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Abstract

This thesis deals with event-based control and estimation strategies,
motivated by certain bottlenecks in the control loop. Two kinds of im-
plementation constraints are considered: closing one or several control
loops over a data network, and sensors that report measurements only
as intervals (e.g. with quantization). The proposed strategies depend
critically on events, when a data packet is sent or when a change in
the measurement signal is received. The value of events is that they
communicate new information about stochastic process disturbances.
A data network in the control loop imposes constraints on the event

timing, modelled as a minimum time between packets. A threshold-
based control strategy is suggested and shown to be optimal for first-
order systems with impulse control. Different ways to find the optimal
threshold are investigated for single and multiple control loops shar-
ing one network. The major gain compared to linear time invariant
(LTI) control is with a single loop a greatly reduced communication
rate, which with multiple loops can be traded for a similarly reduced
regulation error.
With the bottleneck that sensors report only intervals, both the the-

oretical and practical control problems become more complex. We focus
on the estimation problem, where the optimal solution is known but
untractable. Two simplifications are explored to find a realistic state
estimator: reformulation to a mixed stochastic/worst case scenario and
joint maximum a posteriori estimation. The latter approach is simpli-
fied and evaluated experimentally on a moving cart with quantized
position measurements controlled by a low-end microcontroller.
The examples considered demonstrate that event-based control

considerably outperforms LTI control, when the bottleneck addressed
is a genuine performance constraint on the latter.
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Preface

The field of event-based control is a rich subject area that contains
many interesting control and estimation problems. In many practical
cases, it turns out that sizable performance benefits can be gained
by application of some kind of event-based control when there is a
bottleneck in the control loop of event-based type.
The available theory is limited, however, mainly because of the

mathematical difficulties involved. It seems that all event-based prob-
lems become nonlinear, and often non-convex, causing the closed-form
solutions exploited in standard linear control theory to break down. If
there exist general classes of event-based control problems that can be
solved by systematic means at reasonable complexity, they remain to be
discovered. This means that selecting the proper problem formulation
is as important as solving the problem.
Thus there remains a wealth of event-based control problems to

investigate, and different methods to attempt their solutions. The focus
of this thesis is on two such problem formulations. The first is control
with constraints on the timing of events when the control loop is closed
by sending packets over a data network. The second is control and
estimation with sensors that report only an interval for the measured
quantity, e.g. with quantization.
To not unduly complicate matters, all problem formulations are

kept as close as possible to a standard linear time invariant problem
formulation, while incorporating the event-based constraint of interest.
An effort has been made to compare the achievable performance with
the proposed event-based strategies against what is achievable with
linear strategies.
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Preface

Contributions of the Thesis

The thesis consists of four introductory chapters and five papers, the
papers falling into the two categories of event-based control under
communication and sensing constraints, respectively. This section de-
scribes the contents of the introductory chapters and the contributions
of each paper.

Chapter 1 – Event-Based Control

This chapter gives a general overview of the field of event-based control
and estimation and tries to distinguish some of the various directions
that go under this broad heading. The general approach taken in the
thesis is outlined.

Chapter 2 – Control under Communication Constraints

The event-based control problems that arise when packet-based com-
munication forms a constraint on the control loop are described. The
approach of Papers I and II, that are formulated in this setting, is
outlined.

Chapter 3 – Control under Sensing Constraints

The event-based estimation and control problems that arise with sens-
ing constraints such as quantized measurements in the control loop
are described. The approach of Papers III, IV, and V, that deal with
this problem, are outlined.

Chapter 4 – Outlook

This chapter outlines some possible directions for future work.

Paper I

Henningsson, T., E. Johannesson, and A. Cervin (2008): “Sporadic
event-based control of first-order linear stochastic systems.” Auto-
matica, 44:11, pp. 2890–2895.

This paper introduces the concept of sporadic control to model the prac-
tical constraint of a minimum time between any two control events.
Two variants of sporadic controllers are proposed, using continuous

12



Contributions of the Thesis

and discrete time measurements. It is shown for first-order systems
with impulse control and white noise disturbances that the optimal
sporadic controller will use a threshold strategy, generating a control
event whenever it is allowed and the state becomes big enough. Ways
of computing the optimal threshold and the associated performance
in terms of regulation and event rate are described. The best achiev-
able tradeoff between regulation error and event rate is characterized
for the sporadic controllers, periodic and aperiodic controllers, show-
ing that many of the benefits of aperiodic control are retained even
with the practical constraint of a minimum inter-event time. It is also
shown that sporadic control can not only greatly reduce the required
communication rate, but also reduce the regulation error somewhat,
compared to periodic control. Different possibilities for the generaliza-
tion of the control problem at hand to higher dimensional systems are
discussed.
T. Henningsson wrote on and did the simulations for the continu-

ous-time case, and rewrote the paper for Automatica. E. Johannesson
wrote on and did the simulations for the discrete-time case. A. Cervin
wrote the introduction and assisted in the structuring and editing of
the manuscript.
This paper is an extension of

Johannesson, E., T. Henningsson, and A. Cervin (2007): “Sporadic
control of first-order linear stochastic systems.” In Proc. 10th
International Conference on Hybrid Systems: Computation and
Control, Lecture Notes in Computer Science 4416. Springer-Verlag,
Pisa, Italy.

Paper II

Cervin, A. and T. Henningsson (2008): “Scheduling of event-triggered
controllers on a shared network.” In Proc. 47th IEEE Conference
on Decision and Control. Cancún, Mexico. To appear.

This paper treats the control problem when several loops of the same
type as in Paper I are closed over a shared network. Models for the
medium access protocols TDMA, FDMA, and CSMA, the latter with
three different prioritization mechanisms, are stated. A suitable con-
trol setup is described for each case, and ways to evaluate the expected

13
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regulation error and choose optimal parameters for the controllers are
described, some based on Monte Carlo simulations. The performance
when controlling N integrator plants is compared for the protocols,
showing that CSMA quickly yields superior performance, asymptoti-
cally requiring only a third of the bandwidth or giving a third of the
error compared to any of the other protocols. A case study for control
of one stable, one integrator, and one unstable plant is also presented,
yielding similar conclusions.
A. Cervin wrote most of the paper and performed most of the simu-

lations. T. Henningsson derived the optimal control policy for the case
of two integrators and shared information between the controllers, us-
ing dynamic programming for controlled Markov processes.

Paper III

Henningsson, T. and K. J. Åström (2006): “Log-concave observers.” In
Proceedings of the 17th International Symposium on Mathematical
Theory of Networks and Systems. Kyoto, Japan.

This paper investigates the problem of Bayesian state estimation with
log-concave measurement likelihoods and process noise, and the prop-
erties of log-concave functions that can be used to say something about
the state estimation problem. The optimal Bayesian state estimator
for discrete-time linear systems is described, split up into dynamics,
process noise, and measurement updates, each acting on the proba-
bility distribution of the state conditioned on the measurements. The
case when measurement likelihoods and process noise densities are
log-concave — a considerable generalization of the Kalman filter set-
ting — is investigated. It is shown that the conditional state density
will be log-concave. Using the concept of strongly log-concave functions,
theorems are derived that allow to upper bound the estimation error
covariance of the Bayesian estimator. The upper bound is compared in
simulations to a grid-based approximation of the Bayesian estimator
and a Kalman filter designed using insight gained on the estimation
problem, for a double integrator with quantized measurements.
T. Henningsson wrote most of the paper. K. J. Åström did extensive

reviewing.
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Contributions of the Thesis

Paper IV

Henningsson, T. (2008): “Recursive state estimation for linear systems
with mixed stochastic and set-bounded disturbances.” In Proc. 47th
IEEE Conference on Decision and Control. Cancún, Mexico. To
appear.

This paper presents a recursive state estimator for linear systems that
are subject to both stochastic and uncertain (set-bounded) process and
measurement disturbances. The structure for a recursive state estima-
tor is proposed, allowing to model general state estimation problems
with combined stochastic and set-bounded measurement and process
disturbances. An optimization procedure for selecting the filter gain
considering both the resulting stochastic and set-bounded error is de-
scribed. For the case of ellipsoidal uncertainty sets, an LMI is formu-
lated to optimize the feedback gain and fit the best one-step optimal
ellipsoidal overbound on the set-bounded uncertainty, available using
the S-procedure. The estimator is compared in simulations to a grid
filter and a time-varying Kalman Filter for the case of a double in-
tegrator with quantized measurements, where it comes quite close to
the almost optimal grid filter.

Paper V

Henningsson, T. and A. Cervin (2009): “Comparison of LTI and
event-based control for a moving cart with quantized position
measurements.” Submitted to European Control Conference 2009,
Budapest, Hungary.

This paper investigates practical event-based velocity control of a mov-
ing cart with quantized position measurements. Preliminary linear
control designs are performed to gain insight into the control problem
and the tradeoffs involved between robustness and disturbance rejec-
tion. A joint maximum a posteriori (JMAP) state estimator for the
process is described. Insight into the behaviour of the JMAP estimator
is used to simplify it into an event-based estimator that can run online
on a low-end microcontroller. Implementation issues on the microcon-
troller are discussed, including discretization, fixed-point arithmetic
with fast approximate division, real-time tasks and concurrency issues.
A suitable step-by-step implementation of the event-based estimator to
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allow to verify the correctness of the implementation between each step
is described. Different development stages of the event-based controller
are compared experimentally to the linear control designs, investigat-
ing the tradeoff between control effort and regulation error and also
the impact of quantization. It is demonstrated that event-based con-
trol can reduce the control effort drastically when quantization starts
to become a problem for linear controllers.
T. Henningsson did the experiments and wrote most of the paper.

A. Cervin assisted in the structuring and editing of the manuscript.

Other Publications

Henningsson, T. and A. Rantzer (2007): “Scalable distributed Kalman
filtering for mass-spring systems.” In Proc. 46th IEEE Conference
on Decision and Control. New Orleans, LA.

This paper has not been included in the thesis because it is not on the
topic of event-based control.
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1

Event-Based Control

The term event-based control can stand for many things, depending
on the scenario that motivates it. This chapter tries to distinguish
some of the varying flavors of event-based control, outline some of the
challenges involved, and describe the general approach of the thesis.

1.1 Event-Based Control Problems

By event, we mean an ahead-of-time unspecified time instant when
something important happens in the system. What constitutes an event
will depend on the problem formulation. By event-based we mean a con-
trol strategy that employs events to deal with a constraint or bottleneck
in the system (see Figure 1.1). The special case of event-triggered con-
trol denotes the case when events trigger the execution of controller
tasks.

Controller

Observer

Process

r
u y

x̂

communication
constraint

actuation
constraint

sensing
constraint

computation
constraint

Figure 1.1 Control loop with some constraints motivating event-based control.
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Chapter 1. Event-Based Control

Different flavors of event-based control arise depending on the na-
ture of the bottleneck that motivates its use. Examples of bottlenecks
are sensor quantization, communication over a data network, cost per
actuation, and limitations on CPU processing power. We will now at-
tempt to categorize some of these flavors according to the kind of bot-
tleneck involved.
Figure 1.1 shows a prototypical control loop with process, observer

(state estimator), and controller. The view is from a single control
loop; there may actually be multiple processes and controllers involved,
connected in diverse topologies. Some bottlenecks that can motivate
event-based control are marked in the figure:

Communication constraints. All modern data communication net-
works are based on packet switching, which means that the small-
est unit of data that is transmitted over the network is the data
packet. An event-based controller can save energy and free up
communication bandwidth for others by sending a packet — and
thus generating an event — only when something significant
has happened. This is especially important in wireless networks,
where bandwidth is generally quite scarce, and the medium is a
shared resource that can only be used by one node at a time.

A packet consists of a header, specifying e.g. the format and des-
tination, and a data payload. Because of the overhead involved in
handling each packet, in most simple control problems, all rele-
vant information can be sent in every packet at little additional
cost. Thus the important constraint on real-time control imposed
by data networks is not the available bit rate per se, but the
constraints on the timing of data transmission events.

Sensing constraints. It is not uncommon with sensors that give
measurements only at ahead of time unknown events. Common
examples are rotary motion encoders that give pulses at fixed
angular increments and A/D-converters with coarse resolution,
where each change in the measured value can be seen as an event.
Another example is sensors that transmit data over a network
using the send on delta protocol: Transmit a new measurement
y(k) only if py(k) − ylast transmittedp ≥ ∆, for some tolerance ∆. This
protocol is used e.g. in building automation, and standardized
in the LONWorks standard, according to [Vasyutynskyy and

18



1.1 Event-Based Control Problems

Kabitzsch, 2007]. In common for these scenarios is the fact that
not only events, but also their absence, contain some information
about the measured value.

The objective in this case is to make as good use of the avail-
able measurements as possible, possibly to close a control loop.
If the information contained in the absence of events can be dis-
regarded, a time varying Kalman filter provides a solution of
moderate implementation complexity. When there is a need to
exploit the absence of events, which is often the case if there
may be long, event-free periods, the problem becomes much more
challenging.

Actuation constraints. Some actuators can only be turned either on
or off, such as satellite thrusters [Dodds, 1981]. Another impor-
tant case of actuation constraints is when it is desired to avoid to
change control signals more often than necessary. One example is
in plant-wide control, where it is known that every control action
will cause upsets in other control loops.

The objective in this case is to find a control strategy that gives a
good tradeoff between regulation performance and few actuation
events. The freedom to choose the timing of events can compen-
sate for some of the lack of spatial resolution in the actuators. A
simple example that exploits timing, but does not keep down the
number of events, is the commonly used technique of pulse-width
modulation.

Computation constraints. The majority of all controllers today are
implemented using computers. In cost-sensitive applications, it
is often desirable to keep down the amount of processing power
available to the control task.

By using event-triggered control, where the control task is only
triggered at relevant events, CPU time can sometimes be freed
up. The event trigger conditions are often very simple, and some-
times the control law can be simplified as well if it needs to be
computed only when the trigger conditions are satisfied. Though
event-triggered control can actually improve performance some-
what given the same amount of available processing power, the
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Chapter 1. Event-Based Control

real gain, however, lies in the lowered CPU burden in stationar-
ity, allowing to serve background tasks or save energy.

In self-triggered control, the controller calculates both a control
signal and a suitable sleep interval before it should wake up and
calculate another one, essentially adapting the sampling period
depending on the process state. Self-triggered control is consid-
ered for linear systems in [Lemmon et al., 2007] and for nonlinear
systems in [Tabuada, 2007].
Another kind of computation constraint arises when the con-
troller has to deal with the timing variations inherent with most
real time scheduling protocols, which can cause severe problems
for periodic control designs, see [Cervin et al., 2003].

Other motivations for event-based control include cases when the pro-
cess itself is event-based, such as the queues in a web server, or to
avoid tight demands for synchronization in a distributed system im-
posed by a time triggered framework. A diverse list of applications that
motivate event-based control is found in [Åström, 2007].
For some of the categories of control problems outlined above, an el-

ement of non-determinism is essential for a meaningful problem formu-
lation. This goes for communication and sensing constrained control,
since both communication and measurements are pointless in a deter-
ministic setting. The actuation- and computation-constrained cases, on
the other hand, are far from trivial even in a deterministic setting.
Even though the categorization of event-based problems above is

based on the dominating constraint involved, it should be noted that
most of the problems are also computation constrained in some sense. A
theoretical method to find the optimal solution is known, though often
prohibitively expensive (such as enumerating all possible controllers
and evaluating which one is best). Thus, many of the problems can
be formulated as trying to find a practical solution with limited com-
putation requirements. By computation-constrained control problems,
however, we will in this thesis consider only those where computation
resources are deliberately scarce.

20



1.2 When is Event-Based Control Worthwhile?

1.2 When is Event-Based Control Worthwhile?

Using event-based instead of linear control usually implies a consider-
able complication either in design, implementation, or both. The nec-
essary theory may very well need to be developed from scratch, unlike
the mature field of linear time invariant control. In any practical case,
one should strive to do the simplest thing that works.
However, when the bottleneck that motivates its use is a real prob-

lem, event-based control can be very effective. A more constraining
sensor, communication network, or microprocessor can imply consider-
able savings. Sometimes the bottleneck is unavoidable, but it is still
desired to push performance.
In some cases event-based control results in lower utilization of a

certain resource; it may be necessary to have something else that can
make use of the freed resource in order to realize the benefits. In the
case of controllers sharing a network, this can be the other controllers.

1.3 Challenges

Even when designing for a linear process, all event-based problems
seem to become nonlinear, and often non-convex or of very high (some-
times infinite) state dimension. With a nonlinear formulation, the
closed form solutions exploited in standard linear control break down.
This implies that e.g. the addition of stochastic disturbances makes a
real difference to the solution as well as the methods by which it can be
found, unlike e.g. the LQ-controller, where the design is independent
of whether there is any process noise or what characteristics it has.
The field of event-based control is much less mature than linear

control, so if there are any general cases that can be solved in a sys-
tematic manner and at reasonable complexity, these remain to be dis-
covered. Thus the challenge lies as much in formulating the problem
as in solving it, and different methods must be evaluated trying to find
ones that work well for particular problems.
Optimal solutions to event-based control problems often involve ele-

ments of other known-to-be-hard control problems. One example is dis-
tributed control with non-global knowledge (see [Witsenhausen, 1968]),
which appears when closing several control loops over the same net-
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work. Another example is dual control (see [Feldbaum, 1960 1961]), i.e.
the controller can improve its performance by exciting the process in
order to extract more information, which appears in the case of quan-
tized measurements. In such cases the most realistic goal is probably to
approximate the problem in order to find a suboptimal solution which
is hopefully still reasonable.

1.4 Approach of the Thesis

Since the topic is largely unexplored, it makes sense to begin with
simple problems before moving on to harder ones. Many event-related
phenomena should hopefully occur already in the simpler formulations.
Thus, for the papers in this thesis:

• An LTI formulation is always considered as the base case, and
minimally modified to make the problem event-based. Knowledge
about the LTI solution is exploited, if possible.

• Only one bottleneck is considered at a time. Papers I and II deal
with communication constraints, Papers III–V with sensing con-
straints.

• Reasonable amounts of computation are allowed wherever needed
in the control loop. This should improve performance and often
gives a problem that is easier to deal with by removing artificial
computation constraints.

• Solution methods that are simple and readily available are pre-
ferred over more elaborate methods, when they are feasible. This
may allow to demonstrate the viability of an idea, even though
the general case has not been solved.

• The problem of dual control that arises with sensing constraints
is avoided by focusing on the estimation problem, applying cer-
tainty equivalence for control.
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Since the best methods are not known, different methods are tried
for the same problem:

• To handle the stochastic process that describes the system, we
consider

– discretization of the system into a Markov chain,

– Monte Carlo simulation,

– log-concave probability densities,

– convex optimization.

• To optimize controllers, we apply

– brute force gridding of the parameter space,

– dynamic programming.

Since one should always strive for the simplest solution that works,
a serious attempt has been made to compare what is achievable with
the suggested event-based schemes and with standard sampled data
control [Åström and Wittenmark, 1997].
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2

Control under

Communication

Constraints

This chapter considers the event-based control problem when the con-
straining resource is packet-based communication, e.g. when the con-
trol loop is closed over a data network (see Figure 2.1). Characteristic
for this setup is that, while the resulting control laws are often sim-
ple to implement, the offline design computations are usually heavy.
When closing a single loop over a network, the substantial gains that
can be achieved are in reduced communication rate. With multiple
loops, event-based control allows the network to be used by the loop
that needs it most, so that the gains can be achieved in either reduced
communication rate or increased regulation performance. This setup

Controller

ObserverPredictor

Process

r
u y

x̂x̂pred

network

Figure 2.1 Control loop with communication constraints.
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should be distinguished from the problem of closing a control loop over
a bit-rate constrained channel treated in e.g. [Martins and Dahleh,
2008].

2.1 Making the Most of a Communication-Constrained

Control Loop

A key question is how to choose a proper structure for the controller un-
der communication constraints. We want the performance constraints
encountered to be genuine and not the artifact of a bad match between
controller structure and constraint. Some observations are:

• Since communication is the essential constraint, only new infor-
mation needs to be sent, as opposed to quantities that can be
calculated from the data that is already available at a network
node. If a node is not capable of the necessary computations, the
problem is also computation constrained, and probably harder.

