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JOINT BAYESIAN POSITIONING AND MULTIPATHMITIGATION IN GNSS

Bernhard Krach, Michael Lentmaier, and Patrick Robertson

German Aerospace Center DLR
Institute of Communications and Navigation
Oberpfaffenhofen, 82234 Wessling, Germany

ABSTRACT
A sequential Bayesian estimation algorithm for joint posi-
tioning and multipath mitigation within satellite navigation
receivers is presented. The underlying process model is es-
pecially designed for dynamic user scenarios and dynamic
channel conditions. To demonstrate its capabilities simula-
tion results are presented.

Index Terms— Navigation, Synchronization, Satellite nav-
igation systems, Multipath channels

1. INTRODUCTION

Within global navigation satellite systems (GNSS) the user
position is determined based upon the navigation signals re-
ceived from different satellites (here index by j = 1, . . . , M )
using the time-of-arrival (TOA) method [1]. Multipath, the
reception of additional signal replica due to reflections caused
by the receiver environment, is a major source of positioning
errors in GNSS, as it introduces a bias into the time delay
estimate of the delay lock loop (DLL) of a conventional nav-
igation receiver. Conventional approaches try to mitigate the
effect of multipath for each received satellite separately per
channel, either by modification of the traditional DLL detec-
tor slope [1] or by explicit estimation of the multipath chan-
nel parameters [2]. Other approaches exploit the advanta-
geous properties of the position domain likelihood [3]. How-
ever, none of these make explicit use of the user’s and chan-
nel’s temporal or spatial dynamics. To address this draw-
back we suggest a joint positioning and multipath estimation
approach based on Bayesian filtering, the optimal and well-
known framework to address dynamic state estimation prob-
lems.

2. SIGNAL MODEL

Assume that the complex valued baseband-equivalent received
signal for the receiver processing channel associated to satel-
lite j is equal to

zj(t)=

Nm∑
i=1

ei,j(t)·ai,j(t)·[cj(t)∗g(t− τi,j(t))] + nj(t), (1)

where cj(t) is a delta-train code sequence that is modulated
on a pulse g(t), Nm is the total number of paths reaching the
receiver, ei,j(t) is a binary function that controls the activity
of the i′th path and ai,j(t) and τi,j(t) are their individual com-
plex amplitudes and time delays, respectively. The signal is
disturbed by additive white Gaussian noise nj(t). Grouping
blocks of L samples at times (m+kL)Ts,m = 0, . . . , L−1,
together into vectors zj,k, k = 0, 1, . . . , whilst assuming the
parameter functions ei,j(t), ai,j(t) and τi,j(t) to be constant
within the corresponding time interval and equal to ei,j,k,
ai,j,k and τi,j,k, the signal for block k can be rewritten as

zj,k = CjG(τ j,k)Ej,kaj,k︸ ︷︷ ︸
sj,k

+nj,k . (2)

In the compact form the samples of the delayed pulses g(τi,j,k)
are stacked together as columns of the matrix G(τ j,k) =
[g(τ1,j,k), . . . ,g(τNm,j,k)], Cj is a matrix representing the
convolution with the code, and the delays and amplitudes
are collected in the vectors τ j,k = [τ1,j,k, . . . , τNm,j,k]T and
ak = [a1,j,k, . . . , aNm,j,k]T , respectively. For concise no-
tation we use Ej,k = diag [ej,k] whilst the elements of the
vector ej,k = [e1,j,k, . . . , eNm,j,k]T fulfill ei,j,k ∈ [0, 1]. The
term sj,k denotes the signal hypothesis and is completely de-
termined by the channel parameters τ j,k, aj,k and ej,k. Using
(2) we can write the associated channel likelihood function as

p(zj,k|sj,k) =
1

(2π)Lσ2L
j

· exp

[
−
|zj,k − sj,k|

2

2σ2
j

]
. (3)

2.1. Optimization

To reduce the number of signal parameters to be estimated we
optimize (3) for a given set of τ j,k and ej,k with respect to
the complex amplitudes aj,k, which can be achieved through
a closed form solution. Using

Sj,k = CjG(τ j,k)Ej,k (4)

and obtaining S+
j,k by removing zero columns from Sj,k we

compute the corresponding ML amplitude values of the active
paths:

aML
j,k =

(
S+H

j,k S+
j,k

)
−1

S+H
j,k zj,k . (5)
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When evaluating (3) we use

sj,k = Sj,kâj,k , (6)

where the elements of the vector âj,k that are indicated to
have an active path are set equal to the corresponding ele-
ments of aML

j,k .

