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Abstract

We consider model order reduction of positive lin-
ear systems and show how a symmetry characterization
can be used in order to preserve positivity in balanced
truncation. The reduced model has the additional fea-
ture of being symmetric.

1. INTRODUCTION

Mathematical modeling of biological, chemical
and physical systems often leads to complex high-
dimensional models, which are hard to analyze and sim-
ulate. Approximating high-order models by ones of re-
duced order is the central goal of model order reduction
in control and has received considerable attention e.g.
in [7], [14], [19], [20].
Here we consider linear time-invariant systems

G :

{
ẋ(t) = Ax(t)+Bu(t),
y(t) =Cx(t)+Du(t),

(1)

with state vector x ∈ Rn, input u ∈ Rm and output
y ∈ Rp, for small m, p and large dimension n. Our goal
is to approximate (1) by a system of the same structure
with the same m and p, but with smaller order r < n. For
this purpose different methods have been developed, the
most popular of which are based on linear subspace pro-
jection, such as balanced truncation [14] or Krylov sub-
space methods [1], [7].
In practice, one often deals with so called (internally)
positive systems ([4]) whose output and state variables
are nonnegative, whenever the input and initial states
are confined to be nonnegative. Such systems occur
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e.g. within the discretization of partial differential equa-
tions [18], or transport models or compartmental sys-
tems [12]. It is desirable that the reduced system also
is positive. Unfortunately, positive systems are defined
on cones instead of linear subspaces [2], [4], [15] and
therefore methods based on linear subspace projection
typically do not preserve positivity. As a consequence,
new methods have been developed in [5], [10], [17],
however with rather conservative results regarding the
H∞-error and the computational effort.

In this paper we present several new results related
to positivity preserving model order reduction. On the
one hand, we show that balanced truncation to order 1
always gives a positive approximation. On the other
hand, for single-input single-output (SISO) systems, we
derive a symmetry condition which allows the compu-
tation of a positive realization. Since any balanced re-
alization of a SISO-system can be shown to be sign-
symmetric with respect to the entries in A, B and C
(cf. [14] and [6]), we can describe a procedure to com-
pute a positive reduced order model of a SISO-system,
by just comparing signs in the sign-symmetric realiza-
tion. In the worst case, this procedure only allows for
the scalar approximation mentioned above, but in prac-
tical examples, it yields positive approximations also of
higher order with an acceptable error bound. These ap-
proximations have the additional property of being sym-
metric, which is desirable for instance, in case of linear
networks with reaction-diffusion structure [8].

2. Preliminaries

Throughout this paper we use the following nota-
tion for real matrices and vectors X = (xi j). We say that
X is positive, X ≫ 0, if all its entries are positive (xi j > 0
for all i, j). It is called nonnegative, X = 0, if all entries
are nonnegative (xi j ≥ 0 for all i, j). By |X |= (|xi j|)= 0



we denote the entrywise absolute value of X .
A square matrix X is reducible, if there exists a per-

mutation matrix P = [P1,P2] so that PT
2 XP1 = 0. Other-

wise, it is irreducible (compare [3]). By σ(X) we de-
note the spectrum of X . If X is square and symmetric,
then we write X > 0, or X ≥ 0 if X is positive definite,
or nonnegative definite, i.e. σ(X)⊂ [0,∞[.

We also use these notations to describe the relation
between two arbitrary elements, e.g. A ≥ B is defined
by A−B ≥ 0. A real vector valued function u(t) ∈ Rn

is called nonnegative if and only if u(t)= 0 for all t.

Theorem 1 (Perron-Frobenius [12], [13]). If A = 0 is
irreducible, then there exist a real λ0 > 0 and a vector
x0 ≫ 0 such that

i. Ax0 = λ0x0.

ii. λ0 ≥ |λ |, ∀λ ∈ σ(A).

iii. The algebraic multiplicity of λ0 is one.

