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Abstract

Physical limitations of antennas above in�nite perfect electric conductor
(PEC) ground planes are determined using the stored electromagnetic energy.
Stored energies are computed with the method of moments (MoM) and the
image theory. Convex optimization is used to derive the G/Q ratio and
Q-factor for a reference geometry and the results are compared for di�erent
antenna types.

1 Introduction

The proximity of a conducting ground plane is both a blessing and a curse for an-
tenna designers. In some cases it limits the bandwidth, while in others this additional
structure can improve antenna performance signi�cantly [22, 27].

The Q-factor, which is inversely proportional to the fractional bandwidth, is the
main and traditional �gure of merit for physical bounds [25]. For a system, the
Q-factor is de�ned as the ratio of its stored energy to the dissipated energy per
cycle. Similarly, the Q-factor for an antenna is the ratio of stored energy to the
radiated �elds and antenna losses [5, 12, 13, 25, 26].

Early pioneers in antenna theory, such as Chu [5], have investigated the physical
limits of antennas since the late 1940s. Chu calculated the stored energies analyti-
cally using spherical mode expansions, excluding a small spherical region near the
antenna. Although his calculations are restricted to antennas circumscribed by a
sphere, they were a signi�cant breakthrough for its time.

Today progresses in both theory and computing tools in the �eld allow the analy-
sis of antennas with di�erent geometries. Physical bounds for antennas of arbitrary
shape and size were computed using the forward scattering sum rule in [13]; whereas
antenna current optimization is used to compute the physical bounds of arbitrary
metallic structures using method of moments (MoM) software for antennas in free-
space as well as antennas with �nite ground planes in [6, 12, 14]. The comparison of
these di�erent techniques with planar and cylindrical antennas can be found in [2,
10, 13, 20, 21]

This paper extends the physical bounds calculation to cover a new class of an-
tennas, antennas above an in�nite ground plane. Previous research on this topic has
been conducted for low-frequency limit using spherical harmonics in [23], vertically
polarized antennas [13], and in�nite antenna arrays [4, 7, 19]. Our approach is ba-
sed on the application of classical image theory to the calculation of antenna stored
energies using the expressions for the stored energy derived by Vandenbosch [24].
The proposed method can calculate the upper bound on G/Q, for any geometry and
radiation polarization.

To demonstrate the physical bounds a reference rectangular patch geometry
above a ground plane is presented and compared with di�erent patch antenna designs
from literature [8]. The selected antennas are simulated using the commercial elec-
tromagnetic solver FEKO [1]. The Q-factor of the simulated antennas are computed
using both the MoM impedance matrix and the di�erentiated input impedance [28].
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Simulation results show that the Q-factor of the antennas conform to the physical
bounds of the reference geometry.

2 Stored Energies and Physical Bounds

While a speci�c de�nition is established on energy dissipated by an antenna, the
same cannot be claimed for the stored energy. This paper uses the stored electric
energy de�ned by Vandenbosch [24] which is equivalent to the coordinate indepen-
dent part of the stored energy expression [17]

We =
ε0
4

∫
R3

|E(r)|2 − |F (r̂)|2

r2
dV. (2.1)

In (2.1) E(r) and F (r̂) are respectively the electric �eld and the far-�eld with,
r = |r|, r̂ = r/r, and the integration is over an in�nite sphere. The magnetic stored
energy is similarly obtained by replacing the electric �eld with the magnetic �eld in
(2.1).

In (2.1), the stored energies are calculated by subtracting the far-�eld energy
density from the electric energy density. It has been shown in [11, 28] that the
resulting expression (2.1) is the sum of two terms; one of them is coordinate depen-
dent and the other coordinate independent. The coordinate independent term may
yield the stored energy to have negative values [12], an indication that the model is
not exact, since the result is unphysical. The coordinate independent term is very
accurate for antennas smaller than ka ≤ 1 in dimension, where k is the wavenumber
and a is the radius of the smallest sphere enclosing the antenna [11, 17].

