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Abstract

This thesis presents methods for improving the accuracy and efficiency of
tasks performed using different kinds of industrial manipulators, with a
focus on the application of machining. Industrial robots offer a flexible and
cost-efficient alternative to machine tools for machining, but cannot achieve
as high accuracy out of the box. This is mainly caused by non-ideal properties
in the robot joints such as backlash and compliance, in combination
with the strong process forces that affect the robot during machining
operations. In this thesis, three different approaches to improving the
robotic machining accuracy are presented. First, a macro/micro-manipulator
approach is considered, where an external compensation mechanism is used
in combination with the robot, for compensation of high-frequency Cartesian
errors. Two different milling scenarios are evaluated, where a significant
increase in accuracy was obtained. The accuracy specification of 50 µm
was reached for both scenarios. Because of the limited workspace and the
higher bandwidth of the compensation mechanism compared to the robot,
two different mid-ranging approaches for control of the relative position
between the robot and the compensator are developed and evaluated. Second,
modeling and identification of robot joints is considered. The proposed
method relies on clamping the manipulator end effector and actuating the
joints, while measuring joint motor torque and motor position. The joint
stiffness and backlash can subsequently be extracted from the measurements,
to be used for compensation of the deflections that occur during machining.
Third, a model-based iterative learning control (ILC) approach is proposed,
where feedback is provided from three different sensors of varying investment
costs. Using position measurements from an optical tracking system, an error
decrease of up to 84 % was obtained. Measurements of end-effector forces
yielded an error decrease of 55 %, and a force-estimation method based on
joint motor torques decreased the error by 38 %.

Further investigation of ILC methods is considered for a different kind
of manipulator, a marine vibrator, for the application of marine seismic
acquisition. A frequency-domain ILC strategy is proposed, in order to
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attenuate undesired overtones and improve the tracking accuracy. The
harmonics were suppressed after approximately 20 iterations of the ILC
algorithm, and the absolute tracking error was reduced by a factor of
approximately 50.

The final problem considered in this thesis concerns increasing the
efficiency of machining tasks, by minimizing cycle times. A force-control
approach is proposed to maximize the feed rate, and a learning algorithm for
path planning of the machining path is employed for the case of machining in
non-isotropic materials, such as wood. The cycle time was decreased by 14 %
with the use of force control, and on average an additional 28 % decrease
was achieved by use of a learning algorithm. Furthermore, by means of
reinforcement learning, the path-planning algorithm is refined to provide
optimal solutions and to incorporate an increased number of machining
directions.
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1

Introduction

The topic of this thesis is on how to improve the accuracy and efficiency of
tasks performed using different kinds of industrial manipulators, by means
of adaptation, learning, and control. A major part of the thesis is dedicated
to the application of machining with industrial robots.

1.1 Background and Motivation

A common manipulator in today’s industry is the industrial robot, such as
the one shown in Figure 1.1. Industrial robots offer flexible solutions, in terms
of reconfiguration possibilities and the wide range of tasks they can perform.
Additionally, for machining applications, industrial robots are cost efficient
compared to conventional machine tools, such as computer numerical control
(CNC) machines.

Industrial robots can be accurately position controlled when moving in
free space, suitable for operations such as pick-and-place and spray painting.
However, when performing tasks that require the robot to come into stiff
physical contact with the environment, such as machining, high accuracy is
harder to achieve. A significant cause of the insufficient accuracy in machining
tasks performed with industrial robots, is the combination of comparably
low stiffness of the joints in a serial-kinematic manipulator and external
process forces affecting the end effector. Also, nonlinearities in the joints,
such as backlash and friction, further deteriorate the positioning accuracy.
Typically, the robot’s motion control is based on distributed feedback from
the angle measurements of the individual joint motors. Consequently, the
desired arm-side or task-space measurements are not available. Since the
major part of the induced position deflections in the machining processes
appear on the arm-side of the robot joints, they cannot be detected by the
motor-angle measurements. As a result of these issues, machining operations
performed with industrial robots are not straightforward to perform [Zhang
et al., 2005a; Abele et al., 2011]. The machining tolerances generally cannot
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Chapter 1. Introduction

Figure 1.1 A conventional ABB industrial robot.

be met—typical values of the accuracy that can be achieved with CNC
machines are in the range of 1 µm, and approximately two magnitudes higher
for conventional industrial robots. This has limited the usage of industrial
robots for performing machining operations, which motivates the need for
developing new control strategies for improving the accuracy of robotic
machining tasks.

In this thesis, three different approaches to increasing the accuracy of
machining operations performed with industrial robots are investigated.
First, a macro/micro-manipulator configuration for high-bandwidth online
compensation of the measured robot deviation is considered. Two different
robot cells are developed and evaluated in a series of milling experiments in
aluminum and steel. Also, since the considered type of micro manipulator
has a limited workspace, mid-ranging control strategies are developed for
controlling the relative position of the manipulators.

Second, the non-ideal properties of the robot joints that lower the position
accuracy are modeled, and a method for identifying the unknown joint
parameters is presented.

Third, an iterative solution to increasing the absolute accuracy is
developed, where feedback from three different sensors are used for the
proposed iterative learning control (ILC) algorithms. The proposed solution
is evaluated in a series of milling experiments in aluminum.

The subject of ILC is further investigated for a different kind of
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1.1 Background and Motivation

manipulator; a marine vibrator. By precise position control of the marine
vibrator, it can be used to emit well-defined signals in a specified frequency
range, which is required for the intended use in marine seismic acquisition.
The objective of marine seismic acquisition is to map the ocean floor, which is
achieved by analyzing the reflections of the signals emitted by the vibrator.
Since it has been found that frequencies above 100 Hz may interfere with
marine animal life, the output of the vibrator must be accurately controlled
to not emit higher frequencies. However, as marine vibrators are advanced
mechanical systems, nonlinear effects and high-frequency harmonics are
present, which makes the control problem challenging. Modeling of the
marine vibrator, and a subsequent frequency-domain ILC algorithm is
presented. Additionally, an adaptive algorithm for reidentification of the
vibrator dynamics is presented. Both methods are evaluated using an
experimental setup in air.

Another aspect of machining that is considered in this thesis, is how to
increase the efficiency of the operation by adjusting the feed rate in order to
maximize the material removal. If a certain task is to be performed a large
amount of times, reductions in cycle time will generate considerable cost
savings over time. In the case of machining tasks, cycle-time reductions can be
achieved by removing as much material per time unit as possible. The limiting
factor to the material removal rate is the resulting reaction force on the tool
during machining, since a too strong force will break the tool or scorch the
workpiece. Thus, it is desirable to strive to always applying the maximum
allowed force during machining, which can be achieved by adjusting the
feed rate of the workpiece. The reaction force does, however, nonlinearly
depend on several time-varying parameters, motivating the need for an
adaptive control structure that can exercise precise material removal control
in varying cutting conditions. Furthermore, for machining tasks performed
in non-isotropic materials such as wood, additional cycle-time reductions can
be achieved by intelligent path planning.

Modeling of the robot and the machining process dynamics, and a
subsequent model-based adaptive control structure for feed-rate control is
presented. A learning algorithm for optimizing the machining path, which is
independent of a priori information, is presented. The methods are combined
and verified in both simulations and milling experiments. A subsequent
refinement of the path-planning algorithm, based on reinforcement learning,
is presented. Furthermore, the problem is extended by considering additional
milling directions, and a proposed solution using feature-based Q-learning is
presented and evaluated in simulations.
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Chapter 1. Introduction

1.2 Contributions

The main contributions of this thesis are:

• Modeling and control of an external position-compensating micro
manipulator, experimentally verified using two different robot cells;

• Two different adaptive mid-ranging approaches to position control of
the relative position between the macro and micro manipulator;

• Modeling and identification of robot joints using the clamping method;

• An ILC approach to increasing the absolute accuracy for machining,
using feedback from three different sensors;

• A frequency-domain ILC algorithm for position control of a marine
vibrator, in combination with an adaptive reidentification algorithm;

• A learning approach to cycle-time minimization for machining tasks,
based on adaptive force control in combination with a path-planning
algorithm;

• A reinforcement-learning approach to minimizing cycle times by
intelligent path planning, considering up to four machining directions.

1.3 Publications

Preliminary versions of parts of the research presented in this thesis was
published in the Licentiate Thesis by the author:

Sörnmo, O. (2013). Control Strategies for Machining with Industrial Robots.
Licentiate Thesis ISRN LUTFD2/TFRT--3261--SE. Department of
Automatic Control, Lund University, Sweden.

The publications on which this thesis is based are presented in the following:

Olofsson, B., O. Sörnmo, U. Schneider, A. Robertsson, A. Puzik, and
R. Johansson (2011). “Modeling and control of a piezo-actuated
high-dynamic compensation mechanism for industrial robots”. In:
IEEE/RSJ Int. Conf. Intelligent Robots and Systems. San Francisco,
CA, pp. 4704–4709.

Sörnmo, O., B. Olofsson, U. Schneider, A. Robertsson, and R. Johansson
(2012). “Increasing the milling accuracy for industrial robots using a
piezo-actuated high-dynamic micro manipulator”. In: IEEE/ASME Int.
Conf. Adv. Intelligent Mechatronics. Kaohsiung, Taiwan, pp. 104–110.
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1.3 Publications

Schneider, U., B. Olofsson, O. Sörnmo, M. Drust, A. Robertsson, M. Hägele,
and R. Johansson (2014). “Integrated approach to robotic machining
with macro/micro-actuation”. J. Robotics and Computer-Integrated
Manufacturing 30:6, pp. 636–647.

The first two publications were developed as a cooperation between the
author and B. Olofsson, and equal contribution is asserted. The author
was main responsible for the experimental verification and B. Olofsson was
responsible for the modeling and control development. A. Puzik developed
the considered micro manipulator and U. Schneider took part in the
implementation and the experiments. A. Robertsson and R. Johansson
provided feedback on the manuscripts.

The third publication was developed as a cooperation between the
author, B. Olofsson and U. Schneider, and equal contribution is asserted.
A. Robertsson, M. Hägele, and R. Johansson provided feedback on the
manuscript.

Sörnmo, O., B. Olofsson, A. Robertsson, and R. Johansson (2013). “Adaptive
internal model control for mid-ranging of closed-loop systems with
internal saturation”. In: IEEE/RSJ Int. Conf. Intelligent Robots and
Systems. Tokyo, Japan, pp. 4893–4899.

This publication has the author as main contributor. B. Olofsson assisted
with theoretical and technical discussions and together with A. Robertsson
and R. Johansson provided feedback on the manuscript.

Lehmann, C., B. Olofsson, K. Nilsson, M. Halbauer, M. Haage, A.
Robertsson, O. Sörnmo, and U. Berger (2013). “Robot joint modeling
and parameter identification using the clamping method”. In: Proc.
IFAC Conf. Manufacturing Modeling, Management, and Control. St.
Petersburg, Russia, pp. 843–848.

This publication is based on an idea proposed by K. Nilsson, which
was realized by B. Olofsson with the assistance of the remaining authors.
Experiments were performed by C. Lehmann and M. Halbauer.

Cano Marchal, P., O. Sörnmo, B. Olofsson, A. Robertsson, J. Gómez Ortega,
and R. Johansson (2014). “Iterative learning control for machining with
industrial robots”. In: IFAC World Congress. Cape Town, South Africa,
pp. 9327–9333.

This publication was developed as a cooperation between the author,
P. Cano Marchal and B. Olofsson. The author was main responsible for
the experimental verification and P. Cano Marchal was responsible for the
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Chapter 1. Introduction

modeling and control development, with assistance from the author and
B. Olofsson. A. Robertsson and R. Johansson provided feedback on the
manuscript.

Sörnmo, O., B. Olofsson, A. Robertsson, and R. Johansson (2012).
“Increasing time-efficiency and accuracy of robotic machining processes
using model-based adaptive force control”. In: Int. IFAC Symp. Robot
Control. Dubrovnik, Croatia, pp. 543–548.

Sörnmo, O., B. Olofsson, A. Robertsson, and R. Johansson (2015). “Learning
approach to cycle-time minimization of wood milling using adaptive
force control”. ASME J. Manufacturing Science and Engineering 138:1,
pp. 011013–011013-11. doi: 10.1115/1.4030751.

The above publications have the author as main contributor. B. Olofsson
assisted with theoretical and technical discussions and together with
A. Robertsson and R. Johansson provided feedback on the manuscripts.

Sörnmo, O., B. Bernhardsson, O. Kröling, P. Gunnarsson, and R. Tenghamn
(2015). “Frequency-domain iterative learning control of a marine
vibrator”. J. Control Engineering Practice. Submitted.

This publication was developed as a cooperation between the author and
B. Bernhardsson. O. Kröling and P. Gunnarsson provided technical assistance
and discussions, and together with R. Tenghamn assisted the author in
writing the manuscript.

Other Publications

The following publications, in which the author has contributed in related
areas, are not part of the thesis:

Olofsson, B., O. Sörnmo, U. Schneider, M. Barho, A. Robertsson, and R.
Johansson (2012). “Increasing the accuracy for a piezo-actuated micro
manipulator for industrial robots using model-based nonlinear control”.
In: Int. IFAC Symp. Robot Control. Dubrovnik, Croatia, pp. 277–282.

Sörnmo, O., A. Robertsson, and A. Wanner (2012). “Force controlled
knife-grinding with industrial robot”. In: IEEE Multi-Conference on
Systems and Control. Dubrovnik, Croatia, pp. 1356–1361.

Olofsson, B., O. Sörnmo, A. Robertsson, and R. Johansson (2014).
“Continuous-time gray-box identification of mechanical systems using
subspace-based identification methods”. In: IEEE/ASME Int. Conf. Adv.
Intelligent Mechatronics. Besançon, France, pp. 327–333.

All publications are available for download from
http://www.control.lth.se/Publications.html.
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1.4 Thesis Outline

1.4 Thesis Outline

In Chapter 2, two different macro/micro-manipulator setups for increasing
milling accuracy are introduced. Modeling and control of the micro
manipulator as well as experimental verification in different milling scenarios
are presented. Chapter 3 presents an adaptive method for performing
mid-ranging control of a macro/micro-manipulator setup, and the method is
evaluated using a mock-up setup. Modeling and identification of robot joint
properties are found in Chapter 4. Increasing machining accuracy by means of
ILC is investigated in Chapter 5, where three different methods are developed
and evaluated. Further investigation of ILC is provided in Chapter 6, where
a frequency-domain algorithm is developed for position control of a marine
vibrator. Cycle-time minimization of machining processes, by means of
feed-rate control and path planning, is considered in Chapter 7. An adaptive
force control strategy in combination with a learning algorithm for path
planning is presented and assessed in milling experiments. In Chapter 8,
a reinforcement-learning approach to the path-planning problem is taken,
and the problem is extended to incorporate additional machining directions.
Finally, conclusions are drawn in Chapter 9.
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2

Macro/Micro-Manipulator

Approach to Machining

2.1 Introduction

This chapter is based on the publications [Olofsson et al., 2011b], [Sörnmo
et al., 2012b], and [Schneider et al., 2014].

In the EU/FP7 project COMET [COMET, 2013], the aim was to increase
the accuracy of machining tasks for industrial robots. In particular, milling
solutions of accuracies within 50 µm, were developed. In order to achieve this,
the proposed approach was divided into four parts, as displayed in Figure 2.1.
This chapter considers the method represented by the green jigsaw-piece in
Figure 2.1; ”High Dynamics Compensation Mechanism”.

Two different robot cell setups are presented in this chapter; a prototype
cell for one-dimensional milling in aluminum and a complete robot cell with

Figure 2.1 The four-part approach to machining of the EU/FP7
COMET-project [COMET, 2013].
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2.1 Introduction

an integrated approach to three-dimensional robotic machining in steel. Both
cells utilize macro/micro actuation with a conventional industrial robot and
an external piezo-actuated 3D compensation mechanism [Puzik et al., 2009;
Puzik, 2011].

Modeling of the dynamic properties of the compensation mechanism and
how the subsequent control can be designed to obtain satisfactory milling
results is presented. It is shown how nonlinear effects in the mechanism can be
handled and how oscillations that occur because of the resonant mechanical
construction can be reduced by using appropriate control-design methods.
Additionally, for the complete robot cell, a mid-ranging control strategy
is designed for the integrated macro/micro manipulator control, which is
subsequently implemented.

Experimental verifications of the proposed control structures for
machining with industrial robots are performed, where results from milling
tasks in both aluminum and steel are presented. The experimental verification
contrasts the milling accuracy obtained using the compensation mechanism
to the standard uncompensated case, as well as to compensation using only
the robot.

Background

Motion control for industrial robots has been studied for several decades and
the development has thus reached a mature level [Spong et al., 2006; Siciliano
et al., 2009]. The joints of the robot are typically position controlled, while the
Cartesian end-effector position and orientation are estimated based on the
forward kinematic relations, i.e., no explicit workspace sensing is used. While
certain methods and commercial products offered by robot manufacturers
exist for achieving very high position accuracy for movement of the robot
end effector in free space or under constant load, achieving this in the
presence of dynamic process forces affecting the end effector is much more
challenging. Insufficient position accuracy in machining with industrial robots
is a well-known problem in manufacturing; an experimental investigation
was presented in [Schneider et al., 2013a]. The accuracy tolerances in
manufacturing processes are usually in the range of 50 µm or lower [COMET,
2013]. This can typically not be achieved using a conventional industrial robot
in application scenarios where strong process forces are required to execute
the desired task.

The fundamental problem of insufficient position accuracy of the robot
in the presence of process forces primarily originates from non-ideal joint
properties, such as backlash, friction, and compliance of the gear box, see
e.g., [Hovland et al., 2002; Ruderman et al., 2009; Bittencourt et al., 2010].
These properties significantly degrade the position accuracy of the robot, and
consequently, the accuracy of the machined parts. The feedback control of
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Chapter 2. Macro/Micro-Manipulator Approach to Machining

the robot joint positions is typically based on sensor data from the motor side
of the gear box, whereas the primary interest in applications is the arm-side
positions, since they represent the actual workspace position, given that link
flexibilities are neglected.

State of the Art

Previous approaches to increasing the position accuracy in robotic machining
are primarily based on kinematic calibration [Roth et al., 1987; Schröer et
al., 1997; Joubair et al., 2013] and stiffness modeling of the manipulator
[Abele et al., 2007; Zhang et al., 2005b; Wang et al., 2009; Pan and Zhang,
2009; Reinl et al., 2011; Dumas et al., 2011; Tyapin et al., 2014]. In the
kinematic calibration procedure, the kinematic parameters of the robot, e.g.,
the Denavit-Hartenberg parametrization [Denavit and Hartenberg, 1955], are
determined with high accuracy using, e.g., optical measurement systems for
a constant load attached to the robot end effector. A method for modeling
and identifying the robot joint properties is considered in Chapter 4.

Other approaches to increasing the position accuracy in robotic
machining processes are based on sensor data from high-precision 3D or
6D position-measurement sensors [Schneider et al., 2013b], also referred
to as coordinate measuring machines (CMM) [Cuypers et al., 2009]. The
sensor data can be used to provide end-effector position feedback for online
corrections. The main limitation of these methods in machining is the
disturbance rejection bandwidth at the end effector of the robot manipulator,
but also communication delays for sensor data and noise in the measurements
influence the achievable performance. As a result of the cutting process,
high-frequency disturbances on the robot end-effector position are to be
expected. Therefore, a high-bandwidth position control of the robot is
essential in order to achieve sufficient accuracy of the machined parts. As
relatively low feed rates and fast spindle speeds are used for the experiments
in this chapter, chatter in the milling process is not considered. For the
case of high-speed milling, the methods for detecting and avoiding chatter
presented in [Van Dijk et al., 2010] could be used.

Another set of methods proposed for increasing the accuracy of industrial
manipulators is based on iterative learning control (ILC). An ILC approach
is considered in Chapter 5.

In contrast to the approaches described in the previous paragraphs,
the strategy proposed in this chapter comprises workspace sensing using
6D position sensors, combined with macro/micro actuation. The concepts
of macro and micro manipulators were suggested in [Egeland and Sagli,
1990; Sharon et al., 1993], together with a control architecture for increased
bandwidth of the end-effector position control. The macro actuator has
a large workspace, but a limited position-control bandwidth. Typical
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2.1 Introduction

values for the bandwidth of the end-effector position control for industrial
manipulators are in the range of 10–30 Hz, depending on configuration
[Schneider et al., 2013a]. In contrast, the micro manipulator has significantly
higher bandwidth, but a geometrically limited workspace. Hence, the micro
manipulator is to compensate for the high-frequency position deviations
that occur during milling, which the macro manipulator per se is unable to
compensate for because of its limited disturbance rejection bandwidth at the
end effector. The notions of macro/micro actuation and manipulators have
been adopted in this chapter.

Piezo-actuated mechanisms based on flexure elements have been proposed
for nano manipulation previously, e.g., [Liaw and Shirinzadeh, 2010; Li
and Xu, 2011]. Although the compensation mechanisms considered in this
chapter utilizes similar components in their mechanical designs, there are
certain differences. Previous designs were designed for compensation in
micro and nano manipulation, whereas the micro manipulators considered in
this chapter are designed for machining processes with industrial robots,
where strong process forces are required to fulfill the specified task.
Nevertheless, the control design in [Li and Xu, 2011] relates to the control
algorithms developed for the micro manipulator in this thesis. Further
research in this area is presented in [Eielsen et al., 2015], where control
design for high-accuracy tracking using repetitive control in the context of
piezo-actuated flexure-based mechanical systems was presented.

Problem Formulation

The objective of the research presented in this chapter is to develop solutions
to increase the accuracy of milling operations performed with industrial
robots. To this purpose, two different setups are considered. The aim of the
first setup is to maximize the absolute accuracy, as well as the workpiece
surface accuracy for one-dimensional aluminum millings, performed in each
of the Cartesian directions using a prototype of the robot cell. The aim of
the second setup is to develop a complete robot cell with an accompanying
integrated control architecture, to the purpose of high-accuracy 3D robotic
machining in steel. The objective of the second setup is to obtain a mean
absolute error below 50 µm, and to maximize the surface accuracy of the
machined part.

The long-term goal of the research presented in this chapter is to enable
manufacturing with industrial robots, based on CAD specifications, achieving
machine-tool accuracy of the produced parts.

Accuracy Definitions

The terms used in this thesis to describe the accuracy of machining tasks
are defined here. Figure 2.2 illustrates the concepts of absolute and surface
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Desired surface

Actual surface

Absolute
accuracy

Figure 2.2 Illustration of absolute and surface accuracy. The dashed black
line represents the desired surface, whereas the solid black line shows the
actual surface obtained from milling. The dashed red line is the mean of
the actual surface.

accuracy. The absolute accuracy is a measure of how close to the desired
surface the actual obtained surface is, in this thesis measured by the mean
absolute error (MAE). The surface accuracy describes the smoothness of the
actual surface, i.e., the deviation around the mean of the actual surface.

2.2 System Topology

In this section, the system topology for both the prototype and the complete
robot cell are described. In addition, the communication interfaces and
execution aspects for the different hardware components are discussed.

Two different configurations can be considered for robotic machining.
First, the robot can carry the spindle, while the workpiece is attached to a
fixed base. In this configuration, the robot benefits from its large workspace
and can machine large-scale workpieces. In the second configuration, the
robot holds the workpiece, whereas the spindle is in a fixed position in
the cell. This setup is suitable for smaller and lighter workpieces, as the
workpiece geometry and mass are limited by the workspace and the payload
of the robot. Also, this configuration allows the robot to have access to
different machining operations by moving to different fixed tools within the
workcell. Additionally, handling operations can be performed, facilitating the
integration in automated production lines. In the research presented in this
chapter, the second configuration was chosen; thus the spindle was attached
to the micro manipulator and the workpiece was held by the robot. This was
motivated by the heavy weight of the micro manipulator together with the
machining spindle.

Prototype Robotic Machining Cell

The prototype machining cell was developed in the lab at Fraunhofer IPA,
Stuttgart, Germany. The cell consists of a REIS industrial robot of model
RV40 [Reis GmbH, 2011] with a maximum payload of 40 kg, as the macro
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y
z
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Figure 2.3 The prototype machining cell for real-time compensation of
position errors during machining operations, where the robot holds the
workpiece and the milling spindle is attached to the micro manipulator.
A close-up of the micro manipulator, as seen from the opposite side, is
displayed to the right in the figure. Photo courtesy of Fraunhofer IPA,
Stuttgart, Germany.

manipulator. The spindle was attached to the micro manipulator and the
macro manipulator held the workpiece, which for this setup was a block of
aluminum (AlMg3,5). The setup is such that both face milling and peripheral
milling, also referred to as radial milling, can be performed. An overview of
the prototype machining cell is displayed in Figure 2.3.

Prototype Micro Manipulator Accurate positioning and high actuation
bandwidth—high relative to the robot end-effector bandwidth—are key
features for the design of an external compensation mechanism, i.e., the
micro manipulator, for robot machining [Sharon et al., 1993]. The objective
is to use the micro manipulator for keeping the relative position between
tool and workpiece according to the specified reference. A prototype micro
manipulator with three translatory axes [Puzik et al., 2009], and a serial
structure enabling position compensation in a Cartesian coordinate system,
was used for the prototype machining cell. The axes were driven by piezo
actuators, whose extensions are changed by applying voltages and the
extensions are measured using strain gauges, attached to the actuators.
Piezo actuators provide a high bandwidth from applied voltage to extension,
and can handle forces up to 30 kN. The process forces for the applications
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x

y

Figure 2.4 Actuation principle for the x-, y-, and z-axes of the propotype
micro manipulator. The piezo actuators are marked in red [Puzik et al.,
2009].

targeted with the proposed machining robot cells range up to 1 kN. Hence,
the micro manipulator can withstand the process forces expected in a
machining task. The major benefit of choosing solid-state joints is the
lack of backlash and friction, which is essential for micrometer positioning
accuracy. Furthermore, the design incorporates solid-state flexure elements
for increasing the compensation range, as compared to the piezo-actuator
extension. A schematic drawing of the actuation principle of the micro
manipulator is provided in Figure 2.4.

The flexure mechanism is designed such that the gear ratio of the
displacement of the spindle and the extension of the piezo actuator is
approximately five in each direction. This realizes a compensation range
for the machining spindle of approximately 400–500 µm in each Cartesian
direction. Referring to Figure 2.3, the Cartesian axes for this setup are
hereafter called x, y, and z, respectively. The Cartesian displacement of the
micro-manipulator end-effector plate is measured using capacitive sensors,
one in each direction. For further details on the mechanical design of the
prototype micro manipulator, see [Puzik et al., 2009; Puzik et al., 2010;
Puzik, 2011].
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In order to develop the control structure for the micro-manipulator
unit, all sensors and actuators were integrated using a dSPACE system of
model DS1103 [dSPACE GmbH, 2007]. The proposed control design was
implemented in Matlab Simulink, then converted to C-code using the
Real-Time Workshop toolbox [MathWorks Inc., 2010]. The compiled C-code
was installed in the dSPACE system and executed at a sampling frequency
of 10 kHz.

Optical Tracking System To the purpose of measuring the deflections of the
macro manipulator, that are to be compensated by the micro manipulator,
a Keyence laser sensor of model LK-G87 [Keyence Corp., 2006], with a
resolution of 0.2 µm was used as tracking system.

Compensated and Uncompensated Milling In order to illustrate the benefit
of the micro manipulator, the milling experiments were performed both in
a setting where compensation with the micro manipulator was utilized, and
in a setting with the spindle rigidly attached to a fixed base. In the latter
setup, no compensation was performed. The two experimental settings are
displayed in Figure 2.5.

In the experiments without compensation, the robot configuration was
mirrored, with respect to the center plane of the robot, as compared to the
configuration chosen in the experiments with compensation. Consequently,
the compliance properties of the macro manipulator in the two configurations
are equivalent, which is important in order to make the compensated and
uncompensated milling results comparable.

Complete Robotic Machining Cell

In this subsection, the hardware components of the proposed complete
machining cell and their characteristics are described in detail. The cell was
developed in the lab at Fraunhofer IPA, Stuttgart, Germany. An overview
of the cell is shown in Figure 2.6, which contains an industrial robot,
the external compensation mechanism, an optical 6D tracking system, a
machining spindle, and a CNC controller.

Robot and CNC Controller The foundation of the robot cell was a KUKA
industrial robot of model KR125 [KUKA Roboter GmbH, 2013]. The joint
positions of the robot were controlled using a Beckhoff TwinCAT CNC
controller [Beckhoff Automation GmbH, 2013]. Based on the kinematics of
the robot, Cartesian end-effector control could be achieved. Compared to a
conventional robot controller, the CNC controller offers several advantages.
First, path-planning algorithms, which are optimized for machining tasks, are
available. Second, from an implementation point-of-view, the most important
feature is the open high-speed interface, which enables online position and
orientation corrections based on external sensor data. The implemented
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Figure 2.5 Prototype machining cell for evaluation of the effectiveness of
the proposed micro manipulator, which is seen to the left. The machining
spindle to the right is rigidly attached to the base, and is utilized for milling
experiments without compensation.

robot controller is executed on a programmable logic controller (PLC).
The integrated Codesys PLC programming environment provides additional
possibilities for the implementation of advanced controller structures, such
as the architecture proposed in this research.

Micro Manipulator A revised design of the micro manipulator described
previously, comprising a parallel actuation principle, was shown to improve
the dynamic properties of the mechanism significantly [Schneider et al.,
2013c]. In particular, as a result of the reduction of the end-effector mass
and a modified geometry of the solid-state flexure elements, higher bandwidth
could be achieved. A photo of the mechanical design of the mechanism and
the actuation axes are displayed in Figure 2.7. This version of the micro
manipulator was used in the complete machining cell.

Similar to the prototype version, the revised micro manipulator was
equipped with integrated strain-gauge sensors in the piezo actuators, and
capacitive sensors to measure the 3D position of the end-effector plate.

Optical Tracking System In order to acquire workspace position and
orientation measurements, a Nikon Metrology K600 optical tracking
system [Nikon Metrology, 2010] was chosen because of its high-speed
data streaming, large measurement volume, and the possibility to track
both position and orientation of multiple Cartesian coordinate systems
simultaneously. As the optical measurements were subject to disturbances
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Macro manipulator

Micro manipulator

CNC controller

Tracking system

Machining spindle

Figure 2.6 The developed complete robot cell for high-accuracy robotic
machining, including a macro/micro manipulator and an optical tracking
system.

from the milling process, such as emitted metal chips and dust, the coordinate
systems were tracked using a redundant number of light-emitting diode
(LED) units, which were attached to the rigid bodies to be tracked. For
the considered machining application, one coordinate system on the spindle
was measured with three LED units and one coordinate system on the
macro manipulator end effector was measured with four LED units. The
measurement frequency of the tracking system with this configuration
was 440 Hz and the absolute accuracy for each LED unit measured was
approximately 50–75 µm. The sensor data were retrieved using a transmission
control protocol data stream, connected to the CNC controller.

Machining Spindle The milling tool was attached to a Jäger Chopper 3300
high-frequency machining spindle [Alfred Jäger GmbH, 2013], which had a
concentricity of less than 2 µm. The spindle speed was set to 28 000 rpm,
which was justified by the fact that high rotation velocities reduce process
forces and the risk of exciting eigenmodes of the robot during the machining
task.
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Figure 2.7 Revised design of the micro manipulator with parallel actuation.
The Cartesian actuation coordinate system is indicated in red. A machining
spindle, with the tool and attached LED units for optical tracking, is
mounted on the micro-manipulator end effector. The actuation principle
of the micro manipulator is illustrated to the right, where the red arrows
represent the location of the piezo actuators.

Communication and Controller Execution Communication and timing are
critical for the proposed approach with a macro manipulator and additional
external sensors and actuators, since delays between control units reduce
the system performance significantly and might cause instability. Figure 2.8
shows the relevant control units with digital to analog converters (DAC)
and analog to digital converters (ADC). For each control unit, the execution
frequency is specified. The micro manipulator controller was executed on
a dSPACE signal processing system of model DS1103 [dSPACE GmbH,
2007]. The closed-loop control of the robot requires a high-speed interface
for specifying joint-position references in real-time, which the used CNC
controller provides.

2.3 Modeling and Control Design

In this section, the revised micro manipulator system is modeled and a
subsequent model-based control structure is proposed. Since identical control
structures were used for both micro manipulators, specific details for the
prototype micro manipulator are omitted. Additionally, exclusively for the
complete machining cell, the micro manipulator controller is integrated with
the macro manipulator controller using a mid-ranging control strategy.
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Figure 2.8 Hardware control units in the complete robot cell for machining,
and their execution frequencies.

Dynamic Characterization of the Micro Manipulator

Because of the inherent resonant character of the mechanical design—which
is a result of the utilized solid-state flexure elements—and the nonlinear
dynamics which appear in piezo actuators, accurate position control of the
micro manipulator without oscillations under milling-process disturbances is
a challenging control problem.

Nonlinear Dynamics in Piezo Actuators It is well-known that piezo
actuators exhibit a nonlinear relationship between the applied input voltage
and the corresponding position extension [Al Janaideh et al., 2009; Sun and
Yang, 2009]. Experiments were performed on the micro manipulator in order
to quantify the effect of the nonlinear dynamics in the piezo actuators, on the
position accuracy. The experiments indicated that the main nonlinearities
that needed to be handled were hysteresis and the creep phenomenon, where
the latter means that the extension of the piezo actuator increases over
time for a constant input voltage. Results from experiments where the input
voltages to the piezo actuators were alternatingly linearly increasing and
decreasing are shown in Figure 2.9. It is clear that the hysteresis needs to
be handled actively for accurate positioning [Olofsson et al., 2012]. Further,
experiments showed that the nonlinear creep phenomenon in the actuators
is a much slower process, and thus easier to handle. The creep effect was
quantified to an approximate rate of 0.02 µm/s for the respective piezo
actuator. Although different in nature, both of these nonlinear effects can be
reduced by using high-gain feedback, combined with integral feedback.