• When a packet is sent, there is probably enough room in it to
transmit all relevant information, synchronizing sender and re-
ceiver. This is clearly better than transmitting only partial infor-
mation.

• The actual amount of intelligence needed in the receiving end
is often rather limited. Following an idea from [Georgiev and
Tilbury, 2006], each packet is often big enough that the sender
can calculate and transmit a long control signal trajectory, to be
used until a new packet is received.

The prototypical control loop in Figure 2.1 was designed based on
these considerations: All essential information is transmitted (the state
estimate x̂), and all necessary computations are carried out on both
sides of the network link.

• The Observer monitors the measurements y from the process.
Given that it knows the reference r as well as the state estimates
x̂ received by the Predictor, it can also calculate the control signal
u. Thus it knows everything that can be known about the process
state, which can be summarized in an optimal state estimate x̂,
typically using a Kalman filter.
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• Since the Observer possesses all information that is available, it
is in the best position decide at which events to transmit this
knowledge, i.e. the state estimate x̂, to the Predictor. The event-
triggering rule should be a function of the state of the system,
given by x̂ and x̂pred.

• At each event, the Predictor is synchronized with the Observer.
It then uses the dynamics of the process and the control signal
u to form the best prediction x̂pred of the process state given the
information available.

• The Controller uses state feedback from the predicted state es-
timate x̂pred to control the process. The state feedback design is
a prerequisite to designing the event-triggering rule of the ob-
server.

The Predictor could also make use of the information contained in the
absence of an event, but this is not crucial since the Observer will issue
an event if disturbances cause too big errors in the control signal or
process state.
The problem of when to trigger the sending of a state estimate x̂

can be seen as a special case of actuation-constrained control, where
the actuation is to update the state estimate in the receiving end.
Unlike the general actuation constrained control problem however, in
a deterministic setting it will always be optimal to transmit the state
estimate right away. Thus it is essential to include an element of non-
determinism in the process model.

2.2 Problem Formulations

Many different communication-constrained problem setups are possi-
ble, depending on how the system is modeled and which objective that
is chosen. One distinction is between estimation problems, where the
aim is to minimize the state estimation error at the receiving end, and
control problems, where the aim is to keep the process output close to
the reference value. The key difference is that in the estimation prob-
lem, every event resets the error to zero. If the control is fast enough
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to reset the process state to zero before the network becomes available
again, there is no great distinction between the control and estimation
problems.
Another distinction is between considering single or multiple con-

trol loops at the same time. The simplest setup is with a single control
loop, trying to achieve the best tradeoff between network utilization
and control error. The aim can be to save energy, or to free up commu-
nication bandwidth for some unspecified background traffic. A more
realistic problem is to consider all the users of the network at the
same time, typically multiple control loops. Now it is possible to cap-
ture the timing interactions between the loops; as opposed to the single
loop case, where the controller typically has the freedom to transmit a
packet whenever it is best suited.
Some more elaborate possibilities include using the network for

more than one link in the control loop or letting a number of sensors,
actuators, and controllers connected by a network cooperate to control
one big plant.

Models of Network Constraints

The communication constraint imposed by the data network can be
modelled in different ways, yielding different control problems. Since
modelling all the intricacies of a real data network leads to a very
complex problem formulation, a simplified model is usually desired.
Some formulations that have been used in the literature are:

Limited number of packets. Some authors have considered how to
maximize performance given a limited number of packets to be
used during a finite time, for estimation [Imer and Basar, 2005;
Rabi, 2006] and control [Rabi et al., 2008].

Minimize the number of packets. Generalizing to an infinite time
setting, a simple criterion is to seek the best tradeoff between
state cost and average frequency of events. This is done for first
order systems in [Åström and Bernhardsson, 1999; Rabi, 2006],
and for systems of arbitrary order, within a factor 6 of the optimal
cost, in [Cogill et al., 2006].

Sporadic control. A constraint that applies for most networks in
practice is that each time a packet is sent, the network, or at least
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the part of it involved, is busy for a certain time. This imposes
further restrictions on the control policy, and leads to a simple
model of the interaction between several control loops sharing
the same network.

The tradeoff between state cost and average frequency of events
under the sporadic constraint is treated in Paper I for the single
loop case. [Cervin and Johannesson, 2008] extends this setting
to deal with delay, jitter, and measurement noise. Paper II treats
the case of multiple loops sharing the same network.

Close limited number of control loops at one time. In [Hristu-
Varsakelis and Kumar, 2002], the communication constraint is
modelled such that only a limited number of control loops can be
closed at a given time. This is really a computation constraint,
since with a predictor-based controller at the receiving end of each
network connection, the communication could be cycled rapidly
between the loops to virtually close all loops at the same time.

Heuristic. One heuristic idea to keep network traffic down is to use
dead bands on the transmitted sensor signal [Vasyutynskyy and
Kabitzsch, 2007; Årzén, 1999], control signal [Sandee, 2006, ch.
5], or state estimate [Wang and Lemmon, 2008; Yook et al., 2002;
Otanez et al., 2002].

2.3 Approach of Papers I–II

The starting point of Papers I and II is [Åström and Bernhardsson,
1999]. The paper considers the policy of triggering a control event
whenever the state exceeds a certain threshold, which is shown to give
a factor of 3 improvement in the ratio of mean time between events and
state variance compared to periodic control, in the case of a continuous
time integrator with white noise disturbance. This is an aperiodic con-
trol policy in our terminology, meaning that events may be triggered
at arbitrary times.
From a real time systems point of view, however, a control task can

not be guaranteed service unless there is a minimum inter-arrival time
between events, which we denote as sporadic control. Papers I and II
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aim to answer the question: If we respect the practical constraint of
sporadic control, will there still be sizable benefits compared to periodic
control?
The sporadic constraint of a minimum inter-event time is crucial

in many practical implementation situations, such as controller tasks
implemented in a microprocessor or control signals communicated over
a network. An important aspect is that it is perhaps the simplest model
that accounts for the interaction of several controller sharing a common
resource, be it a microprocessor or a network.
In order to get as good understanding of the usefulness of sporadic

control as possible, the problem formulation has been streamlined to
the bare essentials that would still capture the sporadic control prob-
lem. By minimizing the number of parameters in the system, a good
overview can be gained by gridding over the few parameters left.

• A linear process with a Gaussian white noise disturbance allows
to use standard theory for linear stochastic processes in parts of
the calculations.

• The notion of impulse control streamlines the definition of an
event. Other pulse shapes can be accommodated by inserting a
linear prefilter at the control input, such as a prediction based
state feedback controller.

• The restriction to first order systems minimizes the number of
parameters, and allows to discretize the system into a Markov
chain without concerns for the curse of dimensionality. A further
parameter can be reduced by eliminating the time constant and
focusing on integrator processes.

• In the case of multiple control loops, the focus on N instances
of the same control loop helps reduce the number of parameters
drastically, since it should then be optimal to use the same pa-
rameters for all loops.

• The simple strategy of triggering an event whenever the magni-
tude of the state exceeds a certain threshold is used throughout.
This is shown to be optimal in the single loop case. In the mul-
tiple loop case, it is not optimal but seems to come close to the
optimal cost without introducing unnecessary complications.
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The main conclusions can be summarized:

• In the single loop case, the performance with sporadic control is
almost as good as with aperiodic if the aim is to reduce the rate
of events. If the aim is instead to reduce the state variance, a
limited gain is possible, while still reducing the rate of events
considerably.

• In the multiple loop case, the network time freed by one control
loop can be used by another. The result is that the performance
of sporadic control quickly approaches that of aperiodic control,
as the number of loops sharing the network increases.
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3

Control under Sensing

Constraints

This chapter discusses event-based control and estimation when the
constraint comes from sensors that only deliver measurements at cer-
tain events, such as with coarse quantization (see Figure 3.1). Un-
like the communication-constrained case, the optimal estimator or con-
troller can require very heavy online computations. The hardest part
of the estimation problem is to handle the information contained in
the absence of an event; if this is not needed, a time varying Kalman
filter gives a solution.
In the control case, the optimal control strategy requires dual con-

trol, where the controller may choose to excite the process so as to
extract more information. In practice, approximations are necessary to
arrive at any realistic estimator or controller.

Controller

Observer

Process

r
u y

x̂

quantized measurements

Figure 3.1 Control loop with quantized measurements.

31



Chapter 3. Control under Sensing Constraints

3.1 Problem Setup

The focus of this chapter is a particular problem formulation, depicted
in the control loop in Figure 3.1. Let the process have linear dynamics,
with a white noise disturbance,

dx = Axdt+ Budt + dw,

where x is the state, u the control signal, w is a Wiener process with
E(dw) = 0, E(dwdwT) = Rdt, and A and B are dynamics and control
input matrices.
The non-classical assumption lies in the measurement model,

y = �(x, ylast),

which can model e.g. quantization,

y= round(Cx),

or send-on-delta transmissions,

y =
{

ylast pCx − ylastp < ∆

Cx otherwise,

where ylast is the last measurement transmitted and C is a sensor
output matrix. The measurements may be taken continuously, or more
realistically, at periodic sampling instants.
Important for the estimation problem is the set X (y, ylast) of possible

process states x conditioned on that the measurement y was received,

X (y, ylast) =
{

x; �(x, ylast) = y
}

.

In many interesting cases, such as the examples above, the set X is
convex. (In both examples, it is a slab.) This convexity lends some
structure to the estimation problem, as is shown in Paper III.
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3.2 Solving the Estimation Problem

As mentioned earlier, searching for an optimal controller for the system
above generally includes the problem of dual control, where the con-
troller should excite the process for the sole purpose of gaining better
information about its state. This is known to be a very hard problem
in general [Feldbaum, 1960 1961]. To avoid this issue, we concentrate
on the estimation problem, applying certainty equivalence for control
even though separation does not hold.
The optimal solution to the state estimation problem is given by the

Bayesian estimator, described for the case of quantized measurements
in [Curry, 1970] and in Paper III. This involves keeping track of the
conditional probability density fX pY of the state conditioned on the
available measurements. The conditional density lives in an infinite
dimensional space, and its updates are described by partial differential
equations in continuous time, or convolutions, affine transformations
and pointwise multiplications in discrete time (see Paper III).
Some observations are:

• In general, the measurement y only gives the information that the
state x belongs to some set X , which in general extends along all
state dimensions. At events, however, when y changes value, by a
continuity assumption on the state x, it will lie on a specific part
of the boundary of X , a lower dimensional set.

Thus, events specify the state exactly along some state dimension,
and can be used in classical state estimators like the Kalman
filter. In discrete time, the assumption of known Cx at events is
reasonable with fast sampling.

• Although a measurement usually does not specify the state ex-
actly along any dimension, it is often specified within some abso-
lute error, such as in the examples above. Deriving an estimator
trying to minimize the gain from e.g. quantization error to state
estimates will give a lower bound on the achievable performance.
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3.3 Approximations for Estimation

To obtain a realistic estimator, some kind of approximation is neces-
sary. Some possibilities are:

Use the information in events only. A simple approximation is to
disregard the information contained in the absence of an event.
With Gaussian process noise, the conditional process state dis-
tribution now becomes Gaussian, allowing to use a time varying
Kalman filter, see [Kalman, 1960; Kalman and Bucy, 1961]. This
is also the approach taken in [Sandee et al., 2007], where the
control law is sampled as a function of distance instead of time.

Grid filtering. The state x can be discretized onto a finite grid, turn-
ing the stochastic state process into a Markov chain. The estima-
tion problem becomes solvable, but the necessary number of grid
points, and thus estimator states, increases exponentially with
the state dimension. Papers III and IV use this approach to try
to come close to the Bayesian estimator. The computations are
heavy but not impossible for the second-order system considered.

Particle filtering. Another approach to state estimation that relaxes
the assumptions of the Kalman filter is Particle filtering, where
the conditional state density is approximated by a cloud of point
densities, see [Arulampalam et al., 2002].

JMAP estimation. Another approximation is to use only the most
probable state trajectory given the measurements, resulting in
a joint maximum a posteriori (JMAP) formulation, see [Cox,
1964]. The advantage is that with log-concave noise densities,
the estimation problem becomes a convex optimization problem,
see [Schön et al., 2003]. In the case of Gaussian disturbances
and quantized measurements, the estimation problem becomes a
quadratic program, suitable for e.g. moving horizon estimation
[Rawlings and Bakshi, 2006]. Paper V starts from a JMAP
formulation, which is simplified to the point that it can be used
for real time control of a moving cart with quantized position
measurements, using a low-end microcontroller.

Worst-case measurement disturbances. Instead of modelling the
measurement function �, a possible relaxation is to specify an
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upper bound on the error pCx−yp. This leads to a worst-case anal-
ysis, or a mixed worst-case/stochastic analysis if stochastic dis-
turbances are still kept in the model. Estimation with worst-case
process and measurement disturbances is treated in [Bertsekas
and Rhodes, Apr 1971; Durieu et al., 2001]. Different approaches
to the mixed estimation problem are explored in [Hanebeck and
Horn, 2001] and in Paper IV. [Morrell and Stirling, 1988] treats
the mixed case when only the initial conditions have a worst case
component.

3.4 Approach of Papers III–V

Although the measurement situations discussed in this chapter can be
treated with some success using linear methods as long as the mea-
surement can be modeled with a bounded disturbance, the results can
be very conservative. With coarse quantization, the disturbances fed
into the feedback loop will either cause excessive noise in the control
signal or force the control loop bandwidth to decrease drastically. The
measurement disturbance may also drive the system into limit cycles.
The aim of Papers III–V is to find practical control strategies that can
deal with this type of sensing constraints.
In order to focus on the essentials, the problem formulations are

streamlined where possible:

• The recurring example process is a double integrator with noise
entering along with the control signal. This is a common process
to encounter in practice, exemplified by the moving cart studied in
Paper V. Also, it is the simplest process where a naive LTI estima-
tor can give arbitrarily large gain from measurement disturbance
to state estimate. Finally, the low order allows to approximate the
optimal Bayesian estimator with a grid filter, and allows simple
representation and manipulation of uncertainty sets in the state
space.

• At events, the measured value is considered to be known, or
known up to a Gaussian disturbance.

• The problems are formulated in discrete time to avoid technical
issues related to partial differential equations.

35



Chapter 3. Control under Sensing Constraints

The progression goes from Paper III, which mainly considers the
theoretical background, to Paper V, which is focused on a practical
control implementation that is verified experimentally.
Paper III studies the Bayesian estimator, showing that it is in some

sense well-behaved for e.g. the estimation problems considered in this
chapter. For instance, the conditional probability density of the state
is log-concave, which implies, among other things, that it essentially
has a global maximum, an indication that a simple estimator may be
useful in practice. A heuristically designed Kalman filter is shown to
work well in the example.
Paper IV proposes an estimator that is implementable for reason-

ably high order processes, reducing the dimension of the estimation
problem from infinite to a modest finite number. This is achieved
by incorporating elements of worst-case analysis and ellipsoidal over-
approximation of uncertainty sets. The estimator is shown to come
quite close to the performance of the grid filter approximated Bayesian
estimator in a double integrator simulation example.
Paper V finally derives an event-based state estimator so simple

that it can be used in real-time on a low-end microcontroller. Insights
from LTI control design are used as a guide to maintain robustness
in the control loop. The controller is applied to control a moving cart
with quantized position measurements and is shown in experiments to
have a dramatically higher tolerance for quantization than a similar
linear controller.
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4

Outlook

There is a wealth of possible directions to continue the work presented
in this thesis. Some interesting options are:

• Find new problem formulations:

– Which are the control problems where event-based control
has the greatest impact?

– Which relevant problem formulations are easiest to solve?

• Include the effect of packet losses in the network model. This
applies both to communication constrained control and send-on-
delta measurements.

• Investigate the robustness to modelling error between event-
based and linear strategies.

• Search for more efficient computational methods and better ap-
proximations; this would allow to treat higher order systems in
a better way.

For the communication constrained case:

• Extend the analysis to higher order systems and systems without
impulse control.

• Investigate if the controller can adapt to changing process noise
intensity.

• Investigate the coupling between the state feedback design and
event-triggering threshold design.
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Chapter 4. Outlook

• Search for a systematic means to optimize the controller param-
eters of multiple loops sharing the same network.

For the sensing constrained case:

• Analyze stability/robustness of the closed loop using state feed-
back from e.g. simplified JMAP estimators.

• Investigate if particle filtering can be fruitful for these problems.
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Paper I

Sporadic Event-Based Control
of First-Order Linear
Stochastic Systems

Toivo Henningsson Erik Johannesson
Anton Cervin

Abstract

The standard approach in computer-controlled systems is to
sample and control periodically. In certain applications, such as
networked control systems or energy-constrained systems, it could
be advantageous to instead use event-based control schemes. Ape-
riodic event-based control of first-order stochastic systems has
been investigated in previous work. In any real implementation,
however, it is necessary to have a well-defined minimum inter-
event time. In this paper, we explore two such sporadic control
schemes for first-order linear stochastic systems and compare the
achievable performance to both periodic and aperiodic control. The
results show that sporadic control can give better performance
than periodic control in terms of both reduced process state vari-
ance and reduced control action frequency.

cF2008 Elsevier Ltd. Reprinted, with permission, from Automatica,
44:11, pp. 2890–2895.
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1. Introduction

Digital feedback controllers are most often implemented using peri-
odic sampling, computation, and actuation. This approach enables the
control designer to utilize standard sampled-data system theory or to
discretize a continuous-time controller assuming a fixed sampling rate
and constant hold intervals [Åström and Wittenmark, 1997].
For some applications, however, event-based control schemes may

have an advantage over periodic schemes. In networked control applica-
tions, it could make sense to only transmit information when something
significant has occurred in the system, in order to save bandwidth. In
embedded applications, it may be essential to minimize the number of
control actions in order to save energy. In the application of inventory
control it seems rational to replenish stock only when it is low rather
than on a periodic basis, if there is a fixed transportation cost. Some
sensors such as rotary motion encoders only give new measurements
at ahead-of-time unknown events.
Event-based control as a technology is of course not new. Mostly,

however, it has been applied in an ad-hoc way. This can be attributed
to the lack of a comprehensive theory, which in turn can be explained
by the mathematical difficulties involved. A discrete-time formulation
can sometimes make it slightly easier to obtain a solution. Some recent
papers have thus solved optimal discrete-time estimation problems,
with limited [Imer and Basar, 2005] or event-triggered [Cogill et al.,
2006] measurements.
From a control-theoretic point of view, event-based control systems

can be viewed as hybrid systems. In this paper, we consider first-order
linear stochastic systems, where an exogenous random disturbance
(modelled as white noise) causes the process state to drift. The control
law generates discrete events when the state crosses certain bound-
aries. Hence, our system falls into the category of stochastic hybrid
systems as defined in [Hu et al., 2000].
Event-based control of first-order linear stochastic systems was

studied in [Åström and Bernhardsson, 1999]. It was shown that, com-
pared to periodic control, the output variance could be significantly re-
duced assuming the same mean time between events. The control was
realized by applying an impulse action whenever the magnitude of the
system state exceeded a certain threshold. This work was elaborated in
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[Rabi, 2006], which explores, among other things, event-based control
with piecewise constant control signals and level-triggered sampling.
From a real-time systems point of view, however, tasks triggered by

asynchronously generated events cannot be guaranteed service unless
there is a well-defined minimum inter-arrival time. For the controller
presented in [Åström and Bernhardsson, 1999] there was no such min-
imum inter-arrival time. In accordance with real-time systems termi-
nology [Buttazzo, 1997], we will refer to such a control policy as aperi-
odic.
In this paper, we explore the class of sporadic event-based con-

trollers for first-order linear stochastic systems. With a minimum inter-
arrival time T between events, such a controller can be guaranteed not
to consume more than a certain network bandwidth or CPU utiliza-
tion. Two sporadic controllers will be studied. The first controller mea-
sures the process state continuously and can take control actions at any
time, but no more often than every T seconds. The second controller
measures the process state every Ts seconds until a control action is
applied, and resumes measurements T seconds after the last control
action.

