Centre (CEGEN). Genotyping was per-

formed using the HumanOmni1-Quad Beadchip (lllumina, San

Diego, CA, USA) at CEGEN. Genotype calling was done using

the GeneTrain2.0 algorithm based on HapMap clusters imple-

mented in the GenomeStudio Illumina software. The following

initial quality control thresholds were applied: sample call rate.

98% and/or logRRatio SD,0.3 (n = 4 were excluded in

Valencia). Then, sex, relatedness (excluded: one duplicated sample

and the younger brother of each of two brother-pairs detected in

Sabadell), heterozygosity and population stratification were

checked. Principal component analysis (PCA) showed that there

was no population stratification in the cohort. Genetic variants

were filtered for single nucleotide polymorphism (SNP) call rate.

95%, and MAF.1%. The final genetic data set consisted of 748

subjects from Sabadell (N = 399) and Valencia (N = 349). From

this data set we selected the 5 ABC transporter gene SNPs

analysed in the PHIME study (see above).

2.6 Statistical analysis
We calculated the log2 of maternal fish intake and of mercury

concentrations in cord blood to improve linearity. When the

frequency of a homozygote genotype was low (,10%), this group

was pooled with the heterozygotes. One of the SNPs (rs3213619)

was not in Hardy Weinberg equilibrium (p Chi2,0.05) in Greece;

it was therefore excluded from further analysis. We analysed

mercury concentrations (geometric means and 95% confidence

intervals (CI)) in relation to genotype by the Kruskal-Wallis test.

To analyse the modification of ABC transporter SNPs upon the

relation between fish intake and cord blood total Hg concentra-

tions we performed linear regression analyses. Linear regression

models were adjusted for variables with a p-value,0.1 in the

Likelihood Ratio test using a backward procedure. We performed

a sensitivity analysis replacing total mercury concentrations by

MeHg for a subsample of PHIME participants where MeHg was

measured.

We performed an analysis in each country and combined

estimation through meta-analysis of the interaction between fish

intake during pregnancy and genotype. In order to examine

whether there was heterogeneity, estimates by country it was

quantified with the I-squared measure (I2) [27] under the fixed-

effect hypothesis and, if heterogeneity was detected (I2.50%), we

applied the ‘‘random effect model’’. As the heterogeneity was low

a pooled analysis was performed to evaluate the genetic effect

modification in all individuals using a common model and

adjusting by cohort. We stratified the study population according

to genotype and evaluated the association between fish intake and

cord blood mercury concentrations by linear regression for each

genotype separately.

Due to different molecular techniques used in the two birth

cohorts, three alleles were determined for rs2032582 (ABCB1) in

PHIME (G, T, A), and two in INMA (G, T). We assumed that the

A allele detected by the Illumina chip (INMA) was classified as

Transporter Genes and Prenatal Exposure to Mercury
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other alleles: GA as GT, AA as TT, and AT as TT. In order to

obtain comparable genetic information among the countries, we

reorganized the genotypes in PHIME as follows: the GA genotype

was GT, the AA and AT genotypes were TT. Further, in a

sensitivity analysis we also excluded the individuals with the A

allele in PHIME from the analysis. The analyses were carried out

by using the Stata version 11 statistical package (StataCorp LP,

College Station, Texas).

Results

Questionnaire and genetic data and mercury concentrations

were obtained for 964 mother-child pairs (593 from Italy and 371

from Greece) in the PHIME cohort, 70% of the original

population; and 687 mother-child pairs from the INMA cohort,

49% of the original population. In PHIME, no significant

differences were found between the study population and the

original cohort. In INMA, differences found between the study

population and the original cohort were regarding maternal age

and the country of birth (women who participated in this study

were a bit older and the percentage of foreign women was lower

than in the original cohort).

Spanish women consumed fish more frequently (mean: 6.362.6

weekly servings) than Greek (mean: 3.262.3) and Italian women

(mean: 2.561.6) (Table 1). Spanish newborns also had higher cord

blood mercury concentrations (geometric mean: 8.2 mg/L, 95%CI

7.7, 8.7) than the Greek (5.4 mg/L, 95%CI 4.9, 5.8) and Italian

newborns (3.8 mg/L, 95%CI 3.6, 4.1). The Spearman correlation

coefficients between fish intake during pregnancy and cord blood

mercury concentrations were 0.42 in Italy, 0.26 in Spain, and 0.18

in Greece. The correlation between cord blood mercury

concentrations and number of dental amalgam fillings among

the Spanish women was r = 0.02. There were some differences in

characteristics (educational level, age of the mothers, percentage of

foreign mothers, and percentage of women who worked during

pregnancy) between the countries (Table 1).

