
Methods and Tools for Robust Optimal Control of Batch Chromatographic Separation
Processes

Holmqvist, Anders; Andersson, Christian; Magnusson, Fredrik; Åkesson, Johan

Published in:
Processes

DOI:
10.3390/pr3030568

2015

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Holmqvist, A., Andersson, C., Magnusson, F., & Åkesson, J. (2015). Methods and Tools for Robust Optimal
Control of Batch Chromatographic Separation Processes. Processes, 3(3), 568-606. DOI: 10.3390/pr3030568

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.3390/pr3030568
http://portal.research.lu.se/portal/en/publications/methods-and-tools-for-robust-optimal-control-of-batch-chromatographic-separation-processes(32686b2a-f453-4dda-a3f1-1b95f275d4c5).html


Processes 2015, 3, 568-606; doi:10.3390/pr3030568
OPEN ACCESS

processes
ISSN 2227-9717

www.mdpi.com/journal/processes

Article

Methods and Tools for Robust Optimal Control of Batch
Chromatographic Separation Processes
Anders Holmqvist 1;*, Christian Andersson 2;3, Fredrik Magnusson 4 and Johan Åkesson 3

1 Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
2 Centre for Mathematical Sciences, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden;

E-Mail: christian.andersson@modelon.com
3 Modelon AB, Ideon Science Park, SE-223 70 Lund, Sweden; E-Mail: johan.akesson@modelon.com
4 Department of Automatic Control, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden;

E-Mail: fredrik.magnusson@control.lth.se

* Author to whom correspondence should be addressed; E-Mail: anders.holmqvist@chemeng.lth.se;
Tel.: +46-46-222-4925.

Academic Editor: Carl D. Laird

Received: 13 May 2015 / Accepted: 7 July 2015 / Published: 16 July 2015

Abstract: This contribution concerns the development of generic methods and tools
for robust optimal control of high-pressure liquid chromatographic separation processes.
The proposed methodology exploits a deterministic robust formulation, that employs a
linearization of the uncertainty set, based on Lyapunov differential equations to generate
optimal elution trajectories in the presence of uncertainty. Computational tractability is
obtained by casting the robust counterpart problem in the framework of bilevel optimal
control where the upper level concerns forward simulation of the Lyapunov differential
equation, and the nominal open-loop optimal control problem augmented with the robustified
target component purity inequality constraint margin is considered in the lower level.
The lower-level open-loop optimal control problem, constrained by spatially discretized
partial differential equations, is transcribed into a finite dimensional nonlinear program
using direct collocation, which is then solved by a primal-dual interior point method.
The advantages of the robustification strategy are highlighted through the solution of a
challenging ternary complex mixture separation problem for a hydrophobic interaction
chromatography system. The study shows that penalizing the changes in the zero-order
hold control gives optimal solutions with low sensitivity to uncertainty. A key result is that
the robustified general elution trajectories outperformed the conventional linear trajectories
both in terms of recovery yield and robustness.
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1. Introduction

Isolation of a high-purity target component from a multicomponent mixture is of significant
importance in the pharmaceutical and biochemical industries [1]. In the clinical or commercial-scale
manufacturing of human therapeutic proteins, high-pressure liquid chromatography (HPLC) is an
essential process operation to achieve the high purity requirements for biopharmaceutical drugs [2,3].
Due to inflexibility in the conventional regulatory paradigm, applying process operational changes to an
approved process design in the biopharmaceutical community has been historically prohibited without
filing for a new approval [1]. The United States Food and Drug Administration (US FDA) has published
a series of new guidelines to promote flexibility for innovation while appropriately managing variability
in the process performance attributes for continual improvement via process analytical technology
(PAT) and quality-by-design (QbD) principles [4,5]. QbD promotes improved process understanding
during process and product development and building quality in the design instead of testing for quality.
This can be achieved via correlative, causal, or mechanistic knowledge and at the highest level via first
principle models. Hence, PAT has been gaining a lot of momentum in the biopharmaceutical community
due to the potential for continuous real time quality assurance resulting in improved operational control
and compliance [6].

In the QbD approach, critical quality attributes (CQA) of pharmaceutical products are defined that
assure desired clinical performance, and then a manufacturing process is designed to consistently meet
these product attributes, thus assuring product quality [7]. Process characterization is conducted to
identify the impact of process parameters on the products CQA’s [8], which is then used to define a
process design space. A design space is defined as “the multidimensional combination and interaction
of input variables and process parameters that have been demonstrated to provide an assurance of
product quality” [9]. Acceptable ranges for process parameters and input variables are documented in the
regulatory filing, and working within these ranges is not deemed to be a change from normal operating
conditions. The expected benefit of the QbD approach is an increase in the assurance of product quality,
and in turn, the FDA will allow manufacturers greater flexibility to operate with lower regulatory burden,
enabling continuous process improvement, as well as greater robustness [10].

The current approach to process characterization within the QbD framework is concerned with
validating that the defined design space can cope with the process variability experienced during normal
operation [10]. In this context, the FDA guidance encourages the application of mechanistic models to
improve process understanding, based on fundamental knowledge of the underlying physico-chemical
phenomena correlating the nonlinear interdependence of process parameters and inputs to the
resulting value of the CQA’s. Model-based approaches to sensitivity and robustness analysis have
been successfully applied to a diversity of chromatographic separations, see e.g., Mota et al. [11],
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Degerman et al. [12], Westerberg et al. [13], Borg et al. [14] and the references cited therein.
The aforementioned robustness assessment investigations have exclusively been founded on stochastic
methodologies, in which inherent process parameters and inputs have been randomly generated from
a uniform or a truncated normal distribution, to determine the magnitude of variability of the CQA’s.
The result is a probability density distribution of the output, which can be used to determine the risk of
batch failure and the process capability as well as to identify inputs that can be used to design a control
strategy. In this context, the main objective of this study is to exploit recent advances in deterministic
robustness strategies in conjunction with open-loop optimal control.

1.1. Solvent Composition Trajectory Elution Strategies

Solvent composition trajectory elution is widely applied in both analytical and preparative
chromatography, and refers to a continuous change in the mobile phase during separation [15].
By this means, improved resolution of highly complex sample mixtures can be obtained in a much
shorter time than could be expected in isocratic elution conditions. Reproducible selectivity in
chromatographic separation of closely related product impurities requires optimized elution mode
and fractionation interval endpoints [16]. The current state-of-the-art methodology for optimization
of HPLC separations has been limited to linear [17,18], concave/convex [19] and step elution
trajectories [20]. A novel open-loop optimal control strategy for simultaneous optimization of general
elution trajectories and target component fractionating decisions was recently developed by Holmqvist
and Magnusson [21], Holmqvist et al. [22]. The present investigation is a direct continuation of these
studies and the overall objective is to extend the open-loop optimal control strategy with a robust
worst-case formulation and benchmark the robustness of general elution trajectories, with respect to
target component purity, with that of the conventional linear trajectories.

In the context of the QbD framework, this implies relating the impact of a critical process parameter
(CPP) to the difference between the quality requirement and the CQA at the nominal operating point,
i.e., assess the level of reduction in the robustness safety margin. A CPP is formally defined as “a process
parameter whose variability has an impact on a critical quality attribute and, therefore, should be
monitored or controlled to ensure the process produces the desired quality” [23]. A quantitative value of
the sensitivity of the CQA with respect to CPPs can be obtained by scaling the discrepancy between the
CQA value at the nominal operating point and the requirement by perturbation of the CPP values of 1:0
standard deviation in the direction that gives the worst-case value of the QCA [13]:

�
�
�
�
QCAnom � QCA� s

QCAnom � QCAreq

�
�
�
� :

The higher the value, the more likely the parameter is to cause batch failure. Thus, it is noteworthy that
the open-loop controlled system targeting the captured amount of the target component with respect to
the fractionating interval endpoints yields that the inequality constraint imposed on target component
purity is active, i.e., the resulting purity equals its lower requirement [16]. Consequently, there is no
inherent safety margin incorporated in the open-loop optimal control problem and to surmount this
shortcoming calls for the formulation of a robust counterpart problem [24].



Processes 2015, 3 571

1.2. PDE-Constrained Dynamic Optimization

In this study, the realistic multi-component system dynamics required for analysis were generated
by numerical solution of the reaction–dispersive model [25]. This model is governed by a set
of mass-balance partial differential equations (PDEs), with a modified Langmuir isotherm and
experimentally validated kinetics. In this regard, the advantages of this robust optimal control framework
are highlighted through the solution of a challenging ternary mixture separation problem, with human
insulin (insulin aspart, desB30 insulin and insulin methyl ester) and the intermediately eluting component
as the target, for a hydrophobic interaction chromatography (HIC) [26,27] system.