Frequency Characterization of the Mechanical Design In order to
characterize the frequency properties of the mechanical design of the
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Figure 2.9 Characterization of hysteresis in the piezo-actuator dynamics
along the x-axis of the micro manipulator in the case of a linear,
alternatingly increasing and decreasing, input with changing amplitude.
Note the complex behavior of the hysteresis, which exhibits both rate and
amplitude dependency.

micro manipulator, several frequency-response experiments were performed.
The power spectral densities of the output positions when exciting the
inputs of the piezo actuators with a chirp signal, for the different actuation
directions, are displayed in Figure 2.10. The spectra were estimated using
Welch’s method [Ljung, 1987]. An important property of the system from a
control point-of-view is the location of the first natural eigenfrequency. It is
noted that the characteristics are different in the three Cartesian actuation
directions. In particular, in the interesting frequency range of 0–150 Hz,
three major natural eigenfrequencies are visible for the dynamics along the
x-axis, whereas two along the y-axis, and only one along the z-axis. The first
eigenfrequency appears in the frequency range 50–80 Hz for all of the three
axes. The locations of the eigenfrequencies are important since they limit
the achievable bandwidth in the final closed-loop control system. Increasing
the bandwidth beyond poorly damped eigenfrequencies requires high control
actuation and the sensitivity to model errors is increased significantly.

Modeling of the Mechanical Design

In order to design position-control algorithms, it is advantageous to perform
modeling of the micro manipulator prior to the design. Motivated by
a control-oriented aim of the micro manipulator modeling, the approach
chosen in this chapter is to consider black-box input-output models, without
modeling the internal mechanical relationships. Moreover, an analytical
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Figure 2.10 Estimated power spectral densities of the output signal in the
Cartesian actuation directions of the micro manipulator when exciting with
a chirp signal.

modeling approach is intractable for the current setup, since there is no
straightforward mathematical description of the dynamics of the solid-state
flexure elements used in the micro-manipulator design.

Identification Based on Black-Box Models Using system identification
methods [Johansson, 1993], mathematical models describing the dynamics of
the micro manipulator can be determined. Discrete-time state-space models
of the innovation form were considered, stated as

{
xk+1 = Φxk + Γuk + Kek

yk = Cxk + ek
, (2.1)

where uk ∈ Rm is the input, xk ∈ Rn is the state vector, yk ∈ Rp

is the output, K is the corresponding Kalman filter gain matrix, and
ek is a white-noise sequence. The system model matrices S : {Φ, Γ, C}
in the state-space representation are identified using one of the available
implementations of subspace-based identification methods. The computer
tools used were the System Identification Toolbox [Ljung, 2010] in Matlab

and the State-Space Model Identification (SMI) Toolbox [Haverkamp and
Verhaegen, 1997]. In particular, the N4SID method [Overschee and De
Moor, 1994] and the MOESP algorithm [Verhaegen and Dewilde, 1992] were
utilized. During the identification of the models, the gain matrix K in a
Kalman filter [Kalman, 1960] for a minimum-variance estimation of the
states in the model was also determined based on the noise properties of
the identification data.
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The subspace-based identification methods were found to result in
models with superior fit to experimental data. In particular, the natural
eigenfrequencies of the micro manipulator were identified with significantly
higher accuracy with subspace methods, compared to identification of
time-series models [Johansson, 1993]. For further details on the system
identification procedure, see [Olofsson et al., 2011a; Sörnmo et al., 2012b].

Position Control of the Micro Manipulator

The position-control problem of the micro manipulator is divided into two
parts. First, the effects of the nonlinear dynamics in the piezo actuators need
to be reduced. Second, the oscillations that arise as a result of the mechanical
design need to be damped to achieve accurate position control. The control
structure that was chosen to handle these challenges is described next.

Inner Piezo-Actuator Control Loops As the extensions of the piezo
actuators in the micro manipulator are available for measurement with
the strain-gauge sensors, an inner feedback loop can be closed around the
nonlinear actuator and thus achieve sufficient control accuracy of the micro
manipulator. The utilized controller is a PID controller, whose most basic
continuous-time control law is stated as

u(t) = Kpe(t) + Ki

∫ t

0

e(τ)dτ + Kd
d

dt
e(t), (2.2)

where e(t) is the control error, i.e., the difference between the reference value
and the measured extension, and Kp, Ki, and Kd are controller parameters
to be determined as part of the design procedure. The derivative part
in the controller is low-pass filtered, in order to reduce the amplification
of high-frequency noise contaminating the measured signal from the
strain-gauge sensors. Considering the intended application scenario for the
micro manipulator—i.e., milling and other machining tasks—disturbances
from the cutting process are to be expected. The PID controller is also
accompanied by an anti-windup scheme [Åström and Hägglund, 2005], to
handle the case when the controller saturates the actuators. Discretization
of the continuous-time controller (2.2) for subsequent implementation in a
digital signal processor is straightforward [Åström and Wittenmark, 1997].

In order to reduce the effects of the nonlinear dynamics in the piezo
actuators, the proportional gain Kp and the integral gain Ki should be
increased as much as possible, while not resulting in a too high sensitivity
to disturbances that occur during the milling. Further, the derivative part
is important since it contributes with lead compensation in the system
dominated by hysteresis. An alternative method for explicit model-based
control combining feedforward and feedback was considered in [Olofsson et
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al., 2012], based on the generalized Prandtl-Ishlinskii model [Al Janaideh et
al., 2009].

Model-Based Feedback Control of the Micro Manipulator By utilizing the
identified state-space models of the linear dynamics, a state-feedback control
loop can be designed for each of the three Cartesian actuation directions
of the micro manipulator. However, new models need to be identified after
closing the inner feedback control loop for the piezo actuators, where the
reference signal to the inner PID control loop is considered as the input
signal instead. With this approach, the effect of the nonlinear dynamics of
the system is reduced and the nonlinear components are thus not degrading
the performance of the identification of the linear systems.

State feedback is an appropriate control structure for this kind of system,
since damping of the resonant modes in the micro manipulator can be
introduced by suitable control design. The control law for state-feedback
control of the system (2.1) can be written as

uk = L(xr
k − xk) + uf

k, (2.3)

where k represents a time index, the feedback gain matrix L ∈ Rm×n is
to be chosen, xr

k ∈ Rn is the vector with reference values for the states,

and uf
k ∈ Rm is the feedforward control signal. The design procedure is

to determine the gain matrix L by linear-quadratic (LQ) optimal control
[Åström and Wittenmark, 1997], which provides a suitable parametrization
of the trade-off between attenuation of the resonances in the system and the
utilization of control signal.

Since all states in the state-space models of the micro manipulator are
not available for direct measurement, a Kalman filter [Kalman, 1960] is
introduced for estimation of the states, based on the measured position signal,
the system input, and the identified model. Consequently, the proposed
control law is a linear-quadratic Gaussian (LQG) controller. The Kalman
filter is organized as

{
x̂k+1 = Φx̂k + Γuk + K(yk − Cx̂k)

ŷk = Cx̂k
, (2.4)

where the estimated states x̂k and the estimated output ŷk have been
introduced [Åström and Wittenmark, 1997]. As previously mentioned, the
Kalman filter gain matrix K for minimum-variance estimation of the states
in the model is obtained from the identification procedure, since the noise
model component is also included in the innovation model structure (2.1). In
particular, the subspace-based identification methods employed provide the
Kalman filter gain matrix for each of the models.

In order to eliminate stationary errors in the position-control loop,
integral action is also introduced in the state-feedback controller. The integral
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action is achieved by extending the state vector with the integral state xi
k

according to

xi
k+1 = xi

k + h(rk − yk), xi
0 = 0, (2.5)

where the position reference signal rk and the sample time h have been
introduced. With this extra state, it is required that the state-feedback
gain vector L is augmented with one element and subsequently redesigned
to accommodate the introduced integral state. Various approaches can be
chosen to handle the feedforward control signal. In the control architecture
presented in this chapter, the feedforward control uf

k is chosen as a direct

term from the reference signal, i.e., uf
k = lrrk. The parameter lr influences

the response of the controller to changes in the reference signal.
To summarize the design of the position controller for the micro

manipulator, the proposed structure is displayed in Figure 2.11.

Control Architecture

To the purpose of establishing a macro/micro-manipulator configuration
for milling with industrial robots, a controller for the micro manipulator
tool position was developed in the previous section. In this section, the
macro-manipulator controller is described, and both of the manipulator
controllers are integrated using a mid-ranging control strategy.

Macro-Manipulator Controller The geometric path to be tracked is planned
offline using appropriate computer-aided manufacturing (CAM) software.
The position and orientation deviations occurring during the milling are
computed based on the measurements from the optical tracking system.
The orientation deviations are compensated by the macro manipulator
solely, whereas the position deviations are fed to a mid-ranging control
structure, described later in this section, which separates the error in the
frequency domain for subsequent compensation by the macro and micro
manipulators jointly. As the position deviations during the milling are
measured in Cartesian space, the macro manipulator corrections calculated
by the mid-ranging control structure need to be transformed to joint space.
To this purpose, the Jacobian matrix, expressing the differential kinematics
for the end-effector coordinate system of the robot, is used. Assuming
small position and orientation corrections, the Cartesian deviation δx ∈ R6

is transformed to joint space using the inverse of the Jacobian matrix
J(q) ∈ R6×6, which is dependent on the joint-angle configuration q ∈ R6,
according to

δq = J−1(q)δx (2.6)

where δq is the corresponding joint-angle correction. Given the expected
range of the Cartesian position corrections, which are smaller than 1 mm,
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Figure 2.11 Control architecture for the micro manipulator. The figure
illustrates the control strategy for one axis, but the control structures are
identical (except parameters) for all three Cartesian actuation axes.

the approximation using the Jacobian matrix stated in (2.6) can be justified
[Schneider et al., 2013b].

Micro-Manipulator Controller The micro manipulator is controlled and
actuated in Cartesian space, using the strategy presented previously in
this section for each axis separately. The complete model-based solution
is illustrated for one axis in Figure 2.11, with the reference value rmm

k as
input and the corresponding end-effector position as output. The reference
position rmm

k for each actuation axis is determined by a mid-ranging control
architecture, described in the next paragraph.

Mid-Ranging Control As mentioned earlier, the micro manipulator has
a limited workspace of approximately 0.5 mm along each Cartesian axis,
and thus the manipulator may reach its actuation limits when performing
advanced milling tasks, where strong process forces are required. Therefore,
a mid-ranging approach is considered for the complete machining cell,
in order to control the relative position between the macro and micro
manipulator. In the implementation, each Cartesian axis is considered
and controlled separately. The mid-ranging control strategy makes use
of the higher bandwidth of the micro manipulator, while striving to
keep the position of the micro manipulator close to the midpoint of its
workspace. The purpose is that the actuation limits of the micro manipulator
should not be reached [Allison and Isaksson, 1998]. The control approach
can be seen as a separation of the position error, computed from the
tracking sensor data, in the frequency domain, which lets the fast micro
manipulator handle the high-frequency deviations and the comparably slow
macro manipulator handle the low-frequency deviations. Several mid-ranging
control architectures have previously been proposed, such as the valve
position control (VPC), modified valve position control (MVPC) [Allison and
Isaksson, 1998; Allison and Ogawa, 2003], and internal model control (IMC)
[Gayadeen and Heath, 2009]. In this chapter, the MVPC control structure is
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Figure 2.12 The complete closed-loop system, for each Cartesian actuation
axis, of the proposed complete milling cell, using the mid-ranging MVPC
control architecture.

considered because of its widespread presence in applications in literature
and its appealing properties in terms of low complexity and robustness
to model uncertainty. A further investigation on mid-ranging control of
macro/micro-manipulator setups, based on adaptive IMC, is presented in
Chapter 3.

The complete closed-loop control system for the integrated macro/micro-
manipulator control, using the MVPC control architecture, is displayed in
Figure 2.12, where Cf and Cs are controllers, here chosen as PI controllers.
The systems Pf (displayed in Figure 2.11) and Ps represent the closed-loop
Cartesian position control systems of the micro and macro manipulator,
respectively. The relative position between the manipulators along each
Cartesian axis, which was measured by the optical tracking system, is
denoted pr

k, the relative position reference is denoted rr
k, and the desired

setpoint for the mid-ranged input is denoted rm
k . The latter is for the

current setup chosen such that the micro manipulator should operate in the
middle of its working range, for each actuation axis. The tuning guidelines
that are provided in [Allison and Ogawa, 2003] are based on lambda-tuning
for first-order models of Pf and Ps. Here, however, the models of the
micro-manipulator dynamics in the three Cartesian directions ranges from
order 2–7, see Section 2.4, and the dynamics contain several poorly damped
resonances. Even though a significant damping of the resonances in the
micro manipulator can be achieved with the LQG controller, the closed-loop
system naturally cannot be described using first-order systems. Hence, using
the tuning guidelines proposed in the mentioned references will not result
in satisfactory performance. Therefore, the parameters obtained from the
proposed design procedure in [Allison and Ogawa, 2003] were used as a
starting point, and were subsequently experimentally tuned in order to obtain
the desired performance.
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2.4 Micro-Manipulator Identification Results

Discrete-time state-space models of the form (2.1) for the linear dynamics
along the x-, y-, and z-axis of the micro manipulator were estimated based on
experimental data. First, models of the open-loop system were determined,
and subsequently models with the inner piezo-actuator control loops closed
were identified.

SIMO-Model Identification To the purpose of quantifying the cross
couplings between the actuation axes of the micro manipulator, identification
of single-input multiple-output (SIMO) models with the structure in (2.1)
was performed. Experimental data were collected when exciting the piezo
actuators with chirp signals and measuring the corresponding Cartesian
end-effector positions. The model input uk was the the input voltage to
the actuator, scaled to a nominal interval, and the three outputs yk were
the end-effector positions. The magnitude plot of the Bode diagram for the
identified model of order nine, obtained from the data when actuating along
the x-axis, is provided in Figure 2.13. From the model, minor cross coupling
between the x- and z-axes can be concluded, in particular when exciting close
to the natural eigenfrequencies. This might lead to vibrations transversal to
the actuation direction during machining. The corresponding Bode diagrams
for the SIMO-models obtained with actuation along the y- and z-axes verify
the coupling between the z- and x-axes, whereas they indicate that the y-axis
is decoupled from both the x- and z-axes.

Model Identification for Control Design In the modeling phase, the axes
can be assumed to be decoupled provided that the mechanical design is
made such that the motions of the different axes are sufficiently independent.
During the dynamic characterization of the micro manipulator and the
SIMO-model identification in the previous paragraph, minor cross couplings
between the x- and z-axes were observed. However, since the influence of
the coupling was minor, the assumption on decoupling was made in the
subsequent model-based control design. Instead, the cross coupling was
handled as a disturbance in the controller. Consequently, for the control
design, single-input single-output (SISO) models were considered for each
direction. The collection of experimental input-output data was performed
such that the input uk was the input voltage to the piezo actuator, scaled
to the same nominal interval for all axes, whereas the output yk was the
Cartesian position of the micro-manipulator end effector, as measured by
the capacitive sensor. For excitation of the system, chirp signals were chosen
as inputs. The model orders vary in the different actuation directions,
reflecting the number of natural eigenfrequencies, cf. the power spectral
densities in Figure 2.10. The determined model orders for the axes of the
micro manipulator are 7, 6, and 2, for the x-, y-, and z-axis, respectively.
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Figure 2.13 Bode magnitude plot of the discrete-time state-space
SIMO-model of the micro manipulator, with the scaled voltage to the x-axis
piezo actuator as input and the three Cartesian end-effector positions as
output.

The model-order selection was based on the singular values analysis of
the Hankel matrices computed as part of the identification procedure. The
Bode diagrams of the identified models are shown in Figure 2.14. It is
noted that there is good correspondence with the estimated power spectral
densities of the output in Figure 2.10, when comparing the location of the
natural eigenfrequencies. The normalized root mean square errors (NRMSE),
τNRMSE ∈ [−∞, 100] %, is a measure of the fit of the models to the
experimentally collected identification data, where 100 % indicates complete
model fit. Given N data points, the NRMSE is given by

τNRMSE = 100 ×
(

1 − ||WN − ŴN ||2
||WN − W N ||2

)
%, (2.7)

where WN is the validation output data, ŴN is the output from the estimated
model and W N is the mean of the validation output data. The NRMSE values
for the identified models in the x-, y-, and z-directions were 92.8 %, 88.7 %,
and 96.0 %, respectively. These values indicate that the identified models
capture the essential dynamics of the micro manipulator.

Furthermore, dynamic models were identified with the inner piezo-actuator
control loops closed. Since the differences compared to the open-loop models
presented in Figure 2.14 are visually negligible, the models with the closed
inner loop are not presented here.
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Figure 2.14 Bode magnitude plot of the discrete-time state-space models
identified using subspace identification for the dynamics along the x-,
y-, and z-axes of the micro manipulator. The location of the natural
eigenfrequencies can be compared to those in the power spectral densities
in Figure 2.10. The differences in the low-frequency gain between the axes
are explained by the different types of the respective piezo actuator and the
gear ratios.

2.5 Results from Prototype Machining Cell

In this section, experiments performed using the prototype machining cell
are presented. Results from milling experiments in aluminum, both for the
uncompensated and compensated cases, are provided.

Milling Experiments with Compensation

With the prototype experimental setup described in the first part of
Section 2.2, milling experiments in aluminum were performed. The macro
manipulator can be reconfigured such that milling can be executed in all three
directions of the micro manipulator. Results obtained during face milling in
the x-direction and peripheral milling in the y- and z-directions of the micro
manipulator are presented here. The experiments were performed with a feed
rate of 7.5 mm/s, a spindle speed of 28 000 rpm and a 1 mm depth of cut in
the face millings, and 1×10 mm2 in the peripheral millings.

X-direction In the first setting, face milling was performed, where the
surface orthogonal to the x-axis of the micro manipulator was machined.
Consequently, the micro manipulator was controlled in this direction. The
result of the milling experiment is displayed in Figure 2.15. The control
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Figure 2.15 Reference and measured position of the micro manipulator
during a face milling experiment in the x-direction (upper panel) and the
corresponding control error (lower panel).

error is defined as the difference between the reference value to the micro
manipulator control system and the measurement from the capacitive sensor
in the x-direction of the micro manipulator.

Y -direction The milling accuracy was further tested in a peripheral milling
scenario, where the compensation was performed along the y-axis of the
micro manipulator. It should be noted that this milling task is different
from the face milling presented in the previous paragraph, in the sense that
the process forces affect the macro manipulator differently. Furthermore,
the experiment was designed such that the macro manipulator was not
moving perpendicularly to the compensation direction. This situation can be
considered as a result of a poorly calibrated workpiece or industrial robot.
By utilizing the micro manipulator, this effect can be compensated since the
movement of the macro manipulator is tracked in real-time. The result of the
milling experiment is displayed in Figure 2.16. The displayed control error
is defined analogously to the case with face milling in the x-direction of the
micro manipulator.
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Figure 2.16 Reference and measured position of the micro manipulator
during a peripheral milling experiment in the y-direction (upper panel) and
the corresponding control error (lower panel).

Z-direction The third experiment was a peripheral milling along the z-axis
of the micro manipulator. The control performance of the micro manipulator
in the milling experiment is displayed in Figure 2.17.

Milling Experiments without Compensation

The same milling experiments described and presented in the previous
subsection were repeated, but with the machining spindle rigidly
attached—i.e., no online compensation was active. The results of the
experiments are evaluated in the subsequent sections.

Position-Control Results

A requirement for achieving accurately machined workpieces using the
proposed robot cell, is to have precise position control of the micro
manipulator. The control performance is evaluated from the millings
performed in each of the Cartesian directions, displayed in Figures 2.15–2.17.
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Figure 2.17 Reference and measured position of the micro manipulator
during a peripheral milling experiment in the z-direction (upper panel) and
the corresponding control error (lower panel).

From the lower panels of the plots it is noted that the control error is
approximately within ±5 µm in all directions, which is well within the
desired accuracy of 50 µm.

Absolute-Accuracy Results

The absolute accuracy of the milling experiment results, i.e., how close to the
desired absolute position the milling was performed, is considered here. As
mentioned previously, the process forces that arise during the milling result
in deflection of the robot position, which is measured by the optical tracking
system. In order to compare the uncompensated to the compensated case,
the MAE is considered. The MAE is defined as

MAE =
1

N

N∑

k=1

|ek| , (2.8)
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Table 2.1 MAE of tracking error, given in µm.

x-axis y-axis z-axis

MAE uncomp. 23.4 138.4 67.0
MAE comp. 1.6 1.9 1.9
Ratio 14.6 72.8 35.3

where k is the sample index, N is the number of measurement points, and ek

is the tracking error, calculated as the difference between the nominal and
measured position. The MAE values provide an indication of the obtained
control-accuracy performance.

In Table 2.1, MAE values for all Cartesian axes are presented, for both
uncompensated and compensated milling experiments. It is noted that a
substantial increase in absolute accuracy was obtained for all axes. Because
of the calibration along the y-axis mentioned previously, the performance
increase in the y-direction is notably larger than for the other axes. This is to
be expected, as in this case, the error during milling does not solely depend
on deflections caused by process forces. The error during uncompensated
milling will thus continuously increase when moving along the y-axis, as seen
in Figure 2.16.

Surface-Accuracy Results

In addition to the absolute accuracy, it is of interest to achieve a high
accuracy of the machined surface on the workpiece. In order to evaluate the
surface accuracy, a Mahr measurement device of model M400 SD26 [Mahr
GmbH, 2011] was utilized to measure the obtained workpiece profiles. The
measurement device was calibrated such that it had a measurement accuracy
of 1 µm.

Milling with Compensation The results of the surface roughness
measurements, for the three milling experiments with online compensation,
are displayed in Figure 2.18. The measured profiles indicate that the surface
accuracy in the x- and y-directions is within ±7 µm and within approximately
±12 µm in the z-direction of the micro manipulator. Furthermore, it is noted
that the measured profiles correspond well to the measurements from the
capacitive sensors attached to the micro manipulator which are used for
feedback. This correspondence indicates that the measured position of the
compensation mechanism agrees with the actual position of the milling
tool. Photos of the milled surfaces for the experiments in the x-, y-, and
z-directions are provided in Figures 2.20–2.22.
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Figure 2.18 Workpiece profiles after face milling in x-direction and
peripheral milling in y- and z-directions of the micro manipulator. In all
experiments, online compensation with the micro manipulator was utilized.

Milling without Compensation The resulting surface accuracy of the
profiles from the uncompensated milling experiments, as measured by the
Mahr device, are displayed in Figure 2.19. To evaluate the quality of the
measured profiles from the experiments with online compensation compared
to the profiles obtained in milling without compensation, the standard
deviation σe of the profiles are calculated and displayed in Table 2.2.
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Figure 2.19 Workpiece profiles after uncompensated milling in the x-, y-,
and z-directions of the micro manipulator, respectively.

2.6 Results from Complete Machining Cell

In this section, results from machining in steel with the use of the complete
machining cell are presented. The process forces, and hence the position
deviations of the macro manipulator, are increased approximately 3–5 times
in steel milling compared to aluminum milling for the considered milling
geometry and tool diameter. Also, the experiments were performed with
the mid-ranging control architecture. Consequently, the performance of
the complete system is here demonstrated in machining applications with
three simultaneously actuated compensation axes in an industrially relevant
scenario. A toroid milling geometry was chosen, since this geometry was
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Figure 2.20 Workpiece after face milling on the surface indicated by the
red arrow, with compensation in the x-direction of the micro manipulator.

Figure 2.21 Workpiece after peripheral milling on the surface indicated
by the red arrow, with compensation in the y-direction of the micro
manipulator.

Figure 2.22 Workpiece after peripheral milling on the surface indicated
by the red arrow, with compensation in the z-direction of the micro
manipulator.
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Table 2.2 Standard deviation of the obtained milling surfaces, given in µm.

x-axis y-axis z-axis

σe uncomp. 7.6 5.6 14.9
σe comp. 2.8 2.5 4.7
Ratio 2.7 2.2 3.2

deemed appropriate for demonstrating and quantifying the accuracy of the
proposed milling strategy, as it provides easily measurable information in two
dimensions.

Experimental Validation

Using the complete robot cell described in the second part of Section 2.2, a
toroid with a rectangular cross section and a mid-diameter of 70 mm was
machined with a depth of 0.5 mm in full width cut, see Figure 2.23. A
Holex solid carbide milling tool with four teeth and a diameter of 8 mm
was used. Further, a feed rate of 5 mm/s and a spindle speed of 28 000 rpm
were used. The magnitude of the process forces required for this milling
was approximately 100 N. Because of the optical tracking of the spindle
and the robot end effector, no lubrication or cooling, potentially obstructing
the line-of-sight, were used. To the purpose of evaluation of the method and
comparison to previous approaches, three different configurations of the setup
were considered:

A. Position-controlled macro manipulator with the CNC controller, and
the spindle attached fixed to a rigid base.

B. Position-controlled macro manipulator with the CNC controller, the
spindle fixed to a rigid base, and online workspace position and
orientation corrections of the macro manipulator based on feedback
from measurements obtained with the optical tracking system.

C. The complete setup proposed in the second part of Section 2.2,
including the macro and micro manipulators, the optical tracking
system, and the mid-ranging control architecture.

As for the prototype cell, two separate spindles were used during the
course of the experimental validation; one was fixed to a rigid base and one
was attached to the micro manipulator. In Figure 2.6, the spindle attached
to the micro manipulator is shown.
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Figure 2.23 The milling geometry considered for evaluation of the proposed
complete robotic machining cell. The milling path starts in the upper center
point and continues in the counterclockwise direction.

Milling Results

The toroid milling experiment was performed for each of the Setups A–C.
In this section, the results from Setup C are presented. The results from
Setups A and B are further evaluated and compared later in this section. The
results obtained from the milling experiment with Setup C are displayed in
Figures 2.24 and 2.25. The tracking performance of the micro manipulator
position control during a representative part of ten seconds of the toroid
milling is displayed in Figure 2.24. The definition of the axes is according
to Figure 2.7 and the error is defined as the difference between the
reference value rmm

k sent to the micro manipulator from the mid-ranging
control architecture, see Figure 2.11, and the corresponding position of the
micro-manipulator end effector. Further, the relative Cartesian errors, defined
as the difference between the tool coordinate system and the workpiece
coordinate system and computed from the measurements from the optical
tracking system, are displayed in Figure 2.25 for the first 20 seconds of the
milling task.

As a first observation, the initial transient when the tool enters the
workpiece can be seen in Figure 2.25 at approximately t = 1.2 s. Moreover,
it should be noted that the x-direction corresponds to the face direction of
the milling tool, see Figure 2.23, and is therefore orthogonal to the machined
surface. Hence, the required compensation is smaller than in the other two
Cartesian directions. Because of the alignment of the tool axis and the
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Figure 2.24 Micro manipulator tracking performance during machining
with compensation using Setup C, along each Cartesian axis x, y, and z.

compensation axis, the x-axis is sensitive to milling process disturbances
and as a result, low-amplitude oscillations were present.

The major part of the compensation with the micro manipulator was
performed along the y- and z-axes. The reference in the y-direction exhibits
a low-frequency oscillation of a comparably high amplitude, which was
induced by a deficiency in the mechanics of the robot. It is also to be noted
that the effects of the robot mechanics exhibit configuration dependency.
Nevertheless, the micro manipulator was effective in compensating for
the oscillation, which would be impossible to eliminate with the macro
manipulator solely. Considering the alignment of joint two, three, and five of
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Figure 2.25 Relative position error between tool and workpiece during
machining with macro and micro manipulator (Setup C), computed from
the measurements by the optical tracking system. Note that the part of the
milling showed in this plot is not the same as the one in Figure 2.24.

the robot, see Figure 2.6 for the robot configuration in the milling process, the
robot exhibits lower stiffness along the z-axis compared to the x- and y-axes.
However, the micro manipulator shows satisfactory tracking behavior, with
only minor vibrations of the micro manipulator.

Error Analysis The experimental results obtained with Setup C
were evaluated using statistical methods. The amplitudes of the error
characteristics as well as the corresponding frequency spectra were
investigated. First, the performance of the micro-manipulator tracking was
considered. Referring to Figure 2.24, it can be observed that the micro
manipulator exhibits good tracking behavior along all three Cartesian axes.
Second, the power spectral densities of the Cartesian position errors in
Figure 2.25 were investigated. The frequency spectra are displayed in
Figure 2.26. Considering that the mechanical design of the micro manipulator
comprises solid-state flexure elements, the damping of the oscillatory modes
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Figure 2.26 Power spectral densities of the Cartesian position
errors—displayed in Figure 2.25—obtained during the machining of
the toroid with Setup C.

of the system is challenging. As a result, the micro manipulator is sensitive
to process disturbances with frequencies near the eigenfrequencies along
the respective actuation axis. The first natural eigenfrequency of the
micro manipulator, along each actuation direction, falls in the range from
50–100 Hz, see Section 2.3. It should be noted in the power spectral density
plots in Figure 2.26, that a significant damping of the resonances was
obtained with the proposed model-based state-feedback controller. The major
resonances of the micro manipulator were clearly damped by the control
design, even though a significant peak at approximately 95 Hz is visible
in the error spectrum. The sensitivity of the micro manipulator around
the eigenfrequencies led to low-amplitude oscillations of the machining
tool with an amplitude of 10–30 µm, as can be observed in the plot in
Figure 2.24. In turn, these tool oscillations result in surface undulations on
the machined surfaces. The control design is here limited by the mechanical
design of the micro manipulator. Additionally, a periodicity with a frequency
of approximately 30 Hz can be observed in the error spectrum. As this
frequency is below 50 Hz and appears in all three Cartesian directions,
it can be traced back to excitation of an eigenmode of the robot, which
can be verified by modal analysis of the same. The observed peak in the
frequency spectra is found within 10–30 Hz, which is the range of typical
eigenfrequencies of industrial robots.

Workpiece Geometry Measurements In order to validate and quantify the
milling results, the machined surfaces of the workpieces obtained using
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Setups A–C were measured. The 2D contours of the machined toroids
were analyzed using a Werth CMM of model Videocheck HA400, which
provides measurements with an accuracy of 0.5 µm [Werth GmbH, 2013].
By performing raster scanning, point clouds of the inner and the outer
circular contours were captured and subsequently compared to the desired
reference circles. A least-squares matching, assuming additive Gaussian noise
on the error, was used to locate the measured CMM data acquired in a local
coordinate system, and the reference circles relative to each other, in order
to enable comparison.

The results of the surface measurements for Setups A–C are collected in
Figure 2.27. The plots display the computed difference of the CMM-measured
outer circle from the nominal reference circle. The circumference measure
starts at the location where the milling starts and traverses the toroid in
the milling direction, see Figure 2.23. In addition, the measured inner and
outer circular contours of the surfaces measured by the CMM are visualized
and compared to the nominal circles in Figure 2.28. As a first observation,
it can be noted in Figure 2.28 that the position deviations with Setup A
are not constant during the machining of the circle. This is a result of the
local stiffness properties of the robot combined with the changing direction of
the process forces while traversing the toroid. Furthermore, when comparing
the error of the toroid machined with Setup C to the corresponding results
obtained using Setup A or Setup B, the significance of the different hardware
and control components of the setups can be identified. A feedback loop
for the robot controller, based on external sensor data from online position
and orientation tracking of the workpiece, is sufficient for compensation of
static calibration errors and low-frequency errors. This can be concluded
by comparing the top and middle panels of Figure 2.27, where it is noted
that the major part of the error, i.e., the low-frequency part, has been
compensated. However, the high-frequency part of the error remained in the
results from Setup B, which is obvious from the substantial number of peaks
in the error plot. With the addition of a high-bandwidth micro manipulator,
the high-frequency process disturbances were compensated, reducing the
machining error significantly, as seen in the bottom panel of Figure 2.27.

Surface-Roughness Measurements The CMM measurements of the circular
contours on the machined workpiece can only evaluate the achieved
performance along the y- and z-axes of the milling geometry. The
performance in the x-direction, however, is also directly reflected on the
machined surface. Therefore, the Mahr measurement device was used in
order the quantify the machining errors in the face direction of the tool.
Figure 2.29 displays the surface roughness over a randomly chosen length of
25 mm of each workpiece. It is to be noted that deviations on the surface
were not as significant compared to the circular contours, which can be
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Figure 2.27 CMM measurements of the outer circular contour deviation,
with the workpiece machined with Setups A–C. The circumference measure
starts at the location where the milling starts, see Figure 2.23.

explained by the cutting process dynamics. Since the major part of the
material was removed in the y- and z-directions, lower process forces were
obtained in the x-direction, and hence reduced position deviations in this
direction. An interesting result is that the surface obtained with Setup B is
significantly worse than that of Setup A. It is plausible that this is related to
the limited compensation bandwidth of the robot—i.e., the high-frequency
disturbances in position in the face direction are not possible to compensate
with this approach because of phase lag and, to some extent, communication
delays. As a consequence, the resulting machined surface becomes worse
than without online compensation.
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Figure 2.28 CMM measurement of the circular outer and inner contours,
for the workpieces machined with the different Setups A–C. In this plot,
the bottom part of the circle in displayed.

