Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis.

Sun, Tian-Shu; Ju, Xiao; Gao, Hui-Ling; Wang, Tao; Thiele, Dennis J; Li, Jia-Yi; Wang, Zhan-You; Ding, Chen

Published in:
Nature Communications

DOI:
10.1038/ncomms6550

Published: 2014-01-01

Citation for published version (APA):
Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis

Tian-Shu Sun1,*, Xiao Ju1,*, Hui-Ling Gao1, Tao Wang1, Dennis J. Thiele2, Jia-Yi Li1,3, Zhan-You Wang1 & Chen Ding1

Copper homeostasis is important for virulence of the fungus Cryptococcus neoformans, which can cause lethal meningoencephalitis in humans. Cryptococcus cells encounter high copper levels in the lung, where infection is initiated, and low copper levels in the brain. Here we demonstrate that two Cryptococcus copper transporters, Ctr1 and Ctr4, differentially influence fungal survival during pulmonary infection and the onset of meningoencephalitis. Protein Ctr1 is rapidly degraded under the high-copper conditions found in infected lungs, and its loss has no effect in fungal virulence in mice. By contrast, deleting CTR4 results in a hypervirulent phenotype. Overexpressing either Ctr1 or Ctr4 leads to profound reductions in fungal burden in the lung. However, during the onset of meningoencephalitis, expression of the copper transporters is induced and is critical for Cryptococcus virulence. Our work demonstrates that the fungal cells switch between copper detoxification and acquisition to address different copper stresses in the host.
Copper (Cu) is an essential metal for life that serves as a critical cofactor for numerous vital biological processes including oxidative stress resistance, energy production, melanin biogenesis and signal transduction. The activities of proteins such as superoxide dismutase, cytochrome c oxidase, dopamine β-hydroxylase and nitrous-oxide reductase depend on Cu. Moreover, numerous studies reveal the critical role of Cu for immunodefense against invading microbial pathogens. Cu-mediated pathogen killing depends on the generation of hydroxyl radicals and hydroxyl anions that causes DNA breakage, protein damage and destruction of iron–sulphur clusters. Recent studies have extensively demonstrated the function of Cu as an antimicrobial agent. Levels of the mammalian Cu transporters (Ctr1 and ATP7A) in response to interferon-γ or lipopolysaccharides are markedly induced in macrophage cell lines. Alveolar immune cells from mice challenged with Cryptococcus express higher Ctr1 protein levels and accumulate intracellular Cu. Moreover, Cu-ionophores intensify the hostile antimicrobial Cu environment of innate immune cells in coping with C. neoformans infection. As pathogens, bacterial or fungal cells lacking Cu-detoxification machinery including Cu-exporting pumps or metallothioneins (MTs) often exhibit a lower survival rate in the host. Interestingly, recent work demonstrated that the disruption of Aspergillus CtpA Cu transporter causes an increased pathogenicity in the Galleria mellonella infection model.

C. neoformans is one of the most life-threatening human fungal pathogens and is a direct causative agent of lethal meningoencephalitis in both immunodeficient and immunocompetent individuals. C. neoformans infection initiates in the human lungs, after inhalation of fungal cells from the environment. As the infection progresses, the fungal cells gradually disseminate to the brain, by uncharacterized mechanisms, where meningoencephalitis ensues. Previous studies of C. neoformans virulence factors have implied that Cu plays important, but poorly characterized, roles in fungal virulence. This hypothesis is supported by the Cu dependence of many biological processes and virulence-related proteins, including melanin biogenesis, superoxide dismutase activity and Fe uptake through Cu-dependent ferroxidase activity. However, recent studies also demonstrated that the Cu-detoxification proteins known as MTs are essential for fungal survival during pulmonary colonization and for virulence, indicating that C. neoformans encounters elevated Cu levels in the host early in the infectious process.

Here we investigate the role of two functionally redundant, high-affinity Cu⁺ transporters (Ctr1 and Ctr4) in fungal pathogenicity in mice. We demonstrate that loss of CTR1 does not affect fungal survival in the lung because of the normally rapid degradation rate of the Ctr1 protein in a high-Cu environment similar to that found in infected lung tissues. Importantly, loss of Ctr4 results in a hypervirulent phenotype, and overexpression of CTR1 or CTR4 leads to dramatic reductions in colony forming unit (CFU), consistent with C. neoformans cells coping with high Cu levels during the initial phase of infection in the lung. Although ctr1Δctr4Δ cells also exhibit in high CFUs in the lung and brain, they do not have an impact on the survival rate of mice compared with mice infected with wild-type fungal cells. Using an intracerebral infection model to bypass lung tissue, we demonstrate that C. neoformans lacking both Ctr1 and Ctr4 exhibit strongly impaired cell growth in human cerebrospinal fluid (CSF) and reduced virulence in mouse brain. Taken together, these results demonstrate that C. neoformans senses distinct Cu environments in the lung and brain, and that the Cu acquisition machinery plays reciprocal roles in fungal virulence in these distinct niches during the course of infection.

Results

Loss of CTR4 causes hypervirulence in mice. To understand the potential contribution of the Cu-acquisition machinery to C. neoformans virulence, we infected A/J mice intranasally with isogenic H99 (wild-type), ctr1Δ, ctr4Δ or ctr1Δctr4Δ strains (Fig. 1a, Supplementary Fig. 1A and Supplementary Table). No significant differences in survival rates were observed among the mice infected with H99, ctr1Δ or ctr1Δctr4Δ cells. However, ctr4Δ cells exhibited a strong hypervirulent phenotype. Because A/J mice carry a mutation that may be related to lung disease, we further validated this result by infecting C57BL/6 mice with H99, ctr4Δ, the CTR4 complementation strain or ctr1Δctr4Δ. In agreement with the results obtained in A/J mice, ctr4Δ cells demonstrated significantly increased virulence, whereas the complementation strain showed reduced virulence compared with H99 cells (Fig. 1b) because of overexpressing CTR4 (discussed below). Similar survival rates were observed for mice infected with ctr1Δctr4Δ cells and mice infected with wild-type cells (Fig. 1c). A fungal burden analysis of the lung and brain tissues was performed in both sets of mice. We detected robust increases in the fungal burden in mice infected for ctr4Δ and ctr1Δctr4Δ, but not for mice infected with ctr1Δ cells (Fig. 1d–g). Because nasal mucosal membranes might capture fungal cells, resulting in uneven inoculation of fungal cells in the lung, an intratracheal infection experiment was also performed. An increased fungal burden was observed in mice infected with ctr4Δ and ctr1Δctr4Δ cells in the lung, consistent with the results for the intranasal route of infection (Fig. 1h).