The proposed model-based methodology for robust optimal control implies formulating and solving
a large-scale dynamic optimization problem (DOP) constrained by PDEs [28]. Optimal design, optimal
control, and parameter estimation of systems governed by PDE give rise to a class of problems
known as PDE-constrained optimization [29,30]. The size and complexity of the discretized PDEs
often pose significant challenges for contemporary optimization methods. There exists two generic
direct methods to transform the infinite DOP into a finite dimensional nonlinear program (NLP);
sequential and simultaneous [31,32]. Optimization studies of HPLC separations carried out in the
literature have exclusively been using sequential methods, where the system dynamics constraint
is handled by embedded numerical integrators, and where the PDEs are approximated using the
method-of-lines [33,34] and Galerkin finite element or finite volume methods. Both gradient-based NLP
solvers (e.g., sequential quadratic programming and interior-point method) [35–37] and those based on
trajectory free heuristic approaches (e.g., generic algorithms and simulated annealing) [18,38,39] have
been used successfully. The proposed methodology in this paper is based on a developed simultaneous
method where both the control and state variables are fully discretized in the temporal domain using
orthogonal collocations on finite elements [31]. In order to reduce the size of the resulting NLP,
the PDE system was approximated using an adaptive, high order finite volume weighted essentially
non-oscillatory (WENO) scheme [40–42]. The NLP is subsequently solved using the primal-dual interior
point method IPOPT [43] and algorithmic differentiation (AD) techniques [44].

Jacobians are required by gradient-based NLP algorithms and simulation. Access to accurate
Jacobians often improves the performance and robustness of algorithms, and in addition, efficient
implementation of Jacobian computations can reduce the over-all execution time. In the context of
HPLC system modelling, Püttmann et al. [45] compared the accuracy of Jacobians, with respect to an
intrinsic model parameter, computed using first-order finite differences (FD) and AD. It was shown
in that study the AD approach outperformed the FD approach in terms of both accuracy and over-all
execution time for realistically sized chromatography models when computing forward sensitivities of
the DAE system, i.e., the linearization of the original system with respect to an intrinsic model parameter.
The AD approach in [45] is extended in this paper to include computations of Hessians required by the
NLP solver but also addresses the construction of metrics required in the robust counterpart formulation.

1.3. Nonlinear Robust Optimization of Uncertain Dynamic Systems

As outlined above, uncertainty propagation of CPPs through nonlinear model equations is reflected
in terms of QCAs (e.g., constraints and objectives). Methodologies developed to cope with the
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complexity of optimization problems under uncertainty can be categorized into stochastic programming,
probabilistic (chance-constraint) programming and fuzzy programming [46]. The stochastic
programming formulations assume that the probability distributions governing the uncertain parameters
are available or can be estimated from the existing data. Here, reliability requires feasibility for all
the outcomes of uncertain parameters, whereas chance-constrained programming requires feasibility of
solutions with at least some probability specified on constraints having uncertain parameters. The main
advantage of the chance-constrained programming technique is the emergence of a deterministic
equivalent problem [47]. In the deterministic formulations, the nature of the uncertainty is assumed
to be bounded to a prespecified set, and reliability requires that all constraints are satisfied in all possible
worst case situations. In any case, including more robustness gives rise to a lower performance, and
hence, robustness can be interpreted as an additional and conflicting objective [48].

In this study we concentrate on the case that the dynamic system governed by PDEs is affected by
a time variant input with uncertainties. To efficiently and accurately generate optimal elution trajectories
in the presence of uncertainty we consider a deterministic robust formulation, that
employs a linearization of the uncertainty set, proposed in the article series by Logist et al. [49], Houska
and Diehl [50], Houska et al. [51]. The main objective is to robustly regard inequality state
constraints. For this aim, the proposed methodology utilizes Lyapunov differential equations to compute
variance-covariance matrix functions and facilitates the tractable robust counterpart formulation for
optimal control problems.

1.4. Aim and Scope

External process disturbances are inevitably present and the robustness of the open-loop controlled
system with respect to CPP uncertainties, e.g., guaranteeing that QCA requirements are not violated,
is of the highest importance in biopharmaceutical process industry. It is, however, noteworthy that
there is a drastic increase in computational complexity while moving from the nominal problem to
its robust counterpart. The main contribution of this paper is therefore to establish a methodology
and a computationally efficient framework for robust optimal control yielding robust general elution
trajectories, with respect to target component purity, for batch chromatographic separation processes.
The study presented here had three main objectives:

i) To formulate a nominal open-loop optimal control problem and its robust counterpart, including
penalty on the difference on the zero-order hold control discretization, to find optimal control
trajectories that remain feasible for all perturbations from the uncertainty set.

ii) To develop a numerically efficient framework for simulation of a Lyapunov differential equation,
enabling the computation of the robustified inequality constraint margin in the counterpart problem.

iii) To assess the robustness of general elution trajectories, for both batch elution and
cyclic-steady-state operation, and to benchmark with that of the conventional liner trajectories.

1.5. Outline of the Paper

The remainder of this paper is structured as follows: Section 2 presents the HPLC separation system.
Section 3 outlines the process model and the spatial discretization scheme. Section 4 describes the
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open-loop and robust counterpart problem formulation. Section 5 outlines the methods and tools for
dynamic simulation and optimization. Section 6 presents the primary results, and Section 7 contains
concluding remarks and perspectives for future research.

2. Process Description

The HPLC separation system operated in batch mode is characterized by subsequent pulse injections
of the sample mixture and relies on pumps to pass a pressurized liquid solvent containing the sample
mixture through a column packed with a solid adsorbent material [52]. A simplified P&ID of a standard
HPLC system under consideration is illustrated in Figure 1. The system facilitates implementation of
zero-order hold elution trajectories, u, through control of the volume fraction of buffers with different
solvent strengths [53]. The resulting time-variant mobile phase modifier concentration, cmix;S, is obtained
in the mixing unit and enters the separation column with the system volumetric flow rate Q̇. Moreover,
the feed, with concentration cload;a and a 2 f A;B;Cg, is injected as a rectangular pulse with duration
Dtload via a multiport valve. The eluting concentration trajectory is analyzed with a UV detector
at the column outlet [54], and a fractionating valve separates the mixture into its components [36].
The fractionating interval manipulating variables [t 0;Dt ] govern the maximum recovery yield while still
fulfilling the constraint imposed on purity of the target component fraction [16]. The time-invariant
operating parameters [Q̇;cload;a ;Dtload] are summarized in Table 1 and the optimal control problem
optimization variables include the piecewise constant controls of the parameterized elution trajectory,
ui and 8i 2 [1::Nu], and [t 0;Dt ].

AS

(1)

Collection I

Collection II

Collection III

Waste

cmix;S

(5)

Feed
cload;a

(3)

(4)

t 0

Purge

FC

(2)
Dtload

ca P(t; t 0;Dt )

FC
(1 � u)Q̇

Buffer A

Buffer B

FC
uQ̇

Dt

Figure 1. Simplified P&ID of the HPLC system. Elementary system component description:
(1) buffer mixing unit, (2) high-pressure switching valve unit, (3) HPLC separation column,
(4) UV detector, and (5) fractionating valve.
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Table 1. HPLC system component design parameters and HIC column specifics.
The adsorption capacity and the self-association parameters listed are equal for all insulin
variants � 2 f A;B;Cg.

Parameter Description Value Unit
Q̇ volumetric flow rate 6:0 � 10� 5 m3 � s� 1

Dtload sample load duration 1:0 � 10� 2 s
Vmix buffer mixing unit volume 2:0 � 10� 7 m3

Lc column length 1:0 � 10� 1 m
Dc column diameter 1:0 � 10� 2 m

Dp particle diameter 3:5 � 10� 5 m
ec interstitial porosity of the column 3:26 � 10� 1 �

ep apparent particle porosity 7:54 � 10� 1 �

et total porosity of the column ec + ( 1 � ec)ep �

Dapp
a apparent dispersion coefficient (vintDp)Pe� 1 m2 � s� 1

vint interstitial velocity 4Q̇(D2
cpet) � 1 m � s� 1

kkin kinetic rate constant 3:0 � 10� 1 s� 1

Keq self-association equilibrium constant 7:56 �

n stoichiometric constant 4:82 � 101 �

qmax adsorption capacity 1:0 � 102 kg � m� 3

a Pe is assumed to be constant and equal to 0:50, i.e., molecular diffusion is neglected [55].

2.1. Control Signal Uncertainties

The control signal uncertainty is assumed to arise from off-set volumetric fractions in the buffer
mixing and initial off-set in the individual buffer concentrations. Robustness is often associated with
the ability for a feedback controller to compensate for disturbances and uncertainties. However,
chromatographic separations cannot easily be controlled by conventional control strategies due to their
complex dynamics with extremely long time delays, spatially distributed properties, and switchings [36].
For these reasons, the open-loop optimal control problem, which yields that the inequality constraint
imposed on target component purity is active, is extended with its robust counterpart to cope with
time-variant variability in u. It is noteworthy that u has a corresponding actuator system, i.e., the control
signal is in fact a set-point to the actuator system which includes a low-level controller. The limits for
the low-level controller is approximated by absolute and rate limits on the change in the zero-order
hold control, Du. It is expected that a bang-bang solution would not be robust in the presence of
time-variant control signal uncertainty, since even small input perturbations would highly influence the
eluting concentration trajectories, with degraded purity of the intermediate eluting target component
as a result. In order to cope with bang-bang elution trajectories, a quadratic cost on the difference of
the piecewise constant control flows, Du, is incorporated in the optimal control problem which will
influence the smoothness of u and consequently enhance the robustness, however, to the expense of the
recovery yield.
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3. Mathematical Modeling

The governing one-dimensional equations in the reaction-dispersive model [25] of the mobile
and stationary phase—Derived under the assumptions of infinitely fast diffusion into the particles
and rate-limiting adsorption kinetics—Defined in the spatial, z 2 [z0;z f ], and temporal, t 2 [t0; t f ],
domains are:

¶c�

¶t
= �

¶
¶z

�
c� vint � Dapp

¶c�

¶z

�
�

(1 � ec)
ec + ( 1 � ec)ep

¶q�

¶t
; (1)

¶q�

¶t
= kkin

 

H0;� c� ecSg�
�
1 + 2Keqc� ecSg�

�
"

1 � å
b2f A;B;Cg

qb

qmax

#n

� q�

!