The allele frequencies were similar between the countries

(Table 2). The minor allele was the same in each country for all

SNPs, except for rs11075290 in ABCC1 in Greece; however, the

same reference allele was used in all analyses for this SNP. Some

differences in mercury concentrations between the genotypes were

found. Newborns from Italy with TT genotype for ABCB1

rs2032582 had higher cord blood mercury concentrations

(4.2 mg/L) than newborns with GT (4.0 mg/L) and GG (3.2 mg/

L) genotypes. Spanish newborns with TC genotype for ABCC1

rs1107529 had higher concentrations (geometric mean = 8.8 mg/

L) than CC (8.0 mg/L) and TT (7.5 mg/L) genotypes. Italian

newborns with GG and AG genotype for ABCC2 rs2273697 had

similar cord blood mercury concentrations (3.9 mg/L) that were

higher than newborns with AA (2.9 mg/L).

In a meta-analysis, we found that ABCB1 rs2032582, ABCC1

rs11075290 and ABCC2 rs2273697 showed a genetic effect on

cord blood mercury concentrations, in the same direction in

cohorts from the three countries (Figures 1–3). No heterogeneity

was found in the effect estimates (beta values) for the interaction

between fish intake and genotype for rs2032582, rs11075290, and

rs2273697 on mercury concentrations comparing the different

countries. For ABCB1 rs2032582 the overall coefficient was

Table 1. Characteristics of the study populations.

Italy Greece Spain

Characteristic N (%) N (%) N (%)

Maternal educational level Up to primary 5 (0.9) 40 (13.2) 205 (29.9)

Secondary 365 (66.1) 197 (65.0) 298 (43.4)

University 182 (33.0) 66 (21.8) 183 (26.7)

Paternal educational level Up to primary 7 (1.3) 44 (14.6) 280 (41.0)

Secondary 402 (73.8) 204 (67.8) 284 (41.6)

University 136 (25.0) 53 (17.6) 119 (17.4)

Maternal age at delivery ,25 20 (3.7) 49 (16.8) 30 (4.4)

25–29 82 (15.2) 110 (37.8) 211 (30.8)

30–34 232 (43.0) 83 (28.5) 304 (44.3)

. = 35 205 (38.0) 49 (16.8) 141 (20.6)

Country of birth National 506 (92.0) 281 (93.0) 664 (96.8)

Other 44 (8.0) 21 (7.0) 22 (3.2)

Maternal employment during pregnancy No 77 (13.9) 146 (48.0) 88 (12.8)

Yes 476 (86.1) 158 (52.0) 598 (87.2)

Parity 0 311 (45.0) 116 (38.0) 425 (57.1)

1 241 (34.9) 106 (34.8) 280 (37.6)

$2 139 (20.1) 83 (27.2) 39 (5.2)

Sex of the children Male 288 (52.5) 138 (45.7) 362 (52.8)

Female 261 (47.5) 164 (54.3) 324 (47.2)

Fish intake during pregnancy (weekly servings)a 2.561.6 3.262.3 6.262.6

Hg (mg/L)b 3.8 (3.6, 4.1) 5.4 (4.9, 5.8) 8.2 (7.7, 8.7)

aMean and standard deviation.
bGeometric mean and 95% confidence intervals.
doi:10.1371/journal.pone.0097172.t001
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negative for both carriers of GT (b= 20.29, 95%CI 20.47, 2

0.12) and TT (b= 20.49, 95%CI 20.71, 20.26) vs. GG carriers

(Figure 1, A and B) meaning that for a doubling in fish intake of

the mothers, children with the rs2032582 GG genotype accumu-

lated 30% more mercury than children with TT. For ABCC1

rs11075290, the overall coefficient was negative for the TC (b= 2

0.12, 95%CI 20.33, 0.09), but stronger for the TT (b= 20.28,

95%CI 20.51, 20.06) carriers compared to CC (Figure 2 A and

B). Finally, for ABCC2 rs2273697 the overall coefficient for the

interaction between genotype and the fish intake was positive for

GA+AA vs. GG carriers (b= 0.16, 95%CI 0.01, 0.32; Figure 3). In

the meta-analysis for the overall coefficient was not statistically

significant (Figure S1 in File S1).

The same models were then performed in a pooled data analysis

(Table 3). Statistically significant interactions were found for fish

intake and ABCB1 rs2032582, ABCC1 rs11075290, and ABCC2

rs2273697 and the effect estimates for the genotypes showed a

similar direction as in the meta-analysis. Adjustment for influential

variables did not change the results (Table 3). We performed a

sensitivity analysis by excluding individuals from Italy and Greece

with the A allele for the SNP rs2032582 (n = 26 and n = 19,

respectively) and this did only affect the effect estimates marginally

and not the significance level (not in table).