Table 2.3 Accuracy results of the machined toroids, displaying MAE from
nominal profiles and the standard deviation of the surface measurements.
The numbers were computed from machining results obtained with the
respective Setup A–C.

Setup MAE (Circle) σ (Circle) σ (Surface)
[µm] [µm] [µm]

A 255 276 7
B 47 61 16
C 32 39 7

Summary of Experimental Results In order to quantify and compare the
absolute accuracy of the considered Setups A–C, the MAE of the outer circle
of the toroid machinings was computed for each. The surface accuracy was
quantified for the circle as well as the surface in the x-direction, calculating
the standard deviation σ of the obtained surface. The resulting numbers
obtained using the Setups A–C are found in Table 2.3.
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Figure 2.29 Roughness measurements of the machined surfaces for the
respective configuration, Setups A–C.

2.7 Discussion

As an extension to joint-space position-controlled industrial robots for
machining, workspace sensing combined with online position corrections
with a macro/micro-manipulator setup was introduced in this chapter. High
accuracy sensing in workspace was realized using an optical tracking system.
A prerequisite for this strategy to work well in practice is a high actuation
bandwidth of the micro manipulator and low latencies in the communication
interfaces, in order to maintain stability during the machining process.
Considering the open-loop bandwidth of the micro manipulator, which is
approximately 3–4 times higher than the bandwidth of the closed-loop
industrial robot at the end effector, it is clear that the capabilities are
significantly increased for compensation of high-frequency position errors
during machining, as well as other tasks which require contact between
the robot and the tool/workpiece. In addition, as pointed out in [Sharon
et al., 1993; Fasse and Hogan, 1995], workspace sensing as well as workspace
actuation—i.e., collocation of sensing and actuation—is beneficial in contact
operations with mechanical manipulators in order to reach high-bandwidth
control of the interaction between the tool and the workpiece.

The approach to machining proposed in this chapter is hardware
intensive, in particular compared to previous approaches to increasing the
position accuracy based on quasi-static and dynamic modeling of the robot
stiffness. However, purely model-based approaches exhibit dependency on
robot configuration, workpiece characteristics, and machining tool. Hence,
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the generality in application of the approach proposed in this chapter is
higher, since no assumptions regarding these aspects have to be made.
Instead, position deviations are measured online in the workspace during
the machining process and subsequently compensated. In addition, the
need for an extensive and time-consuming calibration procedure for the
force–deflection models, i.e., stiffness models, is eliminated with the proposed
approach. However, the investment cost is significantly higher for the
proposed approach.

Investigating the costs for the proposed complete robot cell for
high-accuracy machining, it can be noted that the high-accuracy optical
tracking system and the micro manipulator are comparably expensive
components. However, considering the rapid development and cost reduction
for, in particular, optical tracking systems, the proposed solution is still
competitive as compared to the cost of a machine tool. The cost distribution
for the micro manipulator is between piezo actuators (45 %), manufacturing
of the mechanical parts (35 %), sensor equipment (15 %), and other auxiliary
equipment (5 %).

Workspace control of industrial manipulators based on feedback from
data obtained with force sensors mounted on the robot end effector has
previously been proposed for contact operations [Hogan, 1985; Vuong et al.,
2009] in applications such as deburring [Jonsson et al., 2013] and drilling
[Olsson et al., 2010]. Further, many major robot manufacturers offer such
functionality for their industrial robots. The force-control performance is
nevertheless limited by the mechanical bandwidth of the robot manipulator
as well as the bandwidth of the internal joint-position controllers of the robot.
Hence, the force control must be combined with appropriate mechanical
actuation if high-frequency position deviations are to be compensated. In the
approach presented in this chapter, only position information was used for
the workspace feedback. However, integration of a force sensor in the setup
would be beneficial, in particular for monitoring the process forces during
the machining process but also for incorporation in the feedback control
architecture as a complement to the position information.

For the prototype robot cell, the resulting position-control error during
milling experiments was within approximately ±5 µm for each direction, and
the MAE was below 2 µm for each direction, which by far achieves the desired
absolute accuracy of 50 µm for the complete milling task. Furthermore, the
surface accuracy was increased by approximately a factor of three for all
directions. From these results, it is evident that online compensation with the
micro manipulator has significantly improved both the absolute and surface
accuracy of the milling, compared to the uncompensated case.

It is further noted that the increase in absolute accuracy is higher in the
y- and z-directions, than in the x-direction. This can be explained by the fact
that face milling was performed in the x-direction, as opposed to peripheral
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milling in the y- and z-directions, where the milling process forces affect the
robot differently.

For the complete robot cell, significantly higher MAE values were
obtained for the presented milling experiments, as compared to the prototype
robot cell. Nevertheless, the objective of achieving an absolute accuracy of
50 µm was fulfilled using both Setup B and C. The decrease in accuracy
compared to the prototype robot cell is not unexpected, for a number of
reasons. First and foremost, the accuracies of the optical tracking systems
differ significantly between the two cells, limiting the achievable machining
accuracy. Second, in the complete robot cell, milling was performed in
steel instead of aluminum, and mid-ranged three-dimensional compensation
instead of one-dimensional compensation was performed. As mentioned
previously, steel is significantly stiffer than aluminum, resulting in stronger
process forces and larger machining errors. Because of the large machining
errors, the use of the prototype machining cell for milling in steel is
not possible, since the micro-manipulator workspace is limited, and no
mid-ranging control structure was implemented. Without the proposed
mid-ranging control, the outer bounds of the micro-manipulator workspace
would quickly be reached. As seen in the top panel of Figure 2.27, the required
compensation range for the milling experiments in steel was approximately
1200 µm, which is significantly larger than the micro-manipulator workspace
of 400–500 µm, illustrating the need for the mid-ranging control structure.
As seen in Figure 2.24, the proposed mid-ranging control for the complete
machining cell is successful in keeping the micro-manipulator position in the
middle of its workspace.

Based on the results of the two different robot cells, it is likely that an
optical tracking system with higher accuracy could improve the machining
results further. Thus, for the complete machining cell, the next logical step
for future research would be to investigate how much the accuracy could be
increased with the use of a new, higher-accuracy optical tracking system.

2.8 Conclusions

An approach to high-accuracy robotic machining was proposed, where a
conventional industrial robot in combination with an external piezo-actuated
compensation mechanism realizes online correction of errors in the relative
position between the tool and the workpiece, beyond the bandwidth of the
robot.

For milling in aluminum using the prototype robot cell, the absolute
accuracy was significantly increased, the MAE was reduced by a factor of up
to 70, to a level lower than 2 µm along each of the three axes. Additionally,
the surface accuracy of the millings was increased by up to a factor of three.
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For the milling experiments performed in steel using the complete robot
cell, one of the harder materials used in production, a significant increase
of the absolute accuracy was achieved, up to eight times measured by MAE
values. Additionally, the surface accuracy of the machined parts was increased
by up to seven times. For all milling experiments, the desired accuracy of
50 µm was achieved. It was further shown that the mid-ranging control
structure is essential in order to maintain active compensation throughout
the duration of the milling.

These results, and the accompanying hardware and control architecture,
are considered as a step toward the goal of having robot cells that are capable
of machining with machine-tool accuracy.
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3

Adaptive Mid-Ranging

Control

3.1 Introduction

This chapter is based on the publication [Sörnmo et al., 2013].
In the setup for performing high-precision milling that was presented

in the previous chapter, an MVPC mid-ranging control architecture was
proposed. In this chapter, an alternative mid-ranging control approach is
presented, which can handle process variation and internal saturations.

In order to obtain a system that is robust to process-parameter variations,
which may occur as a result of the strong process forces of the milling
process and varying cutting conditions, it is desirable to employ an adaptive
control structure. However, in the scenario considered in this chapter, the
two manipulators are already controlled closed-loop systems that contain
internal input saturations, which does not render the design of an adaptive
mid-ranging controller straightforward. Motivated by this, an adaptive
internal model control structure for mid-ranging control is presented,
with adaptive dynamic reference governors for compensation of internal
saturations, making the control approach possible.

A set of different mid-ranging control strategies are evaluated in [Allison
and Isaksson, 1998], based on, e.g., Valve Position Control (VPC) and
Model Predictive Control (MPC). Design and tuning guidelines of VPC and
Modified VPC controllers (MVPC) are presented in [Allison and Ogawa,
2003]. Anti-windup schemes for VPC controllers are introduced in [Haugwitz
et al., 2005].

Internal Model Control (IMC) is reviewed and compared with similar
control strategies in [Garcia and Morari, 1982], where also several IMC
stability theorems are proven and practical tuning guidelines are provided.
An extension of IMC to nonlinear systems is presented in [Economou et al.,
1986], where it is proven that the properties of linear IMC also applies to the
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general nonlinear case. The problem of having a control-signal saturation for
an IMC controller is considered in [Zheng et al., 1994]. Design and stability
analysis of Adaptive Internal Model Control (AIMC) is provided in [Datta
and Ochoa, 1996], and the discrete-time counterpart is described in [Silva
and Datta, 1999]. Nonlinear approaches to AIMC are investigated in [Hu
and Rangaiah, 1999], as well as in [Hunt and Sbarbaro, 1991], where neural
networks are utilized.

The application of mid-ranging control using IMC is investigated in
[Gayadeen and Heath, 2009], where design rules are presented and verified
through simulation studies.

Discrete-time Dynamic Reference Governors (DRG) for constrained
nonlinear systems are considered in [Bemporad, 1998], and reference
governors for systems with input and state saturations are presented in
[Gilbert et al., 1995].

The method presented in this chapter is based on [Gayadeen and
Heath, 2009], which is here extended by introducing adaptivity to the
IMC mid-ranging structure, inspired by [Datta and Ochoa, 1996; Silva and
Datta, 1999]. Further, the control scheme is modified to account for internal
saturations, by introducing a DRG based on the concepts in [Gilbert et al.,
1995], but derived using a different approach. Further, in order to maintain
performance under parameter variation, the DRG is made adaptive.

Disposition

This chapter is organized as follows. The DRG is derived and the design of the
AIMC controller is described in Section 3.2. Section 3.3 presents simulation
results obtained with the proposed control structure. The experimental setup
is described in Section 3.4, and the experimental results are presented in
Section 3.5, followed by a discussion and conclusions in Section 3.6.

3.2 Method

Consider two stable, discrete-time closed-loop systems on the standard
feedback form, see Figure 3.1, denoted Hf

cl(z) and Hs
cl(z), representing

the fast micro and slow macro manipulator, respectively. Consequently,
the bandwidth of Hf

cl(z) is significantly higher than that of Hs
cl(z). The

controllers in the closed-loop systems are assumed known, and the output
signals of the closed-loop systems, denoted yf and ys, are measured. The
midpoint of the micro manipulator workspace is zero.

The objective to perform mid-ranging control of the two closed-loop
systems can be met by standard methods such as VPC control, as was shown
in Chapter 2. The block diagram for the VPC structure is constructed as
displayed in Figure 3.2, where yr is the relative position of the manipulators,
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Figure 3.1 Block diagram for the standard feedback form with input
saturation to the process. The transfer function from rf to yf , i.e., for
the non-saturated case, is denoted H

f

cl(z).

+ C′
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f
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−
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Figure 3.2 Block diagram for the VPC and MVPC mid-ranging control
structures.

rr the desired relative position and rs the reference value of the mid-ranged
input. It is to be noted that in this research, since the midpoint of the micro
manipulator is zero, the input rs is also zero and will hence be omitted. The
structure of the controllers C′

f (z) and C′
s(z) can be chosen arbitrarily, but are

commonly selected as PI controllers. Experimental tuning of the controllers
is tedious work and even with accurate models of the process, arbitrary pole
placement is not always possible. IMC is an appealing solution which has
been proven to yield satisfactory results in mid-ranging scenarios [Gayadeen
and Heath, 2009]. However, as mentioned earlier, the process parameters may
change over time and it is therefore desirable to update the IMC controller
in order to adapt to process variations.

The block diagram for the mid-ranging IMC is displayed in Figure 3.3,
where Cf and Cs are the controllers, Ĥf

cl and Ĥs
cl the internal models of Hf

cl

and Hs
cl, respectively. It is to be noted that the notation Cf and Cs represent

Q1 and Q2 respectively, in the Youla parametrization of the IMC according to
[Gayadeen and Heath, 2009]. The complementary sensitivity function Tf(z)
is introduced as the desired response of the system from rr to yr and Ts(z)
is the desired response of the system from rr to yr with wf = 0. In order
to achieve the desired mid-ranging effect, the following conditions for the
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Ĥs
cl

Ĥ
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Figure 3.3 Block diagram for the IMC mid-ranging control structure.

controllers must be fulfilled:

Tf(z) = Cf (z)Hf
cl(z) − Cs(z)Hs

cl(z)

Ts(z) = Cs(z)Hs
cl(z).

(3.1)

The controllers are thus defined as

Cf (z) =
Tf (z) + Ts(z)

Hf
cl(z)

(3.2)

Cs(z) =
Ts(z)

Hs
cl(z)

, (3.3)

where the parameters of Hf
cl(z) and Hs

cl(z) should be updated in order to
adapt the controllers. To this purpose, a Recursive Least Squares (RLS)
algorithm [Johansson, 1993] with forgetting factor 0 < λ < 1 is introduced,
because of its fast convergence for input signals of proper excitation, which
are assumed to be present. For systems with low excitation, a Kalman filter
may exhibit better performance. The proposed method can easily be modified
to incorporate a different estimator. The estimator is used to continuously
estimate the process parameters of Hf

cl and Hs
cl, and consequently update the

internal models Ĥf
cl and Ĥs

cl, as well as the controllers Cf and Cs. The RLS
algorithm is stated as [Johansson, 1993; Åström and Wittenmark, 1997]:

θ̂k = θ̂k−1 + Kk−1(yk − φT
k θ̂k−1)

Kk = Pk−1φk(λ + φT
k Pk−1φk)−1

Pk =
1

λ
(I − KkφT

k )Pk−1,

(3.4)

where Pk is the covariance matrix, Kk a gain matrix, λ the forgetting factor
and θ̂k is the model parameter estimates from the discrete-time measurement
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model of the form

yk = φT
k θk + ek, (3.5)

where ek is white noise.
However, as displayed in Figure 3.1, Hf

cl contains an internal saturation
of the inner control signal uf (denoted uf,k in this section, where k is the
current sample), with a given saturation level at ±usat. The system Hs

cl is
assumed not to have an internal saturation. Once the control signal saturates,
i.e., when the system leaves its linear region, the linear internal model can
no longer accurately describe the process. Further, the estimation of Hf

cl will
be corrupted as a result of the saturation, since the input/output relation
of the plant is no longer linear. This will lead to a false estimate of the
system parameters and, in turn, unexpected behavior, which in the worst
case results in instability. This problem can be solved by implementing a
nonlinear model and applying nonlinear estimation techniques which will
become intricate, especially if Hf

cl is implemented with anti-windup. Instead,
an adaptive DRG is introduced to modify the input to the system, such
that the system is never allowed to enter saturation. This approach makes
linear modeling still feasible. The dynamics of anti-windup schemes possibly
implemented in the closed-loop system can be disregarded, since the system
is designed to never enter saturation.

Consider the control structure of Hf
cl as displayed in Figure 3.1, where

the controller and process dynamics are known and given by the rational,
discrete-time transfer functions

Hf
c (z) =

n0 + n1z−1 + ... + na−1z−(a−1) + naz−a

m0 + m1z−1 + ... + mb−1z−(b−1) + mbz−b
(3.6)

Hf
p (z) =

q0 + q1z−1 + ... + qc−1z−(c−1) + qcz−c

p0 + p1z−1 + ... + pd−1z−(d−1) + pdz−d
, (3.7)

where [a, b, c, d] ∈ Z0. The objective is to dynamically modify the reference

input rf,k to Hf
cl such that |uf,k| ≤ usat, ∀k. Since yf,k is assumed to be

measured and Hf
c (z) is known, this can be solved by simply computing

the current control signal uf,k and modifying the input to Hf
cl accordingly.

However, since the mid-ranging controller is meant to control an existing
closed-loop system, the output of Hf

cl may be delayed from the network
connection between the controllers. Therefore, a model-based solution is
proposed that is independent of measurements of yf,k.

The modified input to the system is denoted wf,k, and the dynamic
relation between wf,k and rf,k is given by

wf,k = wf,k−1 + αk(rf,k − wf,k−1), (3.8)

61



Chapter 3. Adaptive Mid-Ranging Control

which is a first order low-pass filter with a time-varying parameter αk. When
αk = 1 the filter does not affect the input and wf,k = rf,k holds true and,
conversely, when αk = 0, wf,k = wf,k−1.

When |uf,k| ≤ usat, ∀k, is satisfied, the control signal uf,k is given by

uf,k =
Hf

c

1 + Hf
c Hf

p

wf,k =

e∑

i=0

q′
iz

−i

f∑

i=0

p′
iz

−i

wf,k, (3.9)

where e = a + d and f = max(d + b, a + c). In order to determine αk, the
predicted control signal with unaltered reference is denoted by ûf,k and is
defined as

ûf,k = uf,k|αk=1.

If |ûf,k| ≤ usat, there is no need to alter the input and consequently αk = 1.
Otherwise, the desired control signal should be as large as possible, i.e.,
±usat. The desired control signal in the current time-step k is denoted ud

f,k

and defined as

ud
f,k = sgn(ûf,k)usat,

which together with (3.8) and (3.9) gives the expression for αk:

αk =





p′
0ud

f,k + χ(uf,k, wf,k)

q′
0(rf,k − wf,k−1)

, |ûf,k| > usat

1, |ûf,k| ≤ usat

(3.10)

where

χ(uf,k, wf,k) =

f∑

i=1

p′
iz

−iuf,k −
e∑

i=1

q′
iz

−iwf,k − q′
0wf,k−1. (3.11)

It is clear from (3.10) that q′
0 6= 0 must be fulfilled, i.e., that Hf

c (z) must have
a direct feedthrough path, which can easily be satisfied by a proportional part
in the controller.

Since the system Hf
cl(z) is likely to be time varying, and the inner

controller Hf
c (z) is fixed, the inner process Hf

p (z) must be estimated in order
to adapt the DRG to the process changes. Since measurements of uf,k are
not available, and only estimated based on time-invariant models, the process
dynamics Hf

p (z) cannot be determined based on the estimations. However,
under the assumption that |uf,k| ≤ usat, ∀k, holds true, the inner process of
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the system can be expressed in terms of Hf
cl(z), which is already estimated

to adapt the IMC controller, and Hf
c (z):

Hf
p (z) =

Hf
cl(z)

Hf
c (z)(1 − Hf

cl(z))
. (3.12)

Using the fact that yf,k is measured and Hf
c (z) is known, actual values of

past control signals are calculated and used to improve the prediction of uf,k,
reducing errors that occur because of process variation.

The scenario of Hf
cl and Hs

cl being non-minimum phase systems must be
considered, since the systems are inverted according to the control design
in (3.2) and (3.3). Inverting non-minimum phase zeros will result in an
unstable system. This can be handled by approximating a stable inverse
of the system, by mirroring the non-minimum phase zeros in the unit
circle, ensuring stability of the resulting controller. The continuous-time
version of the IAE optimal approximation is given in [Wiener, 1949]. The
discrete-time counterpart is performed by inverting the magnitude of the zero
with unaltered argument, an example of this method is shown in Figure 3.4.
The described algorithm is implemented and used, if needed, in every sample
to mirror the zeros of the models provided by the estimators.

Before activating the AIMC controller, an initial estimation phase is
performed using a sufficiently exciting signal as input to the systems, until the
estimated models have reached the desired accuracy. During this phase, the
requirement |uf,k| ≤ usat, ∀k is unlikely to be fulfilled by the DRG since its
prediction model is being estimated. Therefore it is important to choose the
excitation signal such that the system does not saturate during this phase.

The final control architecture for the mid-ranging adaptive internal model
control with compensation for internal saturation is displayed in Figure 3.5.
Analogously to the method presented in this section, the proposed approach
can be extended to systems where internal saturations appear in both Hf

cl

and Hs
cl.

In order to evaluate the proposed control structure, a comparison to the
method used in Chapter 2, the MVPC structure, is performed. Following the
tuning rules given in [Allison and Ogawa, 2003], the controllers Cf and Cs in
Figure 3.2 are chosen as PI controllers and designed using the same desired
closed-loop system as for the proposed controller. Since Hf

cl contains an
internal saturation and the control signal is not available, the PI controllers
will undoubtedly suffer from integrator windup problems. However, assuming
that the current control signal is available to the controller, a tracking
anti-windup algorithm [Haugwitz et al., 2005] can be implemented. Both
controllers, with and without anti-windup, denoted MVPC and MVPC+AW,
are evaluated in simulation and experiments.
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Figure 3.5 Block diagram for the mid-ranging adaptive internal model
control, with internal saturation compensation.
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3.3 Simulation Results

The proposed control architecture in Figure 3.5 was implemented and tested
in Matlab Simulink, using usat = 10 and the following systems:

Hf
c (z) = 5, Hf

p (z) =
2hz−1

1 − z−1
, Hs

cl(z) =
1 − e−h

1 − e−hz−1
, (3.13)

where h is the sample period of the simulation, in this case h = 0.004 s. The
desired complementary sensitivity functions are set to

Tf(z) = Hf
cl(z), Ts(z) = Hs

cl(z), (3.14)

which corresponds to preserving the bandwidths of the closed-loop
systems. This choice is motivated by the assumption that the systems
are well-controlled closed-loop systems, ideally having as high bandwidth as
possible. An initial guess of the parameters is provided to the estimators
and the systems are excited using a low amplitude square wave. In the first
simulation, a ramped square wave with a superimposed low frequency sine
wave is sent as relative position reference rr and the relative position yr

is subject to a step position disturbance d. The results of the simulation
are displayed in Figure 3.6. The ramped input is used to demonstrate the
mid-ranging effect of the micro manipulator system position yf , which is
clearly visible from the bottom panel in Figure 3.6, where the green curve
is close to its midpoint. Further, it can be concluded that Hf

cl never enters
saturation, since the control signal uf , which is the control signal before
entering the saturation, is kept within the saturation bounds. It is also noted
that the position disturbance at 18 s is attenuated rapidly, similar to the
response of the closed-loop system. This is expected since the disturbance d
on yr can be seen as a disturbance on rr, thus exhibiting the same dynamics
as the closed-loop system from rr to yr.

The second simulation focuses on testing the adaptivity of the control,
i.e., its robustness to process variations. The simulation is performed using
the same input signal as in the first simulation but without the ramp, and also
increasing the gain of the plant Hf

p (z) by 50 % at time 8 s and subsequently
decreasing the gain by 60 % at time 16 s. The result of the simulation is
displayed in Figure 3.7. It is noted that the gain changes are only visible
in the response of the relative position for one period of the square wave.
Further, since the gain of Hf

p (z) increases, the system becomes faster and
consequently less control signal is needed to achieve the desired response.
This leads to less time in saturation and a higher value of αk.

The simulation results for the MVPC controllers compared to the
proposed controller are presented together with the experimental results in
Section 3.5, for coherency.
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Figure 3.6 Simulation result of the AIMC controller subject to a ramped
square wave with a low-frequency sine wave superimposed as reference
position (red curve in the top plot). The response of the relative position
is displayed in blue in the top panel and the actuator positions are shown
in the bottom panel, where yf is green and ys is magenta. At time 18 s,
the system is affected by a step position disturbance with an amplitude of
5 mm.

3.4 Experimental Setup

The experimental setup used to evaluate the proposed control structure is
designed to be a mock-up version of the macro/micro-manipulator setup
described in Chapter 2. The setup consists of an ABB IRB2400 robot
[ABB Robotics, 2015] with an S4CPlus controller, which acts as the
macro-manipulator system, and an ABB IRB120 robot [ABB Robotics,
2015a] with an IRC5 controller, which is the micro-manipulator system with
high bandwidth. Naturally, both robots have saturation limits on velocity,
but for proof of concept, the high-bandwidth system is set to have an input
saturation at ±80 mm/s. The bandwidth of the macro-manipulator system is
assumed be low enough such that no saturation limits are reached. In addition
to the position measurements provided by the robot joint resolvers, the
IRB120 robot is equipped with a Heidenhain linear encoder of model ST3078
[Heidenhain, 2013]. The encoder measures the relative distance between the
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Figure 3.7 Simulation result of the AIMC controller subject to a square
wave with a sine wave superimposed as reference position (red curve in the
top plot). The response of the relative position is displayed in blue in the
top panel. The vertical dashed green lines indicate changes of process gain.

two robot end effectors with a measurement range of 26 mm at an accuracy
of 2 µm. This measurement corresponds to the position data obtained using
an optical tracking system in Chapter 2. It is essential to measure the relative
distance in order to be able to compensate for arm-side position deviations,
which cannot be captured by the motor-side measurements. The IRB2400
robot is rigidly attached to the ground, while the IRB120 robot is attached
to a base that can move in one direction, in order to introduce disturbances
in the position, which frequently appear in the actual milling setup described
in Chapter 2.

The robots were interfaced using an open robot control extension of the
conventional robot controller, called ExtCtrl/ORCA [Blomdell et al., 2010],
running at 250 Hz. The Matlab Simulink models were translated to C
code using Real-Time Workshop and compiled in order to run them on the
extended robot system. A picture of the experimental setup is shown in
Figure 3.8.

3.5 Experimental Results

Prior to performing experiments, dynamic models of the two robots, with
Cartesian velocity reference as input and Cartesian position as output, were
identified along one axis using the Prediction Error Method [Johansson,
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Figure 3.8 Experimental setup for performing mid-ranging control. The
IRB120 robot (micro manipulator) with the Heidenhain linear encoder is
seen to the left, and the IRB2400 robot (macro manipulator) is seen to the
right.

1993]. In order to provide excitation for the identification algorithm, a
square wave was used as reference, which is converted to joint motor angle
velocity references, using the inverse Jacobian of the robot. The resulting
Cartesian position of the robot was computed using forward kinematics,
based on measured joint angles, and used as system output. Both robots
exhibited similar dynamics and the control loops that form Hf

cl and Hs
cl, were

closed using proportional controllers such that the micro-manipulator system
had five times higher bandwidth than the macro-manipulator system. New
models of the closed-loop systems were identified, resulting in third-order
models, which were used as initial guesses in the RLS estimators. The online
estimation of the models was evaluated before initiating the full AIMC
control structure, by sending square waves as position references to the two
robots. The results of the estimation procedure are displayed in Figure 3.9,
where the bandwidth difference of the two systems is clearly illustrated.
The desired complementary sensitivity functions Tf and Ts were chosen as

first-order systems with bandwidths matching Hf
cl and Hs

cl, respectively.
The first experiment performed was designed to resemble the simulation

in Figure 3.6, but since the linear encoder has limited measurement range,
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Figure 3.9 Estimation phase of the two systems, where yf is green and
ys magenta. The estimates of these signals are denoted ŷf and ŷs, and are
shown in dashed blue and black, respectively.

a ramp signal as input would leave that range rapidly. Thus, the relative
position of the robots was instead computed from the resolver measurements
of the robots, so that a ramp signal could be used as input. The obtained
result is displayed in Figure 3.10. It is evident from the figure that the desired
mid-ranging effect is achieved, and in addition the control signal uf is kept
within its boundaries. A zoomed view of a step response from Figure 3.10 is
displayed in Figure 3.11, where also the desired response is shown. It is noted
that the response for the relative position yr is close to the desired response.
There is, however, an initial discrepancy, which appears because of the fact
that the system has an input saturation. As displayed in the lower panel of
Figure 3.11, the upper boundary on the control signal uf has been reached,
limiting the achievable bandwidth of the closed-loop system. It is to be noted
that given a perfect model of the system, the response of the system with
and without the DRG for any input signal, would look the same. The control
signal before the saturation (uf ) would, however, not be the same.

Additional experiments were performed in order to test how well the
system handles position disturbances. To this purpose, the linear encoder
was put into operation, replacing the resolver measurements for the relative
position, so that disturbances in position can be measured and compensated
for. The experiment was designed such that once the estimation phase
finishes, the macro manipulator was controlled to move until the linear
encoder is in the middle of its measurement range, which was set to be
the zero position. The AIMC controller was then activated, with a square
wave as reference signal, while simultaneously moving the base with the
micro manipulator in order to introduce position disturbances. As mentioned
earlier, the linear encoder only has a measurement range of 26 mm, and thus
the amplitude of the relative position reference rr was chosen to be 5 mm.
Since a smaller amplitude of the reference results in less control signal, the
desired bandwidth of Tf was increased by a factor of 5. The results of the
experiment are shown in Figure 3.12. It is noted that under no disturbances,
the system responds rapidly in a well-damped manner. When subject to
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Figure 3.10 Experimental result of the AIMC controller subject to a
ramped square wave with a sine wave superimposed as reference position
(red curve in top plot). The response of the relative position yr is displayed
in blue in the top panel, and the robot positions are shown in the bottom
panel, where yf is green and ys is magenta.
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Figure 3.11 Zoomed view of the step change after 40 s in Figure 3.10.
The dashed green line shows the desired response of the system, i.e., the
response of Tf (z).
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Figure 3.12 Experimental result of the AIMC controller with a square
wave as reference position (red curve in the top plot), subject to position
disturbances d as displayed in the second panel. The response of the relative
position yr is displayed in blue in the top panel and the robot positions are
shown in the third panel where yf is green and ys is magenta.

continuous disturbances, the macro manipulator has to deviate further from
its desired position, in order to cancel the disturbance. It does, however,
eventually return to its midpoint.

In order to quantify the performance of the proposed control structure,
the average of the Integrated Absolute Error (IAE) over several step
responses was chosen. The discrete-time approximation of the IAE over the
inverval [0, kmax] is defined as

IAE = h

kmax∑

k=0

|rr,k − yr,k|. (3.15)

The MVPC controllers were tuned as described in Section 3.2. As the method
suggests, model-order reduced versions of the previously identified models
of Hf

cl and Hs
cl were used. The validity of the reduced-order models was

investigated by looking at the Bode diagrams, as shown in Figure 3.13. The
figure shows close correspondence for both models, in the frequency range of
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Figure 3.13 Bode diagram of the identified models H
f

cl (magenta) and Hs
cl

(blue) and their reduced-order counterparts, shown in dashed black and red,
respectively.

Table 3.1 Normalized IAE value of step responses.

Setup AIMC MVPC+AW MVPC

1. Sim, rr = 1.5 1.000 1.525 1.525
2. Sim, rr = 5 1.000 1.458 1.555
3. Sim, rr = 5, noise 1.000 1.380 1.474
4. Exp, rr = 20 1.000 1.344 1.353
5. Exp, rr = 30 1.000 1.408 1.560

interest. The results of a series of simulations and experiments are presented
in Table 3.1, where the IAE values have been normalized by the IAE value
of the AIMC controller, in order to simplify comparison. The first setup was
designed such that rr was small enough to fulfill |uf | ≤ usat, whereas the
following four setups were designed more aggressively in order to encounter
saturated control signals. In the third setup, measurement noise was added
in the simulation. It is to be noted that no process variation was present
during the experiments presented in Table 3.1.

Experiments to test the robustness to process variations were performed
by attaching a weight to the macro manipulator while running the controller.
However, even though the weight was close to being as heavy as the maximum
payload of the robot, no significant change in the process dynamics was
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Figure 3.14 Experimental results of responses obtained from experiments
with rr = 30. In the top plot, the AIMC, MVPC+AW, and MVPC
controllers are shown in blue, magenta, and green, respectively. The desired
step response is shown in dashed black. The bottom left plot shows the error
between the reference and the responses and the bottom right plot shows
the error between the desired response and the measured responses.

observed. Instead, an artificial process variation was introduced by changing
the gain at the input of Hf

cl. In a similar manner to the simulation studies, the
gain was increased by 25 % and subsequently decreased by 30 %. The results
of the experiment are shown in Figure 3.15. It is evident from the figure that
the performance is temporarily deteriorated once the process changes, but in
approximately three periods of the input signal, the system has adapted and
the desired response is obtained. It is also noted that the DRG is efficient in
keeping the input constraints, even though considerable model errors occur
during the adaptation to the process change.

3.6 Discussion and Conclusions

It was shown in simulations and verified through experiments that the
proposed mid-ranging control structure for a macro and micro manipulator
setup performs satisfactorily with a response close to the specification,
while the desired properties were maintained in the presence of internal
saturations, process variations, and position disturbances. It is also noted
that the results obtained from the simulations and experiments exhibited
close correspondence.