; (2)

where c� and q� are the mobile and stationary phase concentration of component � 2 f A;B;C;Sg,
vint denotes the interstitial velocity of the fluid, Dapp the apparent dispersion coefficient, and ec and
ep the column and particle void fractions. In this study, the self-association isotherm [56] was used
to describe the hydrophobic interaction in Equation (2). Here, cS denotes the concentration of the
non-absorbing modifier (i.e., ¶qS=¶t : = 0), kkin the kinetic rate constant, H0;� the Henry’s constant,
g� the solvophobicity parameter, n the binding charge ratio, qmax the maximum concentration of
adsorbed components, and Keq the equilibrium constant. Equation (1) is complemented with Danckwerts
boundary conditions:

c� (t;z0)vint � Dapp
¶c�

¶z
(t;z0) =

8
<

:
cload;� vintP(t; t0;Dtload) if � 2 f A;B;Cg;

cmix;Svint if � = S;
(3)

¶c�

¶z
(t;z f ) = 0; (4)

where cload;� is the injected load concentration and P(t; t0;Dtload) 2 f 0;1g a rectangular function which
is 1 in the temporal horizon [t0; t0 + Dtload]. The dynamics of the modifier concentration in the upstream
mixing tank, cmix;S, is governed by:

dcmix;S

dt
=

1
t mix

�
u � cmix;S

�
; (5)

where u is the set-point elution trajectory and t mix the residence time. It is noteworthy that the control
u is the absolute modifier concentration and not the relative volumetric fraction of buffers with different
solvent strengths as previously outlined in Section 2.

The set of parameters associated with the adsorption’s dependency on mobile phase concentrations
and the properties of the solvent and the stationary phase was calibrated to lab-scale experimental data,
to reproduce the behavior in the studied system by means of the inverse method [57–59]. A detailed
description of the experimental design and the materials used is outlined in [60], and the least-square
estimates of the adsorption isotherm kinetics are listed in Table 2.
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Table 2. Kinetic parameters of the Langmuir self-association adsorption model Equation (2).
The feed composition, cload;� , is given in fractional weights for each insulin component and
the total feed concentration is 2:0 � 101 (moL � m� 3).

Component � H0;� (� )  � (m3 � kmoL� 1) cload;� (wt %)

Insulin aspart A 1:14 2:30 33:3
desB30 insulin B 1:51 2:39 33:3
Insulin methyl ester C 1:78 2:63 33:3

3.1. Spatial Discretization

The equations of the spatially distributed HPLC column model that describe the mobile and stationary
phase state dynamics (Equations (1) and (2)), constitute a system of non-linear PDEs. In this study, the
PDE system was approximated using the method-of-lines [33,34] and high-order finite volume WENO
scheme [40–42] on a uniform mesh where z j = jDz is the discretized spatial coordinate and j 2 [1::nv].
The main advantage of this scheme is its capability to achieve high-order formal accuracy in smooth
regions while maintaining stable, nonoscillatory, and sharp discontinuity transitions. In contrast to
other high-order spatial discretization schemes that make use of flux limiters [61], such as the MUSCL
scheme [62] and the TVD scheme [63], the WENO scheme does not require tuning of parameters
and more importantly the discretization scheme is twice continuously differentiable; a necessity when
employing Newton-based methods for solving NLPs. Although a high-order WENO scheme may use
several times more CPU time than the aforementioned schemes [64], which are usually second-order
accurate in the smooth part of the solution, it is still computationally advantageous for the purpose of
this study where the DOP is transcribed into an NLP using direct collocation in time. Hence, less grid
points are required to spatially resolve complicated smooth structures with small numerical dissipation,
and thereby reducing the size of the resulting NLP.

4. Problem Formulation

The cyclic operation of HPLC separation processes in batch elution mode imposes adequate retention
time repeatability by conditioning the column to the initial modifier concentration prior to the subsequent
injection [65,66]. In the scope of chromatographic separations, cyclic-steady-state (CSS) prediction has
previously only been applied to continuous simulated moving bed (SMB) [11,18,67] and multicolumn
counter-current solvent gradient purification (MCSGP) [68] processes. Hence, the CSS operation
implies computation of a limit cycle dynamic solution, subject to initial conditions for the state variables,
that conform to the periodic boundary condition over the processing cycle. It is however noteworthy that
in order for the comprehensive CSS description to be experimentally feasible, a model representation
of the most retained component in the loaded sample mixture is required. This is vital for prohibiting
potential stationary phase accumulation of otherwise irreversibly adsorbing components, resulting in
a gradual decrease in column adsorption capacity. For these reasons, the robustification methodology
considered in this study was applied to two inherently different optimal control strategies:
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i) Optimal control strategy I is exclusively concerned with the batch elution operation mode, where
the limit cycle criteria are relaxed and the upper fractionating interval endpoint bounds the temporal
horizon, i.e., t f = t 0 + Dt .

ii) Optimal control strategy II is concerned with the comprehensive CSS operation mode, where the
temporal horizon includes the column regeneration and re-equilibration modes.

Hence, optimal control strategy I that considerably reduces the DOP complexity, is preferable when
the complete sample mixture composition is unknown and is extensively applied in open-loop optimal
control studies on non-isocratic batch elution chromatography, see, for example, Damtew et al. [19],
Osberghaus et al. [69] and the references cited therein.

4.1. Cyclic-Steady-State Criteria Formulation

The computation of CSS solutions over the temporal horizon t 2 [t0; t f ] requires that Equations (1)
and (2) are augmented with additional criteria governing that the state at the initial time is retained at the
end of the cycle. Accordingly, the limit cycle criteria can be classified into terminal equality constraints:

0 =

t fZ

t0

vintAcc� (t;z f )dt � dload;� ; (6a)

0 = cS(t0;z) � cS(t f ;z); 8z 2 [z0;z f ]; (6b)

0 = cmix;S(t0) � cmix;S(t f ); (6c)

0 = u(t0) � u(t f ); (6d)

and initial conditions satisfying:

0 = cS(t0;z) � u(t0); 8z 2 [z0;z f ]; (6e)

0 = cmix;S(t0) � u(t0); (6f)

where dload;� = cload;� vintAcDtload is the total injected sample amount. Specifically, Equation (6a) states
the flux of the most retained component � = C at the column outlet, z = z f , equals the total loaded
sample amount, dload;� , at t = t f . This criterion, thereby, ensures that all components are completely
eluted at the end of time horizon. The terminal equality constraints Equation (6b)–(6d) govern that
the modifier concentration, cS, at every column position z 2 [z0;z f ] as well as the concentration in the
mixing unit, cmix;S, are consistent at the initial and terminal times. Moreover, Equation (6e) and (6f) are
supplementary initial conditions, enforcing the initial modifier concentration at t0. Equation (6a)–(6d)
are introduced in the DOP whereas Equation (6e) and (6f) are introduced as initial values in the governing
mobile phase transport equations.

4.2. Open-loop Optimal Control Problem Formulation

In chromatographic separations, there are several incommensurable objectives which require
a trade-off to ensure satisfactory design, see e.g., Guiochon et al. [70] for a thorough review.
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Typical objective functions are the recovery yield, Y� , the production rate, P� , and the recovery
concentration, hc� i , with respect to the target component collected in the fractionating interval. In any
case, the elution trajectories at the column outlet, c� (t;z f ) for � 2 f A;B;Cg, form the basis for evaluating
the incommensurable objective functions. These are defined here as:

dload;�
dY�

dt
= c� (t;z f )vintAcP(t; t 0;Dt ); (7)

dP�

dt
=

1
Vc

1
t f

dload;�
dY�

dt
; (8)

dhc� i
dt

=
1

vintAc

1
Dt

dload;�
dY�

dt
; (9)

and subject to initial values Y� (t0) = 0, P� (t0) = 0, and hc� i (t0) = 0. Moreover, P(t; t 0;Dt ) is a smooth
rectangular function in the fractionization horizon [t 0; t 0 + Dt ]. It is noteworthy that both P� , defined
as the amount of target component collected per cycle time scaled to the size of the column, and hc� i ,
defined as the integral mean value of the target component concentration over the fractionating horizon,
are intrinsically governed by Y� . A weighted sum scalarization method is frequently used to combine the
objectives in Equations (7)–(9) into a single performance index. The procedures’ deterministic nature
allows the use of direct NLP routines and ensures an accurate and efficient Pareto set generation [22].

