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Prostate cancer 

This chapter gives an introduction to prostate cancer (PCa). It touches upon 
biological and medical aspects of the disease, starting with a description of the 
anatomy and physiology of the normal prostate. In addition, causes of PCa, related 
statistics, current diagnostic procedures, tools to assess disease extension and 
aggressiveness and treatment options will also be discussed. 

By the end of the chapter, the reader will know that: 

 The prostate gland is part of the male genitourinary system. It is hormonally 
controlled and it produces substances that favour the mobility and viability 
of sperm. 

 Many pathological conditions affecting the prostate are not life threatening 
while the risk of PCa should be adequately assessed. 

 With approximately 1 million cases in the world, PCa is one of the most 
common cancers in men. PCa affects mainly men above 60 years old. Even 
if the causes are not yet clear, some factors have been identified that 
increase the risk of occurrence. 

 We have a set of clinical tests including DRE and PSA that allow for 
diagnosis but that unfortunately still have low specificity with consequent 
risk of overdiagnosis and overtreatment 

 Clinical data allow for staging of the disease which is the estimation of the 
actual extension and aggressiveness. Data collected from resected prostates, 
following curative treatment, help to predict the future development of the 
patient’s disease. Gleason grading is an assessment of the microscopic 
structure of the cancerous prostate and is still the most powerful prognostic 
tool.  

 Not all PCas are lethal; the majority of the cases are actually not life 
threatening or detected at an early stage when successful treatments can be 
offered to the patient. Advanced PCa is not curable, yet palliative treatments 
are available. 
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The human prostate 

The prostate is an exocrine organ located below the bladder and surrounding the 
urethra. In its normal state, the prostate is similar in shape and size to a walnut [1]. 
Throughout life the prostate grows until puberty and it remains in that state unless 
other conditions arise. 

 

 

 

Figure 1 - prostate anatomy adapted from Campbell-Walsh Urology 9th edn (Saunders Elsevier, 
Philadelphia, 2007). 
The central, peripheral and transition zones, together with the anterior fibromuscular stroma are 
visible. The urethra and the ejaculatory ducts of the seminal vesicle pass through the prostate 

Anatomically (Figure 1) the prostate is constituted of an anterior fibro-muscular 
stroma and three glandular zones: peripheral zone (PZ), transition zone (TZ) and 
central zone (CZ) [2]. This distinction is important because the different zones are 
subject to different pathological conditions. The PZ is the largest with 70% of the 
total prostate volume and harbours the majority of the prostate tumours. The TZ 
occupies only 5% of the prostate volume, but its critical position, right adjacent to 
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the urethra, can make it a cause of distress and problems for men when benign 
prostatic hyperplasia (BPH) occurs. BPH is a non-malignant enlargement of the 
prostate which is a common occurrence in elderly men [3]. The CZ constitutes 
around 25% of the organ and, although less frequent than the PZ, it can harbour PCa 
with highly aggressive features [4].  

The name prostate is derived from Greek and means ‘protection’, which seems to 
suggest that the prostate position at the ‘entrance’ of the urinary system my play the 
role of a barrier to exogenous agents towards the upper urinary ways. 

As part of the male genitourinary system, the function of the prostate is to produce 
the fluid component (about 30%) of the semen which is rich in simple sugars, 
enzymes and alkaline substances to maintain and nourish the sperm. The gland cells 
secrete proteolytic enzymes that, by breaking down proteins, favour the sperm’s 
motility and viability [1]. 

Microanatomy of prostatic tissue 

The normal prostatic tissue (Figure 2) consists of glandular structures, tubules 
surrounded by stroma, the two of which by which are separated through a basement 
layer. 

The glands consist of epithelial cells which surround an empty lumen where the 
secretory proteins are released to then reach the urethra. There are three types of 
epithelial cells: the basal cells, close to the basement layer the luminal cells opening 
to the lumen and the neuroendocrine cells (less conspicuous). These cells have 
distinct function and express proteins that are differently involved in various stages 
of PCa. The luminal cells require androgens for survival and without them they 
undergo apoptosis; the basal cells are highly proliferative, androgen independent 
cells that might contain a stem-like cell population responsible for development of 
all epithelial cells [5, 6]. The most common PCa phenotype (ca 90% of the cases) 
has epithelial origin and is called adenocarcinoma [7]. The stroma compartment is 
formed of extracellular matrix and smooth muscle cells as well as fibroblast. 
Stromal cells produce paracrine factors that influence the glandular cells. The 
stroma-epithelium (micro-environment) interaction is central both in normal and in 
pathological conditions, as is shown in several studies [8, 9].  
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Figure 2 - normal prostatic glandular structure 
One layer of epithelial cells is surrounded by one layer of basal cells and a basement membrane. 
Neuroendocrine cells are rare and stem cells originate in the basal cell compartment. The gland is 
separated from the stroma by a basement membrane.  