As shown in Table 3.1, the performance of using the proposed controller
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Figure 3.15 Experimental result of the AIMC controller subject to a
ramped square wave with a sine wave superimposed as reference position
(red curve in the top plot). The response of the relative position yr is
displayed in blue in the top panel. The vertical dashed green lines indicate
changes of process gain.

as compared to the MVPC controllers in the case of time-invariant processes
is increased by as much as 56 %. In the cases where process variations are
present, the proposed controller will naturally perform significantly better
than the MVPC controllers, because of its adaptivity. Furthermore, looking at
the error between the system response and the desired response, the achieved
IAE was up to a factor 16 lower than that of the MVPC controller, as is
clearly displayed in Figure 3.14. The performance of the MVPC controller
is dependent on if it is possible to implement anti-windup schemes or
not, but according to the problem formulation in this chapter, it would
not be possible. The MVPC controller without anti-windup will naturally
perform worse for high-amplitude steps and references with high-frequency
content, since the controller will be saturated more frequently. It could be
possible to implement a DRG for the MVPC control structure, similar to
the proposed control structure, in order to estimate the control signal for
the anti-windup scheme. Since the purpose was to compare the developed
controller to previously established methods, this option was not considered.
Further, it is noted that the performance of the proposed control structure is
deteriorated when subject to substantial measurement noise, since it corrupts
the estimations of the models. The noise rejection can be improved by
increasing the forgetting factor to a value closer to one, but will consequently
result in slower adaptation to process variation. However, in terms of IAE,
the controller still performs 38 %–47 % better than the compared controllers.
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When process variations were introduced, the system adapted quickly to
the new parameters and the effect of the change could only be seen for a
few periods of the input signal. It is, however, noted that the experimental
results exhibited slightly slower adaptation with more pronounced transients
than in simulation. This is caused by the fact that noise is present in the
experiments and as discussed earlier, the forgetting factor should be set to a
higher value in order to reduce noise sensitivity. Additionally, the transients
appeared because of the increased complexity in estimating the parameters
for a third-order model, as compared to the first-order models that were used
in simulation. The adaptation of the system is dependent on the excitation
of the input signal. With an input signal of high excitation, the system will
adapt faster. Conversely, if the input signal has low excitation, the system
will adapt slowly and the transient performance will be poor.

The proposed adaptive DRG was proven to be effective. As seen in
Figures 3.7, 3.11, and 3.15, the control signal was kept within the constraints,
even under significant process variations. Even if no variations in the process
dynamics are present, the adaptivity of the controller is still beneficial. This
was demonstrated in Figure 3.9, where it is noted that the identified models
were improved throughout the estimation procedure, thus increasing the
performance of the closed-loop system.

The next step of this research will be to implement the proposed approach
on the actual milling setup from Chapter 2 and to evaluate it in machining
experiments. It is possible that the method needs modification in the case
of low excitation in certain machining tasks. Further, it would be desirable
to extend the method to account for the endpoints of the micro-manipulator
workspace, such that it can be guaranteed that they are never reached.
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4

Modeling and Identification

of Robot Joints

4.1 Introduction

This chapter extends the publication [Lehmann et al., 2013].
As an alternative to the method presented in Chapter 2, a different

approach to achieving the objective of higher machining accuracy is
considered in this chapter. A method is proposed that involves developing
a model of the non-ideal properties of the robot joints. This model may in
turn be used for the development of a model-based path-planning algorithm
in order to eliminate position errors in the machining task. The focus of
this chapter is to establish a model of the relevant robot characteristics and
develop a subsequent method for identification of the model parameters for
an arbitrary industrial robot. A method for identifying both joint backlash
and stiffness is presented, which relies on attaching the robot end effector to
a stiff environment, and has therefore been dubbed the clamping method.
In the context of performing machining, modeling of the robot joints is of
interest in order to be able to predict the position deviations, which occur
because of the machining process forces [Reinl et al., 2011; Abele et al.,
2011]. In order to significantly improve the machining accuracy, joint models
of high quality are required. Additionally, since the models in this chapter
are identified in joint space, they are valid in the whole robot workspace, in
constrast to local methods based on task-space models.

For most machining processes, comparably low speeds and accelerations
are used throughout the task. For this reason, link inertia is not as important
as the robot joint properties, characterized by, e.g., backlash and stiffness.
These properties account for the major part of the position deviations of
the robot end effector that occur during machining tasks, and thus need
to be modeled and identified in order to apply compensation. Methods for
achieving high position accuracy for an unconstrained robot, i.e., moving in
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free space, are commercially available. However, achieving the same accuracy
for a constrained robot, which is affected by process forces, is still an open
research problem.

The proposed modeling approach, and the subsequent method for
identification of the robot joint parameters are presented and evaluated using
an experimental setup.

Previous Research

The idea of clamping the end effector to a stiff environment has previously
been proposed to the purpose of kinematic calibration, in [Bennett et al.,
1992]. Methods for modeling and determining the backlash in robot joints was
investigated in [Hovland et al., 2002; Ruderman et al., 2009], whereas stiffness
modeling and identification are discussed in [Abele et al., 2007; Abele et al.,
2008; Ruderman et al., 2009; Dumas et al., 2011; Schneider et al., 2015]. In the
majority of previous joint parameter identification methods, the quantities
of robot stiffness and backlash are obtained by applying an external force or
a load on the robot tool center point (TCP), and subsequently measuring
the resulting end-effector force with a force/torque-sensor. Simultaneously,
the corresponding deflection of the robot end effector is measured using
high-resolution measurement equipment, such as optical tracking systems
or arm-side encoders. One of the methods presented in [Abele et al., 2007]
relies on clamping the preceding robot joints in the kinematic chain, in
order to neglect their properties when applying loads on the measured joint.
Compensation of position errors for robots affected by external process forces
was investigated in [Wang et al., 2009; Pan and Zhang, 2009]. In [Tyapin et
al., 2014], measuring stiffness of robot joints was considered by combining
measured external forces on the end effector with optical measurements of
the robot link positions.

Contrary to these methods, the method in this chapter only utilizes
measurements already available in the robot system. This reduces both the
investment cost in sensors significantly, as well as the time required for
calibration of the sensors. Additionally, the excitation for the identification
experiments is achieved by using the robot system; no external load is
required. This makes it possible to execute the method autonomously.

Disposition

This chapter is organized as follows. A description of the modeling approach
is provided in Section 4.2. Section 4.3 presents the clamping method,
considering both stiff and compliant environments. The two different
platforms used for experiments are described in Section 4.4, and the results
are presented in Section 4.5. A discussion of the method and the results, as
well as conclusions are provided in Section 4.6.
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Figure 4.1 Robot joint model with nonlinear dynamics, visualized as a
prismatic joint for simplicity. The gear ratio is omitted in the figure.

4.2 Modeling Approach

The model developed in this chapter is opted for describing the characteristics
of the robot in a machining scenario. The most dominant effects in the robot
joints, influencing the resulting machining accuracy performed with industrial
robots, are identified from extensive experiments as the following:

• Backlash in the gearbox of the joint, i.e., lost motion of the gears caused
by the clearance between mated gear teeth. The backlash is in this
chapter described by an angle, corresponding to the lost motion that
occurs when the gear motion is reversed.

• Stiffness of the joint, i.e., the relationship between applied torque and
the difference between the motor- and arm-side angle of the robot joint.

Consequently, the model of the robot joints proposed in this chapter
contains the elements above. Friction in the joint is not treated in this
chapter; details on friction modeling and identification for robots can be
found in, e.g., [Bittencourt et al., 2010; Bagge Carlson et al., 2015]. The model
components for each of the joints are schematically visualized in Figure 4.1.
The corresponding notations for variables and parameters are collected in
Table 4.1. Since the link effects are omitted in the proposed model, each joint
is modeled independently of the others. However, cross couplings between the
joints can be introduced as external disturbances in each joint model. The
main model components that are considered in this chapter are discussed
next.
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Table 4.1 Variables and parameters in the robot joint model.

τm — Torque from controller to motor
τd — External disturbance torque

ϕm — Joint angle, motor side
ϕa — Joint angle, arm side
θb — Backlash angle
kn — Nonlinear spring function
τm

f — Friction torque, motor side

τa
f — Friction torque, arm side

Jm — Actuator/motor inertia
Ja — Arm-side inertia

4.3 Clamping Method

In this section, a procedure for identifying the main parameters of the robot
joint model described in the previous section is presented. The proposed
method is based on locking all DoF of the manipulator, by clamping the
end effector to a stiff environment, and subsequently actuating each joint
sequentially, using the robot control system. In order to achieve accurate
estimates of the parameters, two assumptions are required. First, the
clamping of the manipulator end effector is assumed to be sufficiently stiff
such that any movement of the end effector when the joints are actuated can
be neglected. Second, the manipulator is assumed to only be compliant in the
rotational direction of each joint, i.e., compliance orthogonal to this direction
is neglected. For the cases when these requirements are only partially or
not fulfilled, methods for compensating the identified parameters are also
presented in this section.

Clamping Procedure

The clamping procedure is initiated by rigidly fixing the manipulator end
effector, such that all DoF are locked. This can be done by, e.g., using a
tool-changing mechanism, which can easily dock and lock to the environment.
Alternatively, the manipulator flange plate can be directly fastened to the
stiff environment using bolts. The latter method is more time consuming, but
should result in a stiffer clamping. In this chapter, both methods for locking
the manipulator end effector were used to evaluate the clamping method.

Once the end effector is in position for clamping, the internal joint position
controllers are detuned, a function referred to as soft servo [ABB Robotics,
2010]. The detuning is done in two steps; the integral action is deactivated,
and the proportional gain of the controller is reduced by a percentage
specified by the user. With the end effector locked in place, the contact
becomes significantly stiff. If the clamping position is not perfectly aligned,
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the position-control supervision system in the robot would activate because
of excessive torques on some joint, as a result of the stiff contact. With soft
servo activated, the joints become slightly compliant and stiff contacts can
be handled. Once the end effector is clamped, all DoF of the manipulator
are locked for motion, assuming that the robot has a maximum of six DoF.
However, as the robot links are affected by gravity, some of the joint gearboxes
may be preloaded even though no external forces are applied on the robot.
Therefore, an iterative method for reaching the state where no torques are
exerted by the joint motors is employed. The method incrementally alters
the position of each joint separately and in a sequence, until the torques in
each joint is within a threshold of zero torque. Since soft servo is active for
all joints, it is possible to perform this zero-torque search even though the
end effector is clamped.

In order to measure the stiffness and backlash properties of a joint, the
joint is actuated by applying small deviations in the position reference around
the zero-torque position, in alternating directions. Under the assumption that
the manipulator end effector is perfectly clamped to a stiff environment, and
that the manipulator only is compliant in the rotational directions of its
joints, the arm side of the joint is unable to move. Thus, by performing the
alternating motions while measuring the joint motor torque and the joint
motor position, the relation between the torque and the motor position can
be used to extract the desired joint parameters. Consequently, measurements
of the joint motor torque and position must be available. However, no
high-frequency measurements are required as the motions are performed at
low speeds. Because of the assumption that the arm side of the joint is fixed,
no external measurement equipment is required to measure the arm-side
position. The procedure of performing alternating motions and measuring
joint motor torque and position is repeated for each joint separately. When
finished, the robot end effector is unclamped, the soft servo is deactivated,
and the robot leaves the clamping position. The steps of the clamping method
is summarized in the following:

1. Move the robot to the clamping position;

2. Activate the soft servo of the joints, where individual softness values
are used for each joint;

3. Clamp the robot end effector using the method of choice;

4. Initiate the zero-torque search, which is run until the applied torque in
each joint is within a given threshold of zero torque;

5. Actuate each joint separately and sequentially, using the robot
motion controller, by moving it a short distance in alternating
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Figure 4.2 Schematic representation of a torque–position map for a robot
joint, exhibiting backlash, nonlinear stiffness and friction. The hysteresis of
the curve is a result of the joint friction. In this illustration, the stiffness of
the joint is modeled as piecewise linear (dashed lines), with a positive and
negative stiffness component, denoted k+

n and k−

n , respectively.

directions repeatedly. Record joint motor torques and motor angles
simultaneously;

6. Unclamp the end effector, deactivate the soft servo and leave the
clamping position.

Parameter Extraction

Using the procedure defined in the previous subsection, data sets of measured
joint motor torques and positions are obtained. With these data sets,
torque–position maps can be constructed, from which the desired joint
parameters can be extracted. An illustration of a schematic torque–position
map is shown in Figure 4.2, where the backlash θb, which occurs around zero
torque after a switch in direction of the gears, is displayed. Additionally, the
joint stiffness properties are modeled as piecewise linear, with a positive and
negative component, denoted k+

n and k−
n , respectively. However, it is to be

noted that any representation of the stiffness measurements can be used,
nonlinear or linear. The joint parameters can subsequently be identified by
regression of the measured torque/position data used to form the map in
Figure 4.2. It should be noted that additional information can be extracted
from the torque–position map, such as the joint motor friction. However, as
mentioned in Section 4.2, friction is not considered in this chapter.
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Clamping in Compliant Environments

As stated previously, the clamping method relies on the assumption that
the robot end effector is completely locked for motion. If it is possible for
the arm side of the joints to move, the estimated joint stiffness will be
underestimated as a result of the joint motion. In practice, it is likely that
some setups will exhibit compliance in the clamping of the end effector.
If the joint motion can be measured, the underestimated joint parameters
can be compensated. However, accurate measurements of joint motion are
time consuming and typically require expensive measurement equipment.
Therefore, these measurements are used to provide validation measurements
for comparison. By measuring the Cartesian positions of discrete points on
the robot links using a 3D tracking system, the arm-side angle of each joint
with respect to the preceding link can be computed. This is achieved by
projecting the measured positions to the joint actuation plane, i.e., the
plane with a normal in the direction of the joint rotational axis. In order
to obtain the actuation plane, calibration is performed by moving each joint
separately, while measuring positions with the tracking system. A subsequent
singular-value decomposition of the position data is performed, and the
actuation plane is obtained using the left singular vectors corresponding
to the two largest singular values. Additionally, the radius from the joint
rotational axis to the measurement point on the link is calculated from the
tracking system measurements. The radius is required in order to transform
the Cartesian position measurements of the link to the corresponding joint
angles. The arm-side joint angles are then transformed to motor-side angles
using the gear ratio matrix Jg ∈ R6×6. The motor position data acquired
during a clamping experiment can then be compensated for the possible
motion obtained using the described method, by subtracting the measured
joint motion from the motor position.

As an alternative to this method, measurements of Cartesian space
6D-deflections of the robot end effector can be used for compensation. These
measurements are not as demanding to obtain as acquiring the joint angle
motion, and can be obtained by using, e.g., dial gauges or linear encoders.
Thus, a method to compensate the parameter estimates using measurements
of Cartesian space deflections of the robot end effector is proposed. Assuming
that the deflections of the end effector ∆Xe ∈ R6 are small, the corresponding
arm-side joint angle deflections can be calculated using the relation

∆ϕa = J(ϕa)−1∆Xe, (4.1)

where J(ϕa) ∈ R6×6 is the Jacobian matrix of the robot. As for the method
using link measurements, the compensated motor angles are computed using
the obtained joint motion.

For the setups considered in this chapter, the compliance matrices of the
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clamping environments were not available. However, for the case when the
compliance matrix Ce ∈ R6×6 of the clamping environment is known, yet
an alternative method is outlined here. The end-effector deflections can be
obtained by

∆Xe = CeFe, (4.2)

where Fe ∈ R6 denotes the external forces and torques applied to the end
effector. In order to eliminate the need for additional measurements, the
end-effector forces and torques can be estimated from the joint torques using
the relation [Spong et al., 2006]

Fe = J(ϕa)−TJT
g τm. (4.3)

Alternatively, the force-estimation method discussed in Chapter 5 can be
used, which takes the joint friction into account. With the estimated
end-effector deflection, the corresponding joint angle deflections can be
calculated as defined in (4.1), such that

∆ϕa = J(ϕa)−1CeJ(ϕa)−T JT
g τm. (4.4)

Finally, the same procedure to compensate for the joint motion as for the
previous method is applied.

4.4 Experimental Setup

In order to evaluate the proposed method, an experimental platform
consisting of a six DoF ABB IRB140-robot [ABB Robotics, 2015b] with an
IRC5 controller, in combination with an open robot control extension called
ExtCtrl/ORCA [Blomdell et al., 2010] was used. The proposed method was
implemented in RAPID, and measurements from the robot were collected
both through RAPID and ExtCtrl. Measurements of the joint motor torque
for each joint cannot be directly accessed from the robot system; the torque
reference signal is, however, available. Since the motor current loop is
tightly controlled, the reference signal is assumed to sufficiently approximate
measurements of the joint motor torque [Stolt, 2015].

For verification purposes, 6D position/orientation measurements were
obtained using a Nikon K600 optical tracking system [Nikon Metrology,
2010]. By attaching a large number of LEDs at strategic positions on the
robot, position measurements in both Cartesian space and joint space could
be achieved with an absolute Cartesian accuracy of 50–75 µm, for the current
measurement configuration.

Two different clamping setups were used to perform the experiments.
In the first setup, denoted Setup 1, both the robot base and end effector
were directly attached to the same heavy steel plate using bolts. In the
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Figure 4.3 Setup 1, where both the robot base and the end effector are
rigidly attached to a large steel plate.

second setup, denoted Setup 2, a tool-changing system attached to an
aluminum-frame table with a high density fibreboard table top was used, in
order to investigate clamping in a compliant environment. The two different
setups are displayed in Figures 4.3 and 4.4.

4.5 Experimental Results

In this section, results from clamping experiments using the two setups
described in the previous section are presented.

Results from Setup 1

The results of the experiments performed by clamping onto the steel plate are
displayed in Figure 4.5, where torque–position maps are shown1 for each of
the six joints of the robot. The means of the motor positions have been
subtracted, such that results from different clamping configurations, i.e.,

1 For the torque–position maps presented in the figures of this section, several actuation
cycles were performed, and as a result of high repeatability, dashed lines may appear
solid.
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Figure 4.4 Setup 2, where the robot end effector is clamped using a
tool-changing system to a compliant table. The force/torque sensor visible
in the picture is not used in the experiments.

different positions of the clamping device in the workspace of the robot,
can be compared easily. In the figure, the measurement data of torque and
position are displayed, as well as the actual transmission characteristics,
obtained by compensating the data for any joint motion that occured during
the experiment. To this end, measurements from the optical tracking system
and the method described in Section 4.3 were used.

From the plots in Figure 4.5, several observations can be made. First,
it is noted that the backlash of each joint is negligible, cf. Figure 4.2,
and therefore focus is shifted to the stiffness characteristics of the joints.
Furthermore, it is noted that the raw measurement data and the data
compensated for joint motion exhibit discrepancies of varying size for each
joint. This can be explained by the clamping environment not being perfectly
stiff and that orthogonal joint compliances are present, i.e., the assumptions
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Meas. data
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Figure 4.5 Torque–position maps of measurement results for joints 1–6 of
the IRB140 robot, obtained using Setup 1. The dashed black curves show
the measured data, whereas the red curves show the data compensated for
joint motion.

made in Section 4.3 are not completely true. It was found that joint 3
exhibited a significant orthogonal joint compliance, where the bearings were
not stiff enough to withhold the forces generated when actuating joint 1. This
compliance is most likely a result of the asymmetric design of joint 3 of the
considered robot. When actuating joint 1 during a clamping experiment, the
robot is ’folded’ around the orthogonal direction of joint 3, see Figure 4.6.
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Joint 1

Joint 3

Clamped end effector

Figure 4.6 Simplified illustration of the considered robot manipulator
during a clamping experiment where joint 1 is actuated. To the left, the
initial clamping pose of the robot is shown, and the resulting pose of
actuating joint 1 is shown to the right. The deflection caused by the
orthogonal joint compliance is exaggerated for clarity.

This results in an undesired motion of joint 1, causing the stiffness of the joint
to be underestimated. However, this discrepancy was possible to resolve using
the optical measurements of the link.

Furthermore, it was found that the clamping configuration influenced
the measured transmission dynamics. With a long lever arm, i.e., clamping
the robot end effector far away from the actuated joint rotational axis, the
stiffness was less underestimated than with a short lever arm. Since the same
torque was applied to the joint in both cases, a long lever arm will result in
smaller forces at the end effector, which in turn results in smaller deflections
of the clamping device and the joints. Thus, for the experimental results
presented in this section, the clamping configuration that resulted in the
longest lever arm for the respective joint was chosen.

Results from Setup 2

Since significantly stiff environments are not always available in robot cells,
clamping experiments in a compliant environment were performed using
the second setup described in Section 4.4. The focus of the experiments
presented in this subsection was on joints 1 and 2, for comparison to the
results of Setup 1. However, the analysis for the remaining joints can be
performed analogously. During the clamping experiments, the TCP deflection
and the link motion were measured. As for the experiments performed using
Setup 1, the link deflections were used to compute the actual joint angle of
the actuated joint. Furthermore, the TCP deflection measurements were used
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Figure 4.7 Torque–position maps of measurement results for joint 1 of the
IRB140 robot, obtained using Setup 2. The figure illustrates the effects of
the compliant environment of Setup 2, and the orthogonal joint compliances.
The black curve shows the measurement data, the blue curve shows the
data compensated for TCP motion, and the red curve shows the data
compensated for joint motion.

to calculate the corresponding joint angle deflections, using the relation (4.1).
The results of the clamping experiments for joints 1 and 2 are displayed in
Figures 4.7 and 4.8, respectively. In the figures, the measurement data are
shown, as well as the data compensated using TCP and link deflections. It
is clear from both figures that the compensation based on TCP deflection
only accounts for a part of the arm-side joint motion. With additional
measurements using the optical tracking system, it was again verified that
the orthogonal joint compliance of joint 3 was significant in the joint 1
experiments. Additionally, for the joint 2 experiments, it was found that
the robot base was moving during the actuation of the joint. Because of
these effects, it can be concluded that TCP deflection measurements are not
sufficient to obtain the actual transmission characteristics. The error of the
estimate could however be reduced by up to 50 % by using the TCP deflection
measurements.
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Figure 4.8 Torque–position maps of measurement results for joint 2 of the
IRB140 robot, obtained using Setup 2. The figure illustrates the effects of
the compliant environment of Setup 2, and the orthogonal joint compliances.
The black curve shows the measurement data, the blue curve shows the
data compensated for TCP motion, and the red curve shows the data
compensated for joint motion.

Consistency of Measurements

In order to verify that the measurements of the joint motion can be
used for validation, two different clamping experiments of joint 1 were
performed for each of the two setups. The data were compensated using
the link measurements and the results of the four experiments are found in
Figure 4.9. It is noted from the figure that although the raw measurement
data differ significantly, the compensated torque–position maps exhibit a
striking correspondence. Furthermore, the previous statement that the joint
stiffness is less underestimated when clamping with a long lever arm to
the actuated joint rotational axis, is also demonstrated in Figure 4.9.
The clamping configurations in each of the setups differ in lever arm
length, where the configurations using a longer lever arm correspond to the
torque–position maps with a steeper inclination, indicating that the claim of
less underestimation of the joint stiffness is correct.
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Figure 4.9 Torque–position maps of measurement results for joint 1 on the
IRB140 robot, obtained from two different measurement configurations of
Setup 2. The blue and black curves show the measurement data obtained
using Setups 1 and 2, respectively. The corresponding curves compensated
for joint motion are displayed in green and red.

4.6 Discussion and Conclusions

In this chapter, a method for identifying the robot joint characteristics, such
as backlash and stiffness, was presented. In contrast to previous methods,
where external forces are applied to the robot end effector or to the robot
links using complex setups, the proposed method relies on locking all DoF of
the robot manipulator by clamping the end effector in a stiff environment.
Once locked, the joints are actuated separately in a sequence. Measurements
of motor torque and motor position are obtained from internal sensors, and
are used to characterize the joint properties. An advantage of this approach
is that all joint properties can be measured automatically and the setup does
not have to be changed for each joint. Additionally, only measurements from
internal sensors that already exist in the robot are used.

The clamping method was verified using two different experimental
setups; a stiff and a compliant environment. An optical tracking system
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was used to obtain validation data of the transmission dynamics for each
joint, as well as deflection measurements of the TCP position during
clamping experiments. Two different aspects were investigated; the effect
of a compliant clamping environment as well as the orthogonal joint
compliances. It was found that the joint stiffness was underestimated when
clamping in a compliant environment and as expected, the stiffness was
less underestimated when clamping in a significantly stiffer environment.
A method for compensating the underestimated stiffness using deflection
measurements of the TCP was presented, and was shown to be able to
reduce the error by up to 50 %. It is to be noted that the TCP position
measurements could be obtained using less expensive sensors than used in
this chapter, such as linear encoders. The remaining error was found to be
caused by orthogonal joint compliances, whose effect could be compensated
for with the use of an optical tracking system. Alternatively, it could be
possible to attach linear encoders to the manipulator in order to measure the
arm-side joint angles directly. While this may require construction of fixtures
and extensive calibration, the joint stiffness will be underestimated without
access to arm-side measurements.

Even though none of the joints of the considered robot manipulator
exhibited significant backlash, the method as such is capable of identifying
the backlash.

A possible extension of the method could be to not only use measurement
data from a single clamping configuration, but from a series of clamping
experiments performed in multiple configurations. It could then be possible to
apply a least-squares approximation in order to identify the complete stiffness
matrix of the robot manipulator, including the orthogonal joint compliances.

The obvious next step for the proposed method is to utilize the obtained
joint models in order to apply compensation to the robot motion. This can
be realized in two different ways, either applying online compensation during
execution of the robot program, or offline compensation by updating the
robot program iteratively after an initial trial of the program. Future research
will focus on applying both of these methods, to compare the obtained
machining results, both with respect to online/offline compensation, as well
as to the other methods proposed in this thesis.
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5

Iterative Learning Control

for Machining

5.1 Introduction

This chapter extends the method from the publication [Cano Marchal et al.,
2014], and presents additional results.

As another alternative to the methods for increasing the machining
accuracy presented in Chapters 2 and 4, an iterative learning control (ILC)
approach is considered in this chapter. For the application of machining,
ILC can be used to adapt the geometric robot path in order to increase
the absolute accuracy of the machined parts. The surface accuracy of the
machined parts is not considered, as no high-bandwidth compensation can
be performed, cf. the results of Chapter 2.

The subject of ILC has been comprehensively researched. It was initially
introduced in a Japanese journal in 1978 [Uchiyama, 1978], but it did not
reach a broad audience until 1984. In that year, three different papers were
simultaneously published [Casalino and Bartolini, 1984; Arimoto et al., 1984;
Craig, 1984], in which improving position control of robotic manipulators
by iterative learning were considered. Later, robots with joint and link
flexibilities performing repetitive tasks were considered [Miyazaki et al., 1986;
Norrlöf, 2002; Hakvoort et al., 2007]. The idea is to measure the position
deviations during the first execution of the task, and subsequently update
the control inputs or the specified path and trajectory for the following
iterations. Under certain assumptions, convergence of this iterative procedure
can be theoretically proven. However, all of the mentioned references consider
situations where the robot end effector is moving in free space.

Further development of ILC is presented in the thesis [Norrlöf, 2000].
General surveys of ILC methods, theory, and applications are found
in [Bristow et al., 2006; Ahn et al., 2007]. Additionally, real-time algorithms
for ILC were proposed in [Xu et al., 2010].
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x
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Figure 5.1 The experimental platform used for evaluation of ILC in milling
scenarios, with the robot holding the milling spindle and the aluminum
workpiece fixed in the robot workspace. The milling spindle is equipped
with three LED units, in order to enable high-accuracy tracking of the tool
position.

The difference of this research compared to previous applications of ILC
in robotics is the contact between the workpiece and the machining spindle,
which is required for completion of the machining task. This constitutes a
major difficulty in applying the iterative scheme, since the force interaction
between the tool and the workpiece must be considered when determining the
updated geometric path. The motivation for seeking ILC-based solutions to
the problem of increasing the position accuracy in machining, is the common
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batch-oriented nature of modern production, which comprises significant
repetitiveness in the tasks to be performed.

In this chapter, three different versions of ILC algorithms are developed
and subsequently investigated in milling experiments; the difference between
the three being the available sensor data. Obviously, with more relevant
sensor data available, higher performance can be achieved. First, model-based
ILC is considered based on arm-side measurements in task space of the robot
using an optical 6D tracking system, in order to demonstrate the effectiveness
of the strategy for reducing the position deviations. Second, an ILC algorithm
based on joint motor angles and measurements provided by a force/torque
sensor attached to the robot end effector, is developed. Finally, an ILC
algorithm based on end-effector forces estimated from joint motor torques
is developed, i.e., using only sensors that already exist in the majority of
conventional industrial robots. The two latter approaches are appealing, since
the need for expensive external tracking systems is eliminated.

Disposition

This chapter is organized as follows: Section 5.2 presents the modeling of
the robot and the milling process, a subsequent identification procedure for
the required models, and the details of the proposed ILC algorithms. The
experimental setup and the obtained results from applying ILC to milling in
aluminum are presented in Sections 5.3 and 5.4, respectively. The obtained
results are analyzed and the method as such is contrasted to other approaches
for increasing the robotic machining accuracy in Section 5.5. The chapter is
summarized in Section 5.6, where conclusions also are drawn.

5.2 Method

In this section, the robot and the effects of the milling process on the robot are
modeled using system identification methods, in order to provide a basis for
the design of model-based ILC algorithms. Additionally, the force-estimation
method is described, as well as the three different proposed ILC algorithms.

System Modeling and Identification

As mentioned in the introduction, the main difficulty of milling with an
industrial robot is the deflection caused by process forces that act on the
robot end effector. In addition to this, the accuracy of the position control
is limited by the quality of the kinematic calibration of the robot, as well as
error caused by the load attached to the robot end effector1. For a robot

1 Errors caused by inertial forces are neglected because of the low accelerations that are
used when performing milling.
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Figure 5.2 Block diagram describing the model of an unconstrained robot.

moving unconstrained in free space, the proposed modeling approach is
depicted in Figure 5.2, where the kinematic and load errors are treated as
an additive output disturbance. The model variables and subsystems of the
block diagram in this chapter are denoted as:

• r: desired position for each spatial coordinate;

• u: control input to the robot, in this case a Cartesian position reference;

• yr: Cartesian position of the robot end effector, computed from
measured joint angles;

• yn: actual Cartesian position of the robot end effector;

• e: Cartesian position error of the robot;

• d: position deflection caused by the milling process forces;

• de: position disturbances caused by kinematic or calibration errors;

• f : measured forces on the end effector along the three Cartesian axes;

• GR: model of the controlled robot in Cartesian space (including
the internal joint-position feedback controllers). More specifically, the
transfer function from u to yr when the robot is moving in free space;

• GM : model relating yn to f , i.e., the model describing how process
forces arise in the milling task;

• GK : compliance model relating the process forces f to the deflections
d of the robot in Cartesian space.

For the case when the robot is performing milling, the dynamic
compliance relation is modeled as two different inherently coupled
phenomena; the deflection of the robot when a force is applied to its end
effector, and the process forces arising when milling is performed. The model
of the first phenomenon aims to link the applied force with the deflection by
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Figure 5.3 Block diagram describing the proposed modeling approach of
the milling system model.

the robot—i.e., the relationship which is commonly modeled using Hooke’s
Law [Ugural and Fenster, 2003] or generalizations thereof—while the second
model is intended to relate the path traversed by the robot end effector to
the forces that appear during the milling. A block diagram displaying the
proposed modeling approach to the robotic milling system is presented in
Figure 5.3.

The following relations formalize the modeling approach described in the
previous paragraph and illustrated in Figure 5.3:

yn = GRu + d + de, d = GKf, f = GM yn. (5.1)

Robot-Model Identification The model GR of the controlled robot motion
in Cartesian space is estimated using system identification methods. Since the
controlled robot motion is considered only in a limited Cartesian workspace
in the milling task2, linear models can be justified. In particular, a chirp
excitation signal is applied in each direction, and the response in position
is obtained using the measured joint motor angles and forward kinematics.
Using a time-series modeling approach, third-order discrete-time dynamic
models are identified and subsequently used in the ILC algorithms. The
models capture the inherent resonant character of the mechanical structure,
which is a result of the joint and link flexibilities of the robot.

Process-Force Model Identification Intuitively, it is natural to assume that
the process forces that occur during a milling experiment are related to the
amount of material that is being removed, i.e., related to the depth of cut
and the feed rate. Thus, the model GM is chosen with robot position as input
and process forces as output. However, as the robot position does not contain
any information on the depth of cut of the milling, it is assumed that the

2 Considering that the robot configuration influences the controlled dynamics of the robot
end effector, configuration-dependent linear parameter-varying models or nonlinear
models (and thus nonlinear ILC methods) explicitly accounting for this property are
required if larger workspaces are to be considered.
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depth remains constant throughout the milling. Additionally, in order not to
restrict assumptions on which directions process forces arise, a multi-input
multi-output (MIMO) model structure is considered. This structure is also
necessary as process forces were found to appear by cross couplings in all
Cartesian directions even when milling was performed in a single direction.

The model can then be identified by recording the following sensor-data
signals during a milling experiment:

• The forces acting on the end effector (f);

• The arm-side position of the robot (yn), measured by an optical
tracking system.

The required sensor data can be collected during the initial uncompensated
ILC iteration using the nominal geometric path; thus avoiding the need for
separate identification experiments prior to application of the ILC iterations.

With the collected sensor data, PEM was used to identify the MIMO
model GM , which is a 3×3 matrix of discrete-time transfer functions. The
orders of the different identified transfer functions vary between 2–6. The
measured forces and the output of the model for all Cartesian axes are shown
in Figure 5.4, where it is noted that the model exhibits satisfactory fit to the
experimental data for all axes.

Because of the assumption on constant depth of cut, the process-force
model must be reidentified if a different depth of cut is considered. However,
should a linear or affine relationship be assumed, the previously identified
model could simply be changed correspondingly with respect to the change
in depth of cut.

Deflection-Model Identification As stated earlier in this section, the
purpose of the model GK is to relate the deflections exhibited by the
robot with the forces applied on its end effector. For the identification of
this compliance relation, it is assumed that the deflections that occur during
milling are exclusively caused by the milling process forces. The model can
then be identified by recording the following sensor-data signals during the
initial milling experiment:

• The forces acting on the end effector (f);

• The estimated position of the robot end effector, computed from the
joint motor angles using the forward kinematics of the robot (yr);

• The arm-side position of the robot end effector measured by an external
tracking system (yn).