For the purpose of this study, we solely consider the yield of the intermediately eluting component
� = B as target in the optimal control problem. Hence, the aim is to derive an optimal elution trajectory,
u, and fractionating interval endpoints, [t 0; t 0 + Dt ], that maximize Y� (t f ) while fulfilling the constraint
imposed on purity of the target component fractionization:

X� (t f ) = dload;� Y� (t f )

 

å
b2f A;B;Cg

dload;bYb (t f )

! � 1

; (10)

where the numerator of the right hand side represents the captured amount of the target component in
[t 0; t 0 + Dt ] and the denominator represents the total amount captured. Hence, X� (t f ) is incorporated in
the DOP as a terminal inequality constraint, X� ;L � X� (t f ) � 0, with an assigned lower purity requirement
X� ;L. Given the optimization specifications in Equations (7) and (10) the open-loop optimal control
problem, with differential algebraic constraints [31,71], over the temporal domain [t0; t f ] may now
be formulated as:

min. �

t fZ

t0

dYB

dt
+ R

Nu� 1

å
i= 1

Du2
i ; (11a)

w.r.t. x : [t0; t f ] ! Rnx ; XB : [t0; t f ] ! R;

(t 0;Dt ) 2 R2; um 2 R;

s.t. F (t; ẋ (t);x (t);XB(t);u(t); t 0;Dt ) = 0; x (t0) = x 0; (11b)

XB;L � XB(t f ) � 0; (11c)

ge(x (t0);x (t f );u1;uNu) = 0; (11d)

uL � um � uU ; jDunj � DuU ; (11e)

t 0;L � t 0 � t 0;U ; Dt L � Dt � Dt U ; (11f)

8t 2 [t0; t f ]; 8m 2 [1::Nu]; 8n 2 [1::Nu � 1]:
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In addition to the free operating parameters, i.e., the discrete control signal u and the free
time-invariant parameters (t 0;Dt ), the optimization variables include the state variables x (t) =
(c� (t;z j);cS(t;z j);cmix;S(t);q� (t;z j);Y� (t)) for � 2 f A;B;Cg and the algebraic variable XB. F denotes
the implicit DAE system resulting from the spatially discretized PDAE system. Moreover, ge denotes
the terminal equality constraints and assembles the limit cycle criteria defined in Equation (6).
Time-invariant bounds on the fractionation variables are introduced in Equation (11f) and absolute and
rate limitations of the control are enforced in Equation (11e). As outlined in Section 2.1, Equation (11a)
is augmented with a quadratic penalty on the differences of the piecewise constant controls, Du,
discretized with Nu segments in the temporal domain [t0; t f ]. This will influence the smoothness of
u, and the weight R is used as an optimization variable in the robust counterpart problem in order to find
optimal robustified elution trajectories.

4.3. Robust Counterpart Problem Formulation

The solution of Equation (11) will yield optimal open-loop trajectories that lie on the boundary of
the feasible region. This means that even the smallest of unmodeled disturbances can cause infeasbility,
leading to failed batches. To account for this, we discuss how a robust counterpart of Equation (11)
can be formulated and then approximated based on linearization to reduce computational complexity.
The resulting formulation is still not computationally tractable, but we present how it nevertheless can
be used to find robust solutions using bilevel optimization.

In parts of this section we will assume that the system dynamics in Equation (11b) are described by
an explicit ordinary differential equation (ODE) system

_x (t) = f (t;x (t);u(t); t 0;Dt ); (12a)

XB(t) = h(x (t)) ; (12b)

rather than a DAE. Since the considered DAE is of index one, the transformation to an ODE is
straightforward and is handled by the framework discussed in Section 5.1.2. The uncertainties discussed
in Section 2.1 are modeled as a disturbance w that is added to the control variable u, whose L2 norm
is bounded by G. The constraint that we want to make robust with respect to these uncertainties is the
purity constraint XB(t f ) � XB;L. The considered robust counterpart of Equation (11) is thus essentially to
modify XB(t f ) in the purity constraint to instead be the minimum of XB(t f ) over all disturbances w with
L2 norm less than G(A rigorous formulation of the considered robust counterpart involves transforming
the problem to Mayer form and eliminating the state variables by utilizing the existence of a unique
solution of the ODE. The result is verbose and neither enlightening nor useful for computations, and
is thus omitted). The result is a problem that is not computationally tractable due to the nonlinear
dynamics, even if the state dimension would have been small. To reduce the computational complexity,
we utilize the linearization approach presented in [49]. We first solve the original problem Equation (11)
to obtain nominal trajectories x � and u� . We then introduce the deviation � x caused by the disturbance
w, leading to the perturbed trajectory x = x � + � x . The deviation � x can be approximately determined
by linearizing the dynamics around the nominal trajectories x � and u� . This leads to the uncertain linear
time-varying system

dẋ (t) = A(t)� x (t) + B(t)w(t); � x (0) = 0; (13)
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for determining the deviation corresponding to w, where

A(t) =
¶

¶x
f (t;x � (t);u� (t); t �

0 ;Dt � ) ; (14a)

B(t) =
¶

¶u
f (t;x � (t);u� (t); t �

0 ;Dt � ) : (14b)

The utilization of the above linearization, which is valid for small disturbances, and [Theorem 3.1] [72]
yields that the robust counterpart can be equivalently formulated by the introduction of the back-off term
G

p
C(t)P(t)CT (t), where

C(t) =
¶

¶x
h (x � (t)) ; (15)

and P : [t0; t f ] ! Snx
+ satisfies the Lyapunov differential equation

Ṗ(t) = A(t)P(t) + P(t)AT (t) + B(t)BT (t); P(t0) = B(t0)BT (t0): (16)

The back-off term is used to augment the purity constraint Equation (11c) to get

XB;L + G
q

C(t f )P(t f )CT (t f ) � h(x (t f )) : (17)

This back-off term can be regarded as an additional safety margin required for guaranteeing the meeting
of the constraint. However, to compute it, we need to introduce P, givings us nx(nx + 1)=2 extra states.
The result is the following approximate robust counterpart of Equation (11).

min. �

t fZ

t0

dYB

dt
+ R

Nu� 1

å
i= 1

Du2
i ; (18a)

w.r.t. x : [t0; t f ] ! Rnx ; XB : [t0; t f ] ! R; P : [t0; t f ] ! Snx
+ ;

(t 0;Dt ) 2 R2; um 2 R; R 2 R;

s.t. _x (t) = f (t;x (t);u(t); t 0;Dt ); x (t0) = x 0; (18b)

Ṗ(t) = A(t)P(t) + P(t)AT (t) + B(t)BT (t); P(t0) = B(t0)BT (t0); (18c)

XB;L + G
q

C(t f )P(t f )CT (t f ) � h(x (t f )) ; (18d)

ge(x (t0);x (t f );u1;uNu) = 0; RL � R � RU ; (18e)

uL � um � uU ; jDunj � DuU ; (18f)

t 0;L � t 0 � t 0;U ; Dt L � Dt � Dt U ; (18g)

8t 2 [t0; t f ]; 8m 2 [1::Nu]; 8n 2 [1::Nu � 1]:

The discussed robustification also has a stochastic interpretation [72]. Rather than considering
disturbances with bounded norm G, we can instead consider stochastic disturbances. If w is a Gaussian
white noise process with an identity covariance matrix, then P is a linear approximation of the covariance
matrix of the state x . Consequently, the covariance matrix associated with the output function h is
approximated by C(t)P(t)CT (t). While the discussed approximate robust approach is computationally
tractable for medium-scale ODE-constrained DOPs, it is not for our original PDE-constrained DOP.
For these reasons, the robust counterpart problem is cast in the frame of bilevel optimal control where
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the upper level concerns forward simulation of the Lyapunov differential equation, and the nominal NLP
augmented with the robustified inequality constraint margin is considered in the lower level:

min. �

t fZ

t0

dYB

dt
dt; (19a)

w.r.t. x : [t0; t f ] ! Rnx ; P : [t0; t f ] ! Snx
+ ;

(t 0;Dt ) 2 R2; um 2 R; R 2 R;

s.t. _x (t) = f (t;x (t);u(t); t 0;Dt ); x (t0) = x 0; (19b)

Ṗ(t) = A(t)P(t) + P(t)AT (t) + B(t)BT (t); P(t0) = B(t0)BT (t0) (19c)

RL � R � RU ; (19d)

(x ;u; t 0;Dt ) = arg min. �

t fZ

t0

dYB

dt
dt + R

Nu� 1

å
i= 1

Du2
i ; (19e)

w.r.t. x : [t0; t f ] ! Rnx ; XB : [t0; t f ] ! R;

(t 0;Dt ) 2 R2; um 2 R;

s.t. F (t; ẋ (t);x (t);XB(t);u(t); t 0;Dt ) = 0; x (t0) = x 0; (19f)

XB;L + G
q

C(t f )P(t f )CT (t f ) � h(x (t f )) ; (19g)

ge(x (t0);x (t f );u1;uNu) = 0; (19h)

t 0;L � t 0 � t 0;U ; Dt L � Dt � Dt U ; (19i)

uL � um � uU ; jDunj � DuU ; (19j)

8t 2 [t0; t f ]; 8m 2 [1::Nu]; 8n 2 [1::Nu � 1]:

It is noteworthy that while the nominal optimal control problem Equation (11) is feasible, the robust
counterpart formulation Equation (19) might not be feasible for large disturbances as the constraints
are required to be satisfied. The upper-level static optimization problem (Equations (19a)–(19d))
with respect to R is solved using a Nelder–Mead Simplex algorithm, whereas the lower-level DOP
(Equations (19e)–(19j) constrained by the DAE system dynamics is transcribed into an NLP using direct
collocation, as described in Section 5.2. This strategy avoids the full simultaneous discretization of the
Lyapunov states, which are too numerous to be treated with direct collocation. Finally, it is important to
clarify that the Lyapunov state simulation and the subsequent NLP execution is repeated in the lower
level until an optimal solution is obtained for a fixed R, i.e., Equation (19g) is satisfied to a small
specified tolerance.