2. Problem Formulation

The process to be controlled is given by the linear stochastic differential
equation

dx = axdt + udt +σdw, x(0) = 0, (1)
where x is the state, u the control signal, w is a Wiener process with
unit incremental variance, a is the pole of the process, and σ > 0 is
the intensity of the process noise. The control signal is zero except at
events tk, when it is allowed to be a Dirac pulse of magnitude uk:

u(t) =
∞∑

k=0
δ (t− tk)uk. (2)

The controller chooses when to generate an event based on the state
of the system. After each event there is a period of inactive state of
duration T , when no new events can be generated, see Fig. 1.
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Active Inactive

Control
event

Time T
elapsed

Figure 1. Controller state transitions. Control events may only be generated
in the active state.

The performance is measured by the stationary state cost,

Jx = lim sup
t→∞

E
1
t

∫ t

0
x2ds,

and by the average control rate (or control cost),

Ju = lim sup
t→∞

E
1
t
Nu(0, t),

where Nu(t1, t2) is the number of control actions in the interval (t1, t2).
The total cost to be minimized is

J = Jx + ρJu, (3)

where ρ ≥ 0 is the relative cost of control actions.

Normalized Formulation

To reduce the number of free parameters we can use coordinate scaling
to fix σ = T = 1. The parameters that remain, a and ρ, suffice to
specify the problem up to coordinate scaling, and the original variables
can be retrieved from inverse scaling. The parameters σ and T will be
kept in the presentation when they add insight.
Let the transformed variables be described by

dt = Tdτ , dw =
√
Tdv, x = σ

√
Tx′

The dynamics become

dx′ = a′x′dτ + u′dτ + dv,
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where u′ =
√
Tσ−1u, and a′ = aT is the relevant measure of process

speed. The original costs are retrieved as

Jx = σ 2TJ′x, Ju = T−1J′u,

so ρ′ = ρ
σ 2T2

is the proper weighting after normalization. The normal-
ized problem is described by the parameters

a′ = aT , ρ′ = ρ

σ 2T2
.

3. Sporadic Control

3.1 General Observations

A sporadic controller is defined by two properties: when it generates
an event and what control signal is used at the event. It is easy to
see that an optimal controller for the problem above must satisfy the
following:

• At any event tk, the control signal uk is chosen to bring x to the
origin, i.e. uk = −x(tk − 0).

• When an event is permitted, the decision of whether to generate
one is a function only of the state x, and due to symmetry only
of the absolute value pxp.

• If an event should be generated when pxp = r, one should also be
generated whenever pxp ≥ r.

Thus, the optimal control policy is a threshold policy where an event
is triggered to bring x to zero whenever permitted and pxp ≥ r.
To find the optimal threshold r, we evaluate J as a function of

r in the closed loop system. To facilitate this, we first consider what
happens between events.

3.2 Evolution Between Events

Between events the control signal is known, and the system evolves
as a linear stochastic process. Assume that an event occurs at time
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tk = 0, and that we want to predict the evolution from that time, from
the state prior to the event x0 = x(0−). Let

m(t) = E
(
x(t)

)
, P(t) = E

(
x(t)2

)
−m(t)2

be the expected state trajectory and the expected state variance due to
process noise entering after the event respectively, with initial condi-
tions

m(0) = x0 + uk, P(0) = 0.
The distribution of x(t) will be Gaussian with mean m(t) and variance
P(t).
The expected state cost during the interval (0, t) can be expressed

as the sum of one contribution VP(t) from P and one Vm(t) from m
according to

∫ t

0
E
(
x(s)2

)
ds =

∫ t

0

(
P(τ ) +m(τ )2

)
dτ = VP(t) + Vm(t).

Since there is no feedback between events, u will enter the evolution
only through m(t). We find that

E(dP) = E(2xdx + dx2) − 2mE(dm)
= E(2x(axdt + udt) +σ 2dw2) − 2m(am + u)
= (2aP +σ 2)dt.

Starting from P(0) = 0, the solution is

P(t) =







(1− e2at) σ 2

−2a , a ,= 0,

σ 2t, a = 0.
(4)

Integrating, the process noise contribution to the state cost during the
interval (0, t) is

VP(t) =







σ 2

−2a

(

t− e
2at − 1
2a

)

, a ,= 0,

1
2

σ 2t2, a = 0.
(5)
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The expected trajectory evolves according to E(dm) = E(dx) =
(am+ u)dt, giving the prediction

m(t) = eatm(0) +
∫ t

0+
ea(t−τ )u(τ )dτ .

With no control during the interval (0, t), the cost is

Vm(t) =
∫ t

0
m(s)2ds = Q(t)m(0)2,

Q(t) =







e2at − 1
2a

, a ,= 0,

t, a = 0.
(6)

3.3 Sporadic Control with Continuous Measurements

We assume that the process state is measured continuously in the
active state. As soon as the state leaves the region pxp < r, an event is
generated and the controller is put in the inactive state for an interval
of length T .
Since the system is reset to the same state at each event, the ex-

pected cost and time from one event to the next are enough to find the
stationary costs, as

Jx =
Vactive + Vinactive
Tactive + T

, Ju =
1

Tactive + T
,

where Vactive and Tactive are the expected state costs and dwell times
during one period of active state, and Vinactive = VP(T). We will char-
acterize the behavior between two events by modifying the system so
that it starts at one event and is stopped at the next.
The expected cost and dwell time during one period of active state

can be found as

Vactive =
∫

x2F(x)dx, Tactive =
∫

F(x)dx, (7)

where F(x) =
∫∞
0 f (x, t)dt is the accumulated state density of the

density f (x, t) in the active state.
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The system enters the active state as

f (x, t = 0) =
{

ϕ(x), pxp < r
0, pxp ≥ r

where ϕ(x) is Gaussian with zero mean and variance P(T). The time
evolution is given by the Fokker-Planck equation (see e.g. [Åström,
1970], [Feller, 1971]) (with σ = 1):

� f
�t =

1
2
�2
�x2 ( fσ

2) − �
�x ( f ax) =

1
2
�2 f
�x2 − ax

� f
�x − a f ,

with absorbing boundary conditions f (±r, t) = 0. Since f (x, t) → 0 as
t→ ∞ we can integrate over t ∈ [0,∞) to find a differential equation
for F(x):

−ϕ(x) =
∫ ∞

0

� f
�t dt =

1
2
F′′(x) − axF′(x) − aF(x),

with boundary conditions F(±r) = 0. The solution exists as long as
ϕ(x) does, and can be found numerically with a linear ODE Boundary
Value Problem (BVP) solver or analytically as

F(x) = 2
∫ x

y=−r
ea(x

2−y2)
∫ 0

z=y
ϕ(z)dzdy, pxp ≤ r. (8)

Fig. 2 shows the costs as a function of r for the case T = σ = 1
and a ∈ {−0.5, 0, 0.5}. Other cases can be reconstructed by scaling as
explained in Section 2. We see an initial decrease in the state cost as
the threshold is increased, so the optimal threshold is non-zero even
when ρ = 0. We also see that both costs decrease as a decreases, since
the system becomes easier to control.
The cost functions can alternatively be found from

Vactive =
∫

ϕ(x)Vx(x)dx, Tactive =
∫

ϕ(x)θ(x)dx, (9)

where Vx(x) is the expected state cost until the next event starting
in the active state at x, and θ(x) is the corresponding expected dwell
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time (or first passage time, (see [Feller, 1971]). The value function
V (x) = Vx(x) − Jθ(x) can be used for dynamic programming.
When x = ±r, Vx(x) = θ(x) = 0, and when pxp < r,

E
(
dVx(x)

)
= −x2dt, E

(
dθ(x)

)
= −1dt

which together with the dynamics (1) gives

−x2dt = E
(

V ′xdx+
1
2
V ′′x dx

2
)

=
(

axV ′x +
1
2
V ′′
)

dt,

for Vx(x), and similarly for θ(x). The solutions can be found numeri-
cally with an ODE BVP solver, or as

(
Vx(x)
θ(x)

)

= 2
∫ r

y=x

∫ y

z=0
ea(z

2−y2)
(
z2

1

)

dzdy. (10)

We note that problem can be extended in a few ways that fit well
with our solution methods. Behavior in the inactive state only affects
the solution through Tinactive, Vinactive, and the state density when en-
tering the active state ϕ(x). Possible extensions include a delay τ ≤ T
from the issue of an event to the actuation of the control impulse, and
a stochastically varying inactive time T .

3.4 Sporadic Control with Discrete Measurements

We now assume that the process is sampled with the interval Ts ≤ T
in the active state. Any deviations of the state outside the threshold
between samples will go unnoticed. As before, when a deviation is de-
tected at time tk, the controller issues a control event and enters the
inactive state, where it stays for T seconds. We now let {tk} denote all
sampling instants, which progress as

tk+1 =
{

tk + Ts, pxkp < r,
tk + T , pxkp ≥ r.

To find the optimal threshold r, the cost is characterized as a func-
tion of r. To this end, we compute the stationary state distribution (see
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Figure 2. Cost functions for sporadic control with continuous-time measure-
ments assuming σ = T = 1. Top: State cost Jx as a function of threshold r.
Bottom: Control cost Ju as a function of threshold r. Both functions are plotted
for systems with a = −0.5, a = 0 and a = 0.5 respectively.
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Figure 3. Cost functions for sporadic control with discrete-time measurements
assuming σ = T = Ts = 1. Top: State cost Jx as a function of threshold r.
Bottom: Control cost Ju as a function of threshold r. Both functions are plotted
for systems with a = −0.5, a = 0 and a = 0.5 respectively.

[Feller, 1971]) at the sampling instants. Between sampling instants, the
state evolves as

xk+1 =
{

eaTsxk +wk(Ts), pxkp < r,
wk(T), pxkp ≥ r,

(11)
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where wk(t) is a Gaussian random variable with zero mean and vari-
ance P(t). The stationary density always exists since there is a positive
probability to go from any state x to any state interval (x1, x2) in one
step, and for pxp ≥ r the density after any time step falls off as a Gaus-
sian with variance P(T). The accumulated state cost from time tk to
time tk+1 is given by

Vstay = Q(Ts) E
{

x2k

∣
∣
∣ pxkp < r

}

+ VP(Ts) (12)

if the controller stays in the active state and by

Vexit = VP(T) (13)

if the controller enters the inactive state.
Finally, assuming stationarity, the costs become

Jx =
pstayVstay + pexitVexit
pstayTs + pexitT

, Ju =
pexit

pstayTs + pexitT

where
pstay = Prob {pxkp < r} = 1− pexit.

The stationary distribution of xk can be found numerically by discretiz-
ing the state space and then iterating the distribution according to (11)
until convergence.
Fig. 3 shows the costs as a function of r for the case T = Ts = σ = 1

and a ∈ {−0.5, 0, 0.5}. Here, the state cost increases monotonically
with r. With Ts < T we would have an initial decrease, approaching the
behavior for continous measurements as Ts/T → 0. The control action
frequency Ju falls off faster with increasing threshold than for the
continous measurement case, since x is checked against the threshold
less often with discrete measurements. As expected, both costs decrease
with a.
Alternatively, the expected state cost Vx(x) and dwell time θ(x)

until the next event starting from state x can be iterated until conver-
gence. As in the continuous case, we could extend the problem formu-
lation with actuation delay and stochastically varying inactive time.
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4. Comparison of Control Schemes

Sporadic control with continuous and discrete measurements (with
Ts = T) will now be compared to periodic and aperiodic control. We
first discuss how to make the comparison.

4.1 Periodic and Aperiodic Control

An aperiodic controller sets the process state x to zero whenever pxp ≥ r
using an impulse control action [Åström and Bernhardsson, 1999]. The
cost functions can be found by letting ϕ(x) approach a unity Dirac pulse
in (8) or (9), yielding

Jx = Vactive/Tactive, Ju = T−1active.

We assume that periodic control is also implemented with impulse
control action, such that x is periodically reset to zero. The sampling
interval is restricted to be no shorter than for the sporadic schemes.
The costs become

Jx = VP(T)/T , Ju = T−1. (14)

4.2 Preliminaries

For the sporadic controllers, minimization of the loss function J for a
given ρ determines an optimal threshold r, which maps to an optimal
average event rate Ju. The same holds for aperiodic control. In peri-
odic control, however, there is no threshold. Instead, ρ determines the
optimal sampling interval. Hence, we can parametrize controllers from
all four classes by average event rate.
The four controllers differ by the constraints on when they can gen-

erate control events. A scheme with fewer restrictions will be harder
to implement but give a lower cost J. As pinactive = JuT → 0 and
events become rare, sporadic control should approach aperiodic since
T becomes negligible. When ρ → 0, sporadic control with discrete mea-
surements and Ts = T will approach periodic since there remains no
incentive to omit an event.
When a < 0, Jx and therefore J is bounded by the variance achieved

in open loop. As ρ increases, all controllers will generate fewer events
so that Ju → 0, and ultimately Jx will approach a maximum. The limit
can be found from (14), where Jx → −1/2a as T →∞.
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Figure 4. Trade-off between state cost Jx and control cost Ju for the four
classes of controllers. Note the different vertical scales.

4.3 Comparison

The trade-off between state variance and average event frequency is
made explicit in Fig. 4, where Jx is plotted against Ju for the four
controllers. The results for σ ,= 1 are found by scaling Jx by σ 2. It
is seen that the controllers are strictly ranked in performance by how
much freedom they have to generate events, and that the sporadic
controller with discrete measurements always outperforms the periodic
one.
Fig. 4 also shows what we consider the main advantage of event-

based control: fewer events are needed for the same state cost. With
periodic control, the variance increases quite rapidly with lower sam-
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pling rate. However, with sporadic control the average control rate can
be reduced much further without the same penalty. For example, when
a = 0.5 the average control rate may be decreased by about 40 % for
only slightly more variance, using sporadic control with discrete mea-
surements.
A notable result is that for sporadic control with continuous mea-

surements, Jx can be made somewhat smaller with fewer events. This
is also seen in the upper plot of Fig. 2, where Jx attains a minimum for
r > 0. Apparently, there is a hidden cost in issuing a control event, due
to the risk that large state errors will arise while in the inactive state.
This phenomenon is absent for discrete measurements and Ts = T
since in this case events are generated independent of past actions.
Fig. 5 shows the optimal achievable cost J∗ for the four controllers.

It is notable that for the stable system a = −0.5 the optimal periodic
controller chooses to never sample when ρ ≥ 1, while the sporadic
controllers just raise their thresholds and remain ready to deal with
large disturbances.

5. Higher Order Systems

So far, we have only considered first order systems. When raising the
state dimension, there are many different generalizations worthy of
study, depending on which is the constraining resource that motivates
using event based control. We will briefly discuss some possibilities.

5.1 Formulations

The dynamics and cost Jx are naturally extended to

dx = Axdt+ Budt + dw,

Jx = lim sup
t→∞

E
1
t

∫ t

0
xTQxds.

where now x,w and possibly u are vectors. One natural generalization
of the measurement equation is

dy = Cxdt + dwm,
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Figure 5. Optimal achievable cost J∗ for the four classes of controllers. Note
the different vertical scales.

where dwm is measurement noise.
The possible forms of the controller, actuators, and sensors are more

varied. Some scenarios are:

Communication constraints. Events are packets sent over a com-
munication channel, from an observer at the sensor to a controller
at the actuator. The observer decides when to send a state esti-
mate to the controller, which predicts the plant state in open loop
in between. Each event resets the prediction error.

Actuator constraints. The actuator only generates pulses of certain
shapes, with some cost per pulse. The controller plans for an
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optimal and possibly long sequence of pulses, which is sensitive
to timing.

Sensor constraints. The sensor only gives measurements under
some conditions, e.g. at or beyond some thresholds. The control
problem becomes a state estimation problem with nonstandard
measurement information, for which the Kalman Filter is not
optimal.

Processing power constraints. A simple control law is needed. The
best bet is probably to postulate one and optimize over a few
parameters.

We can consider a single control loop, or multiple loops sharing the
same limited resource. The loops can be independent, or cooperate
to control a single plant. It seems unreasonable that the controllers
should know each others’ state, especially with communication con-
straints.

5.2 Methods

The discretizations applied in this paper can be generalized to higher
state dimensions, but become impractical beyond a few states due to
the curse of dimensionality. Sometimes the dimension can be reduced
somewhat; e.g. if the state is estimated with a stationary Kalman Fil-
ter, the distribution of the actual state is known conditioned on the
estimate. Otherwise, nonlinear process dynamics come at a modest
additional cost. Optimal stochastic control is in principle applicable to
both the communication and actuation constrained scenarios.
Beyond a few states, simpler formulations are necessary for a solv-

able problem. This may include reducing the amount of uncertainty
in the problem. A communication constrained problem easily becomes
pointless with too little uncertainty, while an actuator constrained
problem may still preserve its major features.

6. Conclusions

In some applications there is a cost related to the execution of a con-
trol signal, regardless of the magnitude of that signal. If that cost is
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included in the performance objective of the controller, it will be mean-
ingful to reduce the frequency of control actions. This may be accom-
plished with a periodic controller by lengthening the sampling interval.
However, the penalty in terms of increased process state variance is
significant. Trying to improve the tradeoff by not acting on small state
errors naturally leads to the notion of event-based control.
In this paper, we have shown that sporadic control can provide a

better tradeoff between control objectives as well as better overall con-
trol performance than periodic control, when there is a fixed cost of
control actions. It is noted that the average frequency of control events
can be reduced with only a small increase in state variance. Moreover,
we show that sporadic control can actually reduce both the average fre-
quency of control events and the state variance simultaneously. When
the objective is to reduce the frequency of events as well as the state
variance, the sporadic control schemes presented here even perform
almost as well as aperiodic control, while respecting a prespecified
shortest inter-event time.
Event-based control has an additional threshold parameter that

should scale with the size of disturbances. If they are bigger than ex-
pected, the control approaches periodic control. If they are smaller, the
theshold will act as a tolerable margin of error. Both responses are
reasonable in the face of a mismatched disturbance intensity.
Obviously, to implement sporadic control where periodic control is

currently used requires some changes. Unless the hardware supports
continuous measurements, discrete measurements are an easier op-
tion and approach the continuous performance quite fast if one can
measure more often than control. The change from periodic to spo-
radic control with the same measurement and control interval should
require minimal modifications.
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Paper II

Scheduling of Event-Triggered
Controllers on a Shared Network

Anton Cervin Toivo Henningsson

Abstract

We consider a system where a number of independent, time-
triggered or event-triggered control loops are closed over a shared
communication network. Each plant is described by a first-order
linear stochastic system. In the event-triggered case, a sensor at
each plant frequently samples the output but attempts to commu-
nicate only when the magnitude of the output is above a thresh-
old. Once access to the network has been gained, the network is
busy for T seconds (corresponding to the communication delay
from sensor to actuator), after which the control action is ap-
plied to the plant. Using numerical methods, we compute the
minimum-variance control performance under various common
MAC-protocols, including TDMA, FDMA, and CSMA (with ran-
dom, dynamic-priority, or static-priority access). The results show
that event-triggered control under CSMA gives the best perfor-
mance throughout.

cF2008 IEEE. Reprinted, with permission, from Proceedings of the 47th
IEEE Conference on Decision and Control (CDC08), Cancún, Mexico,
December 2008.