A normal gland is formed by a single layer of luminal cells, surrounded by a layer 
of basal cells. The absence of basal cells is a hallmark of cancer. The shape of a 
normal gland is typically irregular, with branches and infoldings. The cells have 
normal abundant cytoplasm with polar shapes toward the lumen. The nuclei are 
regular in size and shape. When cancer arises, a loss of basal cells is observed and 
the tissue undergo some changes that affect cells and gland architecture (Figure 3) 

The Haematoxylin and Eosin (H&E) staining is the traditional way to make the 
microstructure visible through light microscopy. The architectural structure of the 
glands and the appearance of the glandular cells is analysed to make a diagnosis and 
for grading of PCa. The Gleason grading (see Gleason grading section) is in fact an 
assessment of the gradual transformation of the normal gland into malignant, 
undifferentiated tissue (Figure 4). 

 

epithelial cell

basal cell

basement membrane

neuroendocrine

stem cell

stromal cell
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Figure 3 - tumour progression 
From left to right, the schematic shows the gradual transformation of a normal gland into a more 
undifferentiated structure. Basal cells tend to disappear, the glands become smaller, lumina are not 
well defined and eventually there are only cancer cells, scattered or forming solid sheets. 

Androgen signalling 

The normal growth and physiology of the prostate depends on androgen supply. 
Among the androgens, testosterone is produced by the testes while 
dehydroepiandrosterone is synthetized in the adrenal glands. Testosterone circulates 
in the blood and when it enters the prostate epithelial cells, it interacts with 5- -
reductase and gets converted to dihydrotestosterone (DHT), which is the most 
potent ligand to the androgen receptor (AR) [9, 10]. 

The AR belongs to the nuclear steroid receptor family and when inactive is bound 
to heat shock proteins. Upon DHT binding with AR, there is consequent dissociation 
of AR from the heat shock proteins. At this point the AR enters the nucleus and 
binds to the androgen responsive elements within promoter regions of AR target 
genes, and initiates transcription. In order to perform this process, the newly formed 
AR-DNA complex recruits a multitude of co-transcription factors [11].  

Prostate Specific Antigen (PSA), which will recur in the thesis, is one of the targets 
of the AR pathway.  

The AR and androgen signalling [12, 13] are involved not only in the correct 
functioning of the prostate but also in PCa development and lethal castration 
resistant prostate cancer (CRPC). 
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Aetiology of PCa 

PCa is one of the most common cancers in the world with 1.1 million new diagnoses 
in 2012 which accounted for 15% of all cancers in men. Interestingly almost 70% 
of the cases occur in the developed countries. The incidence of PCa varies 
significantly across countries, with the highest peaks occurring in Australia/New 
Zeeland, north America and western and northern Europe and the lowest rates in 
Asian populations [14]. Even if this seems to suggest a geographical factor for PCa, 
the result could also be explained with the introduction of PSA screening in the late 
1980’s in the most developed countries resulting in an increase in the detection of 
PCa in those areas [15]. 

The causes of PCa are still not completely understood, although a number of risk 
factors have been identified. 

Age is one of the most important risk factors for PCa as the disease is rarely found 
in patients aged below 40. Other risk factors are related to familiar history, ethnicity, 
diet, and certain sporadic genetic events.  

Men with a brother or father who developed PCa are twice as likely to develop the 
disease [16]. African American men have among the highest incidence rate and a 
2.5-fold higher risk of developing advanced PCa compared to the white Caucasians 
[17]. The ethnical/geographical influence has been investigated further in several 
studies. Shimizu et al. [18] studied incidence of PCa for Spanish-surnamed whites, 
other whites and Japanese populations in Los Angeles County. The incidence was 
much higher than in the ‘homeland’ populations and similar to those of US-born 
patients. The incidence of PCa in Asian immigrants in the United States and their 
descendants was studied also by Cook et al. [19] who observed an increase 
compared to homelands, however still lower than white men born in the US. These 
kinds of studies seem to suggest that life style such as dietary habits, may play a role 
in modulating the risk of developing PCa. Some studies have shown that men that 
carry mutations in the genes BRCA1 and BRCA2 seem to have a higher risk for 
developing PCa [20]. 

Loeb et al [21] analysed the influence of environmental factors on genetic events 
that are related to PCa risk (like single nucleotide polymorphisms). They showed 
that selenium supplements may reduce genetic risk of advanced PCa; aspirin, 
ibuprofen and vegetables may reduce risk of non-advanced PCa. 