With the collected data, a MIMO model describing the dynamics in all
Cartesian directions was estimated, with the Cartesian forces as input and the
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Figure 5.4 Measured process forces and model output (GM ) for all three
Cartesian axes.

arm-side deflections as output, using PEM. It is assumed that the orientation
of the workpiece is unaltered during the milling, which means that the fixed
coordinate system defined in Figure 5.1 was used throughout the experiments.
The experimental data and the output of the models for each of the Cartesian
axes are shown in Figure 5.5. As can be observed in the figure, the fit of the
models to the experimental data is satisfying, capturing the major parts of
the compliance dynamics.

In order not to impose any assumptions on the high-frequency properties
of the system, dynamic models are considered instead of static models
based on Hooke’s law. Additionally, the MIMO structure is motivated by
investigating the input and output data used for the identification, as
displayed in Figure 5.4 and 5.5, respectively. It is noted from the bottom panel
of Figure 5.4 that negligible excitation is provided along the z-axis, which
is a natural consequence of milling in the xy-plane. However, the measured
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Figure 5.5 Measured deflections and model output (GK) for all three
Cartesian axes.

deflection in the z-direction is not negligible, indicating that the deflection is
caused by the other force components. With the proposed MIMO dynamic
modeling approach, higher performance can be achieved compared to the use
of a SISO static models.

Force Estimation

As an alternative to using measurements from a force/torque sensor,
a method for estimating the end-effector forces using the joint motor
torques [Linderoth et al., 2013; Stolt, 2015] is considered here. Measurements
of the joint motor torque for each joint cannot be directly accessed from
the robot system, but the torque reference signal is available. Since the
motor current loop is tightly controlled, the reference signal is assumed to
sufficiently approximate measurements of the joint motor torque [Stolt, 2015].
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The joint motor torque, denoted τm, is modeled as

τm = τg + τdyn + τext + τd, (5.2)

where τg denotes torque caused by gravity, τdyn represents dynamic torque
which appears when rapidly accelerating the robot, τext is torque caused
by external forces, and τd is torque originating from disturbances, such as
friction, noise, and modeling errors. As mentioned previously in this section,
because of the low accelerations that are used when performing milling, the
dynamic torques are neglected. The external torques τext, are assumed to
originate from the external forces applied to the robot end effector, in this
case the process forces that appear during milling, i.e., the quantity that is
to be estimated. The external torques and Cartesian forces are related as

τext = JT (q)f (5.3)

where J(q) is the Jacobian matrix of the robot, and q the joint angles.
The disturbance torque τd is assumed to consist of two parts; friction

torque τf and Gaussian measurement noise e:

τd = τf + e. (5.4)

The friction torques mainly consist of Coulomb and viscous friction, and are
velocity dependent. For high velocities, the Coulomb friction is modeled as a
constant torque, whereas for low velocities the torque can vary significantly.
It is therefore modeled as the outcome of a uniformly distributed random
variable with a velocity-dependent range.

The gravity-compensated torque, denoted τ̄ , is given as

τ̄ = τm − τg = τext + τd = JT f + τf + e. (5.5)

Using this relation, the maximum likelihood estimate of the force is obtained
by solving

minimize
f,τf

(
τ̄ − JT f − τf

)T
R−1

e

(
τ̄ − JT f − τf

)

subject to τf,min ≤ τf ≤ τf,max,

(5.6)

where Re is the covariance matrix of e. The range of the uniform part
of the disturbance torques is described by the inequality constraint. The
optimization problem (5.6) is convex and of low order, and can therefore be
solved in real-time. For further details on the force estimation, the reader is
referred to [Stolt, 2015].

With this method, the estimated end-effector forces, denoted f̂ , can be
used to identify the models GM and GK , without the need for a force sensor.
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ILC Algorithms

In this section, the ILC algorithms are developed. First, in order to eliminate
the kinematic, calibration, and load errors that occur when the robot is
moving in free space, an initial free-space ILC method is employed. Then,
three different ILC algorithms for milling are derived. The first algorithm uses
external arm-side measurements in the workspace, the second uses measured
end-effector force data, while the third relies on estimated force data.

Free-Space ILC As discussed in Section 5.2, a robot moving in free space is
affected by kinematic errors, as well as errors caused by the end-effector
load. Additionally, since the optical tracking system is used to evaluate
the obtained accuracy for each of the methods, the quality of the relative
calibration between the robot and tracking system is important. Since two
of the proposed ILC methods are based on force data, which only provide
relative data as opposed to the absolute position measurements that the
tracking system provide, the position errors obtained in free space need to
be eliminated in order to enable comparison of the methods. Thus, an ILC
algorithm is developed in order to reduce the position errors in free space,
using measurements from the optical tracking system.

The fundamental idea of the ILC algorithm in the context of robot
position control is to improve the previous reference path sent to the robot
system by adding a certain quantity to this path, based on the measured error
in the previous execution. The update is performed such that the expected
output in the next iteration is closer to the desired milling path. Here, this
translates to updating the control input uk from the current iteration, k,
based on the position error as measured by the optical tracking system.

From the block diagram of the system describing the robot moving in free
space, shown in Figure 5.2, the system is given by

yn,k = GRuk + de, (5.7)

where k denotes the iteration index, which is appended to all signals except
the desired position r. With this relation, the model-based ILC algorithm,
e.g., described in [Norrlöf, 2000], is applied

uk+1 = uk + QLek, (5.8)

where the position error is defined as ek = r − yn,k, L is an approximate
inverse of the transfer function from uk to yn,k, and Q is a low-pass or
band-pass filter with appropriately chosen frequency properties. In particular,
the choice of Q should be based on the desired frequency range for the ILC
compensation.

The corrected control input, denoted uc, as provided by the free-space
ILC algorithm, is subsequently used as initial input u0 for the milling ILC
algorithms.
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Arm-Side Measurement ILC In order to reduce the magnitude of the
position errors during the milling task iteratively, the first approach proposed
is to apply an ILC algorithm using the arm-side position measurements,
provided by an optical tracking system.

Since the arm-side position of the robot is measured, the output yn,k is
available in each iteration k. For this ILC structure, the complete milling
model, as described by the block diagram in Figure 5.3, is given by

yn,k = GRuk + GKGM yn,k, (5.9)

assuming de = 0, which may be reorganized into

yn,k = (I − GKGM )−1GRuk. (5.10)

With this relation, the model-based ILC algorithm defined in (5.8) is applied,
where u0 = uc is used. In order to make the numerical computations more
robust, the ILC update law is reformulated as follows

uk+1 = uk + QL̃(I − GKGM )ek, (5.11)

where L̃ is chosen as an approximate inverse of GR. The relation (5.11) is
obtained by rewriting (5.8) and explicitly accounting for the structure of the
system model (cf. relation in (5.9)), but avoiding the inversion of the term
related to the milling process dynamics. If GR contains non-minimum phase
zeros, the inverse can, e.g., be determined by mirroring these zeros in the
unit circle prior to computing the inverse, see Figure 3.4 from Chapter 3.

In this chapter, the arm-side measurement ILC method is referred to as
Method 1.

Force-Measurement ILC As shown in the previous paragraph, the
assumption on explicit arm-side measurements led to a straightforward
formulation of an ILC algorithm. Unfortunately, the sensors required for
these kinds of measurements are expensive and not commonly available
in the manufacturing industry today. Consequently, it is of interest to
develop a method that is to some extent capable of estimating the arm-side
measurements without such a sensor. As stated previously, the position
errors that occur because of the milling process forces are not visible in
the measurements of joint motor angles. Hence, to eliminate the need for
arm-side measurements, an alternative is to use an additional sensor that
(together with appropriate models) can estimate the arm-side position errors.
A wrist-mounted force/torque sensor is a less expensive alternative to the
optical tracking systems. Consequently, the proposed second approach is
to construct a model-based estimation ŷn,k of the position deviations using
the joint-position resolver measurements and the force-sensor measurements
according to

ŷn,k = yr,k + GKfk, (5.12)
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to replace the arm-side position measurements yn. Using this relation, the
error signal used in the ILC algorithm is given by

ek = r − ŷn,k = r − yr,k − GKfk, (5.13)

and the subsequent update law is then equivalent to (5.11).
In this chapter, the force-measurement ILC method is referred to as

Method 2.

Force-Estimation ILC In addition to the two ILC methods for milling
proposed in this chapter, which both require extra sensors, it is also desirable
to develop a method that does not require additional sensors. Thus, an ILC
algorithm that only uses measurements from sensors that already exist in the
robot is developed, using the estimated end-effector forces obtained by the
method stated earlier in this section. The algorithm is formed by substituting
the measured forces f for the estimated forces f̂ in (5.13), and applying the
ILC update law (5.11) with the reidentified models GM and GK .

In this chapter, the force-estimation ILC method is referred to as
Method 3.

5.3 Experimental Setup

The experimental platform used to perform the milling experiments
comprises an ABB IRB140 robot [ABB Robotics, 2015b] with an IRC5
controller, in combination with an open robot control extension called
ExtCtrl/ORCA [Blomdell et al., 2010], running at 250 Hz. The proposed
methods were implemented in Matlab Simulink, where the simulation
models were translated to C-code using Real-Time Workshop and compiled
to be run on the extended robot system. In order to obtain task-space
measurements of the tool position, a Nikon K600 optical tracking system
[Nikon Metrology, 2010] was used. The tracking system had a specified
absolute accuracy of approximately 50–75 µm for the used setup and
measurement configuration. The robot was equipped with a wrist-mounted
JR3 100M40A force/torque sensor [JR3, 2015], measuring forces and torques
in the Cartesian directions. A Solectro UFM 1050 milling spindle [Solectro,
2015] with a maximum revolution speed of 22 000 rpm, equipped with a
6 mm diameter end mill with two teeth, was used.

The experimental setup is displayed in Figure 5.1, including the definition
of the fixed world Cartesian coordinate system used throughout the
experiments. As seen in Figure 5.1, the milling spindle was attached to
the robot and the aluminum workpiece (type Al7075) was rigidly fixed in the
robot workspace, such that the workpiece was aligned with the horizontal
plane of the robot coordinate system. As seen in the figure, three LED units
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were attached to the milling spindle in order to enable the tracking system
to measure the tool position. The specific milling task considered in this
chapter was to mill a 28×28 mm pocket with a 2 mm depth of cut; the desired
milling path used for the experiments is displayed in Figure 5.6. A feed rate
of 10 mm/s was used for all experiments. With the described experimental
setup, the available measurement signals for each of the Cartesian axes were:

• yr: estimated position of the robot tool, computed from the joint motor
angle measurements using forward kinematics;

• yn: arm-side position of the robot tool measured with the optical
tracking system;

• f : force acting on the tool, measured by the wrist-mounted force/torque
sensor.

• τm: joint motor torque reference for each of the six robot joints.

5.4 Experimental Results

The milling experiments were performed using the setup described in the
previous section. In this section, the results obtained using the proposed ILC
algorithms are described separately, followed by a comparison of the results.

Free-Space ILC

Prior to performing the milling experiments, the free-space ILC algorithm
was run in order to reduce the influence of kinematic and calibration errors.
After a single iteration, the MAE was found to be within the measurement
accuracy of the optical tracking system. The MAE for iteration k is defined
as

MAE =
1

N

N∑

j=1

|ek,j | , (5.14)

where j is the sample index, ek,j is the tracking error, and N is the number
of data points.

With the corrected control input obtained from the free-space ILC, an
initial pocket milling was performed, serving as iteration 0 for all milling
experiments using Methods 1–3.

Method 1

Using position measurements of the robot end effector, acquired by the
optical tracking system described previously, four ILC iterations of milling
were performed using Method 1. The desired path, as well as the milling
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Figure 5.6 The desired and measured milling paths for iterations 0 and 4,
using Method 1.

paths traversed in iteration 0 and 4, are displayed in Figure 5.6. It is noted
that the stiffness is significantly higher in the x-direction as compared to the
y-direction, since substantial deflections are mostly visible in the y-direction.

The evolution of the MAE of the obtained position errors along each
Cartesian axis is displayed in Figure 5.7. It is observed from Figure 5.7
that the most significant error reduction is obtained already in the first
iteration. This is expected with the use of a model-based ILC algorithm,
given that the process model is accurate. An additional decrease in the MAE
was obtained in the z-direction for iterations 2–4, possibly suggesting that
the z-component of the process model could be improved. Nevertheless, the
obtained position error is within the accuracy of the optical tracking system
after four iterations.
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Figure 5.7 MAE for each ILC iteration and Cartesian direction, obtained
using the arm-side measurement ILC algorithm (Method 1).

Method 2

With the force sensor introduced in Section 5.3, which provides measurements
of the process forces affecting the robot end effector, four ILC iterations of
milling were performed using Method 2. For evaluation purposes, the optical
tracking system was used to measure the position errors.

The evolution of the MAE of the obtained position errors along each
Cartesian axis is displayed in Figure 5.8. Similar to the results from using
Method 1, the largest reduction in position error is achieved already in
the first iteration. For the subsequent iterations, no significant additional
decrease in the error is observed. However, the error appears to have
converged, with an expected minor variation because of measurement noise.
The results obtained with this approach are surprisingly close to that of
Method 1, given the relevance of the available sensor data. The method
clearly shows its capability of estimating and compensating the position
deflections arising as a result of the process forces.

Method 3

Using the force-estimation method described in Section 5.2, which provides
an estimate of the process forces affecting the robot end effector, four ILC
iterations of milling were performed using Method 3. The experiments were
evaluated using measurements from the optical tracking system.

Prior to performing the first ILC iteration, the performance of the
force-estimation algorithm was evaluated. First, an experiment where the
robot was moved throughout the major part of its workspace was performed,
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Figure 5.8 MAE for each ILC iteration and Cartesian direction, obtained
using the force measurement ILC algorithm (Method 2).

in order to estimate the gravity torque τg and the friction for each joint. With
these properties known, the end-effector forces could be estimated. Figure 5.9
displays the measured and the estimated forces in each Cartesian direction. It
is noted that the estimated forces exhibit satisfactory correspondence to the
measured forces in the x- and y-directions. In the z-direction, the estimate
of the force is slightly less accurate. However, as the milling is performed in
the xy-plane, only minor deflections are expected in the z-direction. Also,
the force-estimation errors are to some extent assumed to be captured by
the reidentified process models of the milling.

The evolution of the MAE of the obtained position errors along each
Cartesian axis is displayed in Figure 5.10. As for Methods 1 and 2, the
position error is reduced primarily in the first iteration. It is observed from
Figure 5.10, that an increased fluctuation in the error in each iteration,
compared to Methods 1 and 2, was obtained. This is not unexpected as
the force is estimated from noisy motor torques. Nevertheless, a significant
reduction of the position error was achieved using Method 3.

Comparison of Results

In order to quantify the results and compare the proposed methods, the
evolution of the Euclidean norm of the MAE values for each method
is displayed in Figure 5.11. Additionally, the MAE norm numbers for
iterations 0 and 4 are presented in Table 5.1. Furthermore, the norm of
the position error for the complete milling experiment using the proposed
methods, is displayed in Figure 5.12. It is noted that the errors still exhibit
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Figure 5.9 Force-estimation performance during a milling experiment.

Table 5.1 MAE norm of position errors, given in µm.

Method 1 Method 2 Method 3

Iteration 0 180.1 180.1 180.1
Iteration 4 54.9 81.7 110.7
Ratio 3.3 2.2 1.6
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Figure 5.10 MAE for each ILC iteration and Cartesian direction, obtained
using the force-estimation ILC algorithm (Method 3).
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Figure 5.11 Summary of results using Methods 1–3, displaying the
Euclidean norm of the MAE values for each ILC iteration k.
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Figure 5.12 Error norm plots for each iteration k, for all three ILC
methods.

some high-frequency content after the ILC iterations. This is most likely
because the remaining frequencies are above the available compensation
bandwidth, limited by the cut-off frequency of the low-pass filter Q, which is
set to approximately 10 Hz in this chapter.

In order to briefly investigate the error reduction capabilities of the
proposed methods in more demanding experiments, additional pocket milling
experiments were performed, with a 4 mm depth of cut. As seen in Table 5.1,
Method 1 resulted in the largest error reduction, and was therefore chosen
for these experiments. The desired path, as well as the paths obtained in the
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Figure 5.13 The desired and measured milling paths for iterations 0 and
4, using Method 1.

initial iteration and iteration 4, are displayed in Figure 5.13. As expected,
the position deflections are significantly larger, cf. Figure 5.6. The evolution
of the MAE over the ILC iterations is shown in Figure 5.14. Calculating
the MAE norm for iterations 0 and 4, an error reduction by a factor of
approximately six was achieved for the deep-cut experiments.

5.5 Discussion

As an alternative to the approaches presented in previous chapters, three
different ILC methods for increasing the absolute accuracy of robotic
machining tasks were proposed and experimentally verified. As mentioned
in Section 5.1, the batch-oriented nature of modern production induces
significant repetitiveness in the tasks to be performed, thus enabling the
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Figure 5.14 MAE for each ILC iteration and Cartesian direction, obtained
using the arm-side measurement ILC algorithm (Method 1).

possibility of improving the performance of the task from workpiece to
workpiece. In addition, the use of model-based ILC enables fast convergence
rates, thus minimizing the amount of sub-standard pieces produced during
the learning process. All of the proposed ILC methods resulted in a
significantly increased accuracy. However, the accuracy has not reached the
performance offered by CNC machines or that achieved with approaches
using additional hardware, such as the macro/micro configuration presented
in Chapter 2. Still, all proposed methods do improve the accuracy; decreases
of approximately 70 %, 55 %, and 38 % of the uncompensated error were
achieved using Methods 1–3, respectively. Additionally, in a more demanding
milling experiment using Method 1, the error was reduced by 84 %. Hence, the
results obtained by milling with industrial robots can be improved without
the addition of extra hardware, as shown by the use of force estimation in
Method 3. At an extra cost, a force sensor could be added to the robot
system, making it possible to reduce the position error further.

With the arm-side measurement ILC algorithm, the measurement
accuracy of the optical tracking system provides a lower limit on the
accuracy that can be achieved in the milling. Thus, since an MAE norm
of approximately 55 µm was reached, the algorithm can be considered
successful.

A limitation of the force-based approaches is the inability to eliminate
kinematic and calibration errors, that are also present in the free-space
motion. This was, however, solved by employing a free-space ILC algorithm
prior to performing the milling. Kinematic calibration methods might also be
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used to correct these errors, see for instance [Chen et al., 2008]. Furthermore,
the force-based approaches are limited by the accuracy of the deflection
model, sensor noise, and force-estimation errors for Method 3. Also, to some
extent, individual variations in the workpieces used in the experiment and
the effect of the wear of the tool also introduced certain non-repetitive errors
and disturbances that the ILC algorithm cannot compensate. This is however
a problem for all ILC methods, even with arm-side measurements of the
robot position. Another limitation of the force-based ILC methods is that the
optical tracking system is needed in order to identify the dynamic models,
as well as performing the free-space ILC iterations. However, this procedure
only needs to be performed once for each new part, making it possible to
rent a tracking system for this procedure, instead of purchasing a permanent
system.

A natural question for the future applicability of the method is the
generality of the models required for the ILC algorithms. The deflection
model GK obviously depends on the robot in use and the specific
configuration, but given that the same limited workspace is used for all
milling operations, it can be considered independent of the path traversed
in the milling. Hence, a modeling effort should be carried out in order to
characterize the robot in the configuration used for the milling operations,
but the identified model could be used for multiple machining tasks in
a limited workspace. For machining tasks that require larger workspaces,
it could be of interest to incorporate joint-based stiffness models for the
compensation, e.g., utilizing the models developed in Chapter 4.

Contrary to the deflection model, the process-force model GM does
depend on the milling conditions, so different models are required for different
tasks. In this chapter, a data-driven modeling approach was used. However,
different models available in the machining literature relating the process
forces with the milling conditions could be used as well, see, e.g., [Grote and
Antonsson, 2009]. Furthermore, it would be beneficial not only to compensate
the Cartesian position errors but the possible orientation errors as well.

5.6 Conclusions

Three different model-based ILC methods were presented, with the aim
of reducing the position errors in machining tasks with robots. The first
method was based on position measurements of the arm-side of the robot
in task space, the second method used process-force measurements, and
the third used joint motor torques to estimate the process forces. The
experimental results obtained from milling experiments in aluminum showed
a significant improvment in position accuracy using the algorithm based
on arm-side position measurements. An absolute error decrease of up to
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84 % was obtained with this algorithm. In turn, the force-based and the
force-estimation approaches were capable of decreasing the error by 55 %
and 38 %, respectively. Although the optical tracking system is needed for
the initial calibration, significant savings can be achieved with the use of the
second and third method, because of the lower investment cost in sensors.
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6

Frequency-Domain Iterative

Learning Control

6.1 Introduction

This chapter is based on the manuscript [Sörnmo et al., 2015a].
In this chapter, further investigation and application of ILC methods

are provided, although a different kind of manipulator is considered. The
considered manipulator is a marine vibrator, which is used to manipulate
the air or water pressure around its shell, by precise position control of
the shell. In turn, this can be used for marine seismic acquisition, i.e.,
mapping of the ocean floor. To this purpose, the use of impulsive sources,
such as airguns or explosives, have been dominating for several decades.
However, recent developments of marine vibrators offer numerous advantages,
if the device is controlled properly. Marine vibrators are environmentally
friendly compared to impulsive sources, because of the reduced peak source
strength in terms of pressure. The frequency content can be controlled such
that there is less impact on marine mammals outside the seismic band.
The frequency range of interest for the signals that are to be emitted
from the marine vibrator is approximately 5–100 Hz. It is crucial that
only these frequencies are emitted, as higher frequencies may interfere with
marine animal life [LGL and MAI, 2011]. However, since marine vibrators
are advanced mechanical systems, nonlinear effects and high-frequency
harmonics are likely to be present. The marine vibrator considered in this
chapter has been found to produce high-energy overtones, which need to
be attenuated in order to fulfill the specifications. The contribution of this
chapter is the modeling and control of such a marine vibrator, to the purpose
of overtone attenuation and reference tracking. A model-based iterative
solution is presented, based on frequency-domain ILC, considering both SISO
and MIMO cases. Additionally, a method for adaptive reidentification of the
vibrator model for diverging frequencies is presented.
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Previous Research

The mechanical design of marine vibrators, including the driving means and
measurement systems, has thoroughly been researched in, e.g., [Graydon
and Delbert, 1969; Tenghamn, 2006; Tenghamn, 2009]. The aspect of precise
position control of marine vibrators is not as well represented in the literature.
In [Tenghamn, 2011], a time-domain ILC scheme for vibrator position control
is proposed. However, no results are presented.

For the application considered in this chapter, frequency-domain ILC
was found to be immensly superior to time-domain ILC, see Section 6.7.
Convergence properties of ILC algorithms in the frequency domain are
analyzed in [Goh, 1994; Norrlöf and Gunnarsson, 2002]. A set of different
applications of the frequency-domain inversion-based ILC approaches have
been considered previously; nanopositioning applications are developed
in [Tien et al., 2005; Yan et al., 2012] and acoustic noise reduction is
investigated in [Waite et al., 2008].

A modeling-free inversion-based ILC algorithm is presented in [Kim and
Zou, 2008; Kim and Zou, 2013], where the frequency-domain input/output
relation is used in each iteration to eliminate model dependence. The
algorithm was applied to a nanofabrication scenario in [Yan et al., 2009].
This method is, however, not applicable to the scenario considered in this
chapter, as sufficient excitation is not provided in the complete frequency
compensation range. Instead, an adaptive reidentification algorithm is
developed in this chapter, in order to cope with process variations.

Disposition

This chapter is organized as follows. Section 6.2 describes the objectives
of marine seismic acquisition, followed by a description of the hardware in
Section 6.3. Control-system design principles are developed in Section 6.4,
and modeling and control design are presented in Section 6.5. Results from
experiments performed in air are presented in Section 6.6, followed by a
comparison to time-domain ILC in Section 6.7. Finally, the method and
experimental results are discussed, and conclusions are drawn in Section 6.8.

6.2 Marine Seismic Acquisition

Reflection seismology is used by petroleum geologists and geophysicists to
map and interpret potential petroleum reservoirs. Oil and gas explorers
use seismic surveys to produce detailed images of the various rock types
and their location beneath the sea floor. This information is then used to
determine the location and size of oil and gas reservoirs. The size and scale of
seismic surveys have increased alongside the significant increases in computer
power during the last 30 years. This has led the seismic industry from
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Figure 6.1 Illustration of the marine seismic acquisition principle, adapted
from [KrisEnergy, 2015].

laboriously, and therefore rarely, acquiring small 3D surveys in the 1980s,
to now routinely acquiring large-scale high resolution 3D surveys. The goals
and basic principles have remained the same, but the methods have slightly
changed over the years. Traditional marine seismic surveys are conducted
using specially-equipped vessels that tow one or more cables containing a
series of hydrophones located at constant intervals, see Figure 6.1. The cables
are known as streamers, with 2D surveys using only one streamer and 3D
surveys employing up to twelve or more. The streamers are deployed just
beneath the water surface, at a fixed distance from the vessel. The seismic
source, traditionally an impulsive source or an array of impulsive sources, is
also deployed beneath the water surface and is located between the vessel and
the first receiver. Marine seismic surveys generate a significant quantity of
data, since each streamer can be more than 8 km long, containing hundreds
of channels, and the seismic source is typically fired every 10 or 20 seconds.
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6.3 Marine Vibrators

The considered marine vibrator, in this chapter also referred to as
a transducer, uses a flextensional shell to facilitate the low-frequency
application, with an intended frequency range of 20–100 Hz. The transducer
drivers are based on electrical coils operating in a magnetic field and spring
elements that transfer the force from the electrical driver to the flextensional
shell, see Figure 6.2. The input to the marine vibrator is thus the driving
current to the electrical coils, which displace the shell so that acoustic signals,
i.e., the output of the system, are generated. Methods on how to measure
the output are discussed later in this section.

Low-frequency sources face the problem of poor efficiency if a good
impedance match with the surrounding water cannot be achieved.
Straightforward calculations on the radiation from a vibrating piston with
a radius of 0.3 m and a source level of 195 dB (relative to 1 µPa), yields
0.074 % efficiency at 10 Hz. The same piston has an efficiency of 99.9 % at
10 kHz [Kinsler et al., 1999]. This leads to differentiator-type characteristics
for the low-frequency dynamics of the system.

The mechanical construction of the considered marine vibrator exhibits
two resonances; the lowest resonance originates from the shell interacting
with the equivalent fluid mass and the second resonance from the spring
elements with a resonance frequency in the upper frequency band. Having
two resonances separated in the frequency band of interest makes it possible
to achieve high efficiency. Additional details on the mechanical design of the
vibrator can be found in [Tenghamn, 2006].

A marine vibrator offers environmental advantages over impulsive sources.
Given the high-profile environmental discussions on output peak power of
seismic sources, vibrator technology offers a superior solution by spreading
the energy in time; thus reducing the acoustic peak power. Additionally, the
fact that a marine vibrator can generate arbitrary signals makes it useful for
various types of spread-spectrum signals that can reduce the environmental
impact even further.

Sensors

A variety of sensors may be used to acquire information about the signal
emitted by the vibrator, such as

• Accelerometers mounted on different locations on the vibrator.

• Sensors measuring displacement of different vibrator locations relative
to a reference position.

• Microphones mounted in the air-filled volume inside the vibrator shell.
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Figure 6.2 Schematic drawing of the transducer actuation principle. The
two flextensional shells are moved by the electrical coils via a construction of
springs. This spring construction creates resonances at suitable frequencies,
in order to improve the impedance match to the water, thus increasing the
vibrator efficiency for low frequencies.

• Hydrophones mounted outside the vibrator, either close to the vibrator
(near-field measurement) or at a distance from the vibrator (far-field
measurement).

All mentioned sensors have advantages and disadvantages. Accelerometers
give the possibility to measure acceleration at discrete points on the vibrator
with good signal-to-noise ratio (SNR). The bandwidth of these sensors is high
enough to provide input to the ILC algorithm over the complete frequency
region of interest. Accelerometers measure movements of the vibrator itself,
while the quantity of primary interest is the acoustic sound pressure level
generated by the vibrator. Hydrophones may be used to measure the sound
pressure in the water, but the measurement task is complicated by the
fact that the vibrator is often operated in a fairly reverberant environment
where multi-path contributions make the received signal more complex.
Microphones may also be placed inside the air-filled vibrator cavity, but as
in the hydrophone case internal reflections and different propagation paths
disturb the sound pressure signal.

For proof of concept, all experiments described in this chapter were
performed in air. In the experiments, two accelerometers were used to monitor
the vibrator motion, mounted centered on the vibrator shell, one on each side,
as seen in Figures 6.2 and 6.3. These positions were chosen after extensive
experimentation. Tests were also performed with microphones mounted
inside and outside the vibrator. Multi-path contributions complicated the
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Figure 6.3 An overview of the marine vibrator measurement system.

measurements and data extraction, therefore no successful ILC results were
obtained with microphones. The main focus of the experiments has therefore
been to obtain a stable ILC, using accelerometers mounted on the vibrator
shells.

Measurement System

Figure 6.3 shows an overview of the utilized measurement system. The system
consists of:

• Two accelerometers (with pre-amplifiers).

• A data acquisition unit, used to sample the accelerometer signals and
to generate control signals.

• A power amplifier to drive the coils in the vibrator.

• A personal computer for data retrieval and processing.

• Cabling for distribution of control and accelerometer signals to/from
the vibrator.

The accelerometers were mounted in aluminum housings, together with
pre-amplifiers, which were attached to the vibrator shell. High drive currents
were fed into the driver coils during operation. These may disturb the inputs
of the data acquisition system, especially since long cables were used between
the acquisition system and the vibrator. In order to obtain the desired
SNR in the accelerometer signals, dedicated pre-amplifiers with balanced
outputs were mounted in close vicinity of the accelerometers to minimize
common-mode interference from the driver side of the system. The harmonic
distortion of the sensor should preferably be an order of magnitude lower than
the maximum acceptable harmonic distortion in the vibrator output. The
sensor spectral noise floor should also preferably be an order of magnitude
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Figure 6.4 3D rendering of the marine vibrator. The device is
approximately two meters tall.

lower than the corresponding maximum acceptable overtone output from the
vibrator.

An audio data acquisition system of type Fireface UCX [RME-Audio,
2015] was used to sample the accelerometer signals and to generate the
control signals. Both inputs and outputs on the Fireface were balanced. A
sampling frequency of 44.1 kHz was used to sample the two accelerometer
outputs. Two analog outputs of the Fireface system were used to generate
control signals to the vibrator. The control signals were amplified in a
LAB4000 power amplifier which drove the vibrator coils. A standard personal
computer was used as interface to the Fireface.

Specifications

The objective of the control of the marine vibrator is to emit a well-defined
acoustic signal, i.e., to produce an acoustic output that matches a desired
reference signal with high accuracy. The reference signal is typically of low
frequency. The design specification considered in this chapter states that
tracking errors above 100 Hz should be attenuated to a spectral density level
40 dB below that of the desired reference signal. In this chapter, measures of
dB are given by

AdB = 20 log10

(
Y

Y0

)
dB, (6.1)

where AdB is the amplitude in dB of the ratio of the signals Y and Y0.

121



Chapter 6. Frequency-Domain Iterative Learning Control

2.9 2.92 2.94 2.96 2.98

−0.05

0

0.05

0.72 0.74 0.76 0.78 0.8

−0.02

−0.01

0

0.01

0.02
A

m
p

li
tu

d
e

(-
)

A
m

p
li

tu
d

e
(-

)

Time (s) Time (s)

f ≈ 47 Hz f ≈ 77 Hz

Figure 6.5 Two segments of the transducer output for an experiment
performed twice, with identical linear chirp signals as input. Experiment
1 and 2 are shown in blue and red, respectively. Note the high repeatability
between the experiments, motivating the choice of ILC as control strategy.

6.4 Control System Design Principles

An initial test of one side of the transducer was conducted, by subsequently
performing the same experiment twice using a linear chirp signal as input,
i.e., a sinusoid with frequency linearly increasing with respect to time.
Two different segments of the system response from both experiments are
displayed in Figure 6.5. It is evident that significant nonlinear properties are
present in the system, since the output does not closely resemble a sine wave,
especially around 77 Hz. Despite this, the responses show a highly repeatable
behavior, as the outputs from both experiments match closely. Furthermore,
an estimated frequency spectrum of the data, shown in Figure 6.6, reveals
complex dynamics with numerous resonance peaks and notches.

Because of these defining properties, ILC is considered to be an
appropriate control approach for this application, as identical reference
signals are to be used repeatedly and the dynamics was found to be
repeatable. Specifically, frequency-domain ILC was found to be highly
advantageous over traditional time-domain ILC. For further details on this,
the reader is referred to Section 6.7.

6.5 Modeling and Control Design

In this section, the procedure of characterizing and obtaining a model of
the marine vibrator is considered. The subsequent ILC design for the SISO
and MIMO cases is then described. Furthermore, a method for adaptive
reidentification of the vibrator model is developed.
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Figure 6.6 Estimated frequency spectrum of the transducer response to
a linear chirp signal. The spectrum indicates a high-dimensional system,
making frequency-domain ILC an attractive alternative.

System Characterization

In order to ensure convergence of the ILC algorithm, it is necessary to have an
accurate estimate of the system transfer function [Norrlöf and Gunnarsson,
2002]. An initial estimate of the dynamics can be achieved by using a linear
chirp in the frequency range 5–1000 Hz as input. However, since the accuracy
of the estimated transfer function is critical, single frequency sine-waves were
instead used for a discrete set of frequencies, as a higher number of periods
are used in the estimation for each frequency to obtain improved accuracy.