If A = 0 is reducible, then there exists a real λ0 ≥ 0 and
a vector x0 ≥ 0 such that

i. Ax0 = λ0x0.

ii. λ0 ≥ |λ |, ∀λ ∈ σ(A).

Moreover, there exists a permutation matrix π , such that

πT Aπ =

B1 ∗ ∗
. . . ∗

Bk

 ,

where each Bi is irreducible or equal to zero.
In particular, if A is diagonalizable and λ0 has multi-
plicity m0, then A has m0 linearly independent nonneg-
ative eigenvectors.

Now, let us define positive systems (cf. [4]).

Definition 1 (External Positivity). A linear system
(A,B,C,D) as in (1) is called externally positive if and
only if its output, corresponding to a zero initial state,
is nonnegative for every nonnegative input.

Definition 2 (Internal Positivity). A linear system (1)
is called (internally) positive if and only if its state and
output are nonnegative for every nonnegative input and
every nonnegative initial state.

To characterize a continuous positive system, one
needs the notion of a Metzler matrix (or Z-matrix) [3].
A matrix A ∈ Rn×n is Metzler if there exists an α ∈ R
such that A + αIn = 0, where In is the n × n identity
matrix [12]. If A is Metzler then eAt = 0 for all t ≥ 0.

Theorem 2. A continuous linear system (1) is positive
if and only if A is Metzler and B,C,D = 0. [4]

3. Balanced Truncation to order 1

In the folowing we consider asymptotically stable
positive systems (A,B,C,D) as in (1). We assume the
reader to be familiar with the concept of standard bal-
anced truncation (see e.g. [1, 17]). In general, balanced
truncation does not return a positive system – unless the
system is reduced to the order r = 1.

Theorem 3 (Positive Order-1 Balanced Truncation). If
(A1,B1,C1,D1) is the reduced system of order 1, ob-
tained by standard balanced truncation of (A,B,C,D),
then it has a positive, asymptotically stable realization
(A1, |B1|, |C1|,D1) of order 1.

Proof. Let P and Q be the Gramians of (A,B,C,D), im-
plicitly given by

AP+PAT =−BBT , AT Q+QA =−CTC, (2)

or in their explicit form by

P =
∫ ∞

0
eAtBBT eAT tdt, Q =

∫ ∞

0
eAT tCTCeAtdt. (3)

Obviously, P and Q are nonnegative and thus PQ,
too. Balancing the system via a state-space transfor-
mation x = T ξ yields T−1PQT = diag

(
Σ2,0

)
, where

Σ = diag
(
σ1Ik1 , . . . ,σNIkN

)
, containing the Hankel sin-

gular values σ1 > · · · > σN , with corresponding multi-
plicities k1, . . . ,kN (see [22])
Hence, the columns of T are eigenvectors of PQ
and by Theorem 1 there exists a nonnegative right-
eigenvector v1 to the largest eigenvalue σ1, i.e. PQv1 =
σ1v1 with T =

(
v1, . . . ,vn

)
. Analogously, there is a non-

negative left-eigenvector w1 with T−1 =
(
w1, . . . ,wn

)T .
If k1 = 1, the asymptotic stability of the reduced sys-
tem of order 1 leads to A1 = wT

1 Av1 < 0, B1 = wT
1 B = 0,

C1 =Cv1 = 0, D1 = D = 0.
If k1 > 1, it could happen that A1 = 0. But since the re-
duced system of order k1 (belonging to all σ1) is asymp-
totically stable, there must exist at least one asymptot-
ically stable first order approximation. By Theorem 1
we conclude the reducibility of PQ and the positivity
of each first order approximation. In both cases The-
orem 2 concludes the proof. Balanced truncation can
also be performed by using −v1 and −w1. In this case
we substitute B1 and C1 by their elementwise absolute
values.

In general, Theorem 3 does not transfer to singu-
lar perturbation balanced truncation (cf. [17]). Further,
Theorem 3 gives a necessary condition on the positiv-
ity, independent of its realization. By numerical exper-
iments, we can observe, that this is a strong condition.
Many of the non-positive systems fail at this point.