5. Methods and Tools

This section outlines the languages and tools used to generate the simulation and optimization results.
We first present the general software framework and then discuss the methods in the framework that
allow for the efficient solution of Equation (19).
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5.1. The JModelica.org Toolchain

JModelica.org [73] is an open-source platform for simulation and optimization of models described in
either the Modelica [74] or Optimica language [75] or as Functional Mock-up Units (FMUs) following
the Functional Mock-up Interface (FMI) [76]. The platform consists of a Modelica and Optimica
compiler meaning that the input is a model described in either of the two languages and the output of
the compiler is either an FMU or a symbolic representation of an optimization problem. Modelica is
an equation based, high-level language for describing complex physical systems. Optimica is an
extension which additionally allows for specifying dynamic optimization problem with a cost function
and constraints.

5.1.1. Optimization

The dynamic optimization framework in JModelica.org is centered around CasADi [77] and
an overview is shown in Figure 2. CasADi (Computer algebra system with Automatic Differentaion) is
an open-source, low-level tool for efficiently computing derivatives using AD and is tailored for dynamic
optimization. The user encodes the dynamic optimization problem using Modelica and Optimica.
The JModelica.org compiler then transfers a symbolic representation of the problem to CasADi
Interface [78], after performing symbolic transformations such as index reduction. CasADi Interface
serves as a three-way, symbolic Python interface between the optimization problem, user, and numerical
algorithm. The main numerical algorithm for dynamic optimization in JModelica.org is based on direct,
local collocation and is described in Section 5.2. The algorithm is implemented using CasADi to
transcribe the DOP into an NLP. First- and second-order derivatives of the NLP functions can then
be conveniently and efficiently computed using CasADi’s algorithmic differentiation while preserving
sparsity. The NLP is then finally solved by the open-source, interior-point method IPOPT [43].

Figure 2. The dynamic optimization framework of the JModelica.org platform. The problem
is formulated using Modelica and Optimica, which is then transferred to CasADi Interface by
the JModelica.org compiler. CasADi Interface is a symbolic interface between the compiler,
user, and collocation algorithm. After collocation, the problem is finally solved by IPOPT.
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5.1.2. Simulation

The simulation capabilities in the JModelica.org platform is based on FMUs and collected in the
standalone Python package PyFMI. It is a package for interacting with models following the FMI and
designed to provide a high-level, easy to use environment for working with FMUs. A key feature is the
connection to Assimulo [79] which provides capabilities for performing simulations using state-of-the
art solvers such as CVode from the Sundials suite [80]. PyFMI together with Assimulo provides an
efficient and flexible environment for simulation of FMUs. An overview of the simulation capabilities
is shown in Figure 3. The FMUs are typically created from a Modelica model using the JModelica.org
compiler. However, as FMI is an open standard, any tool that support generation of FMUs can be used.

Figure 3. The simulation capabilities of the JModelica.org platform. An FMU is loaded
using the package PyFMI, which in turn connects to the simulation package Assimulo which
provides access to the solvers. The work-flow is controlled through a user-defined script
which additionally allows for providing extra equations to the problem, in this paper the
Lyapunov equations.

5.2. Transcription of the Dynamic Optimization Problem

The optimization problem Equation (11) falls within the class of dynamic optimization problems of
the general form:

min.

t fZ

t0

L(t; ẋ (t);x (t);y (t);u(t);p) dt +
Nu� 1

å
j= 1

(Du j)T R(Du j); (20a)

w.r.t. x : [t0; t f ] ! Rnx ; y : [t0; t f ] ! Rny ;

p 2 Rnp; u i 2 Rnu;

s.t. F (t; ẋ (t);x (t);y (t);u(t);p) = 0; x (t0) = x 0; (20b)

(x L;yL) � (x (t);y (t)) � (x U ;yU ); pL � p � pU ; (20c)

u L � u i � uU ; Du L � Du j � DuU ; (20d)

ge(x (t0);x (t f );y (t f );u 1;u Nu) = 0; gi(x (t0);x (t f );y (t f );u 1;u Nu) � 0; (20e)

8t 2 [t0; t f ]; 8i 2 [1::Nu]; 8 j 2 [1::Nu � 1];
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where y is the algebraic variable and p is the free time-invariant parameters. The objective
Equation (20a) is a typical optimal control Lagrange term together with a quadratic penalty on Du i,
where R 2 Rnu� nu acts as a weight and is typically diagonal. The optimization variables are the free
operating parameters—The discrete control signal u i and free time-invariant parameters p—And the
trajectories x and y . The trajectories are determined by the free operating parameters via the implicit
DAE system in Equation (20b).

In this section we present an overview of the method employed by JModelica.org to solve
Equation (20) and in particular the low-level problem in Equation (19). A more detailed description
is available in [81]. The method is based on direct local collocation [31,32]. The fundamental idea
is to discretize the differential equations, thus transforming, or transcribing, the dynamic optimization
problem into a finite-dimensional NLP, which then is solved by IPOPT. The discretization scheme is
based on collocation methods, which correspond to special cases of implicit Runge-Kutta methods and
are also commonly used for numerical solution of DAE and stiff ODE systems [82].

We start by dividing the optimization time horizon into ne elements. Within each element i 2 [1::ne]
the trajectories x and y are approximated using low-order polynomials, which are called the collocation
polynomials for that element. The collocation polynomials are formed by first choosing nc collocation
points, which are chosen to be the same for all elements. Let ti;k be collocation point k 2 [1::nc] in
element i and (x i;k;y i;k;u i;k) denote the value of (x (ti;k);y (ti;k);u(ti;k)) . The collocation polynomials in
element i are then constructed by interpolating the values (x i;k;y i;k). The polynomials for ẋ are obtained
by differentiating the polynomials for x . The control variable values u i;k are obtained by constructing a
map � : [1::ne] � [1::nc] ! [1::Nu] such that u � (i;k) = u(ti;k). There are different schemes for choosing
the collocation points t k, with different numerical properties, in particular regarding stability and order
of convergence. We use Radau collocation, which always places a collocation point at the end of each
element, and the rest are chosen in a manner that maximizes convergence order.

As decision variables in the transcribed NLP we choose the system variable values in all the
collocation points, ẋ i;k;x i;k;y i;k, the discrete control signal, u i, the state at the start of each element,
x i;0, and the free parameters p. The transcription of Equation (20) results in the NLP

min.
ne

å
i= 1

hi

nc

å
k= 1

wkL
�
ti;k; ẋ i;k;x i;k;y i;k;u � (i;k);p

�
+

Nu� 1

å
j= 1

(Du j)T R(Du j); (21a)

w.r.t. ẋ i;k 2 Rnx ; x i;k 2 Rnx ; y i;k 2 Rny ;

x i;0 2 Rnx ; u i 2 Rnu; p 2 Rnp;

s.t. F (ti;k; ẋ i;k;x i;k;y i;k;u � (i;k);p) = 0; x 1;0 = x 0; (21b)

(x L;yL) � (x i;k;y i;k) � (x U ;yU ); pL � p � pU ; (21c)

u L � u i � uU ; Du L � Du j � DuU ; (21d)

ge(x 1;0;x ne;nc ;yne;nc ;u 1;u Nu) = 0; gi(x 1;0;x ne;nc ;yne;nc ;u 1;u Nu) � 0; (21e)

x n� 1;nc = x n;0; 8n 2 [2::ne]; (21f)

ẋ i;k =
1
hi

nc

å
l= 0

� l;kxi;l; (21g)

8i 2 [1::ne]; 8k 2 [1::nc]; 8 j 2 [1::Nu � 1]:
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The transcription of the Lagrange term in Equation (20a) utilizes Gauss-Radau quadrature within
each element to approximate the integral by a sum using the quadrature weights wk and element
lengths hi. Equation (20b) and (20c) are transcribed into Equation (21b) and (21c), respectively, by
enforcing them only in each of the collocation points, rather than during the entire time horizon.
The constraints Equation (20d) and (20e) are finite in number and are thus straightforward to transcribe
into Equation (21d) and (21e), respectively, using the collocation point values.

Since the states need to be continuous (but not differentiable) with respect to time, the new continuity
constraint Equation (21f) needs to be introduced. Because we use Radau collocation, where no
collocation point exists at the start of each element, this also requires the introduction of the new variables
xi;0, which represent the value of the state at the start of element i. Finally, we introduce Equation (21g)
to capture the dependency between x and ẋ , which is implicit in Equation (20). The weights � l;k are
obtained from differentiating the collocation polyonimals for the state and related to the butcher tableau
of the Runge-Kutta method that corresponds to the collocation method.

5.3. Simulation Setup and Coupling of the Lyapunov Equation

In this study, the process model is implemented in Modelica and compiled into an FMU, for
simulation, using the tool Dymola [83]. Any tool that is able to transform the Modelica model into
an FMU can be used, provided that support for directional derivatives is included. Hence, the process
model is transformed and exposed as a system of ordinary differential equations,

ẋ (t) = f (t;x (t);u(t); t 0;Dt ); (22)

XB(t) = h(x (t)) : (23)

This transformation step is performed by the exporting tool. As the process model is stiff an implicit
solver is needed to simulate the problem which in turn requires the Jacobian matrix of Equation (22).