We also noted that lungs infected with ctr4Δ or ctr1Δctr4Δ were significantly enlarged, compared with those from mice infected with wild-type C. neoformans (Fig. 2a,b), indicating a hyperinflammatory response and greater lung tissue damage. This finding was confirmed by haematoxylin/eosin and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labelling) staining, which showed more infiltration of mononuclear cells and higher numbers of apoptotic lung cells when mice were infected with ctr4Δ or ctr1Δctr4Δ cells as compared with the H99 strain (Fig. 2c–f). This lung tissue enlargement may be due to the production of a more elaborate biofilm structure by ctr4Δ and ctr1Δctr4Δ cells in the lung tissue or on blood vessels. However, no differences in biofilm formation were observed among the H99, ctr1Δ, ctr4Δ or ctr1Δctr4Δ strains (Fig. 2g). We also examined the CFUs in the blood, and we can only detect Cryptococcus cells in the blood, irrespective of genotype, at 21 days post infection (Fig. 2h), as described previously. These data strongly demonstrated that the lung tissue enlargement and damage observed at 14 days post infection are due to increased fungal cell proliferation of the ctr4Δ and ctr1Δctr4Δ strains, and not enhanced biofilm formation in the lungs or blood vessels. Given that C. neoformans cells experience high Cu levels in the lung, our results suggest that the loss of CTR4 efficiently reduces host killing of C. neoformans during the initial stages of infection. However, as shown in Fig. 1, while Ctr1 and Ctr4 are independent and functionally redundant integral membrane Cu⁺ importers, the two Cu⁺ transporter mutants exhibit difference in pulmonary infection phenotypes in vivo. In addition, the ctr1Δctr4Δ strain exhibited increased CFUs in the lung and brain CFUs compared with the H99 strain; however, animal survival rates were indistinguishable.

Cu transporter expression dictates fungal survival in the host. A deletion of the C. neoformans CTR4 gene was previously generated using an auxotrophic marker (URA5) in an ura5Δ strain that was generated using 5-fluoroorotic acid (5-FOA). The ctr4Δ::URA5 strain that was generated using 5-fluoroorotic acid (5-FOA)
USA) and ctr4 Δ::NEO strains did not exhibit capsule formation or release defects (Supplementary Fig. 1B,C); however, the ctr4 Δ::URA5 (NIH) strain did demonstrate a reduction in fungal virulence and defective cell growth under nutrient-limiting conditions. To carefully verify our ctr4 Δ phenotype (ctr4 Δ::NEO), we performed Southern blot analysis of ctr4 Δ::NEO and ctr1 Δ::NAT ctr4 Δ::NEO, which revealed a single integration of the NEO cassette at the CTR4 allele (Supplementary Fig. 1). We also generated a ctr4 Δ::URA5 ura5 Δ::HYG strain (Supplementary Table) and confirmed the lack of CTR4 mRNA expression with real-time PCR (Fig. 3b). No differences in growth defects were observed between the wild-type strain and the isogenic Cu + transporter mutants under nutrient-deficient conditions, regardless of the addition of Cu, bathocuproine sulphonate (BCS) or uracil (Supplementary Fig. 2A). Although we validated the correct integration of the CTR4::URA5 cassette in our ctr4 Δ::URA5 strain with integration-diagnostic PCR, we were unable to confirm correct integration in ctr4 Δ::URA5 (NIH) cells (Supplementary Fig. 3A,B). The loss of the wild-type CTR4 allele was detected in both ctr4 Δ::URA5 strains. Interestingly, we could not detect an intact ctr4 Δ::URA5 allele in the CTR4 complementation strain (NIH), which should maintain URA5 at the CTR4 allele and a wild-type randomly reintegrated CTR4 allele, as mentioned previously (Supplementary Fig. 3A). Southern blot analysis (Supplementary Fig. 3C) confirmed the presence of a wild-type URA5 in H99, ctr4 Δ::URA5 (NIH) and the CTR4 complementation strain (NIH), and the integration of URA5 at the CTR4 allele in the ctr4 Δ::URA5 strain (NIH). However, the complementation strain does not possess a ctr4 Δ::URA5. We next determined whether the nutrient-dependent phenotype of ctr4 Δ::URA5 (NIH) is because of uracil. The cell growth of ura5 Δ and ctr4 Δ::URA5 (NIH) was significantly inhibited when uracil was absent in the media (Supplementary Fig. 4A). The expression of URA5 was significantly induced in ctr4 Δ::URA5 (NIH) cells in the absence of uracil, perhaps indicating that uracil starvation induces nonfunctional URA5 in the 5′ FOA-mutagenized strain. Because we were uncertain by the genotype of the CTR4 complementation strain (NIH), we transformed a GPD promoter–CTR4 HA construct into ctr4 Δ::URA5 (NIH) and ctr1 Δctr4 Δ cells using the biolistic transformation method. CTR4 HA protein expression was then examined in the resulting ctr4 Δ::URA5 (NIH) GPD–CTR4 HA transformant. Our data demonstrated that CTR4 HA expression can complement ctrl1 Δctr4 Δ cell growth under Cu deficiency, while ctr4 Δ::URA5 (NIH) cells expressing CTR4 HA retained the uracil-dependent phenotype (Supplementary

Figure 1 | Disruption of CTR4 increases C. neoformans virulence in A/J and C57BL/6 mice. (a) A/J mice (n = 10) were infected intranasally with H99, ctrl1 Δ, ctrl4 Δ and ctrl1 Δctr4 Δ C. neoformans cells, and the animals were monitored for signs of infection. Statistical analysis was performed using the log-rank test (***P < 0.005). (b,c) C57BL/6 mice (n = 10) were infected as described in a, with H99, ctrl4 Δ, CTR4-complemented or ctrl1 Δctr4 Δ cells. Statistical analysis was performed using the log-rank test (**P < 0.01). (d–h) CFUs were enumerated after 14 days of infection. CFUs were normalized to tissue weight. Statistical analysis was performed using analysis of variance (ANOVA; ***P < 0.005, **P < 0.01 and *P < 0.05).
Described previously. Statistical analysis was performed using Student’s t-test (***P < 0.005 and **P < 0.01). (c,d) Infected lung tissues from C57BL/6 mice were stained with haematoxylin and eosin and examined under a ×5 lens (c) (scale bar = 100 μm) and a ×10 lens (d) (scale bar = 50 μm). Arrows indicate immune cells. (e) Infected lung tissues from c were subjected to TUNEL staining (scale bar = 25 μm). Stained cells are indicated with arrows. (f) The number of apoptotic cells of each strain was quantified. Statistical analysis was performed using Student’s t-test. The data are presented as the mean ± s.d. Four different microscopy views were selected and stained cells were counted (***P < 0.005). (g) Biofilm formation by each strain was assayed and quantified as described previously. Statistical analysis was performed using Student’s t-test. The data are presented as the mean ± s.d. (h) Enumeration of Blood CFUs. C57BL/6 mice (n = 5) were infected as described in Fig. 1 for 14 and 21 days. Blood samples were collected and plated on SC agar plates for 3 days. Statistical analysis was performed using ANOVA (***P < 0.05).