63



Paper II. Scheduling of Event-Triggered Controllers on a . . . Network

1. Introduction

Networked feedback control systems are normally implemented using
periodic sampling at the sensor nodes, combined with either time-
triggered or event-triggered communication between the sensor, con-
troller, and actuator nodes. Periodic sampling allows for standard
sampled-data control theory (e.g. [Åström and Wittenmark, 1997]) to
be used, although network-induced delay and jitter may limit the per-
formance [Cervin et al., 2003].
In recent work [Åström and Bernhardsson, 1999; Hristu-Varsakelis

and Kumar, 2002; Rabi, 2006; Johannesson et al., 2007], event-trig-
gered sampling has been proposed as a means for more efficient re-
source usage in networked control. The basic idea is to sample, com-
municate, and control only when something significant has occurred
in the system. For first-order stochastic systems, it has been shown
that event-based sampling can significantly reduce the output variance
and/or the average control rate compared to periodic sampling [Åström
and Bernhardsson, 1999]. A similar idea is to introduce a deadband
in the sensor. The trade-off between network traffic and control per-
formance for higher-order control loops with deadband sampling was
studied in [Otanez et al., 2002].
When multiple control loops are closed over a shared medium (like

a communication bus or a wireless local-area network), a multiple ac-
cess method such as TDMA (time division multiple access), FDMA
(frequency division multiple access), or CSMA (carrier sense multiple
access) is needed to multiplex the data streams. It is clear that the
choice of access method can have a great impact on the control perfor-
mance. Intuitively, TDMA should be suitable for time-triggered control
loops, while CSMA, being a random-access method, would seem to be
well suited for event-based control. FDMA provides a way to share
the bandwidth without regard to synchronization among the loops,
which could potentially be beneficial for both time-triggered and event-
triggered control. At the same time, less bandwidth per control loop
means longer transmission times and hence longer feedback delays.
Multi-loop networked control systems—taking into account issues

such as clock synchronization, medium access, communication pro-
tocols, imperfect transmissions, delay and jitter, and event-triggered
sampling, as well as the control algorithms themselves—are very com-
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S1 S2

S3

A1 A2

A3

Plant 1 Plant 2

Plant 3

Figure 1. Multiple control loops are closed over a shared communication
medium. The controller in each loop may be co-located with either the sensor
(S) or the actuator (A).

plex systems. To facilitate analysis, great simplifications are needed.
In this paper, we study a scenario where a number of independent
control loops are closed over a shared network (see Fig. 1). Using very
simple models for the plants, controllers, and network arbitration, we
are able to numerically compute and compare the minimum-variance
control performance under the various medium access protocols. In
particular, we apply recent results in sporadic event-based control of
first-order systems [Johannesson et al., 2007; Cervin and Johannesson,
2008] to model and analyze the interaction between control loops and
medium-access schemes. Although far from an exhaustive study, the
results offer some interesting insight into the suitability of the studied
MAC-protocols for networked control.
The remainder of this paper is outlined as follows. In Section II,

the system description is given. Section III reviews how to calculate
the stationary variance under time-triggered and event-triggered sam-
pling. In Section IV, we model the medium access schemes and describe
the co-design problem associated with each scheme. Section V reports
numerical results for symmetrical integrator plants. In Section VI, we
digress and compare the achievable performance under global vs lo-
cal scheduling decisions. Section VII contains a case study with three
asymmetric plants. Finally, the conclusions are given in Section VIII.
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2. System Description

We consider a system where N control loops are closed over a shared
network. Each plant i ∈ 1 . . .N is described by a first-order stochastic
differential equation

dxi(t) = aixi(t)dt+ ui(t)dt+σ idwi(t), xi(0) = 0, (1)

where xi is the state, ai is the process pole, ui is the control signal, wi
is a Wiener process with unit incremental variance, and σ i > 0 is the
intensity of the noise. All noise processes are assumed independent.
A sensor located at each plant i takes samples of the plant state at

certain discrete time instants {ti,k}∞k=0:
xi,k = xi(ti,k). (2)

The sampling can be either time-triggered or event-triggered, depend-
ing on the medium access scheme. After obtaining a sample, the sensor
tries to initiate a control event by transmitting the value to the actu-
ator. The network is however a shared resource that only one control
loop may access at a time1. If two or more sensors attempt to transmit
at the exact same time, a resolution mechanism determines who will
gain access to the network. (The other nodes will simply discard their
samples.) Once access has been gained, the network stays occupied for
T seconds, corresponding to the transmission delay from sensor to ac-
tuator. During this interval, no new control events may be generated
(see Fig. 2).
The controller in each loop may be co-located with either the sensor

or the actuator; the network delay is assumed constant and known, so
it does not matter which. The overall goal is to minimize the total cost

J =
N∑

i=1
Ji, (3)

where the performance of loop i is measured by the stationary state
variance

Ji = lim
t→∞
1
t
E
∫ t

0
(xi(s))2ds. (4)

1This is not true under FDMA. Under FDMA, we rather assume that each control
loop has access to its own private network with lower bandwidth.
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Idle Busy

Control
event

Time T
elapsed

Figure 2. Network state transitions. Control events may only be generated in
the idle state.

In response to a sample taken at time ti,k, the actuator is allowed
to emit a Dirac pulse of size ui,k. It is clear (see [Cervin and Johannes-
son, 2008]) that minimum variance is achieved by driving the expected
value of the state at time ti,k+T to zero, implying the deadbeat control
law

ui,k = −eaiT xi,k. (5)
The control signal generated by actuator i is hence given by the pulse
train

ui(t) =
∞∑

k=0
δ
(
t− ti,k − T

)
ui,k. (6)

While it may seem unrealistic to allow Dirac controls, it allows for a
fair and straightforward comparison between time-triggered and event-
triggered control. The Dirac pulse may be replaced by an arbitrary
pulse shape of length no longer than T at the expense of slightly more
complicated cost calculations.

3. Evaluation of Cost

We here briefly review how to compute the cost (4) under time-trig-
gered and event-triggered sampling with a delay and minimum inter-
event interval T . For more details, see [Åström, 1970; Johannesson
et al., 2007; Cervin and Johannesson, 2008]. For clarity, we here drop
the plant index i.

3.1 Time-Triggered Sampling

Under time-triggered sampling, the stationary variance (4) can be cal-
culated analytically. The sampling instants tk are known a-priori and
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do not depend on the plant state, which will be normal distributed at all
times. The (possibly irregularly) sampled closed-loop system becomes

xk+1 = wk, (7)

where {wk}∞k=0 are independent, zero-mean Gaussian variables with
variance P(tk+1 − tk), where

P(t) =







σ 2
e2at − 1
2a

, a ,= 0,

σ 2t, a = 0.
(8)

(Note that the delay does not affect the state distribution at the sam-
pling instants.) Sampling the cost function gives

E
∫ tk+1

tk

x2ds = Q(T)E(xk)2 + Jv(tk+1 − tk), (9)

where

Q(T) =
{
e2aT−1
2a , a ,= 0,
T , a = 0

(10)

is the state weight due to delay, while

Jv(t) =
{
e2at−2at−1
4a2 , a ,= 0,

t2

2 , a = 0
(11)

accounts for the inter-sample noise (see e.g. [Åström, 1970]). Finally,
we know that E x2(tk) = P(tk− tk−1). Using the expressions above, it is
straightforward to evaluate the cost under any static cyclic schedule.

3.2 Event-Triggered Sampling

Under event-triggered sampling, control events may only be generated
when the network is idle and px(t)p ≥ r, where r is the event detection
threshold. The state will no longer be Gaussian, which complicates
the calculation of E x2(tk). A useful and realistic approximation is to
assume that the sensor does not measure x continuously, but rather
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uses fast sampling with the interval Ts ≪ T . The (irregularly) sampled
closed-loop system then becomes

xk+1 =







eaTsxk +wk(Ts), pxkp < r
wk(T), pxkp ≥ r & won
eaT xk +wk(T), pxkp ≥ r & lost

(12)

where {wk(t)}∞k=0 is a sequence of independent, zero-mean Gaussian
variables with variance P(t); “won” means that the sensor node won
the network arbitration, while “lost” means the opposite. Letting the
system run in open loop between the fast samples, the expressions
(8)–(11) for the sampled cost are still valid.
The update equation (12) is useful both for calculation of the

state distribution and for Monte Carlo simulations. Because of the
shared medium, the stationary probability distributions of x1, . . . , xN
are not independent. To evaluate the cost using the first approach, it is
hence necessary to find the multi-dimensional probability distribution
f (x1, . . . , xN). This can in theory be done by gridding the state space
and then iterating the distribution according to (12) until convergence.
In practice, this can be done for a few dimensions, forcing us to rely on
Monte Carlo simulations for N ≥ 3 in this paper.

4. Medium Access Schemes and Control Policies

In this section, we present simple scheduling and control models for
three medium access schemes and discuss how to derive optimal sched-
ules and control policies.

4.1 TDMA (Time Division Multiple Access)

In TDMA (see Fig. 3), a cyclic access schedule is determined off-line.
In each slot in the schedule, one control loop has access to the network
for T seconds. Since there is no cost associated with using the network
in our problem formulation, it is obvious that no slot should be left
empty, and that the sensor should always sample and transmit in its
slot. Hence, the optimal control scheme associated with TDMA will be
a pure time-triggered scheme.
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1 12 3 1 2 3 2 3

Figure 3. Time division multiple access (TDMA). A static cyclic schedule de-
termines which sensor node samples and transmits in which time slot.

11

2 2

3 3 3

Figure 4. Frequency division multiple access (FDMA). The bandwidth is di-
vided into fixed shares, giving each loop a dedicated channel. Within each share,
an event-triggered control loop is implemented.

For symmetric plants (with ai = a, σ i = σ , ∀i), a simple round-
robin schedule is optimal. For asymmetric plants, an optimal schedule
of length n can be found by evaluating the resulting cost for each pos-
sible schedule. (The search for an optimal schedule can be done more
efficiently. The LQ-optimal cyclic scheduling and control problem for
multiple higher-order plants is treated in [Rehbinder and Sanfridson,
2004].)

4.2 FDMA (Frequency Division Multiple Access)

In FDMA (see Fig. 4), the communication bandwidth is divided be-
tween the nodes, such that each loop receives a fixed fraction Ui of the
total capacity

∑N
i=1 Ui = 1. Accounting for the lower transmission rate,

the delay from sensor i to actuator i is now T/Ui.
It is previously known [Johannesson et al., 2007] that event-trig-

gered sampling with a minimum inter-event interval T is superior
to time-triggered sampling with the interval T , also when there is
delay in the system. Hence, event-triggered control is the better choice
for FDMA. The optimal event detection threshold and the associated
optimal cost can be found numerically by sweeping r and computing
the cost for each value.
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2 1 2 3 1 1 2 3

Figure 5. Carrier sense multiple access (CSMA). Each loop is event-triggered.
A static, dynamic, or random priority function determines who will transmit if
many nodes try to access the network at the same time.

For symmetric plants, an even division of the bandwidth is optimal.
For asymmetric plants, the shares Ui can be found using optimization.
Since the cost functions Ji(Ui) are smooth and strictly decreasing, it is
feasible to use standard nonlinear optimization tools to find the shares.

4.3 CSMA (Carrier Sense Multiple Access)

In CSMA (see Fig. 5), any node may try to access the network as soon
as it becomes idle, making it suitable for event-triggered control loops.
If many nodes want to transmit at the same time, some resolution
mechanism must be used. In shared-medium Ethernet for instance, the
collision detection and random back-off strategy will grant a random
node access to the network (after some delay). In the Controller Area
Network (CAN) on the other hand, access can be resolved based on
either fixed (node) priorities or dynamic (message) priorities.
We will consider three different resolution mechanisms:

Random (CSMA-rand). As in Ethernet or WLAN, a random node
will eventually win the contention. For simplicity, it is assumed that
the resolution time is very small compared to the transmission time
so that it can be neglected. The overall performance is optimized by
selecting suitable event detection thresholds for the control loops. This
is done by sweeping ri and computing the cost for each value.

Static priority (CSMA-statprio). Each sensor node is assigned a
static priority, which determines who will win the arbitration. Such a
scheme can be useful for asymmetric plants where it is known that
some plants are more sensitive to long access delays than others.

Dynamic Priority (CSMA-dynprio). For symmetric first-order
plants, it can make sense to use the control error as a dynamic priority.
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(This idea was put forth in [Walsh et al., 1999], where it was called
the Maximum-Error-First (MEF) scheduling technique.) It is assumed
that the network interface provides a mechanism (such as message
priorities in CAN) so that priority access can be given to the node with
the largest control error. It is obvious that this scheme will be better
than random priorities. Again, the overall performance is optimized by
selecting event thresholds for the loops.

5. Results for Symmetric Integrator Plants

We here present numerical results for N symmetric integrator plants
with ai = 0 and σ i = 1. We assume that the network bandwidth scales
in proportion to the number of plants, such that the transmission delay
from sensor to actuator is T = 1/N when the full bandwidth is utilized.
For the numerical computations, we assume fast sampling with Ts =
T/100.
Under TDMA, the optimal cyclic transmission schedule is

{1, 2, . . . ,N}. The sampling period of each loop is 1 and the delay
is T = 1/N, giving the following exact value for the cost per loop:

Ji =
(
Jv(T) + Q(T)E x2(tk)

)
/T = 1

2
+ 1
N
. (13)

Under FDMA, each loop receives a share Ui = 1/N of the band-
width, implying the same performance regardless of the number of
nodes. Computing the stationary state distribution under event-trig-
gered sampling for different values of r, we find the optimal threshold
r = 1.06, yielding the cost

Ji = 1.40. (14)

For the CSMA case, we use Monte Carlo simulations to find the
stationary variance of the plants under random or dynamic priority
access. For each N, we sweep r to find the optimal threshold and the
corresponding optimal cost. Each configuration was simulated for 108

time steps, corresponding to in the order of 106 simulated seconds.
(The simulation time was around 15n seconds for each configuration
on an Intel Core 2 CPU @1.83 GHz.)
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Figure 6. Optimal cost per node vs number of nodes when controlling sym-
metric integrator plants.

The optimal costs under the various policies described above for
N = 1 . . . 10 nodes are reported in Fig. 6, and the optimal thresholds
under CSMA are shown in Figs. 7. It is seen that TDMA outperforms
FDMA, except for N = 1 where sporadic event-based control has the
edge over periodic control. In turn, both variants of CSMA outperform
TDMA, CSMA with dynamic priorities performing slightly better than
CSMA with random access. The results are not surprising, since CSMA
with event-triggered sampling dynamically allocates the bandwidth to
the loop(s) most in need. A higher event threshold is needed for the
random priority scheme in order to be more selective about which plant
to control.
It is possible to reason about what happens when N → ∞ under

the various access schemes. Under TDMA, the performance approaches
Ji = 1/2, while under FDMA, the performance is unaffected by N and
is constant Ji = 1.40. CSMA approaches aperiodic event-based control
[Åström and Bernhardsson, 1999] when N → ∞, regardless of the
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Figure 7. Optimal threshold vs number of nodes for CSMA with random or
dynamic priority access when controlling symmetric integrator plants.

priority scheme used. For integrator plants, the optimal cost per plant
approaches Ji = 1/6. Hence, CSMA asymptotically gives 67% lower
cost than TDMA and 88% lower cost than FDMA when the number of
control loops increases. Equivalently, one can reason about the network
capacity needed to maintain the same performance as the number of
integrator plants grows. Here, again, CSMA will asymptotically require
67% less bandwidth than TDMA and 88% less bandwidth than FDMA
to achieve the same cost per loop.

6. Local vs Global Knowledge

One important assumption in our model is that the decisions as to
whether to transmit or not are taken locally at each sensor node. It
was seen above that event-triggered control under CSMA with dynamic
priority access gave the lowest cost among all the considered schemes.
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Figure 8. Event-triggered control of two integrators: optimal global and local
policies.

It is interesting to compare the performance to a controller with global
knowledge of the plant states. Such a controller would of course not be
implementable in a networked setting but can provide a lower bound
on the achievable cost.
We consider the special case of N = 2 symmetric integrator plants

with the minimum inter-control interval and delay T = 1/2. The opti-
mal local scheme under CSMA with dynamic priorities was computed
above, giving the optimal cost Ji = 0.834 for the threshold r = 0.85.
For the global scheme, we gridded the plant state space in the two
dimensions and applied dynamic programming to derive the optimal
control policy. For each state (x1, x2), the controller has the choice to
control to the first plant, the second plant, or to idle. The resulting
optimal global control policy is shown in Fig. 8, together with the lo-
cal CSMA policy with dynamic priorities. It is seen that the control
policies are quite similar. One difference is that the global controller
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will idle if both plants have about the same error magnitude, waiting
to see where the processes will go next. The resulting cost under the
global policy is found to be Ji = 0.828, which is only one percent lower
than the cost for the optimal local scheme.

7. Results for Three Asymmetric Plants

As a final numerical example, we consider a case where three asymmet-
ric first-order systems should be controlled: one asymptotically stable
plant, one integrator, and one unstable plant. The plant parameters
are σ i = 1 and

a1 = −0.5, a2 = 0, a3 = 0.5.

Further, we let T = 1/3. Here, intuition tells us that more resources
should be allocated to the unstable plant (Plant 3) while the stable
plant (Plant 1) can manage with less resources.
For TDMA, the total cost is computed for all possible cyclic sched-

ules of length n = 2, . . . , 12. Since the unstable plant must be controlled
at least once per cycle, we fix the first entry in the schedule to 3, leav-
ing about 3n−1 schedules to test per value of n (including “necklace
duplicates”). The optimal schedule for each value of n is reported in
Table 1. It is seen that the best schedule is of length 6: {3, 2, 3, 2, 3, 1},
giving a total cost of J = 2.56. In the optimal schedule, the stable plant
is controlled once per cycle, the integrator twice, and the unstable plant
three times per cycle.
For FDMA, we optimize over the bandwidths U1, U2, U3 to find the

lowest total cost. For each plant, we first approximate the cost function
Ji(U ) by sweeping r for each value of U . We then apply nonlinear
optimization to find the optimal shares, yielding U1 = 0, U2 = 0.397,
U3 = 0.603 and the total cost J = 3.49. It is interesting to note that
the long delay associated with FDMA apparently makes it pointless to
control the stable plant.
For CSMA, we consider two arbitration mechanisms: random access

and static priorities. For the random access scheme, we sweep the
three thresholds to find the minimum cost, giving r1 = 1.12, r2 = 0.92,
r3 = 0.77, and the total cost J = 1.96. The three loops occupy the
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Table 1. Optimal cyclic schedules for the three asymmetric plants.

Length n Cyclic schedule Total cost J

2 {3, 2} 2.651

3 {3, 3, 2} 2.708

4 {3, 2, 3,1} 2.588

5 {3, 2, 3,2, 1} 2.650

6 {3, 2, 3,2, 3, 1} 2.563

7 {3, 2, 3,3, 2, 3,1} 2.589

8 {3, 2, 3,2, 3, 2,3, 1} 2.567

9 {3, 2, 3,3, 2, 3,2, 3, 1} 2.591

10 {3, 2, 3,2, 3, 1,3, 2, 3,1} 2.573

11 {3, 2, 3,3, 2, 3,1, 3, 2,3, 1} 2.588

12 {3, 2, 3,2, 3, 1,3, 2, 3,2, 3, 1} 2.563

network on average 14%, 22%, and 38% of the time, while it is idle
26% of the time. The relative shares for the loops are not that different
from the ones generated by the optimal cyclic schedule.
For the static priority CSMA case, we assume that the unstable

plant has the highest priority, the integrator has medium priority,
while the stable plant has the lowest priority. Again sweeping the three
thresholds and evaluating the costs gives the optimal thresholds r1 =
0.95, r2 = 0.87, r3 = 0.77, and the total cost J = 1.94. The priorities
allow for tighter thresholds to be utilized. The three loops occupy the
network on average 15%, 25%, and 38% of the time, while it is now
idle 22% of the time.
The results under the various access schemes are summarized in

Table 2. We can again conclude that CSMA can provide better control
performance than both TDMA and FDMA. For this example, CSMA
gives 23% percent lower total cost than TDMA and 44% lower cost
than FDMA. We further note that there is only a very modest im-
provement by using priorities, which is good news for wireless systems
where random access schemes may be the only realistic choice for the
implementation.
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Table 2. Optimal costs for the three asymmetric plants under the various
medium access schemes.

Scheme J1 J2 J3 J = P

Ji

TDMA 0.690 0.889 0.984 2.56

FDMA 1.000 1.177 1.319 3.49

CSMA-rand 0.554 0.618 0.772 1.94

CSMA-statprio 0.562 0.641 0.723 1.92

8. Discussion and Conclusion

This paper has studied a prototypical networked control co-design prob-
lem, where both the control policy and network scheduling policy have
been taken into account. Although very simple mathematical models
were used, some interesting conclusions regarding the various medium
access schemes could be drawn. CSMA with event-triggered sampling
was the superior scheme in all presented examples, while FDMA per-
formed poorly due to the long transmission delay.
The simulation-based design approach adopted in this paper is con-

ceptually easy to extend to higher-order plants and controllers. We
have noted that the simulation time required to evaluate the cost with
a given accuracy grows slower than the number of states in the system.
Rather, the main problem with more realistic systems is the number of
controller parameters that need to be optimized. For higher-order sys-
tems, it is probably necessary to impose restrictions on the controller
structure and only optimize over a small subset of the parameters.
Another interesting approach would be to develop a way to char-

acterize the performance of an event-triggered control loop as a func-
tion of its network resource usage pattern. Integrating several control
loops, it should be possible to provide guarantees on the worst-case
performance of each controller. Apart from higher-order plants and
controllers, several other extensions to the work in this paper are pos-
sible to imagine, including

• having the controller located in a separate node, meaning that
both the transmission from sensor to controller and from con-
troller to actuator need to be scheduled.
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• having more detailed models of real network protocols, including,
e.g., the random back-offs in CSMA/CD.