The Jacobian can either be approximated using finite differences, symbolic differentiation or using
algorithmic differentiation. However, in order to simulate this model efficiently and accurately, access
to the Jacobian, either symbolically or via algorithmic differentiation is crucial. In the FMU, directional
derivatives are available and using these, the partial derivatives can be constructed (i.e., the Jacobian).
The directional derivatives are defined as,

gz =
¶g(z)

¶z
v ; (24)

where g(z) is a set of equations, in our case, either Equations (22) or (23), z is either the states x or the
inputs u and v is the seed vector. From the directional derivatives, the partial derivatives can directly be
computed by a sequence of calls with v replaced by unit vectors. However, as discussed below, there are
more efficient approaches.

For efficiency, FMI provides structural information in the sense that the dependency information
between the functions fi and x j, uk are available. Utilizing this information, multiple columns can be
constructed for each call to the directional derivative method due to that all equations are not dependent
on all of the states. Finding the minimal set of calls to the directional derivative method for a general
problem is difficult. However, using the algorithm by Curtis-Powell-Reid [84] one can find a set that
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substantially reduces the amount of calls in a straight-forward manner. In the considered case, the
number of calls was reduced by 90% by applying the algorithm. Additionally, the structural information
directly corresponds to the sparsity pattern which is shown in Figure 4. The pattern indicates that the
model is sparse and using a sparse solver for the problem is thus beneficial. Using both the structural
information and the directional derivatives, the process model, as an FMU, can efficiently and accurately
be simulated.

Figure 4. The sparsity pattern of the Jacobian of the spatially discretized, with nv = 20, and
ODE transformed system.

However, our interest is not solely in the direct process behavior, it is also in the matrix valued
Lyapunov states, P(t), together with A(t) and B(t) defined in Equation (14). These equations
significantly increase the problem dimension making it crucial that both the sparsity is used during the
simulation and that the structure is used during the assembly of the partial derivatives.

As the solver does not support matrix differential equations, Equation (16) needs to be re-written into
vector form. Using the notation vec(A(t)) for vectorization of A(t) by stacking the columns into a single
column vector. Then, the Lyapunov equation can be written as,

vec(Ṗ(t)) = ( I 
 A(t))vec(P(t)) + ( A(t) 
 I)vec(P(t)) + vec(BT (t)B(t)) ; (25)

where 
 is the Kronecker product. Both the Lyapunov equations and the process equations needs to
be solved together. This has been realized by extending PyFMI to support adding additional equations
to the original problem of simulating an FMU. Additionally, Assimulo has been extended to be able to
handle sparse representation of the Jacobian together with a connection to the sparse solver in CVode.
In Figure 3, the connection between the packages, the solver and the Lyapunov equations are shown.
Putting it all together, the original equations appended with the Lyapunov equations, can be written as,

"
ẋ (t)

vec(Ṗ(t))

#

=

"
f (t;x (t);u(t))

(I 
 A(t))vec(P(t)) + ( A(t) 
 I)vec(P(t)) + vec(BT (t)B(t))

#

(26)
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together with the Jacobian,

J(t) =

"
A(t) 0

0 I 
 A(t) + A(t) 
 I

#

: (27)

In Figure 5 the sparsity pattern of the coupled system is shown. Due to the substantially increased
problem size it is even more important that A(t) can be computed efficiently and the full Jacobian
represented as a sparse matrix. Finally, the quantity C(t)P(t)CT (t) governing the back-off term in
Equation (17) is also computed.

Figure 5. The sparsity pattern of Equation (27).

6. Results and Discussion

In this section we discuss the solution of the nominal open-loop optimal control problem
Equation (11) and its robust counterpart problem Equation (19). The uncertainty aspect is introduced via
the zero-order hold elution trajectory which has a direct effect on the target component purity inequality
constraint Equation (10), and hence, a robustification of this constraint is focused on. It is noteworthy that
variability in CQAs may also arise from external disturbances in process operating parameters [11–13],
in column adsorption capacity, as well as in adsorption isotherm kinetics [14] listed in Table 1. However,
for the purpose of this study, only the time-variant variability in u is considered.

In the deterministic robust formulation, the uncertainty set for all disturbances w with L2 norm less
than G= � wku� k. Here � w is the uncertainty level and ku� k is given by:

ku� k =

0

@
t fZ

t0

u� 2(t)dt

1

A

1
2

: (28)

In order to assess the validity of the linear approximation in Equation (13), the robustness of the
open-loop system was evaluated by means of Monte Carlo simulations. The result is a probability
distribution of the variability of XB(t f ). In each forward simulation, the uncertainty values of the
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zero-order hold control input, w̃, were randomly generated from a uniform distribution on [� � w; � w].
The resulting stochastic control signal is thus given by:

ũ(t) = u� (t) + � w
w̃

kw̃k
ku� k: (29)

As outlined in Section 4, two inherently different optimal control strategies are considered and the
discrepancy lies in whether Equation (11) is augmented with the limit cycle criteria Equation (6) or not.
Moreover, in order to assess the robustness of the general elution trajectories governed by the optimal
control strategy I, these were benchmarked with that of the conventional linear trajectories governed by:

ulin(t) = ulin(tlin;0) +
�
ulin(t f ) � ulin(tlin;0)

�
�

t � tlin;0

t f

�
; (30)

where tlin;0 = t0 + Dtload + Dtwash defines the onset of the elution mode and (ulin(tlin;0);ulin(t f )) 2 R2

are the time-invariant optimization parameters. For the benchmark investigation, an analogous optimal
control problem was considered where the quadratic penalty on Du in Equation (11a) was removed
and bounds on the aforementioned parameters was introduced. In all cases, the first- and second-order
spatial derivative of the convection-diffusion Equation (1), that governs the dynamics of the mobile
phase, have been approximated using a WENO scheme of fifth order with nv = 20 finite volume
elements. The number of finite volumes elements is a compromise between accuracy and computational
complexity, and is experimentally verified to give adequate representation of the dispersion. Moreover,
the temporal horizon was discretized with ne = 2 � 102 finite elements with two Radau collocations
points in each element and a piecewise constant control discretization with Nu = 50 pieces was adopted.
Accordingly, the resulting NLP Equation (21) has approximately 1:5 � 105 NLP variables and was
subsequently solved using the primal-dual interior point method IPOPT v.3.11.8 [43] and the linear
solver MA57 from HSL [85]. The collocation method used corresponds to a fixed-step-size Radau solver.
To verify this temporal discretization, the optimal input and parameters are used to simulate the system
using CVode from the SUNDIALS suite [80], which is a variable-step-size, backward-differentiation
formula solver with error control.

In this study, the robust counter part problem Equation (19) was solved on an Ubuntu 12.04 computer
with an Intel R Core

TM
i7-2600 Quad Processor @ 3.40 GHz. The lower-level NLP Equation (21)

constrained by the DAE system dynamics was solved using IPOPT to a tolerance of 1 � 10� 13 and
a total CPU time of approximately 0:75 h. Moreover, the coupled system of the Lyapunov differential
equations and the process model ODEs governed by Equation (26) was simulated in the upper-level static
optimization problem (Equation (19a)–(19d)) using the sparse representation of the Jacobian together
with a connection to the sparse solver in CVode. The total CPU time spent to solve Equation (26)
was approximately 2:0 h. It is noteworthy that the total CPU time exceeded 48 h (simulating the same
system) when sparseness was not considered and when the Jacobian Equation (27) was not supplied to
the numerical integrator. Hence, this clearly motivates the tools and methods developed for simulating
the coupled system of approximately 2:0 � 104 state variables (see Figure 5).

The remainder of this section is divided into two subsections, where the nominal open-loop and
robustified optimal solutions governed by the optimal control strategy I and II are presented in
Sections 6.1 and 6.2, respectively. Moreover, the optimization specifications and the associated
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robustified safety margins for the different values of R, i.e., the penalty on the difference on the zero-order
hold control discretization, investigated are summarized in Tables 3 and 4 for comparison purposes.

Table 3. Optimization specifications and associated robustified safety margins for the
optimal control strategy I and for different values of the penalty R. The optimization
specifications correspond to the graphical results depicted in Figures 6 and 10.

Solutions to the Open-loop Optimal Solutions to the Robust Counterpart
Control Problem (Equation (11)) Problem (Equation (19))

YB(t f ) XB(t f ) G
p

C(t f )P(t f )CT (t f ) YB(t f ) XB(t f )) G
p

C(t f )P(t f )CT (t f )

(%) (%) (%) (%) (%) (%)

R = 0:00 71:98 97:50 1:30 63:06 98:22 0:72
R = 0:50 71:23 97:50 1:26 62:27 98:21 0:71
R = 5:00 70:31 97:50 1:12 61:73 98:19 0:69
ulin

a 67:41 97:50 1:33 56:08 98:37 0:87

a Benchmarking with the conventional linear elution trajectory, ulin, governed by Equation (30).

Table 4. Optimization specifications and associated robustified safety margins for the
optimal control strategy II and for different values of the penalty R. The optimization
specifications correspond to the graphical results depicted in Figures 11 and 14.