4. Positive Realization Problem

From the proof of Theorem 3 we can deduce, that
even in case of an approximation to order 1, balanced
truncation does not necessarily return a positive realiza-
tion. However, it is straightforward to see, that every
first order externally positive system has a positive re-
alization of the same dimension. The same is true for
second order SISO-systems (see [15]). But higher-order
externally positive systems do not necessarily admit an
internally positive realization of the same dimension –
even if they possess only real poles (see [15] again).
Knowing, that balanced truncation always results in a
minimal system, the positive realization problem and its
connection to balanced realizations becomes the major
obstacle beside the actual positivity preservation.
We call a linear system quasi-symmetric if A = AT and
C = kBT for some k > 0. If k = 1 the system is said to
be symmetric (see [11]).

Theorem 4 (Positivity of Symmetric Systems). Every
quasi-symmetric SISO system possesses a symmetric
positive minimal realization, which can be computed by
Arnoldi’s (or Lanczos’) algorithm.

Proof. Let (A,B,C,D) be a quasi-symmetric system
with Gramians P and Q. Then from (3) it follows
that Q = k2P. Diagonalization of kP gives kP = T T ΣT
and PQ = k2P2 = T T Σ2T = T̃−1PQT̃ , with T̃ = 1√

k
T .

Obviously, T̃ is a balancing transformation matrix and
the balanced system is given by (T−1AT̃ , T̃−1B,CT̃ ) =
(T T AT,

√
k(BT )T ,

√
kBT ). Thus, it is always possi-

ble to find a symmetric minimal realization of a quasi-
symmetric system. Arnoldi’s algorithm [1], [21] yields
a unitary transformation matrix V =

(
B

∥B∥2
,∗
)

, such

that V TV = I and V T AV is upper Hessenberg with
positive elements on its lower diagonal. If A = AT

and C = BT , this means that V T AV is Metzler, CV =(
∥B∥2,0, . . . ,0

)
= 0 and V T B = (CV )T ≥ 0.

Positivity now follows from Theorem 2.

5. Symmetric Balanced Truncation

If balanced truncation of a SISO system results in a
symmetric reduced model, then (by Theorem 4) we are
able to compute its positive realization. To this end we
recall the following important result of balanced SISO-
systems (see also [6],[14]).

Theorem 5. Let G(s) be the transfer function of an ar-
bitrary SISO-system. Then there exists a balanced real-
ization (A,B,C,D) of G(s), such that (A,B,C,D) is sign
symmetric, i.e. |A|= |AT | and |B|= |CT |.

Proof. Let (A,B,C,D) have simple Hankel singular val-
ues {σ1, . . . ,σn}. By definition of a balanced system, its
Lyapunov equations can be written as

AΣ+ΣAT =−BBT ⇔ ai jσ j +σia ji =−bib j,

AT Σ+ΣA =−CTC ⇔ ai jσi +σ ja ji =−cic j, (4)

for i, j = 1, . . . ,n and Σ := diag(σ1, . . . ,σn). In particu-
lar it holds for i = j :

2aiiσi =−b2
i =−c2

i ⇒ bi =±ci. (5)

If i ̸= j we can deduce from (4) and (5)(
σ j σi
σi σ j

)(
ai j
a ji

)
=

(
bib j
cic j

)
=

(
bib j
±bib j

)
.

Solving for
(
ai j a ji

)T yields(
ai j
a ji

)
=

bib j

σ2
j −σ2

i

(
σ j ∓σi

±(σ j ∓σi)

)
and hence ai j =±a ji.
In case of multiple Hankel singular values we can as-
sume w.l.o.g. Σ = diag(σ1Ik1 ,σ2, . . . ,σn) for k1 > 1. By

partitioning A =

(
A1 ∗
∗ ∗

)
and B =

(
B1
∗

)
correspond-

ingly to σ1Ik1 , we can write σ1(A1 +AT
1 ) = B1BT

1 . Di-
agonalizing B1BT

1 =UT diag
(
λ ,0
)

U with λ > 0 gives

σ1(UA1UT +UAT
1 UT ) =UB1BT

1 UT = diag
(
λ ,0
)

and it follows for Ã := UA1UT , that ãi j = −ã ji. By
T := diag(U, I) we define a balanced sign symmetric
realization (Ã, B̃,C̃, D̃) := (TAT T ,T B,CT T ,D).