Therefore, these analyses demonstrate that the previously used CTR4 complementation strain phenotype is not reproducible in our hands and suggest that CTR4 is not involved in general nutrient acquisition in C. neoformans (Supplementary Figs 3 and 4)18. As our ctr4A::URA5 strain exhibited a trend of reduced URA5 expression and the ctr4A::URA5 (NIH) cells incorrectly demonstrated the CTR4 phenotype, both strains were excluded from the animal infection experiments to avoid complications in the interpretations of the results.

As shown in Fig. 1, the CTR4 complementation strain was less virulent than the isogenic H99 strain. Quantitative reverse transcription–PCR (qRT–PCR) analysis revealed that expression of CTR4 in the complemented strain was higher than that in the wild-type; therefore, we hypothesised that the reduced virulence phenotype was because of the overexpression of CTR4. To test this hypothesis, we overexpressed CTR1 or CTR4 in the H99 or ctr1Δctr4Δ strains, respectively. All strains overexpressing the Cu transporters were used for fungal burden analysis (Fig. 3a,b). We showed that all strains with higher expression of either the Ctr1 or Ctr4 Cu transporter had significantly reduced fungal burdens in lung and brain tissues (Fig. 3c–f).

Previous inductively coupled plasma mass spectrometry analysis suggested that the ctr4A::URA5 (NIH) strain exhibited higher cell-associated Cu levels than wild-type cells, implying that the ctr4A::URA5 (NIH) strain has more bioavailable intracellular Cu18. However, the inductively coupled plasma mass spectrometry (ICP-MS) method quantifies Cu from whole cells and does not necessarily reflect intracellular Cu status. Moreover, the pleiotropic growth phenotype observed for the ctr4A::URA5 (NIH) strain is independent of CTR4 (Supplementary Figs 3 and 4)18. To determine the contribution of the C. neoformans Cu2+ transporters to intracellular Cu availability, we assayed the activity of Cu/Zn-superoxide dismutase (SOD) in wild-type and Cu2+ transporter mutant strains because Cu/Zn-SOD activity depends on...
Figure 3 | Overexpression of *C. neoformans* Cu transporters impairs fungal survival in intranasal infections. (a) Strains overexpressing CTR1 and CTR4 were constructed. Cells were grown in SC medium for 6h, RNA was isolated and real-time PCR was performed to quantify CTR1 expression. The data are presented as the mean ± s.d. Statistical analysis was performed using Student’s t-test. (b) The experiments were performed as described in a; however, primers for detecting CTR4 were used. Statistical analysis was performed using Student’s t-test. The data are presented as the mean ± s.d. (c) Lung CFUs were enumerated from infected C57BL/6 mice as described in Fig. 1d, using strains H99, ctr1, ctr1 + CTR4, H99 + CTR1 and H99 + CTR4. Statistical analysis was performed using ANOVA (**P < 0.005, *P < 0.05). CFUs of H99, ctr4, ctr4 + CTR4, H99 + CTR1 and H99 + CTR4 are shown in the inset. (d) Brain CFUs were enumerated from infected C57BL/6 mice as described in Fig. 1e, using strains H99, ctr4, ctr4 + CTR4, H99 + CTR1 and H99 + CTR4. Statistical analysis was performed using ANOVA (***P < 0.005). CFUs for H99, ctr1, ctr1 + CTR4, H99 + CTR1 and H99 + CTR4 are shown in the inset. (e) Lung CFUs were enumerated from infected C57BL/6 mice as described in Fig. 1d using strains H99, ctr1, ctr1 + CTR4, ctr1 + CTR1 and ctr1 + CTR4 + CTR4. Statistical analysis was performed using ANOVA (**P < 0.005). CFUs for H99, ctr1, ctr1 + CTR1 and ctr1 + CTR4 + CTR4 are shown in the inset. (f) Brain CFUs were enumerated from infected C57BL/6 mice as described in Fig. 1e using strains H99, ctr1, ctr1 + CTR4, ctr1 + CTR1 and ctr1 + CTR4 + CTR4. Statistical analysis was performed using ANOVA (**P < 0.005). CFUs for H99, ctr1 + CTR1, ctr1 + CTR4 + CTR1 and ctr1 + CTR4 + CTR4 are shown in the inset. (g) Cells were grown in SC medium or SC medium supplemented with 10 μM BCS for 6h. Total protein was isolated and SOD activity was measured. Statistical analysis was performed using Student’s t-test. The data are presented as the mean ± s.d.

the amount of bioavailable intracellular Cu19. Although the Cu/Zn-SOD activities of the H99, *ctr1A* and *ctr4A* strains were similar, that of the *ctr1Actr4A* strain was significantly reduced by 40% in SC medium and >50% in the medium that was Cu-limited by addition of the extracellular Cu$^+$ chelator, BCS (Fig. 3g), indicating that *CTR1* and *CTR4* are functionally independent Cu$^+$ importers and that the disruption of either Cu transporter does not significantly influence intracellular Cu status.

CTR4 has been shown to negatively regulate the expression of *C. neoformans* MTs; however, it is not clear whether the pyrimidine biosynthesis pathway, or the Ctr4 Cu$^+$ transporter, influences expression of MTs18. In our hands, expression of both CMT1 and CMT2 are significantly reduced in the absence of *CTR4* when cells encountered high-Cu conditions and in the lungs (Fig. 4a,b), consistent with *CTR4* encoding a high-affinity Cu$^+$ importer in *C. neoformans*. To determine whether the hypervirulent phenotype of *ctr4A* is due to the modulation of expression of CMTs, as shown previously18, we deleted *CTR4* in the *cmt1A cmt2A* strain (Supplementary Table and Fig. 4c,d). The *cmt1A cmt2A ctr4A* strain did not exhibit a nutrient-dependent
were intranasally infected with H99 or CTR1, CTR4, CMT1, and CMT2. RNA was isolated and real-time PCR was performed to detect CMT1, CMT2, and ACT1. Statistical analysis was performed using Student’s t-test. The data are presented as the mean ± s.d. (c,d) CFU analysis were performed as described in Fig. 1d. Statistical analysis was performed using ANOVA (**P < 0.005, ***P < 0.01 and *P < 0.05).