• allowing MIMO systems, where each sensor and actuator may
reside on a different node in the network.

• modeling measurement noise, variable transmission times, and
lost packets.
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Log-concave Observers

Toivo Henningsson Karl Johan Åström

Abstract

The Kalman filter is the optimal state observer in the case of
linear dynamics and Gaussian noise. In this paper, the observer
problem is studied when process noise and measurements are gen-
eralized from Gaussian to log-concave. This generalization is of
interest for example in the case where observations only give in-
formation that the signal is in a given range. It turns out that the
optimal observer preserves log-concavity. The concept of strong
log-concavity is introduced and two new theorems are derived to
compute upper bounds on optimal observer covariance in the log-
concave case. The theory is applied to a system with threshold
based measurements, which are log-concave but far from Gaus-
sian.

In Proceedings of the 17th International Symposium on Mathematical
Theory of Networks and Systems. Kyoto, Japan, 2006.
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1. Introduction

The Kalman filter (see [Kalman, 1960], [Kalman and Bucy, 1961]) is
one of the most widely used schemes for state estimation from noisy
measurements. It is optimal for linear measurements and Gaussian
noise, but it is often applied in a more general setting. Although the
Extended Kalman filter (see [Gelb and Corporation., 1974]) often works
well in practice, sometimes it does not, and it is in general not easy to
see how altered conditions change the observer problem.
In this paper, a particular generalization is investigated where mea-

surements and noise are allowed to be log-concave (see [Prékopa, 1971],
[Prékopa, 1973], [Bagnoli and Bergstrom, 1989], [An, 1996]). The model
of log-concave measurements is applicable in many instances where the
assumption of independent additive measurement noise is too limited,
for instance with heavy quantization, or with the problem of event
based sampling discussed in [Åström and Bernhardsson, 2002].
Within this framework, the problem of moving horizon ML/MAP

estimation becomes a convex optimization problem, see [Schön et al.,
2003]. This paper will however focus on the covariance of the Bayesian
Observer, which is investigated and compared with the Kalman filter.
Strongly log-concave functions are introduced as a means to quan-

tify observer properties. Two new theorems are applied to derive upper
bounds on optimal observer covariance.
It turns out that the observer problem is still quite well behaved

so that, especially with some insight gained in the analysis, a Kalman
filter might often be usable for this more general measurement setting.
For a more thorough treatment, see [Henningsson, 2005].
The paper is organized as follows. A motivating example is pre-

sented in section 2. The notion of log-concavity is introduced in section
3, where we state the main results as theorem 1 and 2. In section 4
we treat the observer problem. The results in section 3 are used to
investigate the observer properties. Finally in section 5 the results are
applied to the example.
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2. Example: A MEMS accelerometer

Consider an accelerometer based on the following design. A test mass is
suspended to move freely in one dimension and is affected by an exter-
nal acceleration. Sensors detect deviations from the origin exceeding a
detection threshold and report the sign of the deviation. An input sig-
nal is available to accelerate the test mass so as to keep it close to the
origin. The aim of the design is to estimate the external acceleration
as accurately as possible.
The discrete time dynamics are given by

x(k) =
(
1 h

0 1

)

x(k− 1) +
(
1
2h
2

h

)

u(k− 1) + v(k− 1),

where x is the state, u the input signal, v the external acceleration and
h the sampling period. The state consists of position x1 and velocity x2.
With the external acceleration as a white noise disturbance, sampling
yields v to be Gaussian white noise with covariance

PN = σ 2

( 1
3h
3 1

2h
2

1
2h
2 h

)

,

where σ 2 is the process noise intensity.
The measurements are given by

y(k) =
{

sign
(
x1(k)

)
, px1(k)p ≥ 1

0, otherwise,

which is the only non-classical assumption used in the model. The out-
put y(k) is not readily described as a linear combination of state and
uncorrelated measurement noise, making a straightforward applica-
tion of Kalman filter theory difficult.
In fact, it is not at all obvious what properties to expect for this

observer problem; will the observer error remain bounded, how large
will it be, how does it depend on the measurement sequence, how com-
plex observer is necessary, and so on. To answer questions about the
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observer problem, the Bayesian observer for the system will be ana-
lyzed. Other examples where similar measurement conditions apply
are when measurements are coarsely quantized or come in the form of
level triggered events.

3. Log-concavity

Many results are available on general log-concavity, see for instance
[Prékopa, 1971], [Prékopa, 1973], [Bagnoli and Bergstrom, 1989], and
[An, 1996]. The book [Boyd and Vandenberghe, 2004] contains much
material on convex functions that can easily be transfered to the log-
concave case. Here, only the properties that are most relevant in the
context of this paper will be stated.
A log-concave function is a function with concave logarithm. Log-

concave functions are well suited for applying convexity theory to prob-
ability densities; many common densities are log-concave and several
useful operations preserve log-concavity. In contrast, no probability
density on R

n is either convex or concave since probability densities
have a finite integral while convex and concave functions on R

n do not.

DEFINITION 1—LOG-CONCAVE FUNCTION
A function f : Rn −→ R is logarithmic concave or log-concave, iff f (x) ≥
0, f has convex support and ln

(
f (x)

)
is concave on this support.

For some simple examples of log-concave functions see figure 1, and for
some counterexamples figure 2. Among common log-concave densities
are Gaussian and exponential densities.
Log-concave functions are unimodal, meaning that the superlevel

sets {x; f (x) ≥ a}, a ∈ R are convex. Many attractive properties of
log-concave functions are analogous to those for concave functions. A
useful fact is that multiplication takes the place of addition so that
the product of two log-concave functions is log-concave. Another very
useful result derived by Prékopa is
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f 1
ln

(f 1)

f 2
ln

(f 2)

f 3
ln

(f 3)

−∞ −∞ −∞

Figure 1. Some examples of log-concave functions in one variable; the function
is plotted above and its logarithm below. The dotted line is f = 0, and ln(0) is
taken to be −∞. f1: Truncated exponential function, f2: Gaussian function, f3:
rectangular window.

f 4
ln

(f 4)

f 5
ln

(f 5)

f 6
ln

(f 6)

−∞ −∞

Figure 2. Some examples of functions in one variable that are not log-concave;
the function is plotted above and its logarithm below. f4: Not unimodal, f5:
Discontinuous on interior of support, f6(x) = 1

1+x2 : sub-exponential decay.
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PROPOSITION 1—PRÉKOPA
Let f (x, y) be jointly log-concave in x ∈ R

m, y ∈ R
n. Then the integral

�(x) =
∫

f (x, y)dy

is a log-concave function of x.

Proof. See [Prékopa, 1971] and [Prékopa, 1973].
This theorem implies for instance that the marginal densities of

log-concave densities are log-concave, and that the convolutions of log-
concave functions are log-concave. It will be central in the proof of
theorems 1 and 2.

3.1 Strong log-concavity

Log-concavity is in its nature only a qualitative property. To allow for
quantitative statements, the following class of functions is introduced.

DEFINITION 2—STRONGLY LOG-CONCAVE FUNCTION
Let P ∈ R

n$n be positive definite and define the set

LC (P−1) =
{

f ; f0(x) =
f (x)

e−
1
2 x
TP−1x

log-concave
}

.

The function f is strongly log-concave of strength P−1 iff f ∈ LC (P−1).

All strongly log-concave functions are log-concave, bounded and go to
zero as pxp → ∞ at least as fast as a Gaussian function.
Membership in LC (P−1) can be seen as an inequality, in the sense

that

f ∈ LC (P−1), P ≤ R
=[ f ∈ LC (R−1).

The inclusion f ∈ LC (P−1) is tight iff LC (P−1) is a subset of all
LC (R−1) that contain f .
A Gaussian density with covariance P is tightly in LC (P−1), and

can be seen as the corresponding Gaussian to this class. The definition
states that any strongly log-concave function can be written as the
product of a log-concave function and a corresponding Gaussian. Also,
the following properties hold:
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THEOREM 1—ENCAPSULATION PROPERTY
If f ∈ LC (F−1) and � ∈ LC (G−1) then

f (Ax + b) ∈ LC (ATF−1A)
( f ∗ �)(x) ∈ LC

(
(F + G)−1

)

f (x) ⋅ �(x) ∈ LC (F−1 + G−1),

where x, b ∈ R
n, A ∈ R

n$n and f ∗ � is the convolution of f and �.
Proof. See appendix A.
The inclusions are as narrow as the premises allow, being tight

when f and � are the corresponding Gaussians.

THEOREM 2—COVARIANCE BOUND
If f ∈ LC (P−1) is a probability density then

V =
∫

(x −mx)(x −mx)T f (x)dx ≤ P,

where mx =
∫
x f (x)dx. The bound is tight for the corresponding Gaus-

sian.

Proof. See appendix B.
The matrix expressions for strength of log-concavity correspond ex-

actly to the way that the operations propagate inverse covariances for
Gaussian functions. By the latter theorem, the inverse strength of log-
concavity is an upper bound on the covariance.
The theorems form a chain of inequalities that can be used to

propagate upper bounds on covariance under the operations of affine
transformation, convolution and multiplication. For more properties of
strongly log-concave functions, see [Henningsson, 2005].

4. Log-concave observers

The observer problem that will be considered is for processes with
linear dynamics and log-concave noise and measurements, as defined
below.
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The dynamics are given by

x(k) = Ax(k− 1) + Bu(k− 1) + v(k− 1),

where x is the state, u the input and v the process noise. The noise
has log-concave probability density fN . The matrices A and B, as well
as fN may be time-varying.
The measurements are described by the stochastic variables Y(k),

fY(k)pX (k)
(
ypx(k)

)
= fM

(
y, x(k)

)
,

where the measurement function fM is log-concave in x for each y and
may be time-varying.

4.1 The Bayesian observer

As a basis for the analysis, the online Bayesian observer for estimation
of x(k) from the history of y and u will be considered. The state of the
observer at any time is fully described by the function

fk(x) = fXkpy1:k, fX0 (x),

where y1:k is the measurement history and fX0 is the assumed initial
density.
The observer update from fk−1 to fk is best described in three steps

taking into account dynamics, process noise, and measurements:

f dk (x) ∝ fk−1
(
A−1x − A−1Bu(k− 1)

)
, (1)

f dnk (x) = ( fN ∗ f
d
k )(x), (2)

fk(x) ∝ fM (y(k), x) ⋅ f dnk (x), (3)

where ∝ denotes proportionality and A is assumed to be invertible.
For the derivation, see [Henningsson, 2005]. The dynamics update cor-
responds to an affine transformation, the noise update to a convolu-
tion with fN , and the measurement update to a multiplication with
fM (y(k), ⋅). For an illustration, see figures 3, 4 and 5. If fX0 , fN and
fM (y, ⋅) are Gaussian, the observer updates (1)-(3) reduce to a Kalman
filter.
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Figure 3. Illustration of the dynamics update for the MEMS accelerometer
observer. The transformation amounts to a shear in this case.
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Figure 4. Illustration of the process noise update for the MEMS accelerometer
observer. The Gaussian noise enters almost exclusively in the x2 direction.

4.2 Properties

Since log-concavity is preserved under affine parameter transforma-
tion, convolution, and multiplication, all fk are log-concave if fX0 is
log-concave.
Theorem 1 can be used to propagate upper bounds on observer co-

variance. This approach can be used to asses the merits of a particular
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Figure 5. Illustration of the measurement update for the MEMS accelerome-
ter observer. The measurement is y = 0.

sensor setup, or together with some information about the localization
of fk to give state estimates with error bounds. The computations of
covariance propagation have the structure of a Kalman filter applied
to corresponding Gaussians.

5. An Application

The MEMS accelerometer will now be used to illustrate how the theory
can be applied in the analysis of a concrete observer problem.

5.1 Analytical covariance bounds

The accelerometer has linear dynamics and log-concave noise and mea-
surements. The process noise density fN is Gaussian with covariance
PN , so that fN ∈ LC (P−1N ). The measurement function fM (y, x) is log-
concave in x for all y, see figure 6.
Applying theorem 1 directly leads in this case to a highly conser-

vative covariance bound, achieved when completely ignoring the mea-
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Figure 6. The measurement function fM (y, x) for the MEMS accelerometer
describing the relative probability of state x when y = −1,0,−1. The function
is independent of x2.

surements. The bound grows cubically with time. Grid based finite
difference simulations of the Bayesian observer do however indicate
that the covariance is bounded, and if the output changes frequently,
small.
The reason why the bound is so conservative is that fM is not

strongly log-concave for any y; strength of log-concavity being the only
measure of information that the theorem considers. In lack of stronger
proven results, a slight approximation will allow to account for the
major source of state information.
The most important source of state information under normal con-

ditions is the events when y goes from being 0 to ±1, at which time
x1 is known to be almost exactly equal to y. This can be modeled as a
Gaussian measurement of x1 with expectation y and variance σ 2M .
The variance σ 2M will depend on the process noise and uncertainty

in velocity, but will be small when h is small. The modified measure-
ment function f̂M can be seen in figure 7. For events, f̂M (±1, ⋅) ∈
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Figure 7. The modified measurement function f̂M (y, x) for the MEMS ac-
celerometer when y = −1,0,−1. For y = ±1, the function has been changed to
a narrow Gaussian centered on the detection threshold.

LC (QM ) where

QM =
(

σ−2
M 0

0 0

)

,

and otherwise f̂M (0, ⋅) ∈ LC (0).
Under this approximation, the variance of the optimal estimate x̂2

of x2 right after an event can be shown to satisfy

V (x̂2) ≤
1
3

σ 2t+ 2σ 2M t−2,

where t is the time since the last event. For the derivation, see [Hen-
ningsson, 2005].
The bound illustrates that the accuracy of the accelerometer de-

pends strongly on the rate of events. If the objective of control is good
measurements, the controller should keep the rate above a certain
level, for instance sending the test mass bouncing in a ping pong fash-
ion between the detection boundaries.
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5.2 Kalman filter approximation

A Kalman filter was tuned to give a reasonable approximation of the
Bayesian observer. The crucial issue was to assign the covariance of
the measurement y = 0. While a single measurement y = 0 predicts
x1 to have expectation zero with variance σ 2 = 1

3 , there is much less
additional information in the measurement y = 0 at the next time step.
In this case it is reasonable to design the Kalman filter by choosing

the stationary variance pstat11 of x1 when y = 0. The variance would
typically be pstat11 = 1√

3
(rectangular distribution) or a little less. From

solving the Riccati equation, it is found that the measurement variance
σ 2oh

−1 for y= 0 must be chosen according to

σ o = 2−1/3(pstat11 )2/3σ−1/3,

where σ 2 is the process noise intensity.

5.3 Simulation

Figure 8 shows a comparison of actual and predicted variances for
a simulation of the Bayesian observer. The variance σ 2M was chosen
so that the approximate upper bound would always be conservative.
The upper bound is quite tight some time after each event, but then
diverges. The variance of the tuned Kalman filter appears to be an
only mildly conservative approximation of the actual variance. As long
as the rate of events is reasonably high, the approximate upper bound
is very tight.
A simple control law was devised to control the rate of events, and

simulations were run for different rates to compare observer perfor-
mance for the grid filter and the tuned Kalman filter. Figure 9 shows
the observer error as a function of mean time between events tmean. The
grid filter is slightly better than the tuned Kalman filter and consid-
erably better than the approximate covariance bound down to values
of tmean around 0.4.
For lower tmean it seems that the grid filter scheme encounters dis-

cretization issues. At the same time, the tuned Kalman filter comes
very close to the approximate upper bound which appears to be very
tight in this region, indicating that the observer problem is very sim-
ilar to the Kalman filter case for high rates. This similarity is not
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Figure 8. Observer covariances during a simulation for the MEMS accelerom-
eter: grid filter, approximate upper bound and tuned Kalman filter.

surprising since when the covariance is small, the bulk of probability
mass is concentrated in a small region which is only seldom affected
by the non Gaussian measurements.
Thus it is seen that the upper bound derived from the theory is quite

tight when the rate of events is high and that if the inherent correlation
in the non Gaussian measurements is considered, a Kalman filter can
be applied as a close to optimal observer.

EXAMPLE 1—QUANTIZED MEASUREMENTS
In the previous example it was necessary to rely on approximations
because the measurement functions were not strongly log-concave. If
the measurement function can be chosen freely, much stronger results
are possible.
Consider the general problem of estimating a scalar variable from a

series of independent identically distributed quantized measurements.
The objective is to find a conditional measurement distribution, or
measurement function, that is in some sense optimal. Using strength of
log-concavity as an optimality criterion one can formulate the following
problem:
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Figure 9. RMS x2 estimation error as a function of mean time between events:
grid filter estimation error, tuned Kalman filter estimation error, and approx-
imate upper bound. For too high event rates, the grid filter suffers from dis-
cretization problems.

Let the independent measurements y be distributed according to

fYpx(ypx) = f (x − y), y∈ Z ,

where x is the variable to be estimated. Find a function f ∈ LC (p−1),
where p > 0 is as small as possible, such that

f (x) ≥ 0,
f (−x) = f (x),
∞∑

k=−∞
f (x − k) = 1.
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Figure 10. The measurement function in example 1. The function is Gaussian
when pxp ≤ 1

2 and zero when pxp ≥ 1.

The solution is given by the function

f (x) =







2−4pxp
2
, pxp ≤ 1

2
,

1− 2−4(1−pxp)2 , 1
2
< pxp ≤ 1,

0, otherwise,

satisfying f (x) ∈ LC
(
8 ln(2)

)
. The function is plotted in figure 10,

and in log-scale in figure 11. A series of n measurements with f as
measurement function is guaranteed to yield a probability density in
LC
(
n ⋅ 8 ln(2)

)
and therefore a variance satisfying σ 2 ≤ 1

n⋅8 ln(2) .
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Figure 11. The measurement function in example 1 in log-scale. The loga-
rithm is clearly concave, being quadratic when pxp ≤ 1

2 .

6. Conclusion

Log-concavity is a powerful tool when dealing with probability densi-
ties. The generalization to allow log-concave densities in the observer
widens the range of application considerably compared to the Kalman
filter. Although no closed form solution exists in the general case, the
observer problem is still very accessible to mathematical treatment.
Regarding observability and observer performance, strongly log-

concave functions together with theorems 1 and 2 can be applied to
derive simple bounds on achievable observer covariance.
An in-depth treatment of the log-concave case gives a greater under-

standing of the performance of an Extended Kalman filter. In design of
instrumentation, striving for log-concave measurement functions can
facilitate the observer problem.
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A. Proof of theorem 1

The proofs are based on the fact that a function f is in LC (F−1) iff it
can be factored as

f (x) = e− 12 xT F−1x f0(x), (4)
where f0(x) is log-concave. This follows from the definition.
The proofs for affine transformation and multiplication are straight-

forward, while the proof for convolution is a little more involved.

A.1 Affine transformation

Let f ∈ LC (F−1), A ∈ R
n$n, b ∈ R

n and y = Ax + b. Then

�(x) = f (Ax + b)
= e− 12 (Ax+b)T F−1(Ax+b) ⋅ f0(y)
= e− 12 (xT AT F−1Ax+2bT F−1Ax+bT F−1b) ⋅ f0(y)

= e− 12 xT (AT F−1A)x ⋅
(

e−
1
2 b
T F−1be−(A

T F−1b)T x f0(y)
)

︸ ︷︷ ︸

�0(x)

.