We also attempted to eliminate other sources of mercury by

accounting for the effect of dental amalgam fillings. When we

included the number of dental amalgam fillings into the models for

Spain, the effect of fish consumption on mercury concentrations

was marginally lower for all SNPs, but the interaction term were

very similar (data not shown). Cord blood MeHg concentrations

were obtained for a subsample of the study population from Italy

and Greece. The Spearman correlation between total Hg and

MeHg was high in both countries (rS.0.95). The b-coefficients

and interaction p-values in the linear regression analysis were very

similar if using either total Hg or MeHg in the models (data not

shown).

Discussion

In this study, we examined two large Mediterranean birth

cohorts and show that the association between maternal fish intake

and mercury in cord blood has different magnitudes depending on

the child’s genotype for ABC transporters ABCB1, ABCC1, and

ABCC2. These findings strengthen the hypothesis that ABC

transporters play a role in mercury transport across the placenta

and accumulation of MeHg during early development. As these

genes appear to influence MeHg internal dose, they might offset

MeHg neurotoxicity. The risk allele frequencies in this Mediter-

ranean study population were similar (ABCB1 rs2032582) or

somewhat higher (ABCC2 rs2273697) than in a Japanese

population (0.45 and 0.13, respectively) (NCBI, 2006: http://

www.ncbi.nlm.nih.gov/SNP), which suggests that the results of

this study might also be relevant for other populations with high

fish consumption.

Genetic variation in ABCC2 has recently been shown to be

related to the metabolism of inorganic mercury [22]. The GA+AA

genotypes of rs2273697 were associated with lower urinary

mercury concentrations than the GG in two populations of gold

miners exposed to mercury vapour. This SNP was associated with

cord blood mercury in our study populations, but in the opposite

direction; the association between fish intake and total mercury

concentrations was the highest among the newborns with the GG+

Figure 1. Meta-analysis of the interaction between fish intake and the SNP rs2032582 in ABCB1 on cord blood mercury
concentrations, presented as beta values for carriers of GT (A) and TT (B) vs. GG genotype.
doi:10.1371/journal.pone.0097172.g001

Figure 2. Meta-analysis of the interaction between fish intake and rs11075290 in ABCC1 on cord blood mercury concentrations,
presented as beta values for carriers of TC (A) and TT (B) vs. CC genotype.
doi:10.1371/journal.pone.0097172.g002
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AA genotypes. The reason for these contrasting findings probably

lies in the differences in orientation of ABCC2/MRP2 in different

tissues. ABCC2/MRP2 transporters are found on the epithelial

cells of the proximal tubules in kidneys, where they mediate the

export of certain xenobiotics from blood to urine [17]. High levels

of ABCC2/MRP2 are found in the apical syncytiotrophoblast

membrane of the placenta, where it is likely responsible for

preventing the passage of conjugated metabolites of drugs and

toxicants from maternal to fetal circulation [28]. Thus, an

ineffective ABCC2/MRP2 transporter would result in lower

inorganic urinary mercury concentrations and higher cord blood

MeHg concentrations.

We also found associations for ABCB1 rs2032582 respectively

ABCC1 rs11075290 and MeHg concentrations in the pooled data

analysis. Here the coefficients obtained in the meta-analysis for

both SNPs suggest that the association is stronger among carriers

of two variant alleles than in carriers of one allele. Moreover, the

effects seem to be dose-dependent, following a pattern similar to

mercury concentrations (Spain.Greece.Italy). We speculate that

T carriers of ABCB1 rs2032582 have higher capacity of exporting

MeHg from the placenta. The role of ABCB1 transporters present

in apical syncytiotrophoblast has been well defined with respect of

the protection of the fetus from exposure to drugs and xenobiotics

[29]. Enhanced expression of the ABCB1 protein was associated to

the reduction of pulmonary mercury in rats exposed to elemental

mercury [30] and ABCB1 has been involved in the excretion of

glutathione conjugated with other metals such as arsenic in

knockout mice studies [17,31]. We further suggest that ABCC1

rs11075290 T carriers have higher gene expression. This allele

abolishes a potential CpG site and is located in a regulatory region

(http://www.ensembl.org) [30]. ABCC1 prevents toxicants to the

fetal blood stream and higher expression of the gene would result

in less MeHg to fetal blood. It has been observed that upregulation

of ABCC1/MRP1 in primary mouse hepatocytes decreased

methylmercury accumulation [20].