The Ctr1 and Ctr4 proteins have distinct properties. Our data demonstrated that the ctr1Δ strain does not exhibit changes in fungal virulence but that strains overexpressing CTR1 results in decreased fungal burden. One possible explanation is that Ctr1 is rapidly degraded in the presence of high Cu levels. We measured the Ctr1 protein half-life under Cu-depleted conditions. To eliminate the effect of the overexpression system on the protein level quantification, we generated integration cassettes that insert a DNA sequence encoding a HA tag before the stop codon in the genes of interests to compare the proteins expressed from their native loci (Fig. 5a). We first repressed or induced protein expression by culturing cells in the presence of Cu or BCS, respectively, and robust protein expression was detected for both the Ctr1 and Ctr4 proteins under low-Cu conditions and for Cmt1 under high-Cu conditions (Fig. 5b and Supplementary Fig. 5A). We then extensively induced the expression of CTR1HA and CTR4HA in the presence of 1 mM BCS for 6 h and measured the Ctr1HA and Ctr4HA protein stability in response to high Cu levels. As shown in Fig. 5c and Supplementary Fig. 5B, the Ctr1HA protein was not detected after a 5-min exposure to Cu, whereas Ctr4HA was maintained for at least 90 min after Cu addition. These data strongly suggest that, in contrast to Ctr4, the Ctr1 protein is highly unstable under high-Cu conditions. To ascertain whether Ctr1 is expressed in the lung, we performed immunohistochemistry. Although expression of Cmt1HA and Ctr4HA was detected 2 days post infection, we detected little to no signal for Ctr1HA (Fig. 5d).

Interestingly, we detected two protein species for both Cu transporters (Fig. 5b, c, Supplementary Fig. 5A,B), suggesting that these Cu⁺ transporters undergo post-translational modification. In mammals, the Ctr1Cu⁺ transporter is glycosylated at two positions within the N terminus20–23. We used a protein deglycosylation enzyme mix that removes both N- and O-glycosylation to determine whether C. neoformans Cu transporters are glycosylated. After incubation, we were unable to detect the upper band for Ctr4HA, suggesting that Ctr4 is glycosylated. Experimental results under identical conditions gave no evidence that Ctr1 is glycosylated (Fig. 5e and Supplementary Fig. 5C). The prediction algorithms from the NetNGlyc and NetOGlyc web servers showed that the Asn19 residue on Ctr4 is a potential N-glycosylation site. A candidate glycosylation-resistant mutant was generated by integrating a mutated DNA sequence at

Figure 4 | Ctr4 modulates fungal virulence independently of the regulation of metallothioneins. (a) C. neoformans H99, ctr4Δ::URA5, ctr4Δ::NEO, ctr4Δ::URA5 (NIH) cells were subcultured in SC medium supplemented with 30 μM Cu for 3 h. RNA was isolated and real-time PCR was performed to detect CMT1, CMT2 and ACT1. Statistical analysis was performed using Student’s t-test. The data are presented as the mean ± s.d. (b) C57BL/6 mice were intranasally infected with H99 or ctr4Δ::NEO cells for 7 days. RNA was isolated as described previously30. Real-time PCR was performed to detect CTR1, CTR4, CMT1, CMT2 and ACT1. Statistical analysis was performed using Student’s t-test. The data are presented as the mean ± s.d. (c,d) CFU analysis were performed as described in Fig. 1d. Statistical analysis was performed using ANOVA (**P < 0.005, ***P < 0.01 and *P < 0.05).
the *CTR4*-native allele (Supplementary Fig. 6A). Correct integration was confirmed with PCR (Supplementary Fig. 6A) and gene copy tests with real-time PCR (Supplementary Fig. 6B). The immunoblot analysis demonstrated that mutating Asn19 completely abolished the glycosylation of Ctr4HA (Fig. 5f and Supplementary Fig. 5D). Furthermore, the glycosylation mutant rescued the *ctr1Δctr4Δ* growth phenotype in the presence of BCS, although not to the level of the wild-type *CTR4* complementation strain (Fig. 5g), suggesting that fully functional Ctr4 requires glycosylation. As protein glycosylation is processed on endoplasmic reticulum (ER) and may affect protein trafficking, we performed indirect immunofluorescence assays and observed plasma membrane and ER-associated protein localization for both the wild-type Ctr4 and N19Q-mutant proteins, suggesting that Ctr4 trafficking is not dependent on N19 glycosylation (Supplementary Fig. 6C).

CTR1 and **CTR4** are critical during meningoencephalitis. Although the *ctr1Δctr4Δ*-mutant strain exhibited higher fungal burden in the lung and brain, surprisingly, identical survival was observed in mice infected with *ctr1Δctr4Δ* or H99 cells (Fig. 1a). We hypothesized that *ctr1Δctr4Δ* cells counter Cu toxicity in the lung, leading to high fungal intrusion into the brain, where Cu transporters are required for virulence. To test this hypothesis, we employed *ex vivo* two-photon microscopy analysis of lung and brain tissues to examine the fluorescence intensity of green fluorescent protein (GFP) that is driven by either the *CTR4* or *CMT1* promoters. One and seven days post intranasal or intracerebral infection, the *CMT1p-GFP* promoters produced higher GFP intensities in the lung than that of *CTR1p-GFP* and *CTR4p-GFP* (Fig. 6a), as previously described. In the brain, the fluorescence intensities of *CTR1p-GFP* and *CTR4p-GFP* were higher than that of *CMT1p-GFP* (Fig. 6b). These data strongly suggest that *C. neoformans* cells sense Cu-limitation conditions in the host brain. In human CSF, the copper level is ~7.5 ± 3.1 ng ml\(^{-1}\) (~0.12 ± 0.048 nmol ml\(^{-1}\)) \(^{24}\). As access to the host CSF is critical for *cryptococcosis*, we examined fungal cell growth in human CSF with or without the supplementation of Cu. CFU analysis indicated that the growth of the *C. neoformans*