We see that �0 is the product of a constant, an exponential function and
a log-concave function, since log-concavity is preserved under affine
parameter transformation. Then �0 is log-concave because each of the
factors is log-concave. Thus � ∈ LC (ATF−1A).

A.2 Convolution

For the proof we need the following matrix identity. Let A, B and C be
positive definite matrices such that C−1 = A−1 + B−1, or C = A(A +
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B)−1B. Let x, y and z = y− (A+ B)−1Bx be vectors. Then

zT (A+ B)z = yT(A+ B)y− 2xTBy+ xTB(A+ B)−1Bx

and

xTCx + zT(A+ B)z = xT A(A+ B)−1Bx + zT(A+ B)z
= xTBx + yT(A+ B)y− 2xTBy
= yTAy+ (x − y)TB(x − y),

that is,

yTAy+ (x − y)TB(x − y) = xTCx + zT(A+ B)z, (5)

which can be seen as completion of squares in x.
Let f ∈ LC (F−1) and � ∈ LC (G−1). Then

h(x) = ( f ∗ �)(x)

=
∫

f (y)�(x − y)dy

=
∫

e−
1
2 y
T F−1ye−

1
2 (x−y)TG−1(x−y) ⋅ f0(y)�0(x − y)dy

=
∫

e
− 12

(

yT F−1y+(x−y)TG−1(x−y)
)

⋅ f0(y)�0(x − y)dy.

Applying (5) with A = F−1, B = G−1 and C = H−1 yields H−1 =
(F + G)−1 and

h(x) =
∫

e
− 12

(

xT H−1x+zT (F−1+G−1)z
)

⋅ f0(y)�0(x − y)dy

= e− 12 xTH−1x
∫

e−
1
2 z
T (F−1+G−1)z ⋅ f0(y)�0(x − y)dy

︸ ︷︷ ︸

h0(x)

.

The integrand is log-concave since it is the product of a Gaussian func-
tion and two log-concave functions, and thus h0 is log-concave according
to theorem 1. This proves that h ∈ LC (H−1) = LC

(
(F + G)−1

)
.
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A.3 Multiplication

Let f ∈ LC (F−1) and � ∈ LC (G−1). Then

h(x) = f (x)�(x)
= e− 12 xT F−1xe− 12 xTG−1 x ⋅ f0(x)�0(x)
= e− 12 xT (F−1+G−1)x ⋅ h0(x),

where f0 and �0 are log-concave and h0(x) = f0(x)�0(x). Thus h0 is
log-concave and so h ∈ LC (F−1 + G−1).

B. Proof of theorem 2

The factorization (4) will be central also in this proof. Consider first the
theorem in one dimension. Let f ∈ LC (p−1), p > 0 be a nonincreasing
probability density defined for x ≥ 0. Then f can be factored as

f (x) = e− 12 p−1x2 f0(x),

where f0(x), x ≥ 0 is log-concave. The right derivative f ′(0) exists since
any convex function is almost everywhere differentiable which trans-
fers trivially to log-concave functions. Furthermore f ′0(0) = f ′(0) ≤ 0,
and since f0 is log-concave it is nonincreasing for all x ≥ 0.
Let C > 0 be defined such that

∫ ∞

0
Ce−

1
2 p

−1x2dx =
∫ ∞

0
e−

1
2 p

−1x2 f0(x)
︸ ︷︷ ︸

f (x)

dx = 1.

Then, since f0(x) is nonincreasing, there must exist some x0 > 0 such
that

f0(x) ≥ C, x < x0
f0(x) ≤ C, x > x0.
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The second moment of f is
∫ ∞

0
x2 f (x)dx =

∫ ∞

0
x2Ce−

1
2 p

−1x2dx+
∫ ∞

0
x2
(

f (x) − Ce− 12 p−1x2
)

dx

= p+
∫ ∞

0
x2e−

1
2 p

−1x2
(

f0(x) − C
)

dx

= p+
∫ ∞

0
e−

1
2 p

−1x2
(

x20 + (x2 − x20)
)(

f0(x) − C
)

dx

≤ p+ x20
∫ ∞

0
e−

1
2 p

−1x2
(

f0(x) − C
)

dx

= p,

where we have used that (x2 − x20)
(
f0(x) − C

)
≤ 0. Thus the second

moment of f around x = 0 is ≤ p.
Now assume that f (x) ∈ LC (p−1) is an arbitrary strongly log-

concave function in one dimension that assumes its maximum value at
x = Mx. All strongly log-concave functions are bounded and go to zero
as pxp → ∞, so if f does not assume its maximum it can be made to do
so by changing the value in one point, which does not affect integrals
of f and preserves strong log-concavity. Then �(x) = f (x−Mx) can be
written as a convex combination of two probability densities in LC (p−1)
such that one has support on x < 0 and is nondecreasing and one has
support on x ≥ 0 and is nonincreasing. The second moment of � around
0 is a convex combination of the moments of the two densities, and so

∫

(x − Mx)2 f (x)dx ≤ p.

Since the covariance of the density f is the minimum of the second
moment around any point,

∫

(x −mx)2 f (x)dx = min
y

∫

(x − y)2 f (x)dx ≤ p,

where mx is expectation of the density. This proves the theorem in one
dimension.
For the proof in Rn we shall need another matrix inequality. In the

Cauchy-Schwartz inequality (uTv)2 ≤ (uTu)(vTv), let u = P− 12 x and
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v = P 12 ez, where P > 0, ppezpp = 1. This yields

(xT ez)2 ≤ (xTP−1x)(eTz Pez)
=[ xT ez(eTz Pez)−1eTz x ≤ xTP−1x

=[ Qr = ez(eTz Pez)−1eTz ≤ P−1. (6)

Now consider a density f ∈ LC (P−1), P > 0. Without loss of gener-
ality, assume the expectation to be zero. The covariance is then

V =
∫

xxT f (x)dx,

and for a given unit vector ez,

eTz Vez =
∫

(eTz x)2 f (x)dx =
∫

t∈R

t2
∫

y⊥ez
f (tez + y)dy

︸ ︷︷ ︸

�(t)

dt,

where x = tez + y and �(t) is the marginal density of f in the ez
direction, having zero expectation. We see that

�(t) =
∫

y⊥ez
e−

1
2 x
TP−1x f0(x)dy

=
∫

y⊥ez
e−

1
2 x
TQr xe−

1
2 x
T (P−1−Qr )x f0(x)dy

= e− 12 (eTz Pez)−1t2
∫

y⊥ez
e−

1
2 x
T (P−1−Qr )x f0(x)dy

︸ ︷︷ ︸

�0(t)

,

since yT ez = 0 so that xTQrx = teTz Qr ezt = (eTz Pez)−1t2. From (6)
P−1 − Qr ≥ 0 so that �0 is log-concave. Thus � ∈ LC

(
(eTz Pez)−1

)
so

that
eTz Vez ≤ eTz Pez =[ V ≤ P,

which proves the theorem. The bound is tight for the corresponding
Gaussian by definition.
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Paper IV

Recursive State Estimation
for Linear Systems with
Mixed Stochastic and

Set-Bounded Disturbances

Toivo Henningsson

Abstract

Recursive state estimation is considered for discrete time linear
systems with mixed process and measurement disturbances that
have stochastic and (convex) set-bounded terms. The state esti-
mate is formed as a linear combination of initial guess and mea-
surements, giving an estimation error of the same mixed type (and
causing minimal interference between the two kinds of error). An
ellipsoidal over-approximation to the set-bounded estimation er-
ror term allows to formulate a linear matrix inequality (LMI) for
optimization of the filter gain, considering both parts of the esti-
mation error in the objective. With purely stochastic disturbances,
the standard Kalman Filter is recovered. The state estimator is
shown to work well for an event based estimation example, where
measurements are very coarsely quantized.

cF2008 IEEE. Reprinted, with permission, from Proceedings of the 47th
IEEE Conference on Decision and Control (CDC08), Cancún, Mexico,
December 2008.
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1. Introduction

In many control systems, there exist some disturbances that are best
modelled as stochastic, and other disturbances that are better modelled
as set-bounded uncertainties. The classical approach to state estima-
tion in such cases is to approximate the set-bounded uncertainties by
stochastic ones, allowing to use a standard Kalman Filter. Another ap-
proach is to approximate the stochastic disturbances by set-bounded
ones, and use a state estimator for set-bounded uncertainty.
It is, however, not straightforward to translate between stochastic

and set-bounded disturbances, since they do not combine in the same
way. Two measurements of the same variable with independent identi-
cally distributed (I.I.D.) stochastic noise combine to form an estimate
with only half the error variance. Two measurements with set-bounded
uncertainty yi = x + zi, pzip ≤ 1 may on the other hand be little better
than just one if y1 ( y2, not uncommon of situations where this kind
of disturbance model is applied.
Thus, it is useful to be able to deal with both kinds of disturbances

at the same time. The contribution of this paper is the formulation
of an estimator that can deal with general state estimation problems
with mixed disturbances. The optimization of the filter gain required
in each step is expressed as an LMI. Since the basic structure is that
of a Kalman Filter, the estimator reduces to a Kalman Filter in the
case of purely stochastic disturbances.
There is much previous work for the cases of only stochastic or only

set-bounded disturbances, and also some variations on mixing the two.
With only stochastic disturbances, the optimal solution is the classical
Kalman Filter (see [Kalman, 1960], [Kalman and Bucy, 1961]). State
estimation with set bounded disturbances is considered in [Bertsekas
and Rhodes, Apr 1971] and [Durieu et al., 2001]. Kalman Filtering
with a set-bounded initial expectation in the prior is treated in [Mor-
rell and Stirling, 1988]. For a different approach to mixed disturbance
estimation, see [Hanebeck and Horn, 2001] and references therein.
When dealing with set-bounded disturbances, there is the issue of

how to represent the uncertainty sets that arise as data is combined.
Unlike Gaussian noise, there is no general exact closed form represen-
tation of limited complexity. We first present the general equations,
which can be used with polytopic uncertainty sets. These will how-
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2. Problem Formulation

ever grow quickly in complexity. We will thus focus on the ellipsoidal
approximation of uncertainty sets; together with a recursive formula-
tion of the estimator this gives a fixed complexity for the estimator
operations.
The rest of the paper is laid out as follows. The mixed state esti-

mation problem to be solved is stated in section 2, including the basic
estimator structure. Section 3 covers some preliminaries used in the
solution. The first step of the solution is taken in section 4, which
shows how to decompose the problem into the stochastic part, treated
in section 5, and the set-bounded part, treated in section 6. The latter
section contains the central theorem to express the set-bounded part
of the filter’s optimization criterion for a combination of polytopic and
ellipsoidal uncertainties, which is proved in the appendix. Section 7
compares the proposed estimator with a grid based Bayesian estima-
tor and a Kalman Filter for an example problem. Conclusions are given
in section 8.

2. Problem Formulation

The objective is to perform recursive state estimation for discrete time
dynamic systems modelled by

xk = Axk−1 + uk−1 + eproc.k−1 (1)
yk = Cxk + emeas.k (2)

where A and C are the dynamics and measurements matrices, and the
state xk, the known control input uk, the measurements yk, the process
disturbance eproc.k , and the measurement disturbance emeas.k are vectors.
Also A and C may be time dependent.
All error terms ei are the sum of a stochastic term wi and a set-

bounded term δ i,

ei = wi + δ i

E(wi) = 0, E(wi(wi)T ) = Ri

δ i ∈ ∆i
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for some positive semidefinite covariance matrix Ri and convex uncer-
tainty set ∆i. The stochastic terms of the process and measurement
disturbance wproc.k and wmeas.k for all times are assumed mutually un-
correlated.
Given the system above and an initial state estimate x̂0 with mixed

error
e0 = x0 − x̂0

we want to form a running state estimate as a linear combination of
the initial state and the measurements. The dynamics (1) are used to
form the predicted estimate x̂kpk−1 from the previous filtered estimate
x̂k−1pk−1:

x̂kpk−1 = Ax̂k−1pk−1 + uk−1. (3)
The measurement yk is then used to form the current filtered estimate

x̂kpk = x̂kpk−1 + Lk
(

yk − Cx̂kpk−1
)

= ( I − LkC Lk )
︸ ︷︷ ︸

Xk

(
x̂kpk−1

yk

) (4)

using some suitable filter gain Lk. We wish to choose Lk to minimize
the estimation error in some appropriate sense. The matrix Xk speci-
fies how to weigh together the predicted state estimate and the current
measurement, and represents the action of the filtering step.

3. Notation and preliminaries

The Minkowski sum of two sets Xk and Y is defined as

X + Y = {x + y; x ∈ X , y∈ Y} .

Similarly, we will let the sum X + y of a set X and a vector y be the
translation X + {y}. The product of a set X and a matrix A will be
interpreted as the element-wise product

AX = {Ax; x ∈ X } .
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4. Problem Decomposition

We will also use the product of two sets X ,Y as the stacked Cartesian
product

X $ Y =
{(
x

y

)

; x ∈ X , y∈ Y
}

.

For a matrix A, we denote by A > 0 (A ≥ 0) that A is positive
(semi-)definite. For a block matrix

M =
(
A B

BT D

)

with D > 0, the conditions that M ≥ 0 and that the Schur Complement
(see [Boyd et al., 1994, ch. 2.1, pp. 7-8]) of D in M

∆ = A− BD−1BT

is positive semidefinite, ∆ ≥ 0, are equivalent.

4. Problem Decomposition

We begin by decomposing the problem into a stochastic and a set-
bounded part. The dynamics (1) combined with the prediction (3) gives
the next prediction error

ekpk−1 = Aek−1pk−1+ eproc.k−1 (5)

while the measurement equation (2) combined with the filtering step
(4) gives the next filtered error

ekpk = Xk
(
ekpk−1

emeas.k

)

. (6)

The minimization of the expected/worst-case estimation error will
guide the selection of the filter gain Lk, which will then be used to
update the point estimate according to (4). Lk can be optimized online,
or, since it is independent of the point estimate, it can be calculated
ahead of time if the disturbance characteristics are known, e.g. if they
are periodic or stationary.
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The estimation errors ekpk−1 and ekpk are composed of a stochastic
and a set-bounded part, and are formed by forming each part sepa-
rately. The two parts will be coupled only in the search for the optimal
filter gain Lk in the filtering step, which we find by minimizing the
cost function

V (L) = tr W
(
Rkpk(L) +α r(L)2P(L)

)
(7)

where W > 0 is a weight on the estimation error for different states,
α > 0 is the relative penalty on set-bounded error, Rkpk(L) is the fil-
tered error covariance, and Pk(L) and r(L) bound the set-bounded
error after filtering δ kpk ∈ ∆kpk(L) inside an ellipsoid:

δ TkpkP(L)−1δ kpk ≤ r(L)2 ∀δ kpk ∈ ∆kpk(L). (8)

Either P or r can be fixed for the optimization step, depending on
whether we want to prespecify the shape of the ellipsoid circumscribed
around ∆kpk(L).
To carry out the minimization, we take the following steps:

• Form LMI conditions linear in L for

– the stochastic part: R ≥ Rkpk(L)
– the set-bounded part: (P, r) satisfying (8)

• Minimize
V̄ = tr W(R +α r2P)

under these LMI conditions.

When we introduce ellipsoidal approximation of the set-bounded error
∆kpk, we will merge the prediction and filtering steps for this part to
reduce conservatism.

5. Stochastic Part

We consider the update and optimization of the stochastic estimation
error terms. The prediction and filtering steps (5) and (6) give the
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stochastic error covariances

Rkpk−1 = ARk−1pk−1AT + Rproc.k−1 (9)

Rkpk = Xk
(
Rkpk−1 0

0 Rmeas.k

)

︸ ︷︷ ︸

R
pm
k

X Tk (10)

for wkpk−1 and wkpk respectively, since if E(wwT) = R,

E
(

(Aw)(Aw)T
)

= AE(wwT)AT = ARAT .

The prediction step (9) is straightforward. To form an LMI for the
filtering step (10), we first factor Rpmk as

R
pm
k = SRpm0ST , Rpm0 > 0.

By the Schur Complement, the condition R ≥ Rkpk or

R − XkSRpm0ST X Tk ≥ 0

is then equivalent (since Rpm0 > 0) to the LMI
(

R XkS

ST X Tk (Rpm0)−1
)

≥ 0,

which is linear in L and R.

6. Set-Bounded Part

We now consider the update and optimization of the set-bounded es-
timation error terms. The operations are first formulated for general
uncertainty sets, and then the case of ellipsoidal over-approximation
is treated.
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6.1 General Uncertainty Sets

From the prediction step (5), we must have δ kpk−1 ∈ ∆kpk−1,

∆kpk−1 = A∆k−1pk−1+ ∆
proc.
k−1 .

If ∆k−1pk−1 and ∆
proc.
k−1 are polytopes, so is ∆kpk−1.

For the filtering step, we have

δ kpk = Xk
(

δ kpk−1

δmeas.k

)

︸ ︷︷ ︸

δ pm
k

.

The constraint (8) can be expressed for any δ pmk ∈ ∆pmk = ∆kpk−1$∆meas.k

as a second order cone constraint when P is fixed:

r ≥ ppP− 12δ kpkpp = ppP−
1
2 Xkδ

pm
k pp

or in general by the Schur Complement (since P > 0) as an LMI

r2 − (δ pmk )T X Tk P−1Xkδ
pm
k ≥ 0

Z[
(

P Xkδ
pm
k

(δ pmk )T X Tk r2

)

≥ 0.

If ∆pmk is a polytope, it is enough to consider the constraint at the
vertices, since an ellipsoid contains a set of vertices iff it contains the
convex hull of those vertices (the polytope).

6.2 Ellipsoidal Uncertainty Sets

Now suppose that the filtered set-bounded error from the previous step
∆k−1pk−1, and possibly the process or measurement disturbance parts
∆
proc.
k−1 and ∆meas.k , are described by ellipsoids. In this case we can use
the ellipsoid (8) to find an ellipsoidal over-approximation for ∆kpk to
use in the next step. To formulate (8) as an LMI in this case, we need
the following theorem.

112



6. Set-Bounded Part

THEOREM 1—ELLIPSOID BOUNDING WEIGHTED ELLIPSOID SUM
Given a number of ellipsoids E i, i = 1 . . .n:

zi ∈E i Z[
{

zi = Gixi + bi
xTi Qixi ≤ r2i

the weighted Minkowski sum

A = X
∑

i

E i =
{

x = X z; z=
∑

i

zi, zi ∈ E i∀i
}

can be proved by the S-procedure (see [Boyd et al., 1994, ch. 2.6.3, pp.
23-24]) to be contained in the centered target ellipsoid E,

x ∈ E Z[ xTP−1x ≤ r2 (11)

iff the LMI condition





P X G X b

GT X T Qτ

bT X T r2 −∑i τ ir
2
i




 ≥ 0 (12)

is satisfied for some scalars τ i ≥ 0, where b =
∑

i bi, and

G = (G1 G2 . . . Gn ) , Qτ = diag
(
{τ iQi}i

)
.

If n = 1 and r1 > 0, the condition (12) is also necessary for A ⊆ E.
Proof: See the appendix.

Using the theorem. We let P = P and z = δ pmk , where ∆
pm
k is a sum

of ellipsoids. With one centered ellipsoid (bi = 0) containing each of
the previous filtered error, the process and measurement disturbances:

∆k−1pk−1 ⊆ E1, ∆proc.k−1 ⊆E2, ∆meas.k ⊆E3

the set-bounded part gets the prediction step ∆kpk−1 ⊆ AE1 +E2 and
the filtering step

∆kpk ⊆ Xk(∆kpk−1 $E3) ⊆ Xk
(
(AE1 +E2) $E3

)
.
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The ellipsoid sum for ∆kpk can thus be expressed with the theorem,
plugging in the ellipsoids E1,E2,E3, and

G1 =
(
A

0

)

, G2 =
(
I

0

)

, G3 =
(
0

I

)

.

Thus we can use the LMI condition (12) to circumscribe an ellipsoid
around ∆kpk.