It was found that experiments performed on an unloaded transducer
exhibited considerably different dynamics, especially close to resonances and
notches, than for a preloaded transducer. Since the control will be performed
on a preloaded transducer, the identification must also be performed on the
same. Thus, in order to identify one of the sides of the transducer, the input
signal

u1(n) = A sin (2πf0
i tsn) + B sin (2πfitsn) (6.2)

is used, where n is the sample index, ts is the sample period, and the exciting
frequency of interest is denoted fi. The preloading frequency, denoted f0

i ,
is chosen such that its harmonics do not coincide with the frequency of
interest, fi. The non-parametric estimate of the transfer function for the
linear dynamics of one side of the transducer is then calculated as

G(fi) =
Y (fi)

U(fi)
, (6.3)

with a tapered cosine window (also known as a Tukey window) [Harris, 1978]
applied to the measured data, and the discrete Fourier transform (DFT) to
obtain U(f) and Y (f) from the sampled signals u(n) and y(n). The DFT for

123



Chapter 6. Frequency-Domain Iterative Learning Control

calculating U(f) is defined as [Mitra and Kuo, 2006]

U(f) =

N−1∑

n=0

u(n)e−i2πf n
N (6.4)

where N is the number of available samples of u(n). The DFT of y(n) is
performed analogously.

In order to be able to perform ILC on both sides of the transducer, an
estimate of the MIMO transfer matrix is required. This can be acquired by
performing two separate identifications; one for each input of the transducer.
For identification of the first transducer side, the input signals are given by

[
u1(n)

u2(n)

]
=

[
A sin 2πf0

i tsn + B sin 2πfitsn

A sin 2πf0
i tsn

]
. (6.5)

Identification of the second side is performed analogously, with permuted
input signals. The obtained responses from the two identification experiments
are then used to form the complete transfer function matrix, denoted G(f):

G(fi) =




Y1(fi)

U1(fi)

Y1(fi)

U2(fi)

Y2(fi)

U1(fi)

Y2(fi)

U2(fi)


 =

[
G11(fi) G12(fi)

G21(fi) G22(fi)

]
. (6.6)

SISO Control

For systems that are used to track the same reference repeatedly, ILC is an
appealing control strategy, given that the disturbances affecting the system
are repeatable and that the system exhibits time-invariant dynamics. The
algorithm makes use of the tracking error obtained in the current iteration
to correct the control input for the next iteration.

Consider a discrete-time system on the form

y(n) = G(q)u(n) + f(u(n)) + v(n), (6.7)

where u(n) is the input, y(n) is the output, v(n) is white noise, f(·) is the
nonlinear part of the dynamics, and G(q) is a filter for the linear part of
the dynamics, expressed in the difference operator q. Given a reference r(n)
that is to be tracked, the model-based discrete-time ILC update law is stated
as [Arimoto et al., 1984; Norrlöf, 2000]

uk+1(n) = Q1(q)uk(n) + Q2(q)Ĝ−1(q)ek(n), (6.8)

where k is the iteration index, ek(n) = r(n) − yk(n) is the tracking error in

the current iteration k, and Ĝ−1 is an approximation of the inverse process
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dynamics. Furthermore, Q1(q) and Q2(q) are user-defined filters, commonly
chosen as low-pass or band-pass filters, used to define the frequency region
where the ILC compensation should be active. Also, the magnitude of Q2(q)
determines the learning rate. The frequency-domain counterpart of the ILC
update law is consequently written as

Uk+1(f) = Q1(f)Uk(f) + Q2(f)Ĝ−1(f)Ek(f) (6.9)

where the filters Q1(f) and Q2(f) need not necessarily be transformed
from continuous-time, but can advantageously be designed directly in the
frequency domain. In this chapter, filter coefficients were chosen as

Q1(f) = 1, ∀f (6.10)

Q2(f, k) =

{
K(k), f ∈ fILC

0, f /∈ fILC

(6.11)

where fILC is the desired set of frequencies for which the ILC algorithm
should be active, and K(k) ∈ [0, 1] is an iteration-index depedendent gain;
thus the added argument k of Q2. With this choice of Q1, the control input
generated by the ILC algorithm is not limited in frequency. Also, with the
proposed iteration-index dependent gain, fast convergence can be achieved
with a high value of K(k) for small k, followed by increased accuracy and
robustness to process drift by lowering K(k) for higher k. For the SISO case,
the choice of Q2(f) must satisfy the criterion

sup
f

|I − G(f)Ĝ−1(f)Q2(f)| < 1 (6.12)

in order for the ILC algorithm to converge [Norrlöf and Gunnarsson, 2002].

Special Case — Single-Frequency Reference The special case in which the
system is only required to track a single-frequency reference, i.e., a sine-wave,
is considered in this paragraph. It is assumed that, given a sinusoidal input
with root frequency f0, the system only produces significant signal energy at
this frequency and its overtones, which are defined as

fn = (n + 1)f0, n = 1, 2, 3, ... (6.13)

Additionally, it is assumed that the frequency f0 is a multiple of the
fundamental discrete frequency, in order to avoid spectral leakage. The
fundamental discrete frequency fγ is defined as

fγ =
1

2T
, (6.14)
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where T is the duration of the experiment. Then, it is sufficient that the ILC
update law only corrects the input at the root and overtone frequencies. The
update law (6.9) thus becomes

Uk+1(fn) = Q1(fn)Uk(fn) + Q2(fn, k)Ĝ−1(fn)Ek(fn). (6.15)

Consequently, the estimate of the system transfer function G(f) only needs
to be known for the frequencies fn.

MIMO Control

In order to extend the ILC approach presented for the SISO case such that
it works for MIMO systems, the update law (6.9) is modified to

Ūk+1(f) = Q1(f)Ūk(f) + Q2(f, k)Ĝ−1(f)Ēk(f) (6.16)

where the vectors

Ūk =




U1
k

U2
k
...

Um
k


 , Ēk =




E1
k

E2
k
...

El
k


 (6.17)

are introduced, given that G(f) is an l × m matrix. In order for the MIMO
ILC algorithm to converge, the choice of Q2(f) must satisfy the criterion [Doh
and Moon, 2004]

sup
f

||I − G(f)Ĝ−1(f)Q2(f)|| < 1, (6.18)

where || · || denotes the operator norm.
Since the transfer matrix G(f) may become close to or even singular for

certain frequencies, the Tikhonov regularized inverse [Tikhonov and Arsenin,
1977] of G(f) is introduced, which is given by

Ĝ−1∗ = (GT G + εI)−1GT (6.19)

where ε > 0. It was found that the regularization improved the robustness
of the ILC algorithm significantly.

Adaptive Reidentification

As a result of the mechanical construction of the transducer, drift in the
process dynamics occurs occasionally. These process variations may cause
the ILC algorithm to diverge, especially around peak and notch frequencies
where a small discrepancy between the model and the process is sufficient to
cause divergence. Therefore, it is desirable to update the transfer function
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to account for the process variations, i.e., using an adaptive ILC algorithm.
However, as a full frequency characterization of the transducer does not fulfill
the specification, and takes more than 30 minutes to perform, this is not
viable to use during operation. Furthermore, using linear chirp signals ranging
over the entire operating frequency range does not yield sufficient resolution,
as discussed earlier in this section. Thus, only a limited frequency range
around a diverging frequency is considered at a time. Diverging frequencies
are detected by checking for which frequencies the condition

η1|Y (f)| + η2|U(f)| > δ, f ∈ fξ (6.20)

is satisfied, where η1 and η2 are weighting parameters, δ a threshold
parameter, and fξ is a set of frequencies where divergence could be expected.
The condition (6.20) takes both the magnitude of the input and the output
into account. This was found to be an efficient way of detecting divergence
in the ILC algorithm, especially for frequencies where the process has small
gain, since divergence is hard to detect early if only the system output is
considered.

From the obtained set of diverging frequencies, the frequency that gives
the maximum value of (6.20) is selected as the reidentification frequency
fri. In order to obtain sufficient excitation at and around the frequency
fri, a linear chirp signal is formed. In contrast to the initial frequency
characterization of the transducer, a chirp signal is sufficient in this case,
since only a limited frequency range is considered for the reidentification.
The chirp signal, denoted ue(n), is given as

ue(n) = ca(f) sin(2πf(n)tsn), f(n) ∈ [fri − f∆, fri + f∆] (6.21)

where ca, is the amplitude of the signal and f∆ defines the interval in which
the identification is to be performed in. The chirp signal ue(n) is then added
to the input signals one at a time. This way, the operation of the transducer
does not have to be interrupted to perform the reidentification process, and
the desired reference can be tracked simultaneously as the added chirp signal
is applied. However, the specification defined in Section 6.3 should still be
fulfilled, i.e., the amplitude of the response of the superimposed chirp signal
must not exceed the specified limit. Therefore, the choice of the chirp signal
amplitude ca(f) is important. Since the transfer matrix of the system is
inaccurate around the reidentification frequency, it can only be used to form
a conservative estimate of the amplitude. The amplitude of the chirp signal
for reidentification of channel 1 is chosen as

ca(f) = κ
ad

max (|G11(f)|, |G12(f)|) (6.22)

where κ is a parameter chosen based on the expected uncertainty in the
transfer matrix G(f), and ad is the desired amplitude of the response. The
amplitude for reidentification of channel 2 is determined analogously.
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Furthermore, the ILC update is deactivated in order not to act on the
extra signal that is added to the input signals. Thus, the previous inputs
obtained from the ILC updates are used and modified such that the input
power at the reidenfication frequencies is reset to zero. The modified inputs in
combination with the added chirp signal are then used for the reidentification.

Once the required reidentification experiments have been performed, i.e.,
one per input, the obtained input/output data are used to update the transfer
matrix G(f) at the frequencies in the desired interval. The elements of the
transfer matrix for these frequencies are updated using

Gi,j(f) =
Yi,k(f) − Yi,k−1(f)

Ue,j(f)
, f ∈ [fri − f∆, fri + f∆] (6.23)

where k denotes iteration index, Ue is the chirp signal ue transformed using
DFT, j and i are the input and output channel indices, respectively. Once
all elements of G(f) have been updated, the ILC operation can be resumed.
The reidentification procedure is summarized in Algorithm 1.

while k do
if (6.20) true then

for channel = 1:2 do
form chirp signal ue using (6.21) and (6.22);
run Uk+1 = Uk + Ue;

end
update Gi,j(f) using (6.23);

else
run (6.16);
k = k + 1;

end

end
Algorithm 1: Summary of the reidentification algorithm.

6.6 Experimental Results

This section presents results from identification experiments, as well as
results from a variety of ILC experiments. Furthermore, results of using the
adaptive reidentification algorithm are also provided. All data were collected
at 44.1 kHz, and subsequently downsampled by a factor of 4. Because of
the fast sampling rate and the expected frequency content below 1000 Hz,
aliasing effects are assumed nonexistent.
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Figure 6.7 Magnitude and phase of the estimated G11(f) for the unloaded
and preloaded transducer, shown in blue and red, respectively. The large
difference indicates the need for performing system identification on a
preloaded system which is closer to the later operational mode.

Estimation of Transfer Matrix

To the purpose of frequency characterization of the considered transducer,
the method described in Section 6.5 was carried out, both on the unloaded
and the preloaded system. An initial sweep of evenly spaced single-frequency
sine waves from 15–650 Hz was performed, where single-Hertz increments
were used. Furthermore, each sine wave lasted 0.5 s for each channel, i.e.,
N = 5512. Based on the result, the grid of frequencies was modified to
yield higher accuracy around resonance peaks and notches, i.e., by adding
more frequencies in these areas. With the new grid, the identification was
performed once again, resulting in a more accurate estimate of G(f).

In Section 6.5, it was stated that a significant difference in the transfer
functions between the unloaded and preloaded system was to be expected.
This was found to be true, see Figure 6.7, where the estimated frequency
spectrum of one side of the transducer is displayed, for both the unloaded and
preloaded cases. It was confirmed through ILC experiments that convergence
could only be achieved with the use of the preloaded estimate of G(f).
The frequency spectra of the estimated G(f), obtained from the preloaded
experiments on the transducer, are displayed in Figure 6.8.
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Figure 6.8 Spectrum of the estimated transfer matrix G(f). For frequencies
up to 150 Hz the matrix is diagonally dominant but for higher frequencies
the spring system of the vibrator gives rise to large cross couplings between
the two sides. This fact makes separate control of the two sides infeasible
and indicates the need for MIMO control.

Single-Frequency Tracking

The special case described in Section 6.5, where a single-frequency reference
is to be tracked, is considered in this section. ILC was performed for several
frequencies in the range [20,100] Hz. However, since similar results were
obtained, only one frequency is presented here. In this experiment, a reference
signal with frequency f0 = 24 Hz with a duration of 5 s (N = 55125) was
considered, and the objective was to suppress the four first overtones to a level
of 40 dB below the amplitude of the root frequency. The design parameter
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Figure 6.9 Magnitude plot of the root frequency f0 = 24 Hz and the four
first overtones, shown as function of the iteration index. The dashed black
line represents the desired objective of 40 dB suppression (denoted Sd) from
the root frequency.

Q2(f, k) defined in (6.11) was chosen as

Q2(f, k) =





1, f ∈ fILC, k = 1, 2, ..., 12

0.25, f ∈ fILC, k = 13, 14, ...

0, f /∈ fILC, ∀k

(6.24)

where fILC = {f1, f2, f3, f4} in this case. For this case, only one side of
the transducer was considered for control. The first element G11 of G was
therefore used for the ILC updates at the fILC frequencies.

The results of the experiments are found in Figure 6.9, where it is
shown how the magnitudes of the overtones evolve over the ILC iterations.
The objective is fulfilled after 24 iterations and an additional 10–15 dB
suppression of the overtones is achieved. Looking at the estimated spectrum
of the response, see Figure 6.10, it is once again confirmed that the overtones
have been succesfully suppressed. However, it is further noted that several
other frequencies, not obviously connected to the root frequency f0, exhibit
significant signal power. The power-grid frequency of 50 Hz is especially
visible, which is to be expected. In order to suppress these frequencies, and
to be able track any reference signal, focus is shifted to performing ILC for
all frequencies.
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Figure 6.10 Spectrum of the transducer response before and after 50 ILC
iterations, with a 24 Hz sine-wave reference.

Full-Frequency Tracking

For the experiments presented from this point, linear chirp signals in the
frequency range of f = [40, 90] Hz with a duration of 5 s (N = 55125)
were used as reference. The objective of the experiments was to suppress
frequencies above 100 Hz to a level of 40 dB below the reference magnitude.
It was observed in experiments that the objective was fulfilled for frequencies
above 650 Hz without active use of ILC for these frequencies, and therefore
only results below this frequency are presented.

Initially, only one side of the transducer was considered for control. The
first element G11 of G was therefore used for the ILC updates. The parameter
Q2 was chosen as

Q2(f, k) =





0.3, f ∈ fILC, k = 1, 2, ..., 15

0.15, f ∈ fILC, k = 16, 17, ...

0, f /∈ fILC, ∀k

(6.25)

where fILC = [0, 650] Hz. The choice of having lower gains in Q2 compared to
the single-frequency case is motivated by the fact that convergence is required
for all frequencies, not just a small set of frequencies. A low gain will give
slower convergence, but the algorithm will be more robust against process
drift and model uncertainty.

The results of performing ILC for the SISO case are displayed in
Figure 6.11, in the form of spectrograms for iterations 0 and 30. The scaling in
the spectrograms is such that the darkest blue color represents the objective,
i.e., the level 40 dB below the reference-signal magnitude. Thus, a fulfilled
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Figure 6.11 Spectrogram of the transducer response for ILC iterations 0
and 30. The SISO ILC algorithm suppresses all harmonics by 40 dB at the
measurement point of the single accelerometer.

objective is easily spotted as a completely dark blue spectrogram for all
frequencies except for the reference frequencies. The chirp reference can be
seen in the bottom of both spectrograms in Figure 6.11, as a line from 40 to
90 Hz. The top panel in Figure 6.11 shows that the initial run, with input
equal to the desired reference, exhibits significant energy in the undesired
frequency range. As seen in the lower panel, the objective is achieved after
30 ILC iterations.

With this ILC structure, satisfactory control was achieved at the point
on the shell measured by the accelerometer. However, only one side of the
transducer is currently controlled, and both sides are required to operate
simultaneously. In an experiment attempting to use the same input to both
sides, poor tracking performance was obtained. This is most likely because
of the strong cross couplings that are present between the two sides of the
transducer, cf. Figure 6.8. Because of these cross couplings, the option of
performing decentralized ILC was ruled out. Thus, MIMO ILC is considered

133



Chapter 6. Frequency-Domain Iterative Learning Control

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2

0

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.1

0

0.1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.1

0

0.1

A
m

p
li

tu
d

e
(-

)
A

m
p

li
tu

d
e

(-
)

A
m

p
li

tu
d

e
(-

)
A

m
p

li
tu

d
e

(-
)

Time (s)

Input Channel 1

Input Channel 2

Tracking Error Channel 1

Tracking Error Channel 2

Figure 6.12 Time plot of the initial chirp input (iteration 0) and the
transducer response compared to the desired response. The top two panels
show the input for the respective channel, the two lower plots show the
obtained tracking error.

next. The objective is the same as for previous experiments, as well as the
desired reference which is used for both sides of the transducer. Furthermore,
the Q2 filter defined in (6.25) is used, as well as the estimate of the transfer
matrix G obtained earlier in this section.

The initial chirp input and the resulting tracking errors are displayed
in Figure 6.12. Spectrograms of the responses are shown in Figure 6.13.
After performing 30 ILC iterations, the corresponding plots are shown in
Figures 6.14 and 6.15. Also, zoomed time plots for the inputs and responses
for iterations 0 and 30 are provided in Figure 6.16.

As illustrated by the figures, the objective is reached for both sides of the
transducer, and the chirp reference is tracked as desired. In order to quantify

134



6.6 Experimental Results

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

600
 

 

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

100

200

300

400

500

600
 

 

−70

−60

−50

−40

−70

−60

−50

−40

F
re

q
u

en
cy

(H
z)

F
re

q
u

en
cy

(H
z)

Time (s)

Time (s)

Spectrogram of Output Channel 1

Spectrogram of Output Channel 2

dB

dB

Figure 6.13 Spectrogram of the transducer response to the initial MIMO
chirp input (iteration 0).

the results, the integrated absolute error (IAE) measure was considered,
defined as

IAE =

N−1∑

n=0

|ek(n)|. (6.26)

In Figure 6.17, the evolution of the IAE for each channel is plotted as function
of the iteration index. It is noted that convergence is achieved since the IAE
is kept around its minimum value after 20 iterations, and does not increase.
Furthermore, the IAE was decreased by a factor of approximately 50 for both
channels.

Reidentification Results

In the majority of the performed experiments, the desired behavior was
obtained. However, in a few experiments, divergence of the ILC algorithm was
experienced for one or more frequencies. This was concluded to be a result
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Figure 6.14 Time plot of the control input and the transducer response
compared to the desired response, after 30 MIMO ILC iterations. The top
two panels show the input for the respective channel, and the two lower
plots show the obtained tracking error.

of drift in the dynamics of the transducer. Figure 6.18 shows the spectra of
the two channels for a set of iterations, where it is noted that the peak at
approximately 545 Hz is increasing for each iteration. With proper tuning
of the parameters, the condition (6.20) was fulfilled for iteration 16 of the
experiments displayed in Figure 6.18, and the reidentification procedure was
triggered, as defined in Algorithm 1 in Section 6.5. The parameter f∆ was
chosen to 10 Hz, such that the reidentification was performed in the frequency
interval 535–555 Hz. The magnitude of the initial estimate of G(f), and the
magnitude of the updated G(f) are displayed in Figure 6.19. It is noted that
the notch that was present in two of the elements of the initial G(f), at around
545 Hz, does not exist in the updated estimate of the transfer matrix. Looking
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Figure 6.15 Spectrogram of the transducer response after 30 MIMO ILC
iterations.

at the response of the reidentification experiments, see Figure 6.20, the 40
dB suppression objective is fulfilled with the proposed choice of amplitude,
given in (6.22). With the updated G(f), the ILC iterations were resumed
and the resulting spectra of the output channels are shown in Figure 6.21,
where convergence was restored for the reidentified frequencies.

6.7 Comparison to Time-Domain ILC

As motivation for choosing frequency-domain ILC instead of traditional
time-domain ILC, an investigation and comparison of the differences are
provided here. As indicated in the time-domain ILC update law in (6.8), the
inverse of a parametric model describing the system dynamics is required.
This presents two potential difficulties: identifying a model that captures the
MIMO system dynamics sufficiently well and obtaining a stable inverse of
the model.
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Figure 6.16 Zoomed time plot of MIMO ILC iterations 0 and 30. The top
two rows of plots show the input for the respective channel, and the two
bottom rows of plots show the measured responses in blue and the desired
response in red.

In order to identify a parametric time-domain model, system
identification methods such as N4SID [Overschee and De Moor, 1994] was
used on previously obtained identification data. Initially, SISO data were
used for identification, where excitation was provided in the frequency range
of 10–400 Hz. It was found that a model order of at least 18 was needed
to achieve acceptable fit to the data. In terms of variance accounted for
(VAF), the fit for an identified state-space model of order 18 was 75.9 %.
Even though satisfactory VAF values can be achieved with high model
orders, small discrepancies in amplitude or phase for certain frequencies,
such as resonance or notch frequencies, may result in divergence of the ILC
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Figure 6.17 Error evolution of the MIMO ILC experiments, showing IAE
values for both channels.

algorithm. Additionally, in order to capture the MIMO dynamics of the full
frequency range up to 650 Hz, even higher model orders are required.

Furthermore, inverting the model is not straightforward, as inverting
non-minimum phase zeros gives unstable models. The identified 18th order
model contains four non-minimum phase zeros, which makes model inversion
complicated. To obtain a stable ILC iteration, the technique of using
non-causal system inverses must be used, see [Markusson et al., 2002].
Moreover, in order to cope with the drift in the dynamics, no other choice
than to reidentify the entire model is given, as it is not possible to update
parts of a parametric model.

6.8 Discussion and Conclusions

The proposed frequency-domain ILC strategy proved effective in suppressing
undesired harmonics, as well as achieving accurate reference tracking. The
desired level of 40 dB suppression of the harmonics was achieved for all
experiments, after approximately 20 iterations. It was shown that, in the case
of a sinusoidal reference, both the modeling and the ILC algorithm could
be simplified while still yielding an overtone suppression of up to 55 dB.
For the MIMO case, the absolute tracking error was reduced by a factor
of approximately 50 for each channel. Faster convergence can be achieved
by increasing the magnitude of the filter Q2. This, however, requires higher
accuracy of the frequency-response estimate.

A procedure for detecting drift in the dynamics and performing a
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Figure 6.18 ILC experiments performed using an initial estimate of
G(f). Spectra of the measured response from iterations {0, 4, 8, 12, 16}
are displayed in cyan, red, green, magenta, and blue, respectively. The
suppression level of 40 dB is shown in black. The algorithm gives sufficient
suppression at most frequencies, but problems occured around 545 Hz. This
was solved by applying the reidentification algorithm, shown in the following
figures.

subsequent reidentification of the estimated transfer matrix was developed.
It was shown that the reidentification experiments with excitation around
a problem frequency, could ensure convergence with the updated transfer
matrix, while still fulfilling the objective of 40 dB suppression of harmonics.

The proposed method was compared to traditional time-domain ILC,
and it was found that frequency-domain ILC is highly advantageous for
this application. This was primarily because of the fact that time-domain
ILC requires high-order models as well as complicated methods for obtaining
stable model inverses. Also, the possibility to update the model for certain
frequencies was shown to be advantageous, as divergence could be avoided
with the proposed method.
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Figure 6.19 Magnitude plot of the initial estimate of G(f) and the obtained
magnitude from the reidentification, shown in thin lines and starred lines,
respectively. The measurements indicate that a change in dynamics has
occured around 545 Hz.

Although the experiments presented in this chapter were performed in
air, the only major expected difference to underwater operation is that the
process dynamics will be compressed towards low frequencies. Therefore, the
system characterization and ILC iterations must be performed underwater
in order for the ILC to converge and to obtain the desired output. However,
as at least 20 ILC iterations are needed to suppress harmful harmonics,
it could be possible to perform the iterations in a controlled underwater
environment and subsequently warm start the transducer when performing
the seismic acquisition in the sea. Since the proposed method is meant to be
run continuously during seismic acquisition, possible changes in the dynamics
could then be handled by the adaptive reidentification algorithm.
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Figure 6.20 Spectra of the measured response from the reidentification
experiments, with a superimposed chirp signal in the frequency range
535–555 Hz on the channel 1 and 2 inputs, shown in red and blue,
respectively. The suppression level of 40 dB is shown in black. Note that
reidentification is done without violating the specification.
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Figure 6.21 ILC experiments performed with updated G(f), obtained
by reidentification. Spectra of the measured response from iterations
{0, 1, 2, 3, 4} displayed in cyan, red, green, magenta, and blue, respectively.
The suppression level of 40 dB is shown in black. After the reidentification,
the ILC algorithm is stable also around 545 Hz.
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7

Cycle-Time Minimization of

Wood Milling

7.1 Introduction

This chapter is based on the publications [Sörnmo et al., 2012a] and [Sörnmo
et al., 2015b].

Machining processes in the industry of today, such as milling, grinding,
and deburring, are traditionally performed using position control. In order to
avoid excessive process forces, which may result in tool breakage or scorched
material, a conservative feed rate has to be used. By instead controlling the
process forces, the feed rate (and consequently the material removal rate),
can be maximized. This will in turn lead to decreased cycle times. Because
of the batch-oriented nature of modern production, even a small reduction
in cycle time can amount to significant savings in production expenses in the
long run.

The control problem in this chapter is formulated as continuously
adjusting the feed rate of the workpiece/tool in order to achieve and maintain
the maximum allowed force. The machining process forces depend nonlinearly
on several parameters, such as spindle speed, machining tool, depth of cut,
and material stiffness. Since some of these parameters are likely to change
during the process, it is desirable to continuously adapt the parameters of
the force controller. The use of a controller with fixed parameters may result
in loss of time efficiency or stability problems.

Additional cycle-time reductions can be achieved by intelligent path
planning of the machining task. However, this may not be a straightforward
task, especially in the case when machining is to be performed in
non-isotropic materials such as wood. Different machining settings, such as
depth of cut and machining direction, may result in varying material-removal
efficiency. Without profound comprehension of the specific machining
process, it is difficult to take advantage of this. By employing a learning
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algorithm, no prior knowledge is required in order to obtain an efficient
milling path.

This chapter considers the problem of minimizing cycle times for
rough-cut machining processes in non-isotropic materials. A model-based
adaptive force-control scheme is developed to ensure that the fastest possible
feed rate is used at all time instances. The machining-force dynamics is
modeled as a linear parameter-varying (LPV) system, where the parameters
are estimated such that the controller is adapted to different machining
conditions. A learning algorithm that minimizes a process-related cost
function is also developed. The proposed method is verified both in simulation
and in pocket-milling experiments using an oak-milling setup.

In this research, learning is considered to be performed on two levels.
Firstly, the adaptive controller learns the parameters associated with the
milling process, in order to adapt to the current conditions and control
the force such that the feed rate is maximized. Secondly, on a higher
level, the characteristics of each performed milling segment are learned and
subequently utilized to replan the milling path such that the cycle time for
each milling task is minimized.

Previous Research

This chapter extends and refines the previous research initially published
in [Sörnmo et al., 2012a], where an adaptive feed-rate force controller was
presented and evaluated in milling experiments with varying vertical depth of
cut. The force controller is here redesigned to account for transversal forces,
and an improved controller structure is presented and utilized. Furthermore,
this chapter introduces a learning algorithm for path planning in combination
with the force control.

Control design for industrial manipulators performing contact tasks
is discussed in, e.g., [Hogan and Buerger, 2005]. It was shown that the
environment, i.e., the work object, can be modeled as an admittance, whereby
it follows that the robot should act as an impedance in the closed kinematic
chain. Hence, the aim of impedance control for robots is to control the
dynamic relation between the force and the position.

A self-tuning PI controller for controlling machining forces was presented
in [He et al., 2007], where the machining force was modeled as a static
nonlinear relation between the feed rate and the depth of cut. In [Liu
et al., 2001], an adaptive control constraint was considered, based on
several control structures such as PID control, neural-network control,
and fuzzy control. Feed-rate force controllers based on model reference
adaptive control (MRAC) were presented in [Daneshmend and Pak, 1986;
Lauderbaugh and Ulsoy, 1989; Rober and Shin, 1996]. An overview of
force-control technologies in machining is provided in [Wang et al., 2008].

145



Chapter 7. Cycle-Time Minimization of Wood Milling

An established method is the maximum material removal controller,
which switches between discrete feed-rate levels in order to maintain
an approximate force reference. In [Lauderbaugh and Ulsoy, 1988], the
importance of using an adaptive controller for force-controlled machining
processes is demonstrated through simulations and machining experiments.

Previous research in learning for machining processes is mostly focused
on monitoring and anomaly detection. In [Burke and Rangwala, 1991],
neural-network based pattern-recognition techniques were employed in order
to monitor a metal-cutting process, specifically the condition of the cutting
tool. A learning algorithm based on support-vector machines for recognizing
process abnormalities was proposed in [Cho et al., 2005]. An adaptive
network-based fuzzy inference system was used in [Ho et al., 2009], in
combination with the genetic learning algorithm, in order to predict the
workpiece surface roughness for a milling process. In [Rangwala and Dornfeld,
1989], a neural-network approach to learning how the input variables of the
machining operation affect the outputs was presented. The network was then
used in simulations to predict input conditions to maximize metal removal.

Efficient path planning, in terms of minimizing the path length, for
machining operations has thoroughly been researched, see, e.g., [Wang et al.,
1987; Yang and Lee, 2002; Park and Choi, 2000; Lin and Koren, 1996; Lo,
1999]. Finding the shortest path in a complex rough-cut milling scenario was
considered in [Suh and Shin, 1996], where a self-organizing map approach was
taken. However, none of these papers take the machining process dynamics
into account. Path-planning complex rough-cut pockets with islands in a
plunge-milling scenario was considered in [Chen and Abdelkhalek, 2014],
where the path length and the number of plunges were minimized.

In [Meng Lim and Menq, 1997], a problem formulation similar to the
one in this chapter was considered, where the aim was to optimize cutting
path and feed rates for machining operations. Geometric maximum feed-rate
maps were established based on force models, such as the flexible force
model [Feng and Menq, 1996], and are subsequently utilized for optimizing
the path-planning. The method in [Meng Lim and Menq, 1997] does not, in
contrast to the method proposed in this chapter, take into account the varying
cutting conditions, i.e., neither force control nor learning were performed.

Disposition

This chapter is organized as follows: Modeling and design of the force
controller, and the proposed learning algorithm, are presented in Section 7.2.
In Section 7.3, the experimental setup is described, and results from both
simulations and experiments using the proposed method are presented. A
discussion of the method and the results, as well as aspects on future research,
are provided in Section 7.4. Finally, conclusions are drawn in Section 7.5.
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7.2 Modeling and Control Design

This section describes the proposed modeling approach of the milling process,
followed by the design of the feed-rate force controller. Furthermore, a
description and analysis of the proposed learning algorithm are provided.

Force-Control Design

Along the feed direction of the machining, the aim is to control the process
forces by adjusting the feed rate, which in robotic machining corresponds
to the velocity of the robot end effector. In this chapter, a model-based
solution is pursued and it is therefore necessary to develop models of both the
robot dynamics and the milling-process dynamics. For the robot dynamics, a
linear system-identification approach was adopted. This choice is motivated
by the fact that only Cartesian control is to be performed, and the linear
approximation is valid in the limited workspace of the machining task.

The proposed modeling approach is presented in Figure 7.1, where x
denotes the feed direction, and y is the transversal direction in the horizontal
plane. The details and variables of the proposed modeling approach will be
discussed in the following.

Similar to the identification of the robot model in Chapter 5, a model with
velocity reference vr as input, and actual velocity vx in the Cartesian space
as output was identified from experimental data of the robot moving in free
space, using the N4SID subspace algorithm [Overschee and De Moor, 1994].
The robot velocity dynamics Gv(s) are obtained as a state-space model of
the innovations form [Ljung, 1987; Johansson, 1993]

ẋ(t) = Ax(t) + Bvr(t) + Ke(t) (7.1)

vx(t) = Cx(t) + e(t), (7.2)

where e(t) is white noise and K is the corresponding Kalman gain. The
system matrices A, B, C, and K are determined by the system identification
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algorithm. In this case, a third-order model was obtained, where the order
was determined by investigating the singular values of the identification data.