The Q-factor, the main parameter in quantifying the physical limits of antennas,
can also be used in optimization problems. For a lossless antenna the Q-factor is
usually de�ned as [16, 28];

Q =
2ωmax{We,Wm}

Pd

, (2.2)

where ω is the angular frequency, We is the stored electric energy, Wm stored mag-
netic energy, and Pd is the dissipated power. A useful approximation of the Q-factor
is the derivative of antenna input impedance, Zin, tuned to resonance [28],

QZ′
in

=
ω|Z ′in|
2Rin

, (2.3)

where the terms Z ′in and Rin are the derivative of the tuned input impedance with
respect to angular frequency, and the real part of the input impedance, respectively.
It is assumed that the antenna is tuned to resonance with a single circuit element,
which can be either capacitive or inductive (2.3).

The Q-factor can be calculated from the MoM impedance matrix and its fre-
quency derivative [15]. The impedance matrix is written as the sum of its real and
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imaginary parts, Z = R + jX. The di�erence of stored energies are derived as

Wm +We =
1

4
IHX′I, (2.4)

Wm −We =
1

4ω
IHXI, (2.5)

here X′ is the derivative of the imaginary part of the MoM impedance matrix with
respect to the radial frequency, I is a single column matrix representing surface
currents on the antenna structure, and IH is the Hermitian transpose of the surface
currents. By substituting one equation to the other, the stored energy expressions
are found as

Wm =
1

8
IH
(
∂X

∂ω
+

X

ω

)
I =

1

4ω
IHXmI, (2.6)

We =
1

8
IH
(
∂X

∂ω
− X

ω

)
I =

1

4ω
IHXeI, (2.7)

both (2.6) and (2.7) can simply be calculated from the MoM impedance matrix.
The tuned Q-factor can then be expressed as

Q =
ωIHX′I + |IHXI|

2IHRI
. (2.8)

The partial radiation intensity of an antenna with a unit polarization vector ê
and direction k̂, is proportional to the far-�eld F (k̂), and is expressed as

ê∗ · F (k̂) =
−jωη0

4π

∫
S

ê∗ · J(r)ejkk̂·r dS, (2.9)

where η0 is impedance of free space and k is the wavenumber. The partial gain is
de�ned as

G(k̂, ê) =
2π

η0

|ê∗ · F (k̂)|2

Pd

, (2.10)

the G/Q ratio is determined from (2.2) and (2.10)

G(k̂, ê)

Q
=

π|ê∗ · F (k̂)|2

ωη0 max{We,Wm}
. (2.11)

3 Antennas Above Ground Planes

Assuming an in�nite perfect electric conductor (PEC) plane in the xy-plane Fig. 1,
the current density can be decomposed into horizontal and vertical components.
The current density is expressed as J(r) = Jv(r)+Jh(r) above the PEC plane and
its image current is written as [18]

J im(r) = Jv(ri)− Jh(ri) = ẑẑ · J(ri)− [J(ri)− ẑẑ · J(ri)] , (3.1)
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J

J im

PEC

Figure 1: The image current density J im of an arbitrarily placed current density J

`y
`x

d
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x y

z

1

Figure 2: The reference patch geometry of dimensions `x, `y = 0.77`x with a height
of d above an in�nite PEC ground plane.

where r = xx̂ + yŷ + zẑ and ri = xx̂ + yŷ − zẑ are the positions of the current
density and its image respectively. The dyadic Green's function for solving this
problem can be written as [18]

G (r1, r2) = [G(r1, r2)−G(r1, r2i)] (x̂x̂+ ŷŷ)

+ [G(r1, r2) +G(r1, r2i)] ẑẑ = G‖ + G⊥ (3.2)

here r2 is the source position, r1 is the observation point, G‖ is the parallel Green's
dyadic, G⊥ is the orthogonal Green's dyadic, and G is the free-space Green's
function. For horizontal currents (x̂ or ŷ directed) the source current and image
current are subtracted, while for vertical currents (ẑ directed) the source and image
currents are added.