2.2. Parameter Transformation

The signal paramters τ1,j,k associated to different ranging sour-
ces j are mutually dependent because of the common receiver
position and clock offset. To exploit this fact we replace the
line-of-sight delays by their navigation parameter equivalents
using the TOA equation [1]

τ1,j,k =
∣∣pt

j,k − pr
k

∣∣ c−1 + τ r
k + εj,k (7)

with the known position of the transmitting satellite pt
j,k , the

receiver position pr
k, the receiver clock bias τ r

k and the speed
of light c. The error term εj,k includes atmospheric propaga-
tion errors and transmitter clock offsets and is assumed to be
known.

3. PROCESS AND SYSTEMMODEL

The purpose of the process model is to characterize the tem-
poral evolution of the parameters introduced in Section 2 in a
probabilistic fashion.

3.1. User Model

The temporal evolution of the receiver position used in (7) can
be characterized by a physical movement model of the user or
vehicle that carries the receiver. Here we use

pr
k = pr

k−1 + ṗr
k−1 · Ts + np (8)

ṗr
k = ṗr

k−1 + nṗ (9)

with ṗr
k being the temporal derivative of pr

k, and np, nṗ being
vectors of element-wise uncorrelated zero-mean white Gaus-
sian noise, whose elements have a given variance of σ2

x, σ2
y ,

σ2
z and σ2

ẋ, σ2
ẏ , σ2

ż , respectively.

3.2. Clock Model

The clock model is used to characterize the local receiver
clock offset τ r

k and its drift τ̇ r
k . We use this simple model:

τ r
k = τ r

k−1 + τ̇ r
k−1 · Ts + nτ , (10)

τ̇ r
k = τ̇ r

k−1 + nτ̇ . (11)

The noise terms nτ and nτ̇ are realizations of a zero-mean
white Gaussian noise process of variance σ2

τ and σ2
τ̇ , respec-

tively.

3.3. Multipath Channel Model

The multipath channel is determined by the parameters ei,j,k

and τi,j,k with i > 0. According to [4] their temporal evolu-
tion is modeled by the following statistical processes:

3.3.1. Multipath Activity

According to (2) each path is either ”on” or ”off”, as defined
by channel parameter ei,j,k ∈ {1 ≡ ”on”, 0 ≡ ”off”}, where
ei,j,k is assumed to follow a simple two-state Markov process
with a-symmetric crossover and same-state probabilities:

p(ei,j,k = 0|ei,j,k−1 = 1) = ponoff , (12)
p(ei,j,k = 1|ei,j,k−1 = 0) = poffon . (13)

3.3.2. Multipath Delay

The associated delays of the multipath replica are character-
ized by

τ
mp
k = τ

mp
k−1 + τ̇

mp
k−1 · Ts + nmp , (14)

τ̇
mp
k = τ̇

mp
k−1 + nṁp , (15)

where for concise notation we have used τ
mp
k =̂{τmp

j,k , j =

1, . . . , M} with τ
mp
j,k = [τ2,j,k, . . . , τNm,j,k]T . M is the total

number of received satellites. The temporal derivative of τmp
k

is denoted by τ̇
mp
k and nmp, nṁp are vectors of element-wise

uncorrelated zero-mean white Gaussian noise of variance σ2
mp

and σ2
ṁp, respectively.