As mentioned earlier, the machining process forces depend on several
parameters. These parameters exhibit a nonlinear relationship with the
process forces and may change over time, thus making the process difficult
to model. Here, a first-order dynamic model is derived, with time-varying
parameters to the purpose of capturing the nonlinear properties and a priori
unknown changes in the machining process. The model is derived using
Hooke’s law [Ugural and Fenster, 2003] which can be stated as

fx(t) = Kf px(t), (7.3)

where fx(t) is the force component in the feed direction, Kf the material
stiffness, and px(t) the depth of the deformation into the material. By
assuming that material is removed at a rate proportional to the integral
of the applied force, (7.3) is modified to the differential equation

fx(t) = Kf

(
px(t) −

∫ t

0

κ−1fx(τ) dτ

)
, (7.4)

where the parameter κ can be interpreted as the inverse material removal
rate. It is obvious from (7.4) that a large value of κ will result in a slow
material removal rate and thus a large machining force. Transforming (7.4)
to the frequency-domain and substituting position for velocity gives

Fx(s) =
s

sK−1
f + κ−1

Px(s) =
1

sK−1
f + κ−1

︸ ︷︷ ︸
Gf,x(s)

Vx(s). (7.5)

The process forces acting on the machining tool are, however, present
in the orthogonal directions as well, not only in the feed direction. In
two-dimensional machining in the horizontal plane, the vertical component
of the force is disregarded. In the horizontal plane, the resulting force must
be considered for the force control, since it limits the feed rate according
to the discussion in Section 7.1. The resulting force fN(t) in the horizontal
plane is given by the Euclidean norm of the force components

fN (t) =
√

fx(t)2 + fy(t)2, (7.6)

where fy(t) is the force component orthogonal to the feed direction, in
the plane. By assuming that the x- and y-components of the force are
proportional with a parameter β

fy(t) = βfx(t), (7.7)
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(7.6) can be rewritten to

fN(t) =
√

(1 + β2)fx(t)2 =
√

(1 + β2)|fx(t)|. (7.8)

The signed resulting force fsN (t) is then defined as

fsN (t) = fN (t)sign(fx(t)) =
√

(1 + β2)fx(t). (7.9)

By applying the Laplace transform on (7.9), and combining the result with
(7.5), the transfer function Gf,sN (s) from vx(t) to fsN(t) is determined as

FsN (s) =

√
1 + β2

sK−1
f + κ−1

︸ ︷︷ ︸
Gf,sN (s)

Vx(s). (7.10)

The complete transfer function for the system Gf,sN (s)Gv(s), that is,
from velocity reference to force, is now given by a fourth-order system. By
combining the velocity and force dynamics, an adaptive linear-quadratic
integral (LQI) controller [Zhou and Doyle, 1998] can be designed for the
complete system [Sörnmo et al., 2012a]. However, as it is of interest to control
not only the force but the velocity as well, a cascaded LQI control structure is
proposed. This choice is also well suited because of the fact that the velocity
dynamics are not time varying. Thus, only the outer force controller needs
to be adapted.

Since the states of the robot velocity dynamics are not measurable, a
Kalman filter (KF) is introduced in order to estimate the states, based on
the measured velocity and the identified model. The Kalman filter is given
by [Åström and Wittenmark, 1997] as

˙̂x(t) = Ax̂(t) + Bvr(t) + K(vx(t) − Cx̂(t)) (7.11)

v̂x(t) = Cx̂(t). (7.12)

The filter is implemented in discrete-time, using the Luenberger zero-lag
observer [Åström and Wittenmark, 1997], which is given by

x̂k|k = (I − KC)(Φx̂k−1|k−1 + Γvr,k−1) + Kvx,k, (7.13)

where Φ and Γ are the discrete-time counterparts of the system matrices
A and B in (7.1), and k is the sample index. Since the model is identified
with experimental data with subtracted mean, the filter is extended with a
disturbance state [Åström and Wittenmark, 1997] in order to achieve the
correct static gain. With all state estimates available, the inner loop can be
closed using LQI control. The integral action is achieved by introducing an
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integral state xi(t), which augments the system in (7.1)–(7.2). The integral
state is defined as

xi(t) =

∫ t

0

(vd(τ) − vx(τ)) dτ, (7.14)

where vd(t) is the desired velocity. The augmented state vector is denoted by
xe(t) and is given by

xe(t) =

[
x(t)
xi(t)

]
. (7.15)

The state-feedback control law is written as

vr(t) = −Lvx̂e(t) + vd(t) + vinit, (7.16)

where vinit is a constant initial velocity that is added to the input of inner
controller in order to provide excitation for the estimation. The LQ cost
function is stated as

J(vr) =

∫ ∞

0

xe(t)T Qvxe(t) + vr(t)T Rvvr(t) dt, (7.17)

where Qv and Rv are user-defined weights. The cost function (7.17) is
minimized by solving the algebraic Riccati equation [Zhou and Doyle, 1998],
which gives the optimal value of the gain vector Lv.

In order to simplify the design of the outer-loop force controller, the
inner closed-loop velocity dynamics is approximated by a first-order model.
Given that the inner-loop controller provides sufficient damping of potential
oscillatory modes, the approximation only needs to capture the bandwidth
of the inner closed loop, and the proposed first-order approximation is thus
valid. The approximated system is given on the form (7.1)–(7.2) with system
matrices and Kalman gain denoted Ā, B̄, C̄, and K̄ respectively. The complete
model for the system is obtained by augmenting the state-space model with
the force dynamics given in (7.10). Since the force and velocity can be
measured, they are favorably chosen as states, such that the measurements
can be used directly for feedback. By application of the inverse Laplace
transform on (7.10), and the introduction of xf (t) = fsN (t), xv(t) = vx(t),

and β̄ =
√

1 + β2, the following relation is obtained

ẋf (t) = −Kfκ−1xf (t) + Kf β̄xv(t). (7.18)

Further, substituting the closed-loop velocity dynamics into (7.18) gives

ẋf (t) = −Kfκ−1xf (t) + Kf β̄C̄xv(t) + Kf β̄e(t). (7.19)
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By defining the system output as the force, the augmented state-space
model can be written as

[
ẋv(t)
ẋf (t)

]
=

[
Ā 0

Kf β̄C̄ −Kfκ−1

] [
xv(t)
xf (t)

]

+

[
B̄
0

]
vd(t) +

[
K̄

Kf β̄

]
e(t) (7.20)

fsN (t) =
[

0 1
] [ xv(t)

xf (t)

]
+ w(t), (7.21)

where w(t) is white noise. An integral state is introduced

xf
i (t) =

∫ t

0

(fd(τ) − fsN (τ)) dτ, (7.22)

where fd is the desired force. By extending (7.20) with (7.22), the obtained
model is used to design the LQI force controller with gain vector Lf , following
the same procedure as described for the velocity controller. Finally, this gives
the complete closed-loop system with force reference fd(t) as input. A block
diagram of the system is displayed in Figure 7.2.

The controller has so far been derived assuming constant parameters. As
discussed earlier, the material removal rate κ is likely to be time varying and
should thus be estimated continuously. This also applies to the parameter
β, and since fx, fy, and fsN are measured, the desired parameters can
be estimated by the Kalman filter. This is accomplished by extending the
discrete-time state vector from (7.13) with the estimates of the parameters
κ and β

x̂x,k =




x̂k

κ̂k

β̂k


 , (7.23)

where the parameters are modeled as random walks [Spitzer, 1964], and thus
the extended Φ and Γ-matrices are written as

Φ̃ =




Φ 0 0
0 1 0
0 0 1


 , Γ̃ =




Γ
0
0


 . (7.24)

Furthermore, with the new state vector, the extended C-matrix becomes time
varying since it contains force measurements:

C̃k =




C 0 0
0 fsN,k 0
0 0 fx,k


 . (7.25)
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Figure 7.2 Schematic block diagram of the proposed force-control
structure.

The Kalman gain vector K is extended to a matrix K̃, as well as the output
vector vx,k in (7.12) which is extended using (7.7) and (7.10) to incorporate
the new output signals needed for the estimation

ṽx,k =




vx,k

Cx̂k−1

√
1 + β̂2 − fsN,k − fsN,k−1

Kf h
fy,k


 , (7.26)

where h is the sample period of the system. With these extensions, the
parameters can be estimated by modifying (7.13).

As mentioned previously, an initial velocity reference vinit is provided
to the inner controller, in order to provide excitation for the parameter
estimation. Once the covariances of the estimates of κ and β pass below
predefined thresholds, the outer controller is activated and the estimates
are used to continuously adapt the outer controller. The adaptation of the
controller is achieved by updating the model in (7.20) using the current
estimates, and subsequently solving the LQI problem described earlier.

Learning Algorithm Design

In this section, an approach to sequential learning of the time-optimal milling
path is proposed. The assumptions on the milling are that an initial rough
cut is to be performed (where time is the primary concern, not the absolute
accuracy of the machined workpiece) and that milling is performed in a
two-dimensional plane, such as in pocket milling. Moreover, it is assumed
that the proposed adaptive force controller is employed, which means that
the maximum possible velocity is achieved, given the desired machining force,
under the prevailing cutting conditions. Considering that wood is an organic
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material, it naturally exhibits non-isotropic behavior. It is here assumed that
the material that milling is to be performed in is directionally isotropic and
spatially invariant. This means that for a milling in an arbitrary direction
and in its opposite direction, both will exhibit repeatable behavior over the
length of the workpiece, although possibly different from each other. Also,
the usage of different coverages and cutting directions of the milling tool
are expected to give varying behavior because of the non-symmetry of the
teeth of the tool. This implies that the milling parameters that need to be
determined regarding the path planning are the coverage ξ ∈ (0, 1] of the
tool (measured as a fraction of the milling-tool diameter), the direction of
the feed rate in each point along the path, as well as the cutting direction of
the tool in relation to the feed rate.

Path-Planning Problem Initially, it is assumed that the milling path is
segmented into N parts (where the parameter N is unknown a priori) and
that the area to be machined is spatially discretized1 in a grid. In order
to describe the points in the milling area, a time-varying binary matrix P
is introduced, where 0 indicates that milling has not been performed and
1 indicates that milling has been performed in that particular point. The
notation Pn is used to denote this matrix after n − 1 milling segments have
been performed. Furthermore, given the initial position pn,r of the robot end
effector before the start of segment n, the possible milling approaches γ in
terms of coverage ξ and milling direction for each point in the grid of P are
assumed to be provided by the function Ψ(pn,r, Pn). The expected time for
performing milling segment n with approach γ is denoted µ(tn,γn

), where
tn,γn

is the milling time for segment n. The time for reaching the starting
point of each milling segment is denoted tn,r. Consequently, the time-optimal
path-planning problem can be stated as

minimize
γi, i ∈ {1,...,N}

N∑

n=1

µ(tn,γn
) + tn,r

lnξnd
(7.27)

subject to γi ∈ Ψ(pi,r, Pi) (7.28)

where ln is the length of milling segment n, and d is the diameter of the tool.
The duration of the milling is normalized with the product of the length of
the milling segment and the coverage in order to weight the different milling
approaches similarly in the cost function. It is clear that the optimization
problem is NP-hard, since it is a combinatorial problem with an infinite
number of possible milling approaches for each segment. This is similar to the
asymmetric traveling salesman problem (ATSP) [Frieze et al., 1982; Reinelt,

1 The required density of the discretized path grid is determined by the desired
granularity of the coverage ξ in the path planning.
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1994; Gouveia and Pires, 1999]. Because of the extensive complexity of this
problem, a near time-optimal solution is here pursued that is shown to work
well in many practical scenarios in Section 7.3.

Sequential Near Time-Optimal Path Planning For this method, two
assumptions are made. The first assumption is that the decision space
regarding the milling directions consists of two different possibilities; forward
along the x-axis and backwards along the x-axis, i.e., two-directional path
planning. The second assumption is that the coverage ξ is chosen as a
discrete set; here this set is chosen as {1/3, 2/3, 1}. Considering that the
milling segments with ξ < 1 can be performed both with the teeth of the
milling tool directed in the feed rate direction (known as up milling) and
the opposite (known as down milling), there are a total of ten possible
milling approaches γ. Hence, the function Ψ(pn,r, Pn) provides a maximum
of ten different milling approaches (given the state of Pn and the current
robot configuration pn,r). A set of milling type examples are displayed in
Figure 7.3.

A sequential approach for computing an approximate solution to
(7.27)–(7.28) is proposed. This strategy has two advantages; first, it reduces
the complexity of the complete path-planning problem and second, it enables
online learning of the milling characteristics. To the purpose of learning, the
time tγ for performing a milling segment with approach γ is stored together
with the corresponding standard deviation σf,γ of the measured norm of the
process force in stationarity. Gaussian distributions are assumed for both of
these quantities, where data points caused by anomalies in the material, such
as knots and twigs, are removed using a simple outlier detection algorithm.

The milling strategy γ is determined such that it minimizes the time for
performing the milling of the segment and returning to the starting side of
the segment. For the latter, two options exist; either performing a milling,
or lifting the tool on the return trip and not performing a milling (at a
significantly faster velocity than possible during milling). The average time
for performing milling in both directions (segments i and i + 1) is given by

tA(γi) =
ti,γi

+ ti+1

2
(7.29)

where

ti,γi
=

µ(ti,γi
) + ti,r

liξid
, γi ∈ Ψ(pi,r, Pi), (7.30)

ti+1 = arg min
γi+1∈Ψ(pi+1,r ,Pi+1)

(
µ(ti+1,γi+1

) + ti+1,r

li+1ξi+1d

)
, (7.31)

whereas the time tB for performing milling in only one direction (segment i)
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Figure 7.3 Example of three different milling types, with different
coverages and cutting directions of the tool. The milling types from top to
bottom are; slot, up, and down milling, respectively [Grote and Antonsson,
2009].

and then returning to the starting side of the workpiece is given by

tB(γi) =
µ(ti,γi

) + ti,r + ti,c

liξid
, γi ∈ Ψ(pi,r, Pi), (7.32)

where ti,c is the time required for returning to the initial side, i.e., moving a
distance of √

l2
i + (ξid)2. (7.33)

The optimal milling strategy for segment n is given by

γn = arg min
γi∈Ψ(pn,r,Pn)

(min (tA(γi), tB(γi))) (7.34)
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Prior to performing the first segment, the optimal starting point must be
determined. This is done by calculating the total cost for the complete milling
task using (7.29)–(7.34), for each of the possible starting corners. The corner
point that exhibits the lowest total cost is selected as the starting point, and
the first milling segment determined by (7.34) is performed. If tA < tB,
milling is performed in both directions and if tB < tA, milling is only
performed in one direction with a subsequent free-space movement to the
initial side. After each segment, a new data point is obtained, which means
that the expected value µ(ti,γi

) may change, and consequently also tA and tB.
Therefore, with the newly acquired data, the previously calculated solution
to the complete path-planning problem may not be optimal anymore. The
calculations are thus redone after each milling segment is performed, using
the updated sets and the new corner points obtained from Pn. Should a
corner point different from the current point exhibit a lower total cost, with
the cost of the robot moving to the new starting point included, the switch
is performed before restarting the milling.

Because of the reduced complexity provided by the proposed solution
to the minimization problem for the complete planning problem, the
implementation becomes time efficient. For reasonably sized pockets, the
optimization problem is possible to solve within less than 1 ms on a standard
desktop computer. Thus, no time has to be wasted during the milling task
by waiting for the path planning to be performed.

Acquisition of Learning Data In order for the learning algorithm to work,
an initial set of training data for each milling type is required. This can
be obtained by simply performing each milling approach a given number of
times. Since Gaussian distributions are assumed for the time for performing
the milling and the standard deviation of the process force, at least two
points per type are needed. However, since the training experiments are
performed in material that would be used to mill the pockets, both material
and time are wasted during the training procedure. It is therefore desirable to
develop an alternative auto-training algorithm, that acquires training data
automatically while milling the desired pockets. The proposed strategy to
performing auto-training is defined as follows:

For each milling type γ, a training set Sγ is stored. If the training set Sγ

is empty, the mean of the milling durations is assumed to be a small number
close to zero. This way, once a certain milling approach has been performed,
a significantly longer duration will be obtained, and the algorithm will
consequently switch to a different type until all types have been performed
once. However, as this only gives an initial training set of one data point per
milling type, the sensitivity to outliers becomes high. The auto-training is
therefore further extended, such that if the standard deviation of the set
is zero, i.e., when there is only one data point, the mean is divided by
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a factor η. This will result in the same behavior as before; the algorithm
will try all milling types once again, unless the duration for one type is
actually η times shorter than another type. The parameter η can be tuned
based on the expected frequency and range of outliers. An outlier-detection
algorithm is used for the data stored in Sγ , which disregards data points
that fall outside an interval defined as the standard deviation multiplied by
a predefined factor, conditioned that the number of data points is larger than
a given value. However, any outlier detection algorithm can be used.

Also, in order to account for changes in the milling conditions, e.g., tool
wear, forgetting action is introduced in the algorithm. The data points in
the sets Sγ are multiplied by a tapered cosine-window of appropriate length,
such that older points are gradually weighted less. The calculations of mean
and standard deviation for each of the sets Sγ are modified to account for the
weights. Thus, should an abrupt change occur, the algorithm will gradually
adapt to the new conditions. The adaptation rate depends on the length of
the window, where a short length will give a fast rate but increased sensitivity
to outliers.

Extensions of the Path-Planning Problem As extensions of the pure
time-minimization problem, there are several other parameters that could
be of interest to consider when determining the optimal path. The expected
value µ(σf,γ) of the standard deviations of the milling forces for milling
strategy γ is of interest, since it could be beneficial to optimize the path
planning so as to avoid milling approaches that exhibit process forces with
high variance. Also, the standard deviation σ(tγ) of the milling durations for
the different milling types could be added in the cost function, in order to
be able to either avoid or choose high-variance milling types. The extended
cost function considered for minimization at segment n is therefore

µ(tn,γn
) + tn,r

lnξnd
+ w1µ(σf,γn

) + w2σ(tn,γn
), γn ∈ Ψ(pn,r, Pn), (7.35)

where w1 and w2 are weighting factors. In order to minimize this cost
function, it is straightforward to modify the algorithm proposed in Section 7.2
in order to incorporate the new terms.

7.3 Results

In this section, the proposed methods are evaluated in both simulations and
experiments. First, the setup used for performing the milling experiments is
described, followed by performance results of the proposed force-control
architecture. Second, results from applying the learning algorithm in
combination with force control are presented, for a large set of different
scenarios.
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Experimental Setup

Experiments were performed using an ABB IRB140 robot [ABB Robotics,
2015b] with an IRC5 controller, in combination with an open robot control
extension called ExtCtrl/ORCA [Blomdell et al., 2010], running at 250 Hz.
The proposed method was implemented in Matlab Simulink, where the
simulation models were translated to C-code using Real-Time Workshop and
compiled in order to run them on the extended robot system. The robot
was equipped with a wrist-mounted JR3 100M40A force/torque sensor [JR3,
2015], measuring forces and torques in the Cartesian directions. A Solectro
UFM 1050 milling spindle [Solectro, 2015] with a maximum revolution speed
of 11 000 rpm, was equipped with a 6 mm diameter end mill with two
teeth. The workpiece was rigidly fixed in the robot workspace, such that
the workpiece was aligned with the horizontal plane of the robot coordinate
system. The full experimental setup is displayed in Figure 7.4.

Controller Performance – Simulations

Simulations were performed using Matlab Simulink, by discretizing
and implementing the models and the control architecture described in
Section 7.2. The inner controller was designed by choosing the weight
matrices Qv and Rv such that the control bandwidth is not significantly
decreased and that damping is introduced, in order to avoid oscillations or
overshoots in the velocity response. The outer force controller was designed
to give as fast response as possible, without any oscillations, i.e., ideally
purely real poles of the closed-loop system.

For the simulations, a material stiffness Kf = 75 N/mm was assumed,
and the initial values for κ and β were set to 0.4 and 0.5, respectively. In
order to obtain a feasible estimate of κ and β prior to activating the outer
LQI controller, the velocity reference was initially set to a constant speed,
vinit = 15 mm/s, so as to provide excitation for the Kalman filter. Once
the covariances of the estimates passed below the predefined thresholds, the
outer controller was activated and its control signal was added to the initial
velocity reference.

A simulation with a desired force fd = 10 N and time-varying κ and β
was performed; the results are displayed in Figure 7.5. The figure shows a
fast and well-damped force response without stationary error and accurate
estimation of κ and β. Also, the influence of the time-varying parameters is
barely visible in the force response.

Controller Performance – Experiments

For the experiments, the material stiffness Kf was interpreted as the
interaction stiffness, because of the fact that the machining forces not only
depend on the material properties, but on the combined stiffness of the
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x

z

yx

z

y

Figure 7.4 Experimental setup for performing force-controlled milling with
an ABB IRB140 robot, where the milling coordinate system is shown in red.

workpiece, the tool, and the robot. It is to be noted that the stiffness of the
robot in this context refers to the perceived robot stiffness, as determined
from the measurements of joint motor angle. It is further assumed that the
interaction stiffness is assumed constant within the limited workspace of the
milling process. By measuring force and position of the robot during a simple
contact experiment, the interaction stiffness was determined as 77 N/mm. A
milling experiment with fd = 10 N, which involves several segments with
different milling types was performed, and the resulting control performance
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Figure 7.5 Force-controller performance simulation. The top panel shows
|fd|, fx, fy , and fN in red, green, magenta, and blue, respectively. The
second panel shows the actual κ in red and κ̂ in blue, the third panel shows
the actual β in red and β̂ in blue. The bottom panel shows the feed rate vr.

is displayed in Figure 7.6. Similar to the simulation, the experiment shows a
fast force response with a measured force close to the desired value. It is to
be noted that position-controlled milling is performed during the transitions
between the segments, which explains why the force does not go to zero in
between the force controlled milling segments.

Learning-Algorithm Simulations

A simulation model was constructed in Matlab Simulink, where data from
initial milling training tests were used for the milling durations tn,γn

for each
segment. Five different scenarios were considered in simulation:

1. Perform training and mill three pockets, time minimization.
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Figure 7.6 Force-controller performance during several segments of milling
in oak. The top panel shows |fd|, fx, fy , and fN in red, green, magenta,
and blue, respectively.

2. Mill three pockets using initial training data obtained in Simulation 1,
minimize time and variance of milling durations.

3. Mill three pockets using auto-training, η = 2, time minimization.

4. Mill three pockets using auto-training, η = 1.25, time minimization.

5. Mill three pockets using auto-training, η = 2, time minimization, where
the milling conditions are modified such that it is five times more time
consuming to mill in the positive directions.
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Table 7.1 Simulated milling durations, in seconds.

Sim. 1 Sim. 2 Sim. 3 Sim. 4 Sim. 5

Training 69.2 - - -
Pocket 1 28.3 34.3 35.0 35.0 76.5
Pocket 2 28.3 30.0 34.2 29.6 39.0
Pocket 3 28.3 28.3 28.3 28.3 38.6

Pocket mean 51.4 30.9 32.5 31.0 51.4

For Simulation 2, Gaussian noise with standard deviation σs = 0.1 was added
to the milling durations, in order to achieve a more realistic result. For the
other simulations, no noise was added such that repeatable and comparable
results could be obtained. The resulting durations for the simulations are
presented in Table 7.1. Figure 7.7 shows the milling path obtained from
Simulation 1, where it can be seen that the optimal path is a combination
of full and two-thirds coverage. The optimality is confirmed by performing a
brute-force search over the possible milling paths for a given data set, which
in this case corresponds to over 108 different paths. The obtained path and
minimum milling time are identical to what the proposed algorithm provided.
The search takes several hours on a standard desktop computer, which makes
it infeasible to use in a practical setup, and thus it is only used for verification
of the proposed algorithm.

The aim of Simulation 2 is not only to minimize time, but the variance of
the milling durations. If it is assumed that the higher value of the two initial
data points is an outlier, then the milling type in question should theoretically
not be used, if the cost of the lower point would not be considered to begin
with. The weight w2 could be tuned based on this reasoning, where the
corresponding weight would be given as

w2 = − 1√
2

. (7.36)

The negative sign of w2 is chosen such that the cost is reduced for milling
types with high variance. This will make the algorithm choose milling
strategies that may not be time optimal, in an attempt to lower the variance.
However, in order to make the effect of minimizing the variance more
apparent, a higher weight was used for the experiments. Also, as some milling
types may naturally exhibit high variances, a variable weight that increases
the cost for each new data point was introduced in the cost function:

w2 = − 5

kγ
(7.37)

where kγ is the number of data points in Sγ for the current milling type γ.
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By dividing by kγ , the cost reduction is decreased for each new point, so
that milling types that still exhibit a high variance after many data points
do not get a cost reduction. In order to emphasize the effect, outliers were
arbitrarily added to the initial training data on a subset of the milling types,
denoted γ̄. The initial standard deviations for these milling types are given
by

σ(tγ̄) = [1.18 1.36 2.18 1.26 1.49] s, (7.38)

and the obtained standard deviations after the simulation were

σ(tγ̄) = [0.06 0.05 0.07 0.11 0.15] s. (7.39)

It is clear from (7.38)–(7.39) that the standard deviations have been
significantly reduced, on average 94 %. As a result, the milling durations
have increased, as can be seen in Table 7.1. However, the same duration as
in Simulation 1 could still be obtained after three pockets, since none of the
types that initially exhibited a high variance turned out to lower the total
cost.

In Simulation 3, with the use of auto-training, the optimal path was
achieved after performing only three pockets, see Figure 7.8. It can be seen in
the figure, that for the first two pockets the starting point is switched several
times in order to gather training data for all milling types. Looking at the
mean duration per pocket, it is clear that the auto-training in Simulation 3
was more time efficient than the one in Simulation 1, since it achieved a
40 % decrease in duration. In Simulation 4, the value of the parameter η
was decreased from 2 to 1.25, which gave an even lower mean duration per
pocket, since slow milling types are rejected faster.

In Simulation 5, it is significantly more time consuming to mill in the
positive direction. It is therefore to be expected that only negative direction
milling segments are to be performed, i.e., tB < tA will be true, as discussed
in Section 7.2. Because of the fact that the positive direction is set to have
milling times more than η times longer than the negative direction, the
algorithm converges after only one pocket. The obtained milling path has, as
expected, converged to excluding all positive direction segments and lifting
the tool instead, see Figure 7.9. This will naturally increase the duration
compared to Simulation 1, 3, and 4, since the milling-duration parameters
have been modified.

Evaluation of Learning in Experiments

Five different scenarios were considered for milling experiments:

1. Perform training and mill three pockets, time minimization.

2. Mill three pockets using the initial training data obtained in
Experiment 1, minimize time and variance of milling durations.
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Figure 7.7 Milling path for Simulation 1, where the black lines respresent
the transitions between training and/or pockets. The training phase is
shown in red, pockets 1 and 2 in green and blue, respectively.

3. Mill three pockets using auto-training, η = 2, time minimization.

4. Mill three pockets using auto-training, η = 2, minimize time and
process-force variance.

5. Mill three pockets using manual path planning, without any knowledge
of the milling process. No learning is performed.

Experiments were performed by milling 60×60 mm pockets in a block of
oak, with a 3 mm depth of cut and a force reference of 10 N. The resulting
durations for the millings are presented in Table 7.2.

The overall results presented in Table 7.2 show that the algorithm is
successful, as milling durations consistently decrease for each pocket in
the respective experiment. Also, a minimum in milling duration appears
to have been achieved, since all time-minimization experiments result in
approximately the same value. The results of Experiments 1 and 3 exhibit
close agreement with the corresponding simulations, and again confirm that
the auto-training is capable of reducing the mean duration per pocket (35 %)
while still achieving the minimum duration obtained for the pre-trained
pockets. For Experiment 2, the same weight w2 as in the corresponding
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Figure 7.8 Milling path for Simulation 3, where the black lines respresent
the transitions between pockets. Pockets 1–3 are shown in red, green, and
blue, respectively.

Table 7.2 Experimental milling durations, in seconds. Note that no
learning was performed in Exp. 5.

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Training 59.0 - - - -
Pocket 1 24.9 24.5 32.9 30.8 42.8
Pocket 2 23.8 23.9 28.6 29.1 27.5
Pocket 3 23.6 23.7 23.7 28.0 31.0

Pocket mean 43.8 24.0 28.4 29.3 33.8

simulation was used, see (7.37). The initial training data obtained in
Experiment 1 was used, which is given by

tγ =

[
6.6 6.3 11.7 7.0 9.8 7.1 8.0 9.9 7.2 9.5
5.9 5.8 10.4 6.5 8.1 7.0 8.3 8.6 7.6 8.9

]
s.

The standard deviations of the milling durations for each γ in the sets Sγ

are given by

σ(tγ) = 10−1
[

5.2 3.4 9.2 3.4 12.0 1.3 2.4 8.9 2.9 4.5
]

s.
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Figure 7.9 Milling path for Simulation 5, where the black lines respresent
the transitions between pockets. Pockets 1–3 are shown in red, green, and
blue, respectively.

As no artificial outliers were introduced, only a few of the standard deviations
exhibited significant values. However, even with the cost reduction achieved
by using the weight (7.37), the cost was still not low enough for the algorithm
to try the milling types with the highest standard deviations. Thus, no
significant reduction in standard deviation was obtained, and the result of
Experiment 2 turned out similar to Experiment 1.

For Experiment 4, a weight w1 = 5 was used for the cost function (7.35).
The standard deviations of the milling process forces vary between
approximately 0.6–8 N, over the different milling types. For a pocket using
only time optimization, the mean of the force standard deviations was 1.7 N.
Comparing this to the result of Experiment 4, where a mean of 1.2 N was
achieved, a decrease of 29 % is noted. As can be observed in Table 7.2,
the duration for milling the pocket has increased by a few seconds. This is
expected since the algorithm is no longer solely striving for time optimality.

For Experiment 5, three manually planned milling paths were produced
and carried out using only force control, without any learning. The paths are
visualized in Figure 7.10. As seen in Table 7.2, the milling durations obtained
from Experiment 5 vary over a large range. Comparing these durations to
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Figure 7.10 Milling path for Experiment 5, where the black lines respresent
the transitions between pockets. Pockets 1–3 are shown in red, green and
blue, respectively.

the achieved minimum duration of 23.7 s, cycle-time reductions from 14 %
up to 45 % were achieved, and on average 28 %.

For further comparison, position-controlled millings were performed using
conservative feed rates, calculated as the minimum velocity for each milling
type, obtained during a force-controlled pocket milling. Using the same
path-planning as obtained with the learning algorithm, an average duration
of 27.6 s was achieved for milling pockets using position control. This
corresponds to a cycle-time reduction of 14 % with the use of force control.

An example of how a workpiece looks after milling is displayed in
Figure 7.11. In this particular workpiece, training was performed, as can
be seen in the top left, as well as three pockets in three layers.

7.4 Discussion

The proposed force-control strategy proved to be efficient in maintaining the
desired force reference, and the cycle time could be reduced by approximately
14 %. As also shown in [Lauderbaugh and Ulsoy, 1988; Sörnmo et al.,
2012a], the use of an adaptive controller was beneficial, since both κ and β
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Figure 7.11 The resulting workpiece after performing several milling
experiments.

vary significantly between experiments, as seen in Figure 7.6. Furthermore,
for milling with a varying vertical depth of cut, the cycle-time reductions
obtained by using force control would be greater, because of the need for an
even more conservative feed rate when using only position control. However,
this would require modification of the learning algorithm to account for the
varying vertical depth of cut.

Force control for material removal maximization has thoroughly been
researched in the past [He et al., 2007; Liu et al., 2001; Daneshmend and
Pak, 1986; Lauderbaugh and Ulsoy, 1989; Rober and Shin, 1996; Wang et
al., 2008; Lauderbaugh and Ulsoy, 1988], as mentioned in the introduction.
The force-control structure proposed in this chapter is systematically derived
and model based, without the need for complicated nonlinear modeling of
the cutting process with a large set of parameters. It was shown in this
chapter that a simple model such as the first-order LPV model is capable
of achieving high performance. While the utilized models are simple, the
proposed force-control structure is of rather high complexity. Less complex
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controllers, such as PID or impedance controllers, may be used as an
alternative. However, depending on the properties of the robot dynamics,
sufficient damping or bandwidth may not be possible to achieve with less
complex controllers.

For the learning algorithm, both the results of Simulation 1 and
Experiment 1 showed that it is successful in learning the path planning that
minimizes time, as the durations decrease for each pocket. In simulations,
the optimality was confirmed by performing a brute-force search. However,
in experiments it is naturally difficult to know if a minimum really has
been achieved, since the optimal path is not available nor possible to derive.
From Table 7.2 it can be seen that the minimum time for several different
experiments was obtained between 23.6 and 23.8 s, which indicates that a
minimum has been achieved. Some variation in the results is to be expected,
because of the organic nature of the material.

In contrast to Simulation 2, where artificial outliers were introduced,
Experiment 2 did not show any significant reduction of the standard
deviations. This can be explained by the fact that the milling strategies that
exhibited a high variance also exhibited long milling durations. In this case,
using the weight defined in (7.37), which initially corresponds to a reduction
of 2.5 standard deviations in cost, was still not low enough to be considered
by the algorithm. This is a desirable effect, since it means that even if the
milling type would be tried, it is highly unlikely that the result will be 2.5
standard deviations below the previous mean. However, in the unfortunate
case of obtaining two outliers in the initial data, the algorithm will be unable
to identify this and will consistently reject that milling type. Further, a more
conservative weight w2 could probably have been used, such as the weight
proposed in (7.36), if minimizing the durations for pockets 1 and 2 also was
of interest.

Experiment 3 utilized the proposed auto-training algorithm, which was
proven to be effective since the training duration was decreased significantly,
and no material was wasted during the training. It was shown in simulations
that a faster convergence to the optimal path could be achieved by using a
lower value of the parameter η. This is a result of the algorithm rejecting
milling types that take a long time to perform, based on the first and only
data point obtained for that type. This renders the algorithm vulnerable
to outliers, since the algorithm is acting on a single data point, which
could possibly be an outlier. Thus, choosing η becomes a trade-off between
convergence rate of the auto-training and the sensitivity to outliers in the
training data. Consequently, with a highly homogeneous material, η ≈ 1 can
be used to increase the convergence rate. Conversely, for workpieces with a
large amount of knots and twigs, η ≥ 2 should be used to avoid acting on
non-representative training data.