Variations. We can use more or fewer ellipsoidal terms for the un-
certainty sets ∆i, and also polytopic terms. For polytopic terms, the
sum P of all such terms is first formed. As in the case with only poly-
topic terms, the LMI must be written once for each vertex of P . If P is
symmetric, we need only write half as many LMI:s since the centered
target ellipsoid E sees no difference between the vertices v and −v.
A polytope vertex can be represented by a zero-dimensional ellipsoid
with bi ,= 0.
A polytope that is the sum of one-dimensional polytopes (line seg-

ments) may expressed more economically as a sum of one-dimensional
ellipsoids. However, the result may be more conservative since forming
the sum of ellipsoids relies on the S-procedure.
The use of both P and r as variables in the condition (11) for the

target ellipsoid may seem redundant, but it allows to state a possibly
simpler optimization problem if the shape of the target ellipsoid is
fixed. (I.e. to some shape desired in a stationary situation.) It is of
course possible to constrain P to other spaces than to be fully free or
with a prespecified shape. Another use for r could be to improve the
numerical conditioning of the optimization problem by guessing the
size of the resulting ellipsoid before optimizing for P.
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7. Simulations

7.1 Example System

Consider a double integrator process with dynamics

xk+1 =
(
1 h

0 1

)

︸ ︷︷ ︸

A

xk +
( 1
2h
2

h

)

︸ ︷︷ ︸

B

uk +wproc.k

E
(
w
proc.
k

)
= 0, E

(

(wproc.k w
proc.
k )T

)

= 1
4

( 1
3h
3 1

2h
2

1
2h
2 h

)

︸ ︷︷ ︸

R
proc.
k

where h = 0.1 is the sample time, (xk)1 is the position and (xk)2 the
velocity. White process noise enters along with the control acceleration
uk.
The measurements are coarsely quantized:

yk = round
(
Cxk

)
, C = ( 1 0 ) ,

where round(x) rounds x to the nearest integer. Using the current
framework, we can model the measurement by

yk = Cxk + δmeas.k , δmeas.k ∈ ∆meas.k = [− 12 , 12 ].

With the sampling time h small enough, we may consider (xk)1 to be
almost completely known at all events, when yk changes value. This
measurement may be modelled as

1
2

(
yk + yk−1

)
= Cxk +wmeas.k ,

E
(
wmeas.k

)
= 0, E

(

(wmeas.k wmeas.k )T
)

= Rmeas.k ,
(13)

where Rmeas.k gives a suitable approximation of the error in the guess
Cxk ( 1

2

(
yk + yk−1

)
. We take Rmeas.k = (Rproc.k )11.

Since the system is unstable, we stabilize it with the control law

uk = −( 1 2 ) x̂k,
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Figure 1. Test sequence for the observers

which places the poles in approximately z = e−h. The state estimate x̂k
is taken from a simple heuristic state estimator that:

• runs in open loop between events

• updates at events:

(x̂k)1 =
1
2

(

yk + yk−1
)

(x̂k)2 =
(x̂k)1 − (x̂klast)1
h(k− klast)

where klast is the time index of the last event or known initial
state.

The process was simulated with the heuristic controller to produce the
test sequence uk, yk in Fig. 1. The corresponding state sequence xk can
seen in Fig. 2. (together with state estimates from different estimators)
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Figure 2. Actual states and state estimates generated by the observers. Actual
states (solid), Mixed Estimator (dashed), Grid Filter (dotted), Kalman Filter
(dash-dotted). Events are marked with a + sign.

7.2 Estimator Implementation For The Example

In this example, the process noise is purely stochastic, and the set-
bounded measurement error ∆meas.k can be represented as an interval
symmetric around the origin, so the target ellipsoid E ⊇ ∆kpk should
enclose the sum of an ellipsoid for ∆kpk−1 and the polytope for ∆meas.k .
Since we have only one ellipsoid in the sum, (12) is both necessary
and sufficient for the target ellipsoid E to enclose it. Since the polytope
∆meas.k is symmetric with two vertices, we need only one instance of the
LMI condition (12).
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Table 1. Mean quadratic errors over a 105 time step test sequence.

EMixed EGrid EKalman
„

0.054 0.063

0.063 0.180

« „

0.045 0.053

0.053 0.157

« „

0.444 0.223

0.223 0.285

«

7.3 Performance Comparison

Three filters were compared on the test sequence:

• The Mixed Estimator proposed in this paper using ellipsoidal
over-bounding of ∆kpk in each step, with

α = 1, W =
(
1 −0.3

−0.3 0.4

)

.

The weight matrix W was chosen by letting W−1 be roughly pro-
portional to the error covariance of the Grid Filter (see below) a
long time after an event.

• A Grid Filter; a discretization of the Bayesian Estimator for the
system (with approximately 32 000 states). See [Henningsson
and Åström, 2006] for more about the Bayesian Estimator for
this system.

• A Kalman Filter that uses only the measurements (13) at events,
and runs in open loop in between.

Table 1 shows the average estimation error of the filters over a test
sequence of 105 time steps, evaluated as

E = 1
N

N∑

k=1
(xk − x̂k)(xk − x̂k)T .

The Mixed Estimator is seen to come quite close to the Grid Filter
performance, but the Kalman Filter is far behind. Fig. 2 shows actual
state trajectories together with the estimates. Events are marked with
+ signs. When events are frequent, all estimators seem to follow the
state trajectories reasonably well, especially for the position x1. When
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7. Simulations
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Figure 3. Actual states and state estimates, with α = 10 for the Mixed Esti-
mator, which makes it follow the Kalman Filter for too long.

there is longer time between events, the Kalman Filter seems to lose
track. The Mixed Filter is much better at following the Bayesian esti-
mate. The strategy it uses seems to be something like:

• At an event, update the state estimate.

• Continue by open loop predictions some time after each event,
while the prediction error is small.

• When the prediction error becomes too large, start to incorporate
the imprecise measurements available.

Fig. 3 shows the same simulation with α = 10 for the Mixed Esti-
mator. The weight α adjusts the tradeoff between stochastic and set-
bounded estimation error. With higher α it is seen that the Mixed
Filter waits longer to incorporate the uncertain measurements after
each events. The value α = 1 used in Fig. 2 seems to give a more
reasonable tradeoff.
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Figure 4. Actual set bounded error and ellipsoidal approximation used by the
Mixed Filter at t = 12.9, just before an event.

The uncertainty set ∆kpk (a polytope in this example) and the recur-
sive ellipsoidal over-approximation ∆̂kpk used by the mixed filter can be
seen in Fig. 4, just prior to the event at t = 13. The actual set takes up
perhaps 23 of the ellipsoid’s volume, and that they more or less touch
at the sharpest corners of the polytope.

8. Conclusion

This paper describes the design of a state estimator for linear systems
with process and measurement disturbances containing both stochastic
and set bounded terms. The estimator structure that is borrowed from
the Kalman Filter is optimal for purely stochastic disturbances, and
allows the two parts of the estimation error to be treated efficiently
and almost independently. The filter gain is optimized by solving a
Linear Matrix Inequality (LMI) problem.
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The estimator can value the usefulness of measurements corrupted
by different amounts of stochastic and set bounded disturbances, with
a parameter α that can be used to tune the tradeoff between the two
kinds of error. An example shows that the estimator performs quite
close to an optimal Bayesian Estimator, and that α can be used to
adjust how long to wait after receiving a good measurement before
incorporating measurements with interval uncertainty.
The estimator reproduces the behavior of the Kalman Filter with

set-bounded initial expectation in [Morrell and Stirling, 1988] under
the circumstances assumed in that work, when the weight α goes to
zero. When α is nonzero, the estimator applies a higher filter gain to
eliminate the set-bounded uncertainty faster.
An open issue is how to choose the state weighting matrix W in a

systematic fashion.
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A. Proof of theorem 1

This development is based on [Boyd et al., 1994, ch. 3.7.4, pp. 46-47].
The construction is extended to be linear in the transformation X , to
handle ellipsoids that are flat in some dimensions, and to specify the
centers bi separately, but is reduced in that we are only interested in
centered target ellipsoids E.
To handle the Minkowski sum of ellipsoids, we need a condition for

when one ellipsoid contains the intersection of a number of ellipsoids.
Given a set of quadratic functions { fi(x)}i, i = 1 . . .n, one sufficient
condition to verify that a quadratic function f (x) ≥ 0 whenever all
fi(x) ≥ 0 is given by the S-procedure:

∃τ i ≥ 0, i = 1 . . .n : f (x) ≥
∑

i

τ i fi(x) ∀x.

The condition is also necessary e.g. when n = 1 and f1(x) > 0 for some
x, see [Boyd et al., 1994, ch. 2.6.3, pp. 23-24].
The condition (12) which we seek to derive is formed by first con-

structing an extended space where each term of the ellipsoid sum has
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A. Proof of theorem 1

its own coordinates, and forming the set where all coordinates are
within their respective ellipsoids, which is the intersection of ellipsoidal
cylinders. We then used the S-procedure to circumscribe an ellipsoidal
cylinder parametrized in the sum coordinates.
Let

xT = ( xT1 xT2 . . . xTn ) , z =
∑

i

zi.

Then, according to the definitions in the theorem,

z = Gx + b = (G b )
︸ ︷︷ ︸

Ge

(
x

1

)

︸ ︷︷ ︸

xe

= Gexe.

We take the first step of the S-procedure (using τ i ≥ 0∀i) by forming
the condition

∑

i

τ i(r2i − xTi Qixi) =
(
∑

i

τ ir
2
i

)

− xTQτ x ≥ 0 (14)

which will always be fulfilled when zi ∈ E i∀i.
The condition for the target ellipsoid, x ∈ E, x = X z = X Gexe is

equivalent to
r2 − xTe GTe X TP−1X Gxe ≥ 0. (15)

Subtracting (14) from (15), we form our S-procedure condition, which
can clearly only be fulfilled for all x if (15) is fulfilled whenever (14)
is:

xTe








(
Qτ

r2 −∑iτ ir
2
i

)

︸ ︷︷ ︸

Qe

−GTe X TP−1X Ge







xe ≥ 0.

As we assume x to be arbitrary, we might as well assume xe to be
arbitrary since scaling of xe with a nonzero constant does not affect
whether the condition holds. The case when the last entry of xe is
zero is approached when ppxpp → ∞. Thus we can equivalently consider
positive semidefiniteness of the matrix that stands between xTe and xe
above.
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By the Schur Complement, since P−1 > 0, this condition is equiva-
lent to (

P X Ge

GTe X
T Qe

)

≥ 0,

which is exactly (12).
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Paper V

Comparison of LTI and Event-Based
Control for a Moving Cart with
Quantized Position Measurements

Toivo Henningsson Anton Cervin

Abstract

Traditional linear time-invariant (LTI) control design assumes
that measurements are taken at regular time intervals and have
independent additive noise. A common practical case that violates
this assumption is the use of encoders that give quantized position
measurements; when the quantization is appreciable the measure-
ment noise is far from LTI. This paper develops a simple event-
based controller based on simplifying a joint maximum a poste-
riori estimator, which is applied to a moving cart with quantized
position measurements. The payoff for implementing the some-
what more complex event-based controller is to drastically reduce
the effect of quantization noise in the experiments. A sequence
of simpler (LTI) to better adapted controllers are described and
compared according to experimental performance and implemen-
tation complexity. Implementation issues on the microcontroller
are discussed.

Submitted to European Control Conference, Budapest, Hungary, 2009.
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1. Introduction

The majority of all feedback controllers today are implemented using
computers, relying on periodic sampling, computation, and actuation.
For linear time-invariant (LTI) systems, sampled-data control theory
[Åström and Wittenmark, 1997] provides powerful tools for direct digi-
tal design, while implementations of nonlinear control designs tend to
rely on discretization combined with fast periodic sampling.
There are however situations where it could be advantageous to

use other activation schemes. For first-order linear stochastic systems,
it has been shown that event-triggered sampling can provide better
regulation performance and/or lower average activation rates than
time-triggered sampling [Åström and Bernhardsson, 1999; Hennings-
son et al., 2008]. This can be useful for networked embedded control
systems with constrained communication, computation, or energy re-
sources. With similar arguments, heuristic event-based PID controllers
have been proposed in [Årzén, 1999; Vasyutynskyy and Kabitzsch,
2007].
Another motivation for event-based control are systems where the

events are inherent in the physics. Examples include wheel encoders
and accelerometers that deliver pulse trains rather than continuous
measurement signals. Previous case studies have shown that accurate
control can be accomplished even with very low-resolution encoders
if the controller is activated at measurement events rather than at
regular time intervals [Sandee et al., 2007].
In this paper, we study the practical problem of implementing a

velocity control system for a moving cart using a low-resolution position
encoder and a low-end 8-bit microcontroller. Each time the quantized
position measurement changes value is considered an event, to be given
special consideration by the controller. Since the friction is appreciable
and varying, we want to utilize also the information contained in the
absence of events.
It is well known that the problem of optimal estimation and control

with quantized measurements is extremely difficult [Curry, 1970]. For
instance, there is no separation theorem in the general case. Even the
pure estimation problem is computationally intractable and essentially
requires the on-line solution of a partial differential equation.
Seeking simpler, sub-optimal solutions, we start from a joint max-
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2. Setup

imum a posteriori (JMAP) estimator [Cox, 1964]. This formulation
is powerful enough to model quantized measurements, yet yields a
tractable problem. The estimator is greatly simplified and adapted to
the control problem at hand in order to be implementable on the small
microcontroller. The final controller is based on periodic state feedback
from an event-based observer implemented using fast sampling. The
state feedback design can be reused from the LTI controllers designed
for comparison, since the practical challenge lies in state estimation.
The rest of the paper is laid out as follows. The setup is explained

in Section 2. Section 3 attempts a first control design using LTI meth-
ods, giving important insight into the tradeoffs involved. The JMAP
estimator is introduced in Section 4 as a systematic means for state
estimation with quantized measurements and is simplified in Section
5 into something that can run online. Microcontroller implementation
issues are described in Section 6. Section 7 compares different LTI
and event-based controllers experimentally. The conclusions are given
in Section 8.

2. Setup

2.1 The Moving Cart

The process is a moving cart driven by a DC motor, see Fig. 1. The
control signal is the motor voltage, governed by a direction bit and a
29 kHz PWM signal. A rotary encoder on the motor axis is used for
position sensing. The encoder output is two square waves as a function
of the position, 90○ out of phase. The measurements can be modeled
as

y= ∆pquant. ⋅ round
(

p

∆pquant.

)

, ∆pquant. = 5 ⋅ 10−5m, (1)

where p is the position of the cart. Lower encoder resolutions can be
emulated in software; most tests are run with ∆pquant. emulated to 3.2
mm.
The cart is equipped with an ATmega16 8-bit AVR microcontroller

clocked at 14.7 MHz, which handles encoder sampling, motor drive,
filtering, control, and communication with a PC over a serial link.
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Figure 1. The moving cart with the microcontroller mounted on top. The cart
can move a little more than one meter along the track.

2.2 Process Model

A simple dynamical model for the cart was postulated as

(
ṗ

v̇

)

=
(
0 1

0 −T−1d

)(
p

v

)

+
(
0

1

)

(u+ ubias),

where p is the position, v is the velocity, u = KuuV is the control
signal, uV is the control signal in units of full motor voltage, ubias is the
disturbance from friction and other sources, and Ku and Td are process
parameters. A sequence of step response experiments were made and
the parameters estimated by linear regression to

Td = 0.23 s, Ku = 25.5m/s2.

The disturbance ubias was assumed constant within each step response.
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vref
Controller u PWM

29 kHz
Cart

Encoder
sampler
100 kHz

y, timestamps
Estimator

1 kHz

1 kHz

v̂, ûbias

Figure 2. The implementation structure. The rate of the encoder sampler is
set to keep up with cart speeds of 5 m/s.

As the controllers to be designed will have cross-over frequency
ω c ≥ 5 rad/s, T−1d is approximated to 0 for simplicity. With this ap-
proximation the process is a pure double integrator Gp(s) = 1

s2
, and

the cross-over frequency of a control design can be adjusted by just
changing the time scale. The time scale of the process is adjusted by
additional gain in the controller.

2.3 Control Objectives

We will design velocity controllers for the moving cart. The objectives
are:

• Fast reference tracking and attenuation of process disturbances
(friction).

• Low noise in the control signal.

• Reasonable robustness.

Reasonable robustness is an absolute demand. Given this constraint,
the controllers should try to optimize for the first two objectives, using
the cross-over frequency ω c to adjust the tradeoff.

2.4 Implementation Structure

An overview of the implementation is given in Fig. 2. A multi-rate
structure is used, where fast sampling at 100 kHz is used to read the
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encoder, while the control output is generated at 1 kHz. For simplicity,
the implementation is not event-triggered per se; rather, the estimator
may use time stamps of the latest measurement events (i.e., changes
in encoder value) when forming its estimate.

3. LTI Control Design

In this section, we design two PI controllers under simplifying assump-
tions. The design is carried out in continuous time, ignoring the fact
that the measurement disturbance comes from quantization. Still, the
design provides important insight into robustness issues.

3.1 Pure PI Controller

To do velocity control, we need to estimate the cart velocity. We use a
simple first-order filter on the position output:

V̂ = sY

sTfilter + 1
. (2)

A PI controller

U = K (βVref − V̂ ) − K
V̂ − Vref
sTi

(3)

gives the following controller transfer function from −y to u:

Gc(s) =
K

Ti

sTi + 1
sTfilter + 1

This is in effect a lead filter that lifts the phase of the loop gain around
the cross-over frequency ω c above the constant phase Gp(iω ) = −180○
of the process.
We want to place the zero and pole far apart to get a large phase

margin, but on the other hand we want short Ti and long Tfilter for
good rejection of process disturbances and measurement noise. The
best trade-off is achieved by placing the zero and pole on either side of
the cross-over frequency ω c at equal logarithmic distance,

Tfilter = r−1ω−1
c , Ti = rω−1

c ,
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Figure 3. Comparison of the PI designs: simulated step response from ubias,
measurement noise wm, and vref to v, and loop transfer functions.

where r > 1 determines the phase margin φm. We take φm ( 50○ =[
r ( 3 as a reasonable compromise between robustness and disturbance
rejection.
The cross-over frequency ω c is left as a design parameter, to be

varied in the experiments. The loop transfer function for ω c = 1 and
φm = 51○ can be seen in Fig. 3. The reference weighting parameter
β = 0.5 is used to eliminate overshoot in the reference step response.

3.2 Observer-Based PI Controller

The standard PI controller makes no use of the process model. To
exploit our process knowledge, we can instead use the control law

U = K (Vref − V̂ )
︸ ︷︷ ︸

UP

− K sY − V̂
sTi

︸ ︷︷ ︸

Ûbias

, (4)
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where the I-part now only integrates the difference between actual and
estimated velocity, and the velocity estimate

V̂ = sY + TfilterUP
sTfilter + 1

(5)

includes feed forward from the P-part. Since the I-part provides the
bias estimate, it should not be fed forward into V̂ . Reacting only to
differences between the model prediction and measurements, the I-
part will no longer wind up during reference steps, which eliminates
the need for the β tuning parameter. Using U + Ûbias instead of UP for
feed forward in the velocity filter, this disturbance estimation scheme
also provides anti-windup.
With the observer-based control law, the controller transfer function

becomes

Gc(s) =
K

Ti

s(Ti + Tfilter) + KTfilter
sTfilter + 1+ KTfilter

,

i.e., a lead filter with slower zero and faster pole than for the pure PI
controller. The observer gives extra phase lead around the cross-over
frequency, which can be exploited by more aggressive tuning. We take

• T ′i = Ti/4 for improved disturbance rejection.
• T ′i = Ti/2,Tfilter′ ( 2Tfilter for improved measurement noise rejec-
tion. This is useful for the PI controller since it is bad at handling
the measurement quantization. We do not want to make Tfilter
slower than ω−1

c , since this would impede process disturbance
rejection.

Fig. 3 compares the original PI designs and the two versions with
observer. It is seen that the original design is somewhere in the mid-
dle, while T ′i = Ti/4 gives slightly faster disturbance rejection and
Tfilter

′ = 2Tfilter gives a smaller response to measurement disturbances.
The observer-based controllers respond slightly faster to vref changes,
since the P-part gets to act on the full reference step.
As is seen in the figure, the pure and observer-based PI controllers

can be tuned to more or less the same behaviour in closed loop. The
real gain of using an observer will be evident when we introduce the
event-based controller, where the control runs in open loop as long as
the measurements do not contradict the observer’s predictions.
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4. The JMAP Estimator

A problem with the PI controller is that it does not exploit the fact
that the main source of measurement noise comes from quantization.
In this section, we explore how to model quantization in the state esti-
mator, and the properties that follow. Insight into the behavior of the
estimator will be used to simplify it in the next section.