3.4. State Vector

Considering the signal model and the process model we col-
lect the remaining unknowns using ek=̂{ej,k, j = 1, . . . , M}
into the state vector

xk=̂ {pr
k, ṗr

k, τ r
k , τ̇ r

k , τmp
k , τ̇mp

k , ek} . (16)

3.5. Likelihood Factorization

So far we have introduced the channel likelihood (3) associ-
ated to the receiver processing channel j. Given (3) we are
now able to calculate the overall likelihood, namely p(zk|xk)
with zk=̂{zj,k, j = 1, . . . , M}. Assuming independent noise
realization for the channels this function can be written in
product form as

p(zk|xk) = C ·

M∏
j=1

p(zj,k|sj,k) (17)

with C being a normalizing constant. Please note that ac-
cording to (4), (5), (6) and (7) the signal hypothesis sj,k is
determined completely by xk and zj,k and it can be shown
that p(zj,k|sj,k) ≈ p(zj,k|xk).
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4. SEQUENTIAL ESTIMATION

To overcome the drawback of the conventional approaches
mentioned in Section 1 our objective here is to address the
introduced estimation problem with a sequential estimator,
which is able to exploit not only a single set of observations
zk to estimate the hidden parameters xk (via the likelihood
function), but is also able to exploit our knowledge about the
statistical dependencies between successive sets of position,
clock and multipath channel parameters, in order to improve
the performance of the estimator.

4.1. Optimal Solution

Given the models introduced in Section 2 and 3 the problem
of positioning and multipath mitigation now becomes one of
sequential estimation of a hidden Markov process: We want
to estimate the unknown position, clock and multipath chan-
nel parameters, namely the hidden state xk based on an evolv-
ing sequence of received noisy observations zk. To achieve
this we may apply the concept of sequential Bayesian estima-
tion. The reader is referred to [5] which gives a derivation of
the general framework for optimal estimation of temporally
evolving (Markovian) parameters by means of inference. We
have chosen similar notation. The entire history of observa-
tions (over the temporal index k) can be written as

Zk=̂{zq, q = 0, . . . , k} . (18)

As xk represents the characterization of the hidden state our
goal is to determine the posterior probability density func-
tion (PDF) of every possible state characterization given all
observations: p(xk|Zk).
The sequential estimation algorithm is recursive as it uses

the posterior PDF computed for time instance k − 1 to com-
pute the posterior PDF for instance k. For a given posterior
PDF at time instance k − 1, p(xk−1|Zk−1), the prior PDF
p(xk|Zk−1) is calculated in the so-called prediction step by
applying the Chapman-Kolmogorov equation:

p(xk|Zk−1) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1 , (19)

with p(xk|xk−1) being the state transition PDF of the Markov
process. In the update step the new posterior PDF for step k
is obtained by applying Bayes’ rule to p(xk|zk,Zk−1) yield-
ing the normalized product of the likelihood p(zk|xk) and the
prior PDF:

p(xk|Zk) = p(xk|zk,Zk−1)

=
p(zk|xk,Zk−1)p(xk|Zk−1)

p(zk|Zk−1)
(20)

=
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
.

The denominator of (20) does not depend on xk and so it can
be computed by integrating the numerator of (20) over the
entire range of xk (normalization).

4.2. Sequential Estimation using Particle Filters

The optimal estimation algorithm relies on evaluating the in-
tegral (19), which is usually a very difficult task, except for
certain additional restrictions imposed on the model and the
noise process. Hence very often a suboptimal realization of
a Bayesian estimator has to be chosen for implementation.
In the work presented here we use a Sequential Monte Carlo
(SMC) filter, in particular a Sampling Importance Resampling
Particle Filter SIR PF according to [5]. In this algorithm the
posterior density at step k is represented by a set of Np parti-
cles, where each particle with index μ has a state x

μ
k and has

a weight wμ
k . The key step in which the measurement for in-

stance k is incorporated, is in the calculation of the weightwμ
k

which for the SIR PF can be shown to be the likelihood func-
tion: p(zk|x

μ
k). The characterization of the process enters in

the algorithm when at each time instance k, the state of each
particle x

μ
k is drawn randomly from p(xk|x

μ
k−1).