Note that bib j = −cic j if and only if ai j = −a ji.
Hence, balanced truncation returns an k-th order sym-
metric approximation as long as ci = bi for all i =
1, . . . ,k. From Theorem 3 we know, that k ≥ 1.
Theorems 3–5 provide the basis of the following Sym-
metric Balanced Truncation Algorithm (SBT).

Algorithm 1 (Symmetric Balanced Truncation Algo-
rithm). Let G be a given linear system as in (1), then:

i. Compute a balanced realization (Ab,Bb,Cb,Db).

ii. Compare the entries of Bb and Cb in order to iden-
tify the smallest k, where ck ̸= bk.

iii. Perform the truncation of (Ab,Bb,Cb) to obtain a
reduced symmetric system Gr of the order r < k.

iv. Obtain a positive realization of Gr with the help of
Lanczos Algorithm.



Due to the symmetry constraint the reduced models
possess only real eigenvalues. Thus, we can expect to
approximate a system well, only if its dominating poles
are real. Such systems often occur in the context of
sparse large-scale systems, i.e. n≫ 1000. For such high
dimensions balanced truncation may not be applicable
and therefore a pre-approximation is required. In [7] it
is shown empirically, that the Iterative Rational Krylov
Algorithm (IRKA) gives comparable good results as
balanced truncation. The same can be said about the
size of the symmetric part after balancing a reduced
model, which is obtained by IRKA. This makes IRKA
an advisable pre-approximator for our method.

The applicability to large-scale systems and the
general independence of a specific state-space repre-
sentation can be considered the main advantages of
SBT. This method often is preferable to those presented
in [5], [10], [17], for the following reasons.
The methods in [5] and [10] have the common goal of
satisfying the Bounded Real Lemma [22] for the error-
system, i.e. between the original and the reduce model.
Both are using an iterative linearization approach and
consequently do not have a convergence guarantee.
The linear matrix inequalities (LMIs), which need to be
solved, are usually very expensive to solve (cf. [16]).
The method in [17] is based on LMIs, consisting
only of 2n variables. In the following we refer to this
method as Generalized Balanced Truncation (GBT).
It generalizes the idea of balanced truncation by using
diagonal solutions P̃ ≥ 0 and Q̃ ≥ 0 of the LMIs

AP̃+ P̃AT ≤−BBT , AT Q̃+ Q̃A ≤−CTC . (6)

Such solutions exist, since A is Metzler (see [3]). Bal-
anced truncation based on the generalized Gramians P̃
and Q̃ preserves the error formula [20], but the bound is
more conservative, as the following proposition shows.

Proposition 1. Let (A,B,C,D) be a minimal system,
λ1 ≥ ·· · ≥ λn be the eigenvalues of PQ given by (2),
and λ̃1 ≥ ·· · ≥ λ̃n be the eigenvalues of P̃Q̃ as defined
in (2). Then λi ≤ λ̃i for all i = 1, . . . ,n.