4.1 Process Model

Consider a system in discrete time,

x(k+ 1) = Ax(k) + Bu(k) +w(k), (6)

where x is the state, u is the control signal, and w is a zero-mean white
Gaussian noise process with variance R. The available measurements
specify an interval for the output at each sample:

y(k) − ∆y ≤ Cx(k) ≤ y+ ∆y. (7)

The initial state may be fully known or Gaussian distributed.

4.2 The Estimation Problem

We consider the joint maximum a posteriori (JMAP) approach to state
estimation: find the most probable trajectory of the state x conditioned
on the measurements, and use the state at the current time as state
estimate. With additive Gaussian measurement noise, this approach
yields the Kalman Filter (see [Cox, 1964]). With the quantized mea-
surements (7), the solution is a bit more complex.
The log-likelihood l(x) of a state trajectory x(k), k0 ≤ k ≤ k1, con-

sidering the dynamics (6) and initial distribution of the state is given
by

l(x) = −1
2



ppx(k0) − x0pp2R−10 +
k1−1∑

k=k0

ppw(k)pp2R−1



 , (8)

w(k) = x(k+ 1) − Ax(k) − Bu(k),
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when x(k0) has a Gaussian distribution with mean x0 and variance R0,
and where ppxpp2R = xTRx and w(k) has been solved for from (6). The
most probable state trajectory x is found by maximizing l(x) subject
to the linear measurement constraints (7) and any known initial con-
ditions. This is a quadratic program, which can be solved reasonably
fast on a PC. Ideally, the history k0 ≤ k ≤ k1 should go as far back as
possible to use all measurements in the estimation. An approach often
used in practice is to fix k1 − k0 = ∆k, resulting in moving horizon
estimation, see [Rawlings and Bakshi, 2006].
At any sample k, the constraint (7) is considered active if the opti-

mal trajectory would be different without it. If it is known which con-
straints are active, the optimal solution can be obtained by fixing the
constrained variables at their constraints and optimizing freely over
the rest. This is the same solution as we would get from a Kalman
Filter when the available measurements are perfect position measure-
ments at the active constraints.

4.3 Time Update

When moving forward one sample to k = k1 + 1 without adding new
measurements, the estimate update is very simple. Suppose that there
is a unique optimal state trajectory. The new cost term in (8) will add
no cost iff w(k1) = 0, i.e. the next state is predicted by the dynamics
(6) with the disturbance set to zero.

4.4 Measurement Update

If the constraint (7) from the new measurement agrees with the cur-
rent state estimate, i.e. if the trajectory from the time update is still
feasible, it is also still optimal. Otherwise, the estimator must add the
most probable correction to the trajectory so as to satisfy (7), over the
entire horizon. This correction will move the estimated position the
shortest distance necessary, i.e. to the constraint.
The most influential measurements will be at events, when the

quantized position measurement changes value. The position is then
known to be exactly half way between the two quantization levels some
time during the short period between the two measurements.
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5. Simplified Event-Based Estimator

Although the JMAP estimation problem is tractable, it is far too de-
manding to solve in real time on a small microcontroller. In this section,
we derive a realistic estimator by simplifying the JMAP estimator. The
key simplifications are:

• In the JMAP approach, ubias would be a state variable. We assume
that it varies slowly, and can be estimated separately from p and
v.

• Active position measurement constraints are considered only at
the current time and last event, which is considered as a known
position at a known time.

• When applying measurement updates, it is preferred to change
the state estimate as little as necessary. This rule is needed since
the simplified estimation problem would otherwise be underde-
termined.

The states of the estimator will be estimates of the current state
p̂, v̂, and ûbias together with a history described by the time of the last
event.

5.1 Time Update

As in the JMAP case, the time update is simply the dynamics of the
process model without noise

(
p̂(k+ 1)
v̂(k+ 1)

)

=
(
1 h

0 1

)

︸ ︷︷ ︸

A

(
p̂(k)
v̂(k)

)

+
( 1
2h
2

h

)

︸ ︷︷ ︸

B

(

u(k) + ûbias(k)
)

. (9)

There is no systematic drift of ubias in the model, so ûbias is not changed
in the time update. There is no reason to believe that ubias has changed
unless indicated by the measurements.

5.2 Measurement Update

When the current position measurement y disagrees with the current
position estimate p̂, i.e. y differs from the quantization of p̂ according

135



Paper V. Comparison of LTI and Event-Based Control for a . . .

to (1), a measurement update is applied. The most probable cause of
estimation error is taken to be an error ∆v in the velocity estimate at
the last event—the only error that requires no disturbance after the
last event to explain it. By superposition, this leads to a velocity error
∆v and a position error ∆p = ∆v∆t at the current time, where ∆t is
the time since the last event. Adjusting the position estimate to lie at
the constraint p̂ = p, i.e. to just agree with the measurement y, the
measurement update becomes

p̂+ = p = p̂+ ∆p,

v̂+ = v̂+ ∆p

∆t
.

(10)

As in the PI controller with observer, ûbias is formed from the time
integral of the difference between estimated and measured velocity,
i.e., it accumulates the difference between estimated and measured
position. The measurement update for ûbias thus becomes

û+bias = ûbias +
K

Ti
∆p, (11)

in analogy to Ûbias = K
Ti
(Y − 1

s
V̂ ) in (4).

5.3 Fixes

The gains from position error ∆p to velocity and disturbance correc-
tions ∆v and ∆ubias given above usually work well. Since the estimator
is a considerable simplification and because of some unmodeled effects,
there is a need to fix some corner cases.

LTI Mode Timeout. When there is a long time between events, a
position error only indicates a small velocity correction, and the gain
from ∆p to ∆v goes down (as ∆t−1). This works as intended for steady
motion.
The low gain should no longer be used, however, when the position

errors become big, e.g. when the cart is stuck due to friction. The
estimator time update will predict a high velocity due to prolonged
control signal activity, but the measurement update should actually
keep v̂ down.
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To handle this case, a timeout of Ttimeout = 2Tfilter is used. If mea-
surement constraints have been active for the last Ttimeout time, the
time constant ∆t = Tfilter of the LTI velocity estimators is used in the
measurement update, giving a relatively high, and fixed, gain from ∆p
to ∆v.

Measurement Gain Limitation. The case when the time ∆t be-
tween events is very short is also problematic. Since the gain from er-
rors in ∆t and y to ∆v becomes very high, any measurement noise that
is not captured by the quantization model will be heavily amplified.
Since we use the K and Ti parameters from the PI controller, which
has been designed to tolerate a lag of Tfilter in the velocity estimate, we
limit ∆t in (10) to be no shorter than Tfilter. Beyond this limit, v̂ will
behave more like the first order filters of the PI controllers, introducing
some low pass filtering on the measurements.

6. Implementation Issues

In this section, a variety of the issues encountered when implementing
the LTI and event-based controllers on a low-end microcontroller are
discussed.

6.1 Choice of Time Constants

The values of Ti, Tfilter and ω c are adjusted so that all multiplications
in the Pure PI controller can be implemented with bit shifts. Different
power of 2 ratios were tried to find a design with good tradeoff between
robustness and disturbance rejection.

1. To avoid excessive aliasing, Tfilter is chosen ( 8h. The ratio is
adjusted to place the pole in z = b = 7/8 in the discretization of
the velocity filter in (2),

Hfilter(z) =
1− b
z− b

z− 1
h
. (12)

2. The integral time is taken as Ti = 64h.
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3. The cross-over frequency ω c is chosen to make the gain
K∆pquant.
Kuh

from velocity error in units of ∆pquant./h to the motor voltage
uV a power of 2. The suitable cross-over frequencies are ω c =
5, 10, 20, 40, 80 rad/s, which decides the sample rate h.

Keeping a fixed ratio between Ti, Tfilter, and h means that the fixed-
point scalings need only small adjustments when changing ω c.

6.2 Discretization of LTI Controllers

PI Controller. The velocity filter is implemented using (12) as V̂ =
Hfilter(z)Y. The control law (3) is implemented as

U = K (Vref − V̂ ) −
K

Ti

(

Y − zh

z− 1Vref
)

,

where the unfiltered difference z−1
zh
Y is used instead of V̂ in the I-part.

This is favourable since Y is better known than V .

PI Controller with Observer. The velocity filter (5) with feed for-
ward from the P-part uP is discretized as

V̂ = hUP + (1− b)(z− 1)/h
z− b ,

and the control law (4) as

U = K (Vref − V̂ )
︸ ︷︷ ︸

UP

−K
Ti

(

Y − zh

z− 1 V̂
)

.

6.3 Multi-rate Sampling

The encoder must be sampled every 10 µs = 128 clock cycles to be
able to follow cart speeds of up to 5 m/s. There is not much time for
calculation in 128 clock cycles and no need to run the controller that
often, so it executes at a slower rate. The estimator first updates v̂ and
ûbias, and then the controller computes u = K (βvref − v̂) − ûbias.
At each invocation of the estimator, it reads the current position.

For the event-based estimators, the encoder sampler also saves the
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direction and time stamp of the last event, allowing the estimator to
use a much higher time resolution than its own sampling period. If
there was an event during the last sample, the time update is taken
up to the event, the measurement update applied, and the time update
then taken for the remaining part of the time step. Otherwise, the time
update is taken for the whole time step, and the measurement update
applied afterwards, if needed.

6.4 Fixed-Point Arithmetic

All variables are represented in fixed-point arithmetic, most in 32 bits
but some in 16 bits. Distance is measured in quantization steps and
time in encoder sampler periods. All fixed gains in the Pure PI con-
troller can be implemented with bit shifts. The process gain Ku is quite
uncertain and is represented with 5 bits of precision, which saves on
computation.

6.5 Division

The AVR microcontroller has no hardware support for integer divi-
sion, though there is a fast hardware multiplier. Division by ∆t in the
event-based measurement update is thus implemented by first approx-
imating x = ∆t−1 and then multiplying.

1. ∆t is first normalized by shifting to be within the range [1, 2), in
1 : 15 fixed point representation.

2. A 256-entry inverse table gives an 8 bit initial guess, which is
extended to 15 bits.

3. A Newton iteration for the function f (x) = x−1 − ∆t is applied.
Though the operation is carried out in 16 bit precision, the only
multiplications that are needed is one 8x16 bit and one 8x8 bit.
The initial guess has only 8 bits of precision, and the error in the
initial guess is small enough to fit in 8 bits.

The result is an inverse of about 14 bits accuracy, which was deemed
sufficient.

6.6 Concurrency

The tasks that the microcontroller has to handle concurrently are listed
in Table 1. For the encoder sampling and control tasks, we must meet
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Table 1. Characteristics of the controller tasks.

Task Period Priority

Encoder sampling 10 µs high

Encoder support 1280 µs medium

Serial receive ≥ 87 µs medium

Serial transmit ≥ 87 µs medium

Control 1000 µs low

certain rates to keep track of the position and achieve the desired
control. The serial communication is used to receive the set point from
and send measurements to a PC. For these tasks, we want to come
close to the speed limit imposed by the hardware. The tasks are split
into three priorities:

High. Since the encoder must be sampled very fast, it is given a ded-
icated timer interrupt and optimized in assembly language. To min-
imize execution time, only 8 bit quantities are updated by the inter-
rupt: the lowest bits of the position, time and time stamps. An encoder
support task will propagate changes in the 8 bit quantities to 32 bit
quantities.

Medium. A second timer interrupt at a lower rate is used to poll the
medium priority tasks. To maximize the serial communication band-
width, the period is set at the lowest multiple of the encoder sam-
ple period that guarantees that one byte can be sent and received at
each invocation. The phase is adjusted so that the polling interrupt is
triggered right after a trigger of the encoder interrupt, to minimize
interference with the encoder sampling.

Low. The controller sample rate is relatively low, and the latency is
high, so the estimator and controller are run in the main loop. This
also allows experimentation with control algorithms without concerns
for breaking the timing of the other tasks.

6.7 Step by Step Estimator Implementation

The implementation of the event-based estimator requires a number
of steps, but with the sequence suggested here, the controller can be
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verified to work after each. The Basic Event Estimator is an approx-
imation that should be good when events are quite frequent, and is
refined gradually. It is naturally implemented starting from an imple-
mentation of the Pure PI controller, which supplies the control law that
is used throughout:

u = K (βvref − v̂) − ûbias

(though β is set to one in the end).

Basic Event Estimator. The estimates p̂ and v̂ are constant be-
tween events: there is no time update, and measurement updates are
at events only. The measurement update (10) is simplified with

v̂+ = ∆p

∆t
, ∆p = p̂+ − p̂,

to work when there is no time update for p̂. The ûbias update mirrors
the Pure PI controller’s Ûbias = K

sTi
(V̂ − Vref) in (3):

ûbias(k) = ûbias(k− 1) +
K

Ti

(

p̂(k) − p̂(k− 1) − hvref(k)
)

.

Position Prediction. Now v̂ is used to predict the evolution of p̂
between events, introducing as time update the relevant part of (9):

p̂(k+ 1) = p̂(k) + hv̂(k).

With this time update, the intended form (10) of the measurement
update should be used. It is now possible to lower limit ∆t by Tfilter
according to section 5.3; the correction form of the measurement update
(10) will ensure that v̂ eventually converges to the correct value. The
only other visible difference from taking this step is to remove the
I-part windup between events when v ( vref.

Measurement Updates Between Events. Now it is straight for-
ward to apply the measurement update (10) as soon as the position
measurement disagrees with p̂, allowing the controller to react faster
to drops in speed.
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LTI Mode Timeout. The LTI Mode Timeout fix of section 5.3 is
added. This is needed in the last implementation step to avoid the
controller becoming too soft during startups.

Full Event Estimator. The full time update (9) is implemented by
adding the v̂ part, and ûbias is now updated only in the measurement
update, using (11). Finally, the analysis of the Observer-Based PI con-
troller in section 3.2 applies, so we set β = 1 and make Ti four times
faster to improve disturbance rejection.

7. Experimental Comparison

The controllers to be compared are the Pure PI controller, the Observer-
Based PI controller, the Basic Event Estimator, the Event Estimator
with Position Prediction, and the Full Event Estimator. Since it takes
a only minor implementation effort, the Event Estimator with Position
Prediction has measurement updates also between events.
To compare the performance of the different controllers under dif-

ferent conditions, a number of step response experiments were per-
formed. In each experiment, the cart begins at rest at position p = 0
with all estimates at zero. At time t = 0, a step in vref is made. The
cart is allowed to run for 1 m, counting the first 0.3 m as startup and
the rest as stationarity. After 1 m, vref is stepped back to zero.
To have an accurate way to compare the velocity trajectories for

the different controllers, the full resolution of the encoder was used
for offline evaluation, while in most of the experiments, all feedback
was based on a software emulated encoder with the q = 6 lowest bits
dropped. To reconstruct the velocity trajectory from an experiment, a
simple form of the JMAP estimator is used. Only p̂ and v̂ are used as
states, and the effect of u is ignored. Since there is some jitter in the
serial communication, the measurement constraints (7) are relaxed to
allow that each measurement may have arrived one sample to soon or
too late. The optimization problem for the whole trajectory conditioned
on all measurements is solved simultaneously.
Fig. 4 shows typical experimental results for the Pure PI and Full

Event controllers at q = 6, ω c = 20 rad/s, vref = 0.8 m/s. We see that
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Figure 4. Experimental results for the Pure PI and Full Event controllers
with ω c = 20 rad/s. The dotted line shows vref. The friction varies faster at the
far end of the track, degrading the velocity tracking in the later half.

the PI controller spends a considerably greater control effort, and that
the Full Event controller has slightly better reference tracking.

7.1 Performance Metrics

To measure the control effort, we use

σu =
std(u)
mean(u) ,
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Figure 5. Experimental comparison of control signal activity σu versus ve-
locity RMS error Ev for the LTI controller and three development stages of
the event-based controller. Each controller is used with cross-over frequency
ω c = 5,10, 20, 40,80 rad/s, (indicated by numbers in the figure) giving succes-
sively lower velocity error but higher control signal activity. At ω c = 80 rad/s,
the two simplified event-based controllers become unstable in this case. Each
dot corresponds to one experiment.

where the standard deviation and mean are taken over the last 0.7
m of the trajectory. The mean is taken over all experiments with the
same vref. The reference tracking error is measured by the RMS error
over the last 0.7 m, normalized by vref:

Ev =

√
√
√
√ 1
N

N∑

k=1

(
v̂(k)
vref

− 1
)2

.

Startup time is measured by

tstartup =
tp=pstartup
tref

− 1, tref =
pstartup

vref
,

where pstartup = 0.3 m.
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Figure 6. Experimental comparison of control signal activity σu versus
startup delay tstartup for the experiments in Fig. 5. The full event-based con-
troller has a higher delay due to its different disturbance estimate.

7.2 Controller Comparison

To compare the controllers, experiments were made with vref = 0.8 m
and q = 6, varying ω c = 5, 10, 20, 40, 80 rad/s. This gives about 1.7
events/Tfilter for the Pure PI controller at ω c = 5 rad/s, and decreas-
ing. For the Full Event and Observer-Based PI controllers, which had
reduced Ti, Ti had to be lower bounded to the value used by the Pure
PI Controller at ω c = 80 rad/s to avoid instability.
Fig. 5 compares the control effort and velocity tracking for differ-

ent controllers and cross-over frequencies. We see that as the control
loops become faster, the control effort of the LTI controllers rises much
steeper than for the event-based controllers. At first, the velocity track-
ing improves in much the same way for all controllers, but eventually
the Full Event controller wins out.
The greatest gain comes from going from LTI control to the Basic

Event controller, but for high bandwidth, there is more to gain with
the Full Event controller. The break point where event-based control
gives lower control effort than LTI seems to be around one event per
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Figure 7. Experimental comparison of velocity RMS error Ev for LTI and
event-based controllers versus number of discarded encoder bits q.

Tfilter, somewhere between ω c = 5 rad/s and ω c = 10 rad/s in this
experimental setup.
Fig. 6 compares the control effort and tstartup for the same cases as

in Fig. 5. Here, the PI controller is a bit faster for high ω c, though at
a considerable control effort.

7.3 Quantization Dependence

To explore quantization effects, the experiments with ω c = 40 rad/s
above were rerun with vref = 0.4 m/s, varying the quantization as q =
0 . . .6. The Basic Event Estimator was excluded, since its inability to
lower bound ∆t made the control signal very noisy at low quantization
q.
Figs. 7 and 8 show the tracking error Ev and control effort σu

with the different encoder resolutions. As the quantization decreases,
both Ev and σu generally improve, seeming to settle at a quantization
free level. The best tracking performance is almost achieved already
at q = 5, at which point the Full Event controller has also achieved
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Figure 8. Experimental comparison of control signal activity σu for LTI and
event-based controllers versus number of discarded encoder bits q.

minimum control effort. The Event controller with Position Prediction
achieves minimum σu at q = 4. The control effort of the LTI controllers
decreases only gradually, the Observer-Based PI controller being a bit
more gentle.
The Full Event controller actually performs at its best with some

extra quantization in this case, so there is some room for improvement
to make it behave more like the other controllers when events are
frequent.

8. Conclusion

This paper presented a simple event-based state estimator for a moving
cart with quantized position measurements, derived as a simplification
of a joint maximum a posteriori (JMAP) estimator. Velocity control
based on the event-based estimator was compared experimentally to
classical linear time-invariant (LTI) controllers. In the experiments,
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it was seen that the benefits of event-based control begin to appear
when the LTI controllers are unable to filter out the quantization noise
efficiently, around the point of one quantization step per velocity filter
time constant.
The foremost benefit with event-based control is to greatly reduce

the noise in the control signal. The lowered control effort makes it
practical to use a much higher gain in the control loop, improving dis-
turbance rejection. Already a simplified event-based controller comes
a long way compared to the LTI controllers, but with high controller
gain, the full event-based estimator shows superior performance.
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