Figure 5 | *C. neoformans* Cu transporters have distinct properties. (a) A DNA sequence encoding the HA tag was integrated before the stop codon of *CTR1* and *CTR4*. Sequences upstream and downstream of *CTR1* or *CTR4* were amplified and cloned into a plasmid containing HA tag construct. The resulting plasmid was amplified and integrated into the genome of the H99 strain to generate strains *CTR1HA*, *CTR4HA* or *CMT1HA*. (b) Cells were grown in SC medium supplemented with 200 μM BCS or 200 μM Cu for 6 h. Proteins were isolated and probed with the anti-HA and anti-histone H3 antibodies (see Supplementary Fig. 5A for full blots). (c) Cells were grown in SC medium supplemented with 1 mM BCS for 6 h and washed three times with H\(_2\)O. The cells were then treated with 100 μM Cu. Proteins were isolated at different time points and probed with the anti-HA and anti-histone H3 antibodies (see Supplementary Fig. 5B for full blots). (d) C57BL/6 mice were infected with *C. neoformans* cells expressing *CTR1HA*, *CTR4HA* and *CMT1HA*. Two days post infection, lung tissues were removed and subjected to immunohistochemical analysis (scale bar = 50 μm). Red circles indicate *C. neoformans* cells, which are shown in the right panels (scale bar = 25 μm). (e) The expression of the Ctr1 and Ctr4 Cu\(^{2+}\) transporters was induced by culturing cells in SC medium supplemented with 1 mM BCS for 6 h. Proteins were then isolated and mixed with protein deglycosylation mix (NEB) for 4 h. Proteins were separated on a 15% SDS–PAGE gel and an anti-HA antibody was used to detect Ctr1HA and Ctr4HA (see Supplementary Fig. 5C for full blots). (f) The transmembrane domains of Ctr4 were predicted using TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0) (left panel). Ctr4 Asn19 was mutated to Gln using a PCR-based approach and the mutated CTR4 genomic DNA sequence was integrated into the CTR4-native allele. The protein was isolated and probed with an anti-HA antibody (see Supplementary Fig. 5D for full blots). (g) *ctr1Δctr4Δ* cells expressing wild-type *CTR4HA* and the N19QHA mutation were spotted on SC agar supplemented with 125 μM BCS. Images were acquired after a 2-day incubation at 30 °C.
Cu-acquisition mutant (ctr1Actr4Δ) was strongly limited in the absence of exogenous Cu (Fig. 6c). Interestingly, the addition of Cu also stimulated the growth of wild-type cells after 96-h incubation, indicating that Cu is important for C. neoformans to survival in the CSF.

To bypass the lung, mice were infected intracerebrally with H99, ctr1Δ, ctr4Δ and ctr1Actr4Δ strains. Mice infected with H99, ctr1Δ and ctr4Δ exhibited similar survival rates, while the ctr1Actr4Δ strain exhibited a significant reduction in fungal virulence (Fig. 7a), indicating that either of the functionally redundant Ctr1 or Ctr4 Cu⁺ importers is required for C. neoformans survival in the brain. To further address the Cu environment that is sensed by C. neoformans in brain tissue, we injected mice with H99, cmt1Acmt2Δ or ctr1Actr4Δ and demonstrated that MTs play no role in C. neoformans survival in the brain (Fig. 7b). These data suggest that C. neoformans cells do not experience a Cu toxicity environment, but rather a Cu-deficient environment in the brain that limits virulence. When a higher fungal cell inoculum was used for intracerebral infection of ctr1Actr4Δ, increased fungal virulence was observed (compare Fig. 7b,c), which may explain the difference in the survival rates of mice infected with H99 and ctr1Actr4Δ in Fig. 1a. Given that intranasal infection with ctr1Actr4Δ produced a fivefold increase in CFUs in the brain compared with infection with H99 (Fig. 1), these observations support the hypothesis that the low-Cu conditions of the brain inhibit fungal cell proliferation.
Figure 7 | C. neoformans Cu⁺ transporters are required for meningoencephalitis. (a) C57BL/6 mice (n = 9) were infected intracerebrally with H99, ctr1Δ, ctr4Δ and ctr1Δctr4Δ cells, and the animals were monitored for signs of C. neoformans infection. Statistical analysis was performed using the log-rank test (***P < 0.005). (b, c) Experiments were performed as described in a. Each C. neoformans strain was used to infect 10 C57BL/6 mice. Statistical analysis was performed using the log-rank test (***P < 0.005). (d) C57BL/6 mice (n = 4) were infected intranasally with H99 for 7 and 14 days. The control mice (n = 4) were not infected. Lung and brain tissues were harvested, and proteins were isolated and quantified. IFN-γ and TNF-α ELISA assays were performed. Statistical analysis was performed using Student’s t-test. The data are presented as the mean ± s.d.

Discussion

Human pathogenic fungi adapt to distinct environments by rapidly altering gene expression in response to environmental stimuli. To survive, replicate and invade host tissues, pathogenic fungi have evolved efficient and sophisticated machineries to compete for essential nutrients, including metals. In the last decade, studies have implied that Cu is a key virulence modulator for C. neoformans and is required for fungal virulence. C. neoformans strains under nutrient-deficient condition are sensitive to both low and high Cu. A subsequent study showed that Cuf1 controls the expression of the Cu transporter CTR4 and that the cuf1Δ strain is avirulent in a tail vein infection model, thus suggesting that Cu acquisition is essential for C. neoformans virulence in mice. However, recent work has demonstrated that Cuf1 regulates both Cu-detoxification machinery and the Cu-acquisition machinery, in response to high or low Cu conditions, respectively. Moreover, although C. neoformans senses high Cu in the lung and Cu-detoxification genes are critical for fungal survival in the lung, CTR4 is still expressed in the lung at relatively low levels.