5. PERFORMANCE EVALUATION

To demonstrate the capabilities of the proposed estimator sim-
ulations were carried out. The employed navigation signal
is a BPSK modulated GPS C/A code signal having a two-
sided bandwidth of 20 MHz. In the simulations it is assumed
that four satellites are received with a C/N0 of 50 dB-Hz re-
spectively. The geometry of the four transmitting satellites is
58, 65, 135 and 195 degrees for the azimuth values and 67,
27, 51 and 39 degrees for the elevation values. The SIR PF
runs with a observation period of 10 ms. As reference the
SIR PF results are shown together with results obtained based
upon conventional signal tracking and least squares (LS) po-
sition estimation [1] with a non-coherent delay lock loop with
0.15 chip early/late correlator spacing and 2 Hz tracking loop
bandwidth.

5.1. Static Multipath Channel

In Figure 1 the performance of the SIR PF is shown by means
of the root mean square error (RMSE) of the minimum mean
square error (MMSE) position estimates obtained from the
posterior as a function of the multipath delay for a static mul-
tipath on the signal associated to the satellite channel j = 1
at a signal to multipath ratio of 6dB. It can be observed that
the SIR PF performs significantly better than the conventional
DLL+LS approach even without the estimator modeling the
multipath (Nm = 1). Further improvement is possible, if the
multipath is taken into account by the SIR PF (Nm = 2).

5.2. Dynamic Multipath Channel

Furthermore we have carried out simulations under a dynamic
multipath scenario. Results for a randomly chosen dynamic
channel are depicted in Figure 2 for two kinds of SIR PFs,
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Fig. 1. Static multipath scenario on range 1: Performance of
DLL+LS approach, SIR PF with single path model and SIR
PF with path activity tracking as function of multipath delay.
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Fig. 2. Performance of DLL+LS approach, SIR PF with sin-
gle path model and SIR PF with path activity tracking.

one using Nm = 1 and the other using Nm = 2, both run-
ning with 20 000 particles, respectively. The SIR PF results
show the magnitude of the error of the MMSE position es-
timate. Figure 3 shows the multipath channel affecting the
fourth channel including the MMSE estimates of the path de-
lays as example. To consider two different types of echoes
the amplitude of the echoes in the simulation is either picked
randomly from 0.1 up to 0.2 times the amplitude of the direct
path (weak echo) or picked randomly from 0.6 up to 0.8 times
the amplitude of the direct path (strong echo). The DLL per-
formance suffers significantly from the multipath reception
(RMSE = 17.97 m) and the SIR PF using Nm = 1 (RMSE =
4.31 m) is able to outperform it, as it exploits the properties
of the position domain likelihood as well as the position and
clock parameter movement models. Further improvement is
achieved with the SIR PF with Nm = 2 (RMSE = 1.42 m).
Despite up to three echoes being active simultaneously and
the estimators restriction to two paths it can be observed that
the SIR PF tracks predominantly the strong multipath signals.

6. CONCLUSIONS

We have demonstrated how sequential Bayesian estimation
techniques can be applied to the joint positioning and mul-
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Fig. 3. Example of multipath channel on range 4 with weak
(dash-dotted) and strong (bold) echoes. Estimated echo tracks
(grey) shown if p(e2,4,k|Zk) > 0.8.

tipath mitigation problem in a navigation receiver. The pro-
posed approach is characterized by a particle filter realization
of the prediction and update recursion. The considered move-
ment model has been adapted to dynamic user and multipath
channel scenarios and incorporates the number of echoes as a
time varying hidden channel state variable that is tracked to-
gether with the position and clock parameters in a probabilis-
tic fashion. A promising advantage compared to existing ML
estimation approaches is that the posterior PDF at the output
of the estimator represents reliability information about the
desired parameters and preserves the ambiguities and mul-
tiple modes that may occur within the likelihood function.
Simulation results for a GPS-like positioning scenario show
that the proposed sequential estimator can achieve significant
improvements compared to the conventional tracking and po-
sitioning approach.
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