An in-house MoM electric �eld integral equation (EFIE) implementation with
Galerkin test functions has been used to compute the stored energies. The MoM
impendence matrix elements for antennas above ground plane can be written by
substituting (3.2) to the free-space Green's function

Zmn = jkη0

∫
S

∫
S

[
ψm(r1) ·ψn(r2)

− 1

k2
(∇1 ·ψm(r1)∇2 ·ψn(r2)

]
G̃ (r1, r2) dS1 dS2, (3.3)
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here Zmn denotes the elements of the MoM impedance matrix, ψm and ψn are the
expansion of source and test basis functions that are obtained by expanding the
currents in basis functions, J(r) =

∑N
n=1 Inψn(r). The G̃ Green's function is the

parallel Green's dyadic or the orthogonal Green's dyadic, or their sums depending
on the direction of the basis function.

The stored energy expressions (2.6), (2.7) are then used to optimize the antenna
G/Q quotient. Formulating the physical bounds for the maximal G/Q quotient
results in a convex optimization problem. The physical bounds are computed using
convex optimization [3], where the G/Q quotient is optimized by �nding the best
arrangement of surface currents over the antenna geometry. This approach allows the
optimization of the antenna bandwidth for di�erent polarizations and/or radiation
patterns. The convex optimization problem can be written as [12]

minimize max{IHXeI, I
HXmI}

subject to Re{FI} = 1
(3.4)

the F is a matrix which speci�es the radiation polarization and direction (2.9). The
convex optimization problem (3.4) can be readily solved using the Matlab toolbox
CVX [9].

4 Numerical Examples

The physical bounds for a reference metallic rectangular geometry (Fig. 2) are cal-
culated using the convex optimization formulation (3.4). The geometry has a di-
mension of `y = 0.77`x. It is placed above an in�nite PEC ground plane and the
bounds are computed for three di�erent patch heights d = {0.01, 0.05, 0.1}`x ra-
diating in the k̂ = ẑ direction, with either x̂, ŷ polarization. It should be noted
that computation of the physical bounds do not require a feed point. The physical
bounds for the patch in Fig. 2 are illustrated in Fig. 3 and Fig. 4 with respect to
`x/λ, the patch length normalized to the wavelength. As expected, the G/Q bound
and hence the patch bandwidth deteriorates rapidly as the proximity to the ground
plane increases.

The physical bounds of the reference rectangular region are also compared with
di�erent patch antennas with identical maximum dimensions, for a height of d =
0.05`x. The patch antennas are simulated in FEKO and matched to 50Ω. The
Q-factors are computed with (2.3). The comparison of the physical bounds and
antenna Q-factor is illustrated in Fig. 5. The simulated patch antennas match the
physical bounds and demonstrate that the bound for a single rectangular patch
cannot be exceeded using special geometries or con�gurations.

The simulated antennas include: a rectangular patch antenna, a slot loaded patch
antenna, a H-shaped antenna. From these the rectangular patch and the slot loaded
patch are fed in both x̂ and ŷ polarizations. The feed points for the patch antenna
are 0.18`x for x̂ and 0.25`x for ŷ polarization from the center of the antenna. The
slot size of the slot loaded antenna is (0.2×0.2)`x and the feed points are located at
0.1`x for x̂ and 0.2`x for ŷ polarization from the center. The H-shaped antenna feed
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Figure 3: Physical bounds G/Q for a patch above a PEC ground plane for di�erent
patch heights d = {0.01, 0.05, 0.1}`x.
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Figure 4: The resulting Q-factor from the physical bounds Fig. 3 for a patch above
a PEC ground plane for di�erent patch heights d = {0.01, 0.05, 0.1}`x.

point is located at 0.06`x from the center of the antenna. All of the antennas are
matched to 50Ω and their Q-factor is calculated using (2.3) at the match frequency.
The H-shaped antenna and slot antennas resonate at lower frequencies than the
patch antenna as the e�ective length is increased by extending the current path in
both antenna types.

5 Conclusion

The paper discusses the estimation of the physical bounds of antennas above a PEC
ground plane, based on the classical image theory and the use of Vandenbosch`s
expressions for stored energy. The proposed method calculates the Q-factor for
antennas of any geometry and radiation polarization. Numerical results performed
for a metallic rectangular region match well with the simulation results using FEKO.
Further work should include multi-layered dielectric patches.
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Figure 5: Comparison of the Q-factor from the physical bound on G/Q for the patch
geometry in Fig. 2 with d = 0.05`x for six patch antennas.
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