What roles does C. neoformans Cu homeostasis play during fungal infection? C. neoformans possesses two high-affinity Cu⁺ importers (Ctrl and Ctr4) belonging to the Ctr family, which is conserved from yeast to mammals. The Ctr family forms homotrimeric structures to generate a Cu⁺-importing channel. Ctrl and Ctr4 are independent and functionally redundant Cu⁺ importers whose expression is regulated by Cuf1. The recently published nutrient-dependent phenotype of the C. neoformans ctr4Δ mutant is of great interest but unexpected. This phenotype has never been observed in other organisms, including Saccharomyces cerevisiae, Candida albicans, Schizosaccharomyces pombe, Aspergillus fumigatus, Drosophila and mice. Interestingly, the nutrient phenotype of CTR4 in C. neoformans has not been reported in other studies. For example, two independent studies demonstrated robust cell growth of cuf1Δ strains under nutrient-deficient condition, given Cuf1 is a positive regulator of CTR4. The nutrient phenotype of the cuf1Δ strain has not been reproduced while generating the ctr4Δ mutant using other markers, such as NEO, HYG or URA5 (Supplementary Table, Figs 1 and 4, Supplementary Figs 2 and 3). Generating mutants using the URA cassette and a parent strain obtained from 5-FOA mutagenesis are not optimal because previous reports have demonstrated that the ura mutant affects fungal virulence, colony morphology and biofilm...
Because C. neoformans senses elevated Cu levels in the lung, Ctr4 negatively regulates C. neoformans virulence during pulmonary infection, leading to a remarkable induction of fungal growth, hyperinflammatory responses and severe lung cell damage (Figs 1 and 2). The greater fitness of ctr4Δ and ctr1Δctr4A cells in lung tissue results in the increased dissemination of fungal cells into brain tissue. Furthermore, overexpressing the Ctr1 or Ctr4 Cu transporters greatly enhances fungal killing by pulmonary antimicrobial Cu, strongly indicating that Cu transporters negatively influence fungal virulence in the lung (Fig. 3). A Ctr4 mutant has been shown to accumulate Cu and affect MT expression, although it is unclear whether the induction of MTs is because of pyrimidine biosynthesis or Ctr4. In S. cerevisiae, the disruption of Cu importers reduces the activation of the MT promoter under high-Cu conditions. In the present study, deleting C. neoformans CTR4 reduces the expression of MTs both in vitro and vivo, demonstrating that deleting the high-affinity Cu+ importer CTR4 reduces the activation of Cu-detoxification machinery (Fig. 4a,b). Irrespective of how CTR4 modulates the expression of MTs, the hypervirulent phenotype of ctr4Δ is not because of the induction of MTs (Fig. 4c,d).

In the present work, differing levels of protein stability and post-translational modification of Ctr1 and Ctr4 were observed. While Ctr1 does not affect animal survival or CFUs relative to the wild-type parental strain (Fig. 1), Ctr1 is extremely unstable in the presence of exogenous Cu and in the lung (Fig. 5c,d). Interestingly, a strong candidate for an N-glycosylation site was detected in Ctr4 near the putative amino-terminal extracellular domain Cu-binding motifs. The glycosylation of Ctr4 resembles that of mammalian Ctr1, in which glycosylation influences Cu uptake. Although the N19Q mutant restored Cu uptake in ctr1Δctr4A cells, complemented cells exhibited reduced growth compared with ctr1Δctr4A cells expressing wild-type CTR4, implying that N-glycosylation is involved in facilitating Ctr4 function in an undefined manner.

Ctr4 has been hypothesized to be important for cryptococcal meningoencephalitis. Our results provide the first evidence that C. neoformans switches from Cu detoxification to acquisition modes when it disseminates from the lung to the brain (Fig. 8a). The increased fitness of ctr4Δ and ctr1Δctr4A cells in the lung leads to a higher fungal proliferation, which, in turns, increases infiltration of fungal cells into the brain, where C. neoformans requires Cu (Fig. 8b). Because the ctr4Δ strain contains a functional Ctr1 Cu+ transporter, ctr4Δ cells are able to efficiently acquire Cu from the brain, leading to a hypervirulent phenotype (Fig. 8b). Although the number of ctr1Δctr4A cells in the brain is increased compared with the wild-type H99, the Cu-deficient environment in the brain does not permit the robust growth of ctr1Δctr4A cells (Fig. 8b). Interestingly, infection routes determine the virulence phenotype of ctr1Δctr4A, implying that entry rather than replication of C. neoformans in the brain is critical for fungal virulence in the mouse model. Because the ctr1Δctr4A strain remains virulent in the intracerebral infection model, we speculate that there are other Cu uptake machineries in C. neoformans that are active in Cu transport during the formation of meningoencephalitis.

Little is known about cryptococcal meningoencephalitis and brain immunity. In fact, the brain is a site of immune privilege, with unique immune responses compared with other tissues. Brain immune cells must maintain a balance between killing invading microbes and preventing robust inflammatory responses to protect fragile neurons. Despite the importance of microglial cells in protection against C. neoformans, the expression of brain proinflammatory cytokines (TNF-α, Interleukin (IL)-12 and IL-1) is low at the early stages of infection. Further, damage to the central nervous system causes inhibition of NF-κB in astrocytes, which, in turn, blocks the expression of a range of cytokines, including mammalian Cu transporter inducers, such as IFN-γ. Our data demonstrate that the production of cytokines, including IFN-γ and TNF-α, is induced by C. neoformans infection in the lung tissues but not in the brain. Most importantly, Cu accumulation is often associated with neurodegenerative disease. In conclusion, our study highlights the reciprocal roles of C. neoformans Cu transporters in the host, and underscores the importance of analysing host niches during the investigation of Cryptococcus pathogenicity.

Methods

Strains and media. The C. neoformans H99 strain was generously provided by Ying-Lien Chen (National Taiwan University). The ctr4Δ:URA5 strain was a gift from Dr Peter Williamson (National Institute Health, USA) to Dr Jia-Yi Li (Lund University, Sweden). All mutants (Supplementary Table) were routinely grown in YPD (1% yeast extract, 1% peptone and 2% dextrose) or synthetic complete medium (0.67% yeast nitrogen base, 2% dextrose and 0.2% amino acids) previously described and generated as described below. SC (1144000022) and SC-ura dropout mixes (114410622) were purchased from MP Biomedicals. For biolistic transformation, YPD 2% agar supplemented with 1 mM sorbitol was used. For selection of transformants, nourseothricin or G418 was added to YPD at a final concentration of 100 μg ml−1, and hygromycin B was added to YPD at a final concentration of 200 μg ml−1.

Generation of Cryptococcus mutants. CTR1 and CTR4 overexpression strains were generated as described below. The genomic DNA from CTR1 and CTR4 were amplified using primers (5′-GGGCAAAAGCTTGGACTCTCTTGTCCGGA GTAAAGAACG-3′ and 5′-ATCCACTAGTTCTGATAAAGTCTGCAG TAAC-3′ for CTR1, and 5′-GGGAAACAAACGTGACCTCTCTTGTCCGGA GTAAAGAACG-3′ and 5′-ATCCACTAGTTCTGATAAAGTCTGCAG TAAC-3′ for CTR4). PCR products were cloned into the pHYG plasmid (containing a hygromycin resistance marker under the control of the Cryptococcus ACT1 promoter), the upstream sequence was inserted between the BamHI and SacI sites. The cloned plasmid was used for transformation, nourseothricin or G418 was added to YPD at a final concentration of 100 μg ml−1, and hygromycin B was added to YPD at a final concentration of 200 μg ml−1.