Proof. By subtracting equations (2) from the inequali-
ties (6) it follows by the stability of the system [22], that
P̃−P ≥ 0, or equivalently that P̃ ≥ P > 0. In the same
way we receive Q̃ ≥ Q > 0. It holds, that

σ(PQ) = σ(P− 1
2 (PQ)P

1
2 ) = σ(RQR)

where R = P
1
2 . Analogously, σ(P̃Q̃) = σ(R̃Q̃R̃) with

R̃ ≥ R > 0. Since

R̃Q̃R̃−RQR = R̃Q̃R̃− R̃QR̃+ R̃QR̃−RQR =

= R(Q̃−Q)R+Q− 1
2

(
(Q

1
2 R̃Q

1
2 )2 − (Q

1
2 RQ

1
2 )2
)

Q− 1
2 ,

u

h1

fo,1

h2

fo,2

h3

fo,3

hn-1

fo,n-1

hn

fo,n

f12

f13

f23

fn-1,n

R1

R2

R3 Rn

Rn-1

Figure 1. System of n water reservoirs.

it follows by Q̃ ≥ Q, as well as Q
1
2 R̃Q

1
2 ≥ Q

1
2 RQ

1
2 , that

R̃Q̃R̃ ≥ RQR. The inequalities for the eigenvalues now
follow from the Courant-Fischer theorem [9].

From a geometric point of view this is clear, since
balancing with respect to the generalized Gramians
does not project the system onto the controllable and
observable subspace. In particular, standard balanced
truncation with diagonal Gramians is essentially a per-
mutation of the states followed by truncation.
In contrast, SBT inherits the good H∞-error behavior of
balanced truncation. For that reason even a small sym-
metric part often yields good results. In section 6 we
compare SBT and GBT numerically. Since GBT can
also be used for singular perturbation balanced trunca-
tion, we always present the error of the better one.

6. Examples

We discuss some properties of SBT and compare it
with the method in [17].

6.1. Water Reservoirs

We start with the same water reservoir example as
in [17]. As schematically shown in Fig. 1, we consider
a system of n connected water reservoirs. All reservoirs
R1, . . . ,Rn are assumed to be located on the same level.
Base area and fill level of reservoir Ri are denoted by ai
and hi, respectively. Further, Ri and R j are connected
by a pipe of diameter di j = d ji ≥ 0, resulting in a flow
fi j from Ri to R j, where fi j is assumed to be linear de-
pendent on the pressure difference at both ends. The
external inflow to reservoir R1 serves as the single input
of the system. The output is the sum of all outflows fo,i
of Ri through a pipe with diameter do,i. According to
Pascal’s law the system flows are described by

fi j(t) = d2
i j · k · (hi(t)−h j(t)) ,

fo,i(t) = d2
o,i · k · (hi(t)−h j(t)) ,



where k is a constant representing gravity as well as vis-
cosity and density of the medium. Thus, the fill level hi
of Ri is subject to the differential equation

ḣi =
k
ai

(
−d2

o,ihi(t)+
n

∑
j=1

d2
i j(h j(t)−hi(t))

)
+

1
ai

δ1iu(t)

where δ1i = 1 if i = 1 and zero otherwise. Writing these
equations as a linear state-space system results in a

SISO-system (A,B,C,D) given by B =
(

1
a1
,0, . . . ,0

)T
,

C = k
(
d2

o,1 · · · d2
o,n
)

and a symmetric A with entries

ai j :=
k
ai

{
−d2

o,i −∑n
m=1 d2

im, i = j
d2

i j i ̸= j,
with dii := 0.

In [17] the system is supposed to consist of two sub-
structures of five reservoirs each. In both substructures
each reservoir is connected to every other by a pipe
of diameter 1, i.e di j = 1 for i ̸= j and i, j = 1, . . . ,5
and i, j = 6, . . . ,10, respectively. The connection of
the substructures is established by a pipe of diameter
d1,10 = d10,1 = 0.2, between reservoir 1 and 10. For
simplicity, ai = 1 and k = 1. One can show that the
transfer function is just G(s) = 1

s+1 .
Applying SBT to this system yields an exact realization
of G. In contrast, since GBT does not return a minimal
realization, we get G̃(s) = 3.039

s+3.039 , with a relative H∞-
error of 0.5014.
Now we modify the system to get a minimal example
with unsymmetric A. First, set do,i = 0.01 · i to get min-
imality. Further assume, that the first substructure ad-
mits a flow from R1 to R j, but not vice versa, i.e. d j1 = 0
for j = 2, . . . , n

2 . For 50 water tanks per substructure,
SBT gives a symmetric model of order 2

A2 =

(
−0.1305 0.0914
0.0914 −0.2676

)
, B2 =

(
0.0457

0

)
,

C2 =
(
0.0457 0

)
, D2 = 0,

with error 0.0032. About the same error is achieved
by GBT only for reduction order 91. We conclude that
SBT performs fairly well even for systems with non-
symmetric A-matrix.