Solutions to the Open-loop Optimal Solutions to the Robust Counterpart
Control Problem (Equation (11)) Problem (Equation (19))

YB(t f ) XB(t f ) G
p

C(t f )P(t f )CT (t f ) YB(t f ) XB(t f )) G
p

C(t f )P(t f )CT (t f )

(%) (%) (%) (%) (%) (%)

R = 0:00 70:26 97:50 1:15 61:53 98:15 0:65
R = 0:05 69:95 97:50 1:10 61:10 98:14 0:64
R = 0:50 62:88 97:50 0:85 55:25 98:06 0:56
R = 1:00 59:50 97:50 0:79 51:82 98:03 0:53

6.1. Optimal Control Strategy I—Nominal and Robustified Elution Trajectories in the Batch Elution
Operation Mode

The nominal solution (i.e., without the presence of uncertainty) of the open-loop optimal control
problem excluding the limit cycle criteria Equation (6) is computed over a fixed temporal horizon of
8t̄ 2 [0:0;20:0]. Here t̄ = t(Q̇V � 1

c ) is the normalized time in column volumes (CV). The specifications in
the optimization problem are XB;L = 9:75 � 10� 1 (� ), DuU = 2:5 � 10� 1, uL = 5:0 � 10� 2 and uU = 2:0.
Moreover, to reduce the state sensitivity of the optimal trajectories to control input uncertainties, we have
introduced R as a key specification in the optimization problem. The resulting optimal state and control
trajectories are depicted in Figure 6 and the associated optimization specifications are summarized in
Table 3. The optimization and verification simulation results are practically identical. The initial control
is constrained to be constant over the load and the subsequent wash horizon [t0; t0 + Dtload + Dtwash] where
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Dtwash = 1:0 (CV). Although not considered in the open-loop optimal control problem, the control signal
is prescribed a constant value of 1:0 � 10� 1 (moL � kg� 1) during 2:5 CV regeneration, in order to elute
the most retained component, and the initial control, u(t0), is prescribed during the subsequently column
re-equilibration period.

Figure 6. Optimal state and control trajectories, where c� (t;z f ) and 8� 2 f A;B;Cg is
normalized with [0:75;0:75;1:5] � 10� 3 (moL � m� 3), for XB;L = 9:75 � 10� 1 (� ) and
R 2 [0:0;5:0]. Markers indicate the solution at the Radau collocation points and solid and
dashed lines the corresponding simulated response. The shaded areas indicate the pooling
interval endpoints, [t 0; t 0 + Dt ], and those of the initial load and wash and the terminal
re-equilibration.

The optimal state and control trajectories illustrated in Figure 6 show a clear distinction in the system
response generated with u and ulin, respectively. As expected from the generic HIC elution mode,
ulin and hence the optimal modifier concentration is strictly decreasing in [tlin;0; t f ] in order to increase
hydrophobicity, see Figure 6d. Governed by the individual component adsorption affinities, components
� 2 f A;B;Cg are gradually separated as they traverse the column. It is noteworthy that parameterization
Equation (30) for ulin is augmented to the open-loop optimal control problem, however, a zero-order hold
fit to that trajectory with Nu = 50 segments (without affecting the state trajectories) is considered here
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for comparison purposes in the robustness assessment. Contrarily, the modifier concentration is freely
controlled with the general elution trajectories, u, shown in Figure 6a–c. It is evident that the additional
degrees of freedom introduced significantly promotes the recovery yield, YB(t f ), of the intermediately
eluting component B and that YB(t f ) strictly increases as R ! 0. Regardless of R, the solvent strength
is gradually increasing until the lower optimal fractionation time, t 0, is reached. Moreover, at the onset
of the fractionation interval, the slope of the elution trajectory changes sign, and the decreasing solvent
strength causes the target component to desorb and ultimately to elute.

It is evident from analyzing Figure 7, where XB is depicted as a function of time for the
nominal open-loop controlled trajectories, that the solution of Equation (11) yields that the inequality
constraint imposed on target component purity is active, i.e., XB(t f ) = XB;L. More importantly, the
associated back-off term, augmented to the purity inequality constraint in Equation (17), for � w = 5:0%
exhibits that neither of the optimal open-loop controls are robust at the given uncertainty level since
G

p
C (t f )P (t f )C T (t f ) > 0. This value corresponds to the worst-case purity to be expected and implies

that the open-loop controlled system is unable to cope with control input variability experienced during
nominal operation. Moreover, the back-off term trajectories pass through a maximum at the onset of the
fractionation interval and subsequently decreases as t ! t f . As expected, the terminal back-off value
decreases with R for the general elution trajectories. It is however noteworthy that the linear elution
trajectory is associated with the highest terminal back-off value. This is a key result, as the general
elution trajectories not only outperforms the linear in terms of YB(t f ) but also are inherently more robust.

Figure 7. Target component purity, XB(t), (dashed lines) and associated back-off term,
G

p
C(t)P(t)CT (t), (solid lines) as a function of time for the nominal elution trajectories

depicted in Figure 6.

The insight gained from analyzing Figure 7 clearly motivates the scope of this study, and the tools
and methods developed here for solving the robust counterpart problem Equation (19). However, since
the purity inequality constraint back-off term is determined by linearizing the dynamics around the
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nominal trajectories, it remains to assess the validity of that approximation. As discussed in Section 4.3,
the validity of the robustification strategy is assessed by means of Monte Carlo simulations. A set of
stochastic control signals, ũ, given by Equation (29) was generated by sampling a uniform distribution
on the interval from � � w. For each case presented in Figure 6, 5:0 � 103 forward simulations were
carried out for the uncertainty level of 5:0%. The resulting state and control trajectories are depicted in
Figure 8. It is evident that the control signal variability has a direct affect on the individual components’
shape and retention time. Most critical is the significant fraction of impurity (component A and C)
trajectories spanning inside the fractionation interval and causing degraded target component purity as
a result. The corresponding probability distribution of the variability in XB(t f ) is depicted in Figure 9.
This figure clearly strengthens the conclusion that the nominal open-loop controlled system is unable to
cope with control input variability experienced during nominal operation. More importantly, it is evident
that the deterministic back-off value corresponds to a high degree with the worst-case observations of the
stochastic distribution of XB(t f ), and consequently, the linearized approximation Equation (13) is valid
for the uncertainty level considered.

Figure 8. State and control trajectories generated with the set of stochastic control signals, ũ,
sampled from a uniform distribution with the uncertainty level � w = 5:0%. Markers indicate
the nominal optimal solution at the Radau collocation points and solid and dashed lines the
corresponding simulated response.



Processes 2015, 3 593

Figure 9. Probability distribution of the variability in XB(t f ) generated with the set of
stochastic control signals, ũ, sampled from a uniform distribution with the uncertainty level
� w = 5:0%. The dashed lines indicate the lower purity constraint, XB;L, and the deterministic
worst-case purity, XB;L � G

p
C (t f )P (t f )C T (t f ). The solid line indicates the cumulative

probability, F � 2
w
(XB(t f )) .

As discussed in Section 1.3, introducing more robustness always give rise to a performance decrease.
Hence, the robustification of the open-loop controlled system implies compromising high penalties on
the change in the zero-order hold control, yielding optimal solutions with low sensitivity to uncertainty,
however, to the expense of an overall lower performance. This is solely the main reason for introducing
R as an optimization variable in the upper-level robust counterpart problem Equation (19a)–(19d).
It is however noteworthy that neither the stochastic nor the deterministic worst-case purity depicted
in Figure 9 is valid for any other open-loop control input associated with a different lower purity
requirement than of XB;L = 9:75 � 10� 1. Therefore, in order to find the optimal robustified controls
associated with the nominal open-loop trajectories depicted in Figure 6, an iterative approach was
adopted. Hence, this iterative approach implies solving the feasibility problem to the robust counterpart
problem Equation (19) when keeping R fixed. The resulting robustified state and control trajectories are
depicted in Figure 10 together with their nominal trajectories for comparison purposes.

It is evident from analyzing Figure 10 that the onset of the fractionation interval is slightly shifted
towards higher elution volumes for all cases studied. The largest discrepancies between the nominal and
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the robustified general controls is seen in the temporal region for t > t 0. As a consequence, the state
trajectory for component A is not affected to a high degree, whereas the state trajectory for the target
component B is significantly affected. Moreover, the nominal linear control differ significantly from its
robust counterpart both in terms of the initial level and the slope, and consequently, all state trajectories
are affected. It is noteworthy that the performance increase in terms of YB(t f ) for u compared to ulin is
even higher for the robustified solutions than for that obtained with the nominal solutions. This can be
explained by the lower back-off value associated with the general trajectories. Specifically, the lower
purity constraint augmented with the safety margin, XB;L + G

p
C (t f )P (t f )C T (t f ), is 9:821 � 10� 1 for

R = 0:0 and 9:836 � 10� 1 for ulin. Finally, for the HIC separation case considered in this paper, the
target component yield governed by the robustified general elution trajectories is strictly decreasing with
the penalty on the change in the zero-order hold control, and consequently, the solution of the robust
counterpart problem Equation (19) is obtained for R = 0:0, see Figure 10a. This was not expected a
priori since the unpenalized input control is associated with the largest purity inequality constraint safety
margin. However, the case considered in this study clearly demonstrates the applicability of the tools
and methods developed here for formulating and solving the robust counterpart problem.