Strains and media. The C. neoformans H99 strain was generously provided by Ying-Lien Chen (National Taiwan University). The ctr4Δ:URA5 strain was a gift from Dr Peter Williamson (National Institute Health, USA) to Dr Jia-Yi Li (Lund University, Sweden). All mutants (Supplementary Table) were routinely grown in YPD (1% yeast extract, 1% peptone and 2% dextrose) or synthetic complete medium (0.67% yeast nitrogen base, 2% dextrose and 0.2% amino acids) previously described and generated as described below. SC (1144000022) and SC-ura dropout mixes (114410622) were purchased from MP Biomedicals. For biolistic transformation, YPD 2% agar supplemented with 1 mM sorbitol was used. For selection of transformants, nourseothricin or G418 was added to YPD at a final concentration of 100 μg ml−1, and hygromycin B was added to YPD at a final concentration of 200 μg ml−1.

Extended Data

Extended Data

Acknowledgements. We thank members of the laboratory for useful discussions. This work was supported by grants from the National Science Council of Taiwan (NSC 96-2314-B-002-026-MY3, NSC 97-2314-B-002-010, NSC 97-2320-B-002-015-MY3, and NSC 98-2314-B-002-022-MY3) and from the National Health Research Institute of Taiwan (CHIU-CI-102-1).
Figure 8 | A model of the function of the C. neoformans Cu homeostasis machinery during systemic infection. (a) Model of the roles of Cu transporters during C. neoformans infection. (1) A C. neoformans cell possesses Cu-acquisition (Ctr1 and Ctr4) and Cu-detoxification (Cmt1 and Cmt2) proteins. (2) During pulmonary infection, C. neoformans senses a high-Cu environment. Ctr1 is quickly degraded, but Ctr4 is still expressed. Cmt1 and Cmt2 are reduced and therefore these proteins play no function in the brain. We speculate that there are uncharacterized Cu transport machineries in C. neoformans, such as low-affinity or nonspecific transporters. (b) Models of the phenotypes of C. neoformans transporter mutants in vivo. (i) The wild-type strain degrades the Ctrl Cu\(^+\) transporter in the lung, while Ctr4 is active and transports the host antimicrobial Cu. (ii) In the brain, Ctr1 and Ctr4 are expressed for Cu acquisition. (iii and iv) In the ctrl4 strain, the functionally redundant Cu\(^+\) transporter Ctr4 can transport Cu in both the lung and brain, enabling growth in both tissues similar to that observed for wild-type C. neoformans. (v) The ctrl4 strain exhibits increased fungal proliferation in the lung due to the fast protein degradation of Ctrl1 and the disruption of Ctrl4, leading to increased dissemination of fungal cells in the brain. (vi) Because the functionally redundant Cu\(^+\) transporter Ctr4 is expressed in ctrl44 strain and the number of ctrl44 cells in the brain is increased, the ctrl4 strain exhibits increased fungal virulence. (vii) The cell growth of the ctrl1ctr44 strain is increased in the lung, resembling that of the ctrl44 strain, resulting in increased dissemination of fungal cells in the brain. (viii) Owing to the lack of functional Cu\(^+\) transporters in the ctrl1ctr44 strain, the cell growth is inhibited in the brain. Therefore, the Cu-replete environment in the lung and Cu-deficient conditions in the brain generates a Cu-balance for the ctrl1ctr44 strain, resulting in a survival rate equal to that of the wild type.

CCAGTAAGGACT-3’ for CTR1, 5’-NNGGATCTCAAGGATTAATAATG TACCCAGATTTGATAG-3’ and 5’-NNCTTCAGAACATCTCTGATGTC TATTCCTCT-3’ for CTR4, and 5’-NNGGATCCCTTTGCTCAGAACCAGT-3’ and 5’-NNGAGTTCTTGGGAAATCCGGAAGG-3’ for CMT1. The PCR products were then cloned into the pHAE-NEO plasmid between the BamHI and Xhol sites for CTR1 and CTR4, and the BamHI and SacI sites for CMT1. Upstream sequences of CTR1, CTR4 and CMT1 were amplified using the primers 5’-NNGG GCCCTGTCCTCTACATCCTCCAACA-3’ and 5’-ATGCCCAACATGACTTG CTGCCA-3’ for CTR1, 5’-NNGGCCCGCACATGGTTGGAATCAGGAC-3’ and 5’-ACAAAACGCCGCCCTTGAGGAC-3’ for CTR4, and 5’-NNNTGGAAGGAGAC CACATCTGACATCCGATA-3’ and 5’-GGACAGCCGACATCGCGTCG-3’ for CMT1. The PCR products were then cloned into the pHAE-NEO plasmid, between the Apal and Smal sites for CTR1 and CTR4, and the Xhol and Smal sites for CMT1. The integration cassettes were then amplified, and the resulting PCR products were used to transform the wild-type B99 strain. Transformants were tested by diagnostic PCR, and correct integrations of the HA tag were confirmed by western blot analysis.

The CTR4 open reading frame was mutated by PCR (Supplementary Fig. 6A). CTR4 genomic DNA was amplified using two primer pairs 5’-NNNNCTGCGAG TTTTGTTGTGCTTCAAGA-3’ and 5’-CTATGCTGTCCTCCGCGGAGATC CATATCCATTGCCATGGC-3’, and 5’-CCGGGCAACAGAGACACCGCACATG-3’ and 5’-NNNNCCCGGGTAAAGGTTAATCTGGAACCATGCTGATGGTAAACA ACAGGCGCCCTTACGAC-3’. The resulting PCR products were cloned by overlapping PCR, and the resulting product was cloned into the CTR4HA integration cassette, to replace the CTR4 upstream sequence. The mutated plasmid was sequenced to confirm the mutated codon. The correct mutation plasmids were then amplified to generate integration cassettes, which were used to transform ctrl1ctr44 cells. Correct integrations were confirmed by diagnostic PCR, followed by spotting assays and western blots.