In Experiment 4, a 29 % reduction of the process-force standard deviation
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was achieved. This reduction could be desirable since it may prolong the
lifespan of the milling tool, by preserving the sharpness of the tool. This
could in turn lead to reduced operating costs because of fewer tool changes.
However, as presented in Table 7.2, the duration for each milling has increased
in comparison to the pockets milled using the minimum-time approach. Thus,
it becomes a trade-off between duration per pocket and tool wear, determined
by the choice of the weight w1.

Intuitively, it could be expected that the minimum-time milling path
should be a combination of the milling types with full coverage, since it
represents the geometrically shortest path. This was indeed the case for a
few experiments. However, for most experiments the optimal path was found
to be combinations of milling types with coverage 1/3 and 2/3. The obtained
variation can be explained by the natural variation of the wood workpiece,
e.g., the direction of the wood fibers. This confirms the claim that path
planning for milling in non-isotropic materials is not straightforward and
shows that the proposed learning algorithm is beneficial for such scenarios.

A possible limitation of the proposed learning algorithm, is the
assumption that the workpiece properties are spatially invariant. For the
experiments presented in this chapter, the assumption appears to be valid,
and any deviations are, as intended, handled by the outlier detection
algorithm. However, in scenarios where considerably larger pockets are
to be milled, there may be local areas of the workpiece exhibiting different
properties. Thus, if the training is performed in a non-representative area
of the workpiece, the results may become sub-optimal. A possible remedy
for this could be to increase the forgetting rate, such that the algorithm
adapts to the current conditions more rapidly. Another possible limitation of
the proposed method is that only the pocket milling geometry is considered.
However, since rough-cut milling is considered, pockets are sufficient for most
scenarios. If not, it is possible to extend the method to consider additional
geometries.

For performing milling in other materials than wood, e.g., aluminum or
steel, the proposed method could also be used, where the force control would
be just as effective as shown in this chapter. The learning algorithm would
likely also be effective, since cutting conditions vary with different coverages.
Because of the isotropic properties of metal, the algorithm could probably
be simplified, since milling types for one direction could theoretically be
merged with the corresponding types of different directions. Even though
the evaluation was performed using an industrial robot, the method itself is
not robot specific and can be applied to, e.g., machine tools as well.

Since this chapter considered a rough-cut milling process, the milling
accuracy was not the primary objective. However, should the milling accuracy
be of interest, it would be appropriate to introduce β̂ in the cost function,
since strong transversal forces give rise to robot deflections and in turn low
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path accuracy [Zhang et al., 2005b]. Adding a new term that penalizes high

values of β̂ will thus cause the algorithm to avoid milling types that exhibit
strong transversal forces. However, since the resulting force is controlled to
a constant reference, it is not unlikely that the fastest milling types exhibit
small transversal process forces, such that the majority of the process forces
is found in the feed direction. Thus, milling types with strong transversal
forces are inherently avoided even in the pure minimum-time planning.

Previous research in the area of optimizing path planning for machining
operations has mostly focused on minimizing the path length [Wang et al.,
1987; Yang and Lee, 2002; Park and Choi, 2000; Lin and Koren, 1996;
Lo, 1999], i.e., finding the shortest geometrical path that completes the
operation. In constrast to the present chapter, these papers do not consider
the machining process dynamics. In [Meng Lim and Menq, 1997], geometric
maximum feed-rate maps are established based on force models, in order
to optimize the path-planning. While that method considers the machining
process dynamics, it does not learn nor take into account possible model
variations that would likely occur when milling in non-isotropic material.
The method proposed in this chapter is independent of a priori information
about the machining process that is needed to establish process-force models.

Future Research

As future research, it could be of interest to complement the forgetting
action by introducing a tool-wear monitoring method, e.g., as described
in [Burke and Rangwala, 1991]. As briefly mentioned previously, it could also
be interesting to consider the accuracy of the milling in combination with the
time minimization. Another aspect for the future, could be to consider more
advanced milling geometries, which may require additional milling directions,
both vertical and horizontal. A four-directional path-planning approach is
considered in Chapter 8.

7.5 Conclusions

This chapter considered the problem of minimizing cycle times for rough-cut
machining processes in non-isotropic materials. A model-based adaptive
force-control architecture combined with a learning algorithm to find the
optimal machining path, was developed. The proposed method was verified
in simulations and in pocket-milling experiments performed in oak.

The duration for performing a pocket milling was decreased by 14 %
with the use of force control, compared to position control. Furthermore, the
milling durations were further decreased by employing the learning algorithm,
on average an additional 28 %.
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An auto-training method was developed, which resulted in less waste of
material and approximately a 35 % decrease in mean duration per pocket in
experiments. The learning algorithm was extended to minimize process-force
variance and the milling-duration variance, where reductions of 29 % and
94 % were achieved, respectively.

The proposed learning algorithm is independent of a priori information
of the machining process, and can be initialized arbitrarily. Also, the method
can be applied to machining in other materials, without the need for
modifying any parameters.
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8

Reinforcement-Learning

Approach to Path Planning

8.1 Introduction

In this chapter, the path-planning problem from Chapter 7, where the
objective was to minimize cycle times for machining operations in wood, is
revisited. Further investigation of the solution proposed in Chapter 7 showed
that sub-optimal paths were produced for a handful of scenarios. In this
chapter, a reinforcement-learning approach based on Q-learning is taken, in
order to obtain optimal paths for all scenarios.

Because of the non-isotropic properties of wood, additional cycle-time
reductions may be achieved by considering a higher number of milling
directions in the path planning. Therefore, the path-planning problem is
extended to consider two additional directions. As the standard formulation
of Q-learning is not feasible to use for this problem, a feature-based
Q-learning approach is proposed.

Previous Research

An overview of reinforcement learning methods is provided in [Kaelbling
et al., 1996; Barto, 1998]. Q-learning was first introduced in [Watkins, 1989],
and the subsequent convergence proof is found in [Watkins and Dayan,
1992]. Feature-based Q-learning, also known as function approximation, is
investigated in [Irodova and Sloan, 2005], where it was shown that similar
results to that obtained using Q-learning can be achieved at considerably
increased efficiency. Additional Q-function approximation methods are
discussed in [Wiering and Van Otterlo, 2012].

As mentioned in Chapter 7, the considered two-directional path-planning
problem is similar to the asymmetric traveling salesman problem (ATSP).
A modified version of Q-learning, called ant-Q, for solving the ATSP is
presented in [Dorigo and Gambardella, 2014]. However, for the specific milling
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path-planning problem considered in this chapter, no previous publications
exist to the author’s knowledge.

Disposition

This chapter is organized as follows: In Section 8.2, both the two- and
four-directional path-planning problems are considered. Simulation results
from using both methods are presented in Section 8.3, and compared to
results from the method proposed in Chapter 7. The results are discussed
and conclusions are drawn in Section 8.4.

8.2 Method

In this section, both the two- and four-directional path-planning problems
for cycle-time minimization are considered. Different learning algorithms are
proposed for each problem, in order to obtain optimal paths for all possible
scenarios.

Two-Directional Path Planning

The path-planning method presented in Chapter 7 was capable of finding
the optimal milling path in the considered scenarios, which was verified by
performing brute-force searches. However, in certain scenarios, it is found
that sub-optimal paths are chosen because of endpoint constraints that
cannot be taken into account by the algorithm. This will be further discussed
in Section 8.3. In this section, Q-learning [Watkins, 1989] is employed to solve
the two-directional path-planning problem to obtain optimal paths for all
scenarios.

Q-Learning Q-learning is a model-free reinforcement-learning technique
that is used to find the optimal policy, given a set of states and actions.
Each state s has a set of actions a associated with it, which in this section
corresponds to transitions between the states. In turn, a reward r is associated
with each action. The optimal policy thus defines the path from the starting
state to the ending state, which maximizes the obtained reward. In order to
learn the optimal policy, a large amount of random transitions are performed
through the state space, and based on the obtained data, a policy matrix
Q(s, a) is learned according to [Barto, 1998]

Q(s, a) = (1 − α)Q(s, a) + α(r + γ max
a∗

Q(s∗, a∗)), (8.1)

where α ∈ (0, 1] is the step size, i.e., the learning rate, γ is a discount factor,
and the ∗-notation denotes the subsequent future event. Once the Q-matrix
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is learned, it is used to determine the optimal action a∗ for each state. The
future action from state s is commonly chosen as

a∗ = arg max
a

Q(s, a). (8.2)

In order to represent the two-directional path-planning problem for pocket
milling, a state space is formed. The milling direction, i.e., the feed direction,
is here denoted x and the transversal direction in the milling plane is
denoted y. The workpiece is divided into a discrete set of y-positions, where
each position is respresented by two states, corresponding to performing
a milling segment in positive or negative x-direction, respectively. Since
Q-learning strives to maximize the total obtained reward, the minimum-time
optimization problem, which is considered in this chapter, is reformulated as
maximizing the negative duration of a complete milling. Thus, the reward
for performing a state transition is chosen as the negative milling duration
for that segment. Consequently, all illegal state transitions are set to give a
reward of −∞.

In order for the Q-learning to work, the reward matrix must be static
during the learning procedure, i.e., independent of the order of the previously
performed state transitions. To achieve this, the state space is divided into
two parts, one for each direction of y. Since the durations of performing
milling segments may change throughout the milling, the action rewards will
change as well. Therefore, it must be possible to perform transitions between
milling in the positive and negative y-direction, in order to maximize the
reward. Because of this, an updated reward matrix with the current rewards
has to be constructed after each state transition.

However, given the current rewards, transitions to a different milling
direction are only allowed from the current state. Intuitively, this is
reasonable since if the other milling direction is optimal with the new
rewards, it is not possible that another switch in direction is to be performed
with the current rewards. This is also required for the reward matrix to
become independent of previously visited states. Because of the changes in
the reward matrix after each state transition, the reinforcement-learning
training procedure must also be performed after each transition. In order to
enable the learning algorithm to find the optimal starting point, an additional
state is introduced, which only allows transitions to the four corners of the
state space.

As shown in Chapter 7, the use of different milling tool coverages in
combination with different milling directions resulted in varying material
removal rates. In this chapter, three different coverages are considered for
each direction; full coverage, and half coverage for both up and down milling.
In order to account for the different coverages, the state space is modified
such that each state is split in several parts in the y-direction, depe expnding

175



Chapter 8. Reinforcement-Learning Approach to Path Planning

1

2

3

...

N

1 2

3 4

5 6

...
...

2N −1 2N 4N −1 4N

4N −3 4N −2

4N −5 4N −4

...
...

2N +1 2N +2

4N +1

Figure 8.1 Illustration of the state space defined for the Q-learning
algorithm. The numbers on the left specify the geometric position of the
states in the y-direction. The state denoted 4N +1 represents the starting
state. Note that only the transitions from the starting state are illustrated
in the figure.

on the desired coverage resolution. Here, the states are split in two as a
result of the use of half coverage. With this modification, the tool occupies
an additional adjacent state in y-direction for each state. Consequently, to
perform a milling with full coverage, one row of states in the y-direction
is only visited by occupying the adjacent states. However, milling is still
performed in those positions. A vector P with binary elements is used to
keep track of where milling has been performed, which is needed to update
the reward matrix after each state transition. The complete state space for
learning the time-optimal milling path for an N×N -sized pocket is illustrated
in Figure 8.1. In the figure, performing milling in positive x-direction is
represented by the left states in the two main state clusters, and vice versa.
Also, the left state cluster represents milling in positive y-direction, and vice
versa. Transitions between states within each column correspond to lifting the
tool and moving to perform a milling in the same direction as the previous
milling. The obtained reward for these state transitions includes both the
time for lifting and moving the tool, and the milling duration.

With the proposed state space, the optimal policy for the current state
is learned using (8.1), and the subsequent action is chosen and carried out
according to (8.2). Once the action is carried out, a new reward matrix is
formed, training is performed, and the procedure is repeated until P does
not contain any zeros.

In this chapter, the two-directional Q-learning is referred to as Method 1.
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Four-Directional Path Planning

While the two-directional path planning of the milling process was
shown to be successful in reducing cycle-times significantly in Chapter 7,
additional reductions may be achieved by considering a higher number of
milling directions. However, the complexity of the path-planning problem
increases dramatically with the addition of more directions. Thus, in this
section, a different reinforcement-learning method for the four-directional
path-planning problem is considered. In this setting, milling can be performed
in both directions along the x- and y-axes of the coordinate system defined
for the two-directional case. Additionally, the propagation direction of the
milling, which is transversal to the direction of the milling segments, is
denoted θ.

Simply dividing the state space defined in Figure 8.1 once more to account
for the added directions is not possible, since forming an unambiguous reward
matrix for this scenario is impossible. This is caused by the fact that the
rewards change depending on the previous state transitions, in contrast to
the two-directional problem. Thus, performing training to obtain a policy
matrix Q will give ambiguous results. A different approach is to divide the
workpiece into an N×M grid of positions, where each position is represented
by a set of states, describing all unique combinations of the previously milled
positions. With this state-space structure, the number of required states will
grow rapidly as the grid size increases. In order to represent all possible
states for a grid of size N ×M , the number of required states is given by
2NM . This exponential increase in states renders the standard formulation of
Q-learning impractical and computationally infeasible for larger grids. Thus,
for the four-directional path-planning problem, a different approach is taken,
which is described next.

Feature-Based Q-Learning As mentioned in the previous paragraph, the
number of states required to represent all possible scenarios for a grid of
positions quickly becomes significantly too large. In order to reduce the state
space, feature-based Q-learning [Irodova and Sloan, 2005], also known as
function approximation, is employed in this section. With this method, the
states are replaced by positions, represented by a matrix P , where each
matrix element is binary. In the matrix, a zero indicates that milling has
not been performed and one indicates that milling has been performed in
that particular point. In order to account for different tool coverages, similar
to the two-directional case, the tool occupies additional adjacent positions.
With the coverages previously defined in this section, the tool occupies a
total of four positions in P for every position.

In order to transition between the different positions, a set of actions a
are defined, e.g., move one position north or two positions east in the
matrix. Furthermore, a set of features F is defined, which based on the
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current position, action, and P -matrix return a reward. The features can
be chosen arbitrarily, but the choices are important in order to obtain the
desired behavior of the learning algorithm. The idea is then to approximate
the Q-function, e.g., by forming a linear combination of the features. The
resulting value for each action, denoted Qw, is used to determine which action
should be chosen. The linear approximation is written as

Qw(a) = w1F1(a) + w2F2(a) + ... + wnFn(a), (8.3)

where w1, w2, ... , wn are scalar weights, initialized as random numbers in
the interval [−1, 0]. Similar to (8.2), the optimal action is determined as the
action that returns the highest value of Qw with

a∗ = arg max
a

Qw(a). (8.4)

The algorithm is trained by finding the optimal values of the weights, by
means of a gradient descent search, according to [Irodova and Sloan, 2005]

δ = r + γQw(a∗) − Qw(a) (8.5)

wk
i = wk−1

i + αδFi(a) (8.6)

where α and γ are defined in the same way as for (8.1), and k is the iteration
index. Training data are acquired by starting at one of the starting points
at random, and subsequently performing actions based on the current Qw(a)
until the complete task is done. This procedure is repeated a large number of
times, until the values of the weights w have converged. As for the Q-learning
method described for the two-directional problem, the rewards are chosen as
the negative value of the milling duration for that segment. However, in
contrast to the two-directional case, milling segments can vary in length.
Thus, each reward is calculated based on the length of the segment, with
acceleration and deceleration durations added.

While the feature-based Q-learning algorithm is fairly simple to
implement, the procedure of feature engineering, i.e., how to define the
features, is non-trivial. The function Qw, which is linear in Fi, must convey
the best action to carry out, not just for the current position, but for the
subsequent future positions as well. For example, in some scenarios it may
be beneficial to choose an action that gives a low immediate reward, but
which will ultimately result in a higher total reward. Since a unique weight
is learned for each feature, irrelevant features will obtain small weights and
thus not affect the choice of action.

The set of actions can be defined arbitrarily, but the choice of actions
may affect the feature-engineering procedure. The natural choice of actions
for moving in a four-directional grid of positions, would be to represent a

178



8.2 Method

×

+

+

+

+

+

+

×

+

+

+

+

+

+

×

+

+

+

+

+

+

×

+

+

+

+

+

+

×

+

+

+

+

+

+

×

+

+

+

+

+

+

×

+

+

+

+

+

+

Figure 8.2 Illustration of a subset of the 32 actions for the feature-based
Q-learning algorithm. The gray crosses and black plus signs represent visited
and not yet visited states, respectively. The dashed line shows the previous
action, and the solid lines represent possible actions from the current
starting point. For clarity, only a subset of the possible actions are shown
in the figure. The orange line represents an action that lifts the tool and
moves to a new starting point. For each state, the adjacent three states in
the south-east direction are occupied.

step in each of the four directions by separate actions. However, with this
choice, it was found that the feature-engineering procedure turned out to be
extremely complicated. Thus, the actions were redefined such that movement
in each milling direction is performed until no more material remains in
that direction, defined by the values of P . This is reasonable, as performing
longer milling segments intuitively gives increased efficiency, because of the
required acceleration time for each segment. Additional actions are formed
as all possible combinations of moving one or two positions in each spatial
direction of the matrix, then turning left or right and milling until no more
material remains. This makes for a total number of 20 actions, for which
milling is performed. In order to be able to switch starting point, actions
that lift the tool and transition to the other possible starting points defined
by P , are formed. For all combinations of starting points and coverages, the
total number of actions is increased to 32. An illustration of a subset of these
actions is displayed in Figure 8.2.

The described actions are defined such that it is not possible to divide
the matrix P into separate submatrices of zero elements, i.e., the zeros in P
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will always form a rectangular matrix. The only exception to this is when an
action that lifts the tool has been performed. The subsequent action is then
constrained such that the zeros in P will form a rectangular matrix when it
has been carried out.

Initially, two features are considered. The first feature is chosen as the
normalized inverse duration for performing an action

F1(a) =
ε1ZP

t(a)
(8.7)

where ε1 is a normalizing constant, ZP is the number zeros in the matrix P ,
and t(a) is the duration of performing action a. If an action is not possible to
perform, because of geometrical constraints or that milling has already been
performed in the targeted position, the function t(a) returns an infinite time.
The inverse of t(a) is chosen such that a short time gives a high reward, and
a long time gives a low reward.

The second feature is chosen as

F2(a) =
ε2Z2

P

TΣ(a)
(8.8)

where ε2 is a normalizing constant, and TΣ(a) is the estimated total duration
for completing the milling task, given the action a.

For actions that do not change the propagation direction θ of the
milling, the estimate of the complete milling task duration in that direction,
denoted tme(θ), is formed as

tme(θ) = min
a1,a2

(
Ne(θ)

t(a1) + t(a2)

ξ(a1) + ξ(a2)

)
(8.9)

where Ne(θ) is the number of columns/rows of zeros in the direction θ that
remains in P . The set of actions that minimize (8.9) for each direction θ are
denoted ao. Since all directions can be reached by performing at most two
actions, two additional estimates are formed for the actions that change the
direction according to

td1(a) = t(a) + tme(θ̃) (8.10)

td2(a) = t(a) + min
a∗ /∈ao

(
t(a∗) + tme(θ̃)

)
(8.11)

where θ̃ denotes the new direction, td1 and td2 denote the durations of using
one or two actions to switch direction and complete the milling task. The
function TΣ(a) is defined as

TΣ(a) =





tme(θ), a ∈ θ, a ∈ ao

∞, a ∈ θ, a /∈ ao

min (td1(a), td2(a)) a /∈ θ

(8.12)
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where an infinite time is given for actions that do not belong to ao, such that
the feature F2 in (8.8) returns zero reward for these actions.

Additional features were not considered, as simulations showed that the
proposed features were sufficient in approximating the Q-function. In order
for the learning algorithm to be able to adapt to changes in milling durations,
a short training phase is initiated subsequent to performing a milling segment,
if a different duration t(a) than expected was obtained. The previously
learned values of the weights are used as initial values of w for the training.

In this chapter, the four-directional feature-based Q-learning is referred
to as Method 2.

8.3 Results

In this section, simulation results obtained using the proposed methods are
presented, in a set of different scenarios. Furthermore, a comparison to the
method presented in Chapter 7 is provided. The same values of the milling
durations for each of the segments are used for all simulations, and the
durations are assumed to be constant throughout the simulation, unless
stated otherwise. Also, all pocket dimensions are given in normalized units.

Two-Directional Path Planning

In order to evaluate the proposed method for two-directional path planning, a
pocket with the dimensions 12×12 was initially considered. With this pocket
size, the method in this chapter and the method presented in Chapter 7
produced identical paths, verified to be optimal by a brute-force search.
However, changing the size to 13×13, different paths were obtained using
the two methods, see Figure 8.3. As a result of the uneven grid size, the two
actions that proved most efficient, do not fit evenly in the grid. Consequently,
a different action is needed to complete the task. This is where the two
methods differ; Method 1 is able to identify the problem and learn what
path to take in advance, in contrast to the method from Chapter 7, where the
decision is made once the problem has been encountered. With the proposed
method, an additional reduction in cycle time was achieved, as compared to
the previous method, cf. the captions of Figure 8.3.

Four-Directional Path Planning

Training of the feature-based Q-learning algorithm was carried out as
described in Section 8.2, in order to learn the optimal values of the weights w.
The result of the training procedure is shown in Figure 8.4, where the values
of the weights throughout the training are displayed. It is noted that both
weights converge to a steady level. Considering the same 13×13 pocket as
in the previous subsection, an identical path to Figure 8.3(b) was obtained
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Figure 8.3 Visualization of path-planning simulations in a 13× 13 grid,
comparing the method from Chapter 7 to Method 1. The green and red
circles indicate the starting and stopping coordinates, respectively.
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Figure 8.4 Training phase of Method 2, where the weights for each
corresponding feature are learned iteratively.

for a simulation using Method 2. This is desirable as the milling durations
in the other propagation directions are assumed longer in the simulation.

For further evaluation of the proposed methods, a larger pocket with the
dimensions 18×18, was considered. In this scenario, the same milling durations
as in the previous simulations were used initially. However, as the path was
executed, the durations of milling in the initially optimal direction were set
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Figure 8.5 Visualization of a simulation in an 18×18 grid using Method 1,
where the assumed milling durations in the initial θ-direction are increased
by 40 %. The total duration needed to perform the complete milling was
162.9 s. The green and red circles indicate the starting and finishing
coordinates, respectively.

to increase by 40 %. Consequently, the optimal direction is changed, and the
algorithms must plan accordingly. It is assumed that the new duration of a
milling segment is known after the segment has been performed once, i.e.,
old durations for the segment are not taken into account. This is suitable for
simulations, since no outliers are present.

The resulting paths from using Methods 1 and 2 are displayed in
Figures 8.5 and 8.6, respectively. It is noted from Figure 8.5 that as the
milling durations are updated, the actions that were initially found optimal
are substituted because of the 40 % increase in duration. Once three actions in
the initially optimal direction have been performed, the algorithm determined
it to be beneficial to lift the tool in order to switch θ-direction. For the
four-directional planning case, the algorithm deemed it to be advantageous to
switch direction already after carrying out the first action. This is explained
by the fact that the θ-direction can be changed without lifting the tool,
making it possible to achieve a higher efficiency by reducing the threshold
for it to be beneficial to switch directions.

An additional simulation of a pocket was performed for each of the two
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Figure 8.6 Visualization of a simulation in an 18×18 grid using Method 2,
where the assumed milling durations in the initial θ-direction are increased
by 40 %. The total duration needed to perform the complete milling was
154.2 s. The green and red circles indicate the starting and finishing
coordinates, respectively.

methods, in order to find the optimal paths with prior knowledge of the
40 % increased durations in the previously optimal θ-direction. The paths
obtained using the two methods are displayed in Figure 8.7, where it is
noted that different directions of the paths were chosen in Figure 8.7(a) and
Figure 8.7(b). This is simply because Method 1 only considers two different
directions, whereas Method 2 can choose between additional two θ-directions.
This naturally gives an advantage to Method 2, which is also reflected in the
total durations of the two pockets.

Non-square pocket-milling simulations were performed using Method 2
to investigate the influence of the acceleration time of the robot for each
segment. For this simulation, it was defined that it should be slightly more
efficient to mill in both positive and negative x-direction, as compared to
the y-direction. However, as the pocket is not square, the number of milling
segments affect the total time, as a result of the acceleration time for each
segment. Thus, two simulations were performed, one with fast acceleration
and one with slow acceleration. The results of the simulations are displayed
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Figure 8.7 Visualization of simulations in an 18×18 grid, with knowledge
of the increased milling durations in the initial θ-direction. The green and
red circles indicate the starting and finishing coordinates, respectively.

in Figure 8.8. For the first simulation, it is noted that even though a
significantly higher number of segments are performed compared to milling
in the y-direction, it is still more efficient to mill in the x-direction. A total
time of 69.4 s was obtained for the pocket. For the second simulation, the
acceleration durations were increased by a factor of four for each segment,
and therefore the algorithm chooses milling in the y-direction instead. The
total time for the pocket is increased to 74.9 s, which is expected since the
acceleration durations have increased. For comparison, the previously optimal
path with the new acceleration times yields a total time of 76.7 s.

8.4 Discussion and Conclusions

The proposed Q-learning algorithm for two-directional path planning of
machining tasks was found to improve the results obtained with the method
from Chapter 7, as the optimal path was found for each considered scenario
(verified by a brute-force search). Additionally, the problem was extended
to incorporate two additional milling directions, rendering the problem
significantly more complex. A feature-based Q-learning approach was taken,
and the method was shown to achieve an optimal path for the same scenario
used to evaluate the Q-learning method. For this scenario, it was concluded
that the path was optimal since it was identical to the path produced by the
Q-learning algorithm. However, since the number of possible paths for the
four-directional problem becomes extremely high, optimality was investigated
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Figure 8.8 Visualization of path-planning simulations in a 10×20 grid, with
fast and slow acceleration shown in the left and right plot, respectively.
The green and red circles indicate the starting and finishing coordinates,
respectively.

by performing selective brute-force searches for the added directions, where
the obviously non-optimal milling directions and coverages were disregarded.

It was further shown that for experiments where the initial training data
was partially incorrect, both proposed methods quickly adapted to find a new
path. The four-directional method was, not unexpectedly, found to reduce
the cycle-time even further than the two-directional method.

A limitation to the proposed method for four-directional path planning is
that it does not consider irregular paths patterns or, e.g., spiraling motions.
This could be incorporated in the method by redefining the actions, and
also adding the possibility to start in the middle of the pocket. However,
it is unlikely that a spiraling motion could be optimal, because of the large
number of short milling segments, where the duration of the acceleration
reduces the efficiency.

A drawback of the methods proposed in this chapter, compared to the
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method presented in Chapter 7, is the required computation time of the
training procedures. The method from Chapter 7 was possible to run within
each sample period of the robot controller, while the methods in this chapter
require one to two additional magnitudes, depending on the size of the
grid. However, in the context of milling segment durations, this can still
be considered negligible.

An inherent limitation of feature-based Q-learning is that it relies on an
approximation of the Q-function—optimality is not guaranteed. Nevertheless,
the approximation is necessary, since the original problem would be infeasible
to solve, as was shown in Section 8.2. Additional features can be included
in order to improve the approximation. However, the proposed features
were found to be sufficient for the considered application, as all presented
simulations were found to produce optimal paths. Still, in scenarios that are
not considered here, sub-optimal paths may be produced as a result of the
approximation.

For future research, it would be interesting to perform milling experiments
using the proposed four-directional path-planning method, and investigate
how much the cycle time could be reduced as compared to that of the
two-directional path.
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Conclusions

This thesis has presented methods for adaptation and learning, applied to
a set of manipulator tasks, mainly focused on machining operations. To
the purpose of increasing the accuracy of machining tasks, three different
approaches were taken.

First, a macro/micro-manipulator approach was considered, where two
different robot cells were developed; a prototype cell for one-dimensional
milling in aluminum, and a complete robot cell with an integrated approach
to three-dimensional robotic machining. Modeling and control of the micro
manipulator, as well as the design of an MVPC mid-ranging control
structure was presented. For milling in aluminum, the absolute accuracy
was significantly increased, the MAE was reduced by a factor of up to
approximately 70, to a level lower than 2 µm along each of the three axes.
Additionally, the surface accuracy of the millings was increased by up to a
factor of three. For milling in steel, a significant increase of the workpiece
surface accuracy was also achieved; up to eight times measured by MAE
values. For all milling experiments with compensation, the desired accuracy
of ±50 µm was achieved. It was further shown that the mid-ranging control
structure was essential in order to maintain active compensation throughout
the duration of the milling.

As an alternative to the MVPC mid-ranging control, an adaptive IMC
control structure was proposed for the macro/micro-manipulator setup,
where the manipulators were treated as closed-loop systems containing
internal velocity saturations. The proposed controller was evaluated using a
mock-up setup, where the simulation and experimental results exhibited close
correspondence. It was shown that the proposed control structure performs
well in the presence of process variations, internal saturations, and position
disturbances, with a performance increase of up to 56 % with respect to
previously established methods.

Second, the non-ideal properties of the robot joints that lower the
position accuracy of the robot were modeled. Specifically, joint compliance
and backlash were considered. A method for identifying the unknown joint
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parameters was presented, which relies on clamping the robot end effector,
such that all DoF of the robot are locked. The method was evaluated in
extensive experiments in different setups, and verified using measurements
from an optical tracking system.

Third, in order to reduce the position errors in machining tasks performed
with robots, three different model-based ILC methods were presented. The
first method was based on position measurements of the arm-side of the
robot in task space, the second method used process-force measurements,
and the third used joint motor torques to estimate the process forces. The
experimental results obtained from milling experiments in aluminum showed
that the algorithm based on arm-side position measurements was capable
of decreasing the position error by up to 84 %. In turn, the force-based
and the force-estimation approaches decreased the error by 55 % and 38 %,
respectively. Significant savings can be achieved with the use of the second
and third method, because of the lower or no investment cost in sensors.

The three methods for increasing machining accuracy presented in this
thesis, are considered as a contribution towards the goal of industrial robots
becoming a viable alternative to machine tools. However, the achieved
machining accuracy is still not as high as what machine tools can offer, but
is sufficient for many applications in today’s industry.

Further investigation and application of ILC methods were considered
for a different kind of manipulator, a marine vibrator, for the application of
marine seismic acquisition. A frequency-domain ILC strategy was proposed,
which proved effective in suppressing undesired harmonics as well as
providing accurate reference tracking. The desired suppression level of
the harmonics was achieved for all experiments, within approximately
20 iterations of the ILC algorithm. The absolute tracking error was
reduced by a factor of approximately 50 for each of the two channels.
Additionally, a procedure for detecting drift in the dynamics and a subsequent
reidentification procedure of the estimated transfer matrix were developed.
It was shown that convergence could be ensured with the updated transfer
matrix, while still suppressing the harmonics. Furthermore, the proposed
frequency-domain ILC algorithm was briefly compared to traditional
time-domain ILC, and it was found that frequency-domain ILC is highly
advantageous for the considered application.

The final problem considered in this thesis concerned minimizing cycle
times for rough-cut machining processes in non-isotropic materials. A
model-based adaptive force-control architecture, combined with a learning
algorithm to find the optimal machining path, was developed. The proposed
method was verified in simulations and in pocket-milling experiments
performed in oak. With the use of force control, the duration for performing
a pocket milling was decreased by 14 % as compared to using only position
control. The milling durations were further decreased by employing the

189



Chapter 9. Conclusions

learning algorithm; on average an additional 28 % reduction. Furthermore, an
auto-training method was developed, which resulted in less waste of material
and approximately 35 % decreased mean duration per pocket in experiments.
The learning algorithm was extended to minimize process-force variance
and the milling-duration variance, where reductions of 29 % and 94 % were
achieved, respectively.

The learning algorithm for path planning was refined to incorporate a
reinforcement learning algorithm, in order to find the optimal machining
path for all scenarios. A Q-learning algorithm for two-directional path
planning of machining tasks was proposed and was found to provide
optimal paths. Additionally, the problem was extended to incorporate two
additional machining directions, rendering the problem significantly more
complex. A feature-based Q-learning approach was taken and was shown to
achieve optimal paths. It was further shown that for experiments where the
initial training data were partially incorrect, both proposed methods quickly
adapted to find a new path. The four-directional method was found to reduce
the cycle-time even more than the two-directional.

It is to be noted that the learning algorithms for path planning can
be used both for robots and machine tools, given that the required sensor
measurements are available.
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Abele, E., S. Rothenbücher, and M. Weigold (2008). “Cartesian compliance
model for industrial robots using virtual joints”. Production Engineering
2:3, pp. 339–343.

Ahn, H.-S., Y. Chen, and K. L. Moore (2007). “Iterative learning control:
brief survey and categorization”. IEEE Trans. Systems Man and
Cybernetics–part C: Applications and Reviews 37:6, pp. 1099–1149.

Al Janaideh, M., Y. Feng, S. Rakheja, C.-Y. Su, and C. Alain Rabbath (2009).
“Hysteresis compensation for smart actuators using inverse generalized
Prandtl-Ishlinskii model”. In: Proc. IEEE Am. Control Conf. St. Louis,
MO, pp. 307–312.
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and R. Johansson (2014). “Integrated approach to robotic machining
with macro/micro-actuation”. J. Robotics and Computer-Integrated
Manufacturing 30:6, pp. 636–647.
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