Figure 10. Nominal and robustified state and control trajectories. Markers indicate
the robustified solution at the Radau collocation points and solid and dashed lines the
corresponding simulated response. The light colored state and control trajectories indicate
the nominal solution.
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6.2. Optimal Control Strategy II—Nominal and Robustified Elution Trajectories in the
Cyclic-Steady-State Operation Mode

So far, we have shown the optimal open-loop and the robustified elution trajectories for the control
strategy excluding the limit cycle criteria. This section is therefore devoted to demonstrate robust optimal
control of the comprehensive cyclic-steady-state formalism. As outlined in Section 4.1, computation of
CSS solutions over the temporal horizon t 2 [t0; t f ] requires that open-loop optimal control problem
Equation (11) is augmented with the limit cycle criteria Equation (6) governing that the state at the
initial time is retained at the end of the cycle. The resulting nominal state and control trajectories that
conform to the periodic boundary condition over a fixed temporal horizon of 8t̄ 2 [0:0;25:0] are displayed
in Figure 11 and the associated optimization specifications are summarized in Table 4. Here, the initial
control, u(t0), is constrained to be constant over the load and the subsequent wash horizon [t0; t0 + Dtload +
Dtwash]. Moreover, the control in the final re-equilibration horizon [t f � Dteq; t f ], where Dteq = 2:0 (CV),
is prescribed the constant value of u(t0) through the limit cycle criteria in Equation (6d).

Figure 11. State and control trajectories generated for XB;L = 9:75 � 10� 1 (� ) and
R 2 [0:0;1:0]. The set of stochastic control signals, ũ, was sampled from a uniform
distribution with the uncertainty level � w = 5:0%. Markers indicate nominal state and control
trajectories that conform to the cyclic-steady state criteria Equation (6) over the temporal
horizon [t0; t f ] at the Radau collocation points and solid and dashed lines the corresponding
simulated response.
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In accordance with the optimal open-loop controlled trajectories depicted in Figure 6, the solvent
strength is gradually increasing until the lower optimal fractionation time, t 0, is reached. For R > 1:0,
the slope of the control trajectory changes sign within the fractionation interval in order to prevent the
most retained component to desorb. Moreover, at the upper fractionation interval endpoint, the control
trajectory drops drastically in order to completely elute component C, and to fulfill Equation (6a), before
returning to the initial control level. For these reasons, the upper endpoint of the fractionation interval,
t 0 + Dt , do not coincide with the that of the temporal horizon, as was the case for the optimal control
trajectories shown in Figure 6. It is also evident from Figure 11 that the penalty on Dun significantly
affect the state and control trajectories, due to the large difference of the maximum and minimum values
of un, and that the target component recovery yield strictly increases as R ! 0.

The deterministic back-off terms determined by linearizing the system dynamics around the nominal
trajectories that conform to the CSS criteria are shown in Figure 12. The G

p
C(t)P(t)CT (t) trajectories

exhibit analogous temporal behavior as for those depicted in Figure 7. Likewise, the terminal back-off
value decreases with R. As the purity inequality constraint is active, and terminal back-off value is larger
than zero 8R 2 [0:0;1:0], the open-loop controlled system is unable to cope with control input variability
experienced during nominal operation. The validity of the deterministic worst-case purity was also here
assessed by means of Monte Carlo simulations, as previously outlined in Section 6.1. The probability
distribution of the variability in XB(t f ) depicted in Figure 13 is determined by the state trajectories
subject to the set of stochastic controls, ũ, shown in Figure 11. The deterministic terminal back-off
value corresponds to a high degree with the worst-case observations of the stochastic distribution of
XB(t f ) shown in Figure 13, and consequently, the linearized approximation Equation (13) is valid for the
uncertainty level considered and can therefore safely be exploited in the robustification approach.

Figure 12. Target component purity, XB(t), (dashed lines) and associated back-off term,
G

p
C(t)P(t)CT (t), (solid lines) as a function of time for the nominal elution trajectories

depicted in Figure 11.
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Figure 13. Probability distribution of the variability in XB(t f ) generated with the set of
stochastic control signals, ũ, sampled from a uniform distribution with the uncertainty level
� w = 5:0%. The dashed lines indicate the lower purity constraint, XB;L, and the deterministic
worst-case purity, XB;L � G

p
C (t f )P (t f )C T (t f ). The solid line indicates the cumulative

probability, F � 2
w
(XB(t f )) .

The resulting robustified control trajectories, from solving the feasibility problem to the robust
counterpart problem Equation (19) when keeping R fixed, are depicted in Figure 14 together with their
nominal trajectories for comparison purposes. Again, the largest discrepancy between the nominal and
robustified controls are seen in the temporal region around the fractionation interval and t 0 is slightly
shifted towards larger elution volumes, whereas Dt is unchanged. It is also evident that the initial control
levels almost coincide. Consequently, the state trajectories for component A and C is not affected to
a high degree. Hence, in order to meet the robustified purity inequality constraint augmented with
the back-off term Equation (17), only the state trajectory of component B is slightly modified. Here,
XB;L + G

p
C (t f )P (t f )C T (t f ) is [9:815;9:814;9:806;9:803] � 10� 1 for R 2 [0:0;0:05;0:5;1:0]. Hence,
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there is only a moderate increase in the terminal back-off value as R ! 0, and consequently, the solution
of the robust counterpart problem Equation (19) is obtained for the unpenalized control, see Figure 14a.

Figure 14. Nominal and robust cyclic-steady-state elution profiles for R 2 [0:0;1:0].
Markers indicate the robustified solution at the Radau collocation points and solid and dashed
lines the corresponding simulated response. The light colored state and control trajectories
indicate the nominal solution.

7. Conclusions

External process disturbances are inevitably present and the robustness of the open-loop controlled
system with respect to CPP uncertainties, e.g., guaranteeing that QCA requirements are not violated,
is of the highest importance in biopharmaceutical process industry. Especially, the solution of the
open-loop optimal control problem will yield trajectories that lie on the boundary of the feasible region,
and consequently, the open-loop controlled system is unable to cope with control input variability
experienced during nominal operation. This paper is therefore concerned with extending the open-loop
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optimal control problem, constrained by a nonlinear dynamic system governed by PDEs, with its robust
counterpart formulation. However, there is a drastic increase in computational complexity while moving
from the nominal problem to its robust counterpart. To efficiently and accurately generate optimal elution
trajectories in the presence of uncertainty we considered a deterministic robust formulation, that employs
a linearization of the uncertainty set, for dynamic systems based on Lyapunov differential equations.
While the approximate robust approach is computationally tractable for medium-scale ODE-constrained
DOPs, it is not for the original PDE-constrained DOP considered here. One of the main contributions
of this paper is therefore the established methodology and the computationally efficient framework for
robust optimal control of batch chromatographic separation processes. It is however noteworthy that
the generic methods and tools developed here are applicable to any large-scale optimal control problem
constrained by PDEs.

Computational tractability was obtained by casting the robust counterpart problem in the frame of
bilevel optimal control where the upper level concerns forward simulation of the Lyapunov differential
equations and the system dynamics, and the nominal DOP augmented with the robustified inequality
constraint margin is considered in the lower level. The lower-level DOP constrained by the system
dynamics is transcribed into a sparse NLP using direct collocation, which is then solved by IPOPT
supplied with the first- and second-order derivatives of the NLP functions computed using CasADi’s
algorithmic differentiation while preserving sparsity. The adopted decomposition strategy thereby avoids
the full simultaneous discretization of the Lyapunov states, which are too numerous to be treated with
direct collocation. However, the coupled system of the Lyapunov differential equations and the process
model ODEs significantly increased the problem dimension of the upper level. In order to reduce the
over-all execution time it was crucial that the sparsity is used during the simulation and that the structure
is used during the assembly of the partial derivatives. This was realized by extending PyFMI to support
adding additional equations to the original problem of simulating an FMU as well as to handle the sparse
representation of the Jacobian together with the connection to the sparse solver in CVode. Finally,
in order to reduce the state sensitivity of the optimal trajectories to control input uncertainties, we
have introduced an optimization variable in the upper level that penalizes the change in the zero-order
hold control. This parameter influence the smoothness of the control and consequently enhance the
robustness, however, to the expense of an overall lower performance.

The advantages of the deterministic robustification methodology were illustrated through the
solution of a specific challenging ternary complex mixture separation problem of insulin analogs,
with the intermediately eluting component as the target, by hydrophobic interaction chromatography.
Moreover, two inherently different optimal control strategies were considered and the discrepancy
lies in whether robust counterpart problem is augmented with the cyclic-steady-state criteria or
not. The deterministic back-off term, determined by linearizing the system around the nominal
open-loop controlled trajectories, for both control strategies showed good agreement with the worst-case
observations of the stochastic distribution of purity obtained by means of Monte Carlo simulations.
A common trend is that the terminal back-off term value strictly decreased with the value of the
penalty on change in the zero-order hold control, hence, yielding solutions with lower sensitivity to
control variability.
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A key result of this study is that the general elution trajectories nonconforming to CSS criteria
outperformed the conventional linear trajectories both in terms of recovery yield and robustness.
Especially, the performance increase obtained for the robustified trajectories was even more pronounced
than that obtained with the open-loop controlled trajectories. This is due to the lower back-off
value associated with the general trajectories which allow for the fractionation interval to span over a
wider temporal horizon. Moreover, the solution of the robust counterpart problem was obtained for
the unpenalized control input. Likewise, the robustified solution conforming to the CSS criteria is
also obtained for the unpenalized control input although associated with the largest purity inequality
constraint safety margin. This is a result of the moderate increase in the value of the terminal back-off
as the penalty on the change in the zero-order hold control goes to zero.

Several interesting paths may be taken to further develop the robustified methodology presented in
this paper. Especially, it is not certain that the unpenalized control gives the optimal robustified solution
for a different ternary separation problem or a different chromatographic separation mode (e.g., reverse
phase and ion exchange). It also remains to assess the robustness of the nominal multi-objective optimal
control problem, including the production rate and the recovery concentration, as well as considering
variability in the feed concentration.
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