This study had several strengths. The study population was

large and derived from three different Mediterranean countries,

with different fish consumption customs and a wide range of cord

blood mercury concentrations, from 0.1 mg/L in Italy to 66 mg/L

in Spain. We controlled that the majority of the total mercury in

the cord blood derived from MeHg; in INMA we also adjusted for

amalgam fillings and in PHIME we did a sensitivity analysis using

MeHg measured in cord blood. In both analyses, we obtained very

similar results to those obtained when using total mercury in the

models. The genetic background was similar in the three

countries, as indicated by the lack of heterogeneity in the meta-

Figure 3. Meta-analysis of the interaction between fish intake
and the SNP rs2273697 in ABCC2 on cord blood mercury
concentrations, presented as beta values for carriers of AG or
AA genotypes vs. GG genotype.
doi:10.1371/journal.pone.0097172.g003

Table 3. A pooled analysis of associations between a doubling in fish intake during pregnancy and cord blood mercury
concentrations.

Unadjusted modelsa,b Adjusted modelsc,d

beta p-value beta p-value

All newborns 0.52 (0.44, 0.59) 0.50 (0.41, 0.59)

rs3905000 (ABCA1)

GG 0.51 (0.42, 0.59) 0.668 0.52 (0.37, 0.68) 0.721

GA+AA 0.55 (0.40, 0.70) 0.53 (0.37, 0.68)

rs2032582 (ABCB1)

GG 0.74 (0.60, 0.87) ,0.001 0.70 (0.56, 0.85) ,0.001

GT 0.45 (0.35, 0.56) 0.45 (0.34, 0.56)

TT 0.25 (0.07, 0.43) 0.27 (0.08, 0.46)

rs11075290 (ABCC1)

CC 0.65 (0.49, 0.81) 0.025 0.63 (0.47, 0.80) 0.012

TC 0.54 (0.42, 0.65) 0.55 (0.43, 0.66)

TT 0.39 (0.26, 0.52) 0.36 (0.22, 0.50)

rs2273697 (ABCC2)

GG 0.45 (0.35, 0.54) 0.048 0.45 (0.35, 0.55) 0.038

GA+AA 0.63 (0.51, 0.75) 0.62 (0.50, 0.74)

p-value for the interaction term between log2-fish intake and genotype.
aUnadjusted model: Log2 Hg,a+b Log2fish intake +c cohort.
bAdjusted by cohort.
cAdjusted model: Log2 Hg,a+b Log2fish intake +c cohort +d covariates.
dAdjusted by cohort, maternal age, maternal educational level, maternal employment status, country of birth, parity, and weeks of gestation.
doi:10.1371/journal.pone.0097172.t003
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analysis, which justified a pooled data analysis, thus increasing the

sample size and the possibility of obtaining associations.

Nevertheless, some limitations were identified that may have

contributed to the uncertainty of the conclusions drawn. The

analytical method used to measure the cord blood mercury

concentrations was different between the cohorts. The LOQ was

30 times higher in INMA than in PHIME (2 ng/g vs. 0.07 ng/g,

respectively); however, only 34 samples in the INMA study had

concentrations below the LOQ. A sensitivity analysis was

performed removing these 34 individual and the results obtained

were the same as with the whole study population. The pattern of

fish consumption (Spain.Greece.Italy) observed in this study

was in accordance with previous studies [32]. However, differences

in the fish intake variable were identified which limit the

comparability between the cohorts. The timing of food frequency

questionnaires (FFQ) was not the same in the countries. Indeed,

the correlation between the fish intake and the cord blood mercury

concentrations was lower in Greece, where the FFQ was

administered 3–6 months after delivery, rather than during

pregnancy. The fish categories included in the FFQ were also

different among the countries, but we mitigated this by using an

estimation of total fish intake for all countries. The methods of

genotyping were different between the cohorts and this resulted in

differences in detection for one of the SNPs (rs2032582, ABCB1),

which is triallelic. We assumed that the A allele was detected as T

in the INMA cohort and when merging the genotypes accordingly

in the PHIME cohort the allelic percentages were very similar

between the study populations. Additionally the sensitivity analysis

excluding individuals with the A allele performed showed the

robustness of this assumption.

Despite these limitations, we identified a modifying effect of

some polymorphisms in ABC genes on the association between

fish intake during pregnancy and cord blood mercury concentra-

tions. The associations reported were robust and consistent in the

different analyses.

Conclusions

In conclusion, we found that ABCB1 rs2032582, ABCC1

rs11075290, and ABCC2 rs2273697 were associated with mercury

accumulation in the fetus. Children with the genotype GG of

rs2032582, CC of rs11075290, and GA or AA of rs 2273697

showed a stronger association between maternal fish intake and

cord blood mercury concentrations. This study not only provides

basic knowledge for gene-environment interactions, a key element

for determining susceptibility, but also explains specifically for

MeHg why some individuals accumulate more of MeHg from fish,

and possibly, suffer from more toxic effects.

Supporting Information

File S1 This file contains Figure S1 and Supplementary
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GG genotypes) between fish intake and the SNP rs3905000 in

ABCA1 on cord blood mercury concentrations.
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