Capsule formation and release. Cells were grown overnight in SC medium and then washed three times with H_2O. The cells were resuspended in RPMI medium supplemented with 10% fetal calf serum (FCS) and incubated for 3 days at 37 °C, 5% CO_2. Capsule release experiments were performed as previously described\(^_2\). Briefly, capsule release was induced in RPMI medium supplemented with 10% FCS for 5 days at 37 °C, 5% CO_2. One milliliter aliquot of cell culture was removed and incubated at 70 °C to denature enzymes. The resulting supernatant samples were filtered using a 0.2-μm filter to remove fungal cells, followed by separation in an agarose gel at 4 °C and 25 V overnight. The capsule molecules were then transferred on a nylon membrane. Immunoblotting was performed using the monoclonal antibody 18B7 at a 1:10,000 dilution\(^_3\).

Biofilm formation. Cryptococcus cells were grown in SC medium overnight at 30 °C. The cells were then washed three times with PBS and resuspended to an A_600 of 1.0 in SC medium. The cell culture (100 μl) was transferred to 96-well plates, and the plates were incubated at 37 °C for 24 h. Each well was washed with PBS five times to remove non-adherent cells. A 100-μl aliquot of 0.1% crystal violet solution was added to each well and incubated for 15 min at 30 °C. Excess crystal violet was washed five times with PBS. A 100-μl aliquot of 30% glacial acetic acid was added and incubated for 4 h to release the crystal violet dye from the biofilm structure. Biofilm production was then quantified by measuring the absorbance of the released crystal violet dye at 570 nm.

Nucleic acid isolation and real-time PCR. DNA was isolated as previously described\(^_4\). Briefly, 5 ml of an overnight Cryptococcus cell culture in YPD was washed with water and resuspended in lysis buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA, 100 mM NaCl, 1% SDS, 2% Triton-X). Cells were lysed using a bead beater. The supernatant was mixed with 275 μl of 7 M ammonium acetate for 5 min at 65 °C. The DNA was precipitated with isopropanol, washed with 70% ethanol and resuspended in 50 μl of H_2O supplemented with RNase A. One microgram of genomic DNA was used for PCR, and 20 μg of genomic DNA was used for Southern blot analysis. RNA was isolated using the TRIzol reagent (Life Technologies), and Turbo DNase I (Life Technologies) was used to eliminate
were performed as described below. Infected mice were killed by exposure to CO2 lateral ventricle using a mouse brain stereotactic instrument. Fungal burden assays on SC agar at 30°C for 5 min. Lung and brain tissues were isolated, weighed and placed in 5 ml of PBS buffer. The tissues were then homogenized, and the suspension was plated for 5 h. The CFU in the College of Life and Health Sciences of Northeastern University. The CFU in the CFU experiments. All animal experiments were reviewed and ethically approved by the Research Ethics Committees of the College of Life and Health Sciences of Northeastern University. Six- to eight-week-old female A/J and C57BL/6 mice were purchased from the National Cancer Institute (USA) and Changsheng Biotech (China), respectively, and used for infection and fungal burden assays. Intranasal and intracerebral infections were performed as previously described.35 For intranasal infections, mice were intranasally infected with 10^5 fungal cells in 50 μl PBS. For intracerebral infections, mice were anesthetized and Cryptococcus cells in 3 μl of PBS were injected into lateral ventricle using a mouse brain stereotactic instrument. Fungal burden assays were performed as described below. Infected mice were killed by exposure to CO2 for 5 min. The tissues were then homogenized, and the suspension was plated on SC agar at 30°C for 3 days. For immunohistochemistry, tissues were isolated and fixed in paraformaldehyde. Fixed tissues were frozen and tissue sections (10-μm thick) were processed using a CRYOstat. Immunohistochemistry for haematoxylin and eosin staining were performed as previously described36. TUNEL staining was performed according to the manufacturer’s instructions (Roche). The human CFU sample was kindly provided by Dr Hao Zhang, MD (China Medical University). The CFU samples were pooled from three patients, each with a written formal consent. The utilization of human CFU samples was reviewed and ethically approved by the Laboratory Ethics Committees of China Medical University and the Research Ethics Committees of the College of Life and Health Sciences of Northeastern University. The CFU in human CFU was described as previously36.

Protein quantifications and SOD activity measurements. Immunoblotting signals were captured with ChemiDoc XR (Bio-Rad). Anti-β-actin (ab9110, Abcam; 1:1,000 dilution) and anti-histone H3 antibodies (4499P, Cell Signaling; 1:1,000 dilution) were used. The Protein Deglycosylation Mix kit (P6039S, NEB) was used as described in the manufacturer’s manual. Briefly, an overnight culture was treated with poly-lysine. The anti-HA antibody (1:300) was added and incubated at 4°C for 1 h with gentle shaking. The cells were then washed with PBS and resuspended in sorbitol buffer. Lysing enzyme (1L214, Sigma) supplemented with protease inhibitor (Roche) was used to digest the cell wall at 37°C. Cells were then washed with PBS and resuspended in PBS BSA solution and adhered to a glass slide treated with poly-L-lysine. The anti-HA antibody (1:300) was added and incubated at 4°C overnight, followed by washing with the PBS BSA solution. Secondary antibody (conjugated Alexa flour 488) was added and incubated at room temperature for 30 min. The slides were washed, mounted and observed using a LEICA DM6000CS microscope.

Microscopy analysis. Two-photon microscopy was performed using an LSM 7MP (Zeiss). After infection, tissues were removed and examined to identify GFP fluorescent signals. All images were acquired with the ×10 lens, and brain images were further magnified four times using the CROP function of the ZEN2012 software (Zeiss). All images were quantified using ZEN2012.

References

Acknowledgements

We thank Dr Ying-Lien Chen for providing the H99 strain. J.-Y.L. acknowledges Dr Peter Williamson (NIH, USA) for providing the ctr4Δ::URA5 and CTR4 complementation strains. C.D. acknowledges Dr Arturo Casadevall (Albert Einstein College of Medicine, USA) for providing the 18B7 antibody. C.D. acknowledges supports from the Natural Science Foundation of China (31300974) and the Fundamental Research Funds for Central Universities of China (N130120002). D.J.T. acknowledges the support from the United States National Institutes of Health grant GM041840.

Author contributions

Z.-Y.W., D.J.T. and C.D. participated in data analysis. Z.-Y.W., D.J.T. and C.D. wrote the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/ncomms/2014/ncomms5550/supplementary_information.html

Competing financial interests: The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprintsandpermissions/

How to cite this article: Sun, T.-S. et al. Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis. Nat. Commun. 5:5550 doi: 10.1038/ncomms5550 (2014).