6.2. Heat Equation

Consider the 2-dimensional heat equation

Ṫ =△T =
∂ 2

∂x2 T +
∂ 2

∂y2 T (7)

on the unit square. The Dirichlet boundary conditions
on the four edges are interpreted as inputs. Using a fi-
nite difference discretization on a uniform grid of step

u3

T 11

T 21

T 31

T 12

T 22

T 32

T 13

T 23

T 33

y

x

h

u2

u1

u4

Figure 2. Discretized heat equation on unit
square.

size h = 1
N+1 sketched in Fig. 2 we get the relations

△Ti j ≈− 1
h2 (4Ti j −Ti+1, j −Ti, j+1 −Tj−1, j −Ti, j−1),

for the temperatures at the inner grid points. Let A de-
note the N2×N2 Poisson-matrix and B := [bi j]∈RN2×4,
where bi j = 0 except for the following cases:

bi1 := 1, for i = 1,2, . . . ,N

bi2 := 1, for i = N,2N, . . . ,N2

bi3 := 1, for i = N(N −1)+1,N(N −1)+2, . . . ,N2

bi4 := 1, for i = 1,N +1, . . . ,N(N −1)+1

This gives the discretized system

ẋ =
1
h2 Ax+

1
h2 Bu with u ∈ R4 and x ∈ RN2

. (8)

As the output we take the average temperature, i.e.

y =
1

N2 Cx, with C :=
(
1 · · · 1

)
∈ R1×N2

.

For small h the system will be very large. Starting
the comparison between SBT and GBT with a SISO-
system, i.e. u2 = u3 = u4 = 0 and N = 10, yields for
SBT a realization of order 15 without any error. In con-
trast, GBT gives a relative H∞-error of 3.9087 ·10−5 by
just reducing one state. Moreover, if GBT halves the
order it has nearly the same error as balanced trunca-
tion to order 1. For N = 50, we get a system of or-
der 2500, for which it takes GBT hours to calculate a
reduced model, due to the high complexity of conven-
tional LMI-solvers [16]. In case of a large-scale system
we apply IRKA to decrease the system to a order lower
than 1000, followed by the usual symmetry argument.
These computations consume less than half an hour and
return a 15-th order model. The Bode diagram of the
error system, as shown in Fig. 3, indicates that the re-
duction error is zero up to machine precision.
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Figure 3. Bode plot: Error system of the heat
equation with 2500 states (N = 50).

Applying balanced truncation to the full MISO-system
results in a reduced system (Ar,Br,Cr), with Ar = AT

r
and Cr = B1

r = · · · = B4
r , where B1

r , . . . ,B
4
r denote the

columns of Br. In case of N = 10 SBT returns as in
the SISO-case a reduced system of order 15 with zero
error. However, the error of reducing just one state by
GBT increases to 0.0070.

7. Conclusion

We have presented a positivity preserving model
reduction method for SISO-systems based on the
sign-symmetry of balanced SISO-systems. It always
yields at least some positive approximation since the
reduced model of order 1 is guaranteed to be positive.
Application of this idea to MIMO systems provides a
necessary condition for positivity, which is preferable
over a consideration of the impulse response [4].
Furthermore, the reduction method works inde-
pendently of a positive state-space realization.
Hence, large-scale systems can be treated by pre-
approximations with methods such as the Iterative
Rational Krylov algorithm [7]. Besides, the method
preserves and provides symmetry in the A-matrix.
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