In a recently published work [22], a set of risk factors was analysed to predict the 
10-year risk of 11 common cancers: age, Body Mass Index, Townsend deprivation 
score, ethnicity, smoking status, family history, manic depression, type 1 diabetes 
and type 2 diabetes. Again, significant differences were observed between ethnic 
groups with south Asian and Chinese having the lowest and black African and 
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Caribbean men having the highest risk. They also implemented a risk calculator, the 
Qcancer, accessible online (http://qcancer.org/10yr/). 

Diagnosis 

The current diagnostic tools to detect PCa are PSA blood test, digital rectal 
examination (DRE) and transrectal ultrasound (TRUS)-guided biopsy.  

The PSA test measures the level of the antigen in the blood. Elevated levels may 
suggest PCa and advocate for more tests. The routine was introduced in the early 
1990’s [23] and has changed the PCa scenario, resulting in a surge in disease 
detection.  

During a DRE the urologist looks for hard lumps in the prostate that might be 
indicative of tumours. Adding the PSA test increases the accuracy of the diagnosis 
but it is still far from being adequately specific for PCa. In fact, abnormalities in 
DRE and PSA can be due to other conditions such as BPH or prostatitis (prostate 
inflammation). Symptoms that might alarm a man, the so called lower urinary tract 
symptoms (LUTS), are related to problems with storage and voiding of urine, 
however these can be attributed to several other causes affecting bladder, urethra, 
prostate or sphincter tissue and generally are common in aging men. These 
symptoms are not related specifically to PCa and should be addressed appropriately 
[24].  

The single conclusive way to diagnose cancer is to biopsy the prostatic tissue [25]. 

A diagnostic procedure is conceptually different from screening. Screening means 
to perform clinical tests on patients without clinical symptoms. The aim is to detect 
the disease at an early stage in order to increase the chances to have a curative 
treatment. 

The question of whether it is really beneficial for increasing survival is 
contradictory. The two biggest studies trying to reach a conclusion were the 
European randomized screening prostate cancer (ERSPC) and Prostate, Lung, 
Colorectal and Ovarian (PLCO) cancer screening. 

The ERSPC [26] observed a 20% decrease in mortality, however 1055 men needed 
to be screened to prevent one death from PCa during a median follow-up duration 
of 11 years. The PLCO [27] showed that after 7-10 years the rate of death from PCa 
in screening versus non screening did not differ significantly. In a 2009 review [28] 
and then in a combined meta-analysis taking in consideration even other studies 
[29], the authors concluded that PCa screening does not significantly decrease PCa-
specific mortality. Interestingly, just one study (ERSPC) observed a reduction of 
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mortality. Reduction in PCa specific mortality can take up to 10 years to be evident, 
so if life expectancy is shorter than that, screening should not be suggested.  

Moreover, overdiagnosis and overtreatment that derives from this, can have 
harming consequences (infections, pain deriving from biopsies and bleeding) for the 
patients. Quality of life needs to be taken in high consideration. 

For these reasons the United States Preventive Service Task Force (USPSTF) did 
not stand in favour of large-scale screening for PCa, stating that the harms would 
outweigh the benefits (2012). The American Urological Association (AUA) was 
also critical about the screening approach [30]. 

PSA screening has certainly resulted in a decrease in stage (see Staging and grading 
section) of detected PCa at the time of diagnosis and 80% of these are localized to 
the prostate [31]. 

It is clear that the main problem is not only to detect PCa with minimally invasive 
techniques and limited harmful consequences for the patient but also to identify 
clinically significant PCa. PLCO and ERSPC have increased our awareness about 
diseases, pointing out that, although detected through the screening, some PCas 
would have never become symptomatic or led to cancer specific death. This case is 
called indolent PCa, or sometimes insignificant which must be distinguished from 
the significant PCa [32]. The histopathological definition of insignificant PCa is 
based on the analysis of the whole prostate and requires Epstein criteria of a volume 
<0.5cm3, Gleason score 6, no evidence of Gleason grade 4 and pathological stage 
pT2 [33] (see Staging and grading section). A clinical translation of the 
aforementioned is needed but challenging. Clinically insignificant PCa fulfils 
clinical and biopsy criteria, including clinical Epstein criteria [32]. 

Staging and grading 

Two types of staging, clinical and pathological, are currently in use. The first is the 
doctor’s estimation based on DRE and lab test conducted on the patient. The second 
is performed on the actual removed tissue after prostate excision. This is generally 
more accurate than the clinical staging because the doctor can have a view of the 
whole prostate and avoid the risk of underestimation. 

The American Joint Committee on Cancer (AJCC) and the Union for International 
Control (UICC) have adopted the TNM staging [34]. 

The TNM system is comprised of: T, the extent of the primary tumour, N, the state 
of nearby lymph nodes and M, the presence of distant metastasis. T0 and TX define 
the absence of a primary tumour or the impossibility to give a clear assessment, 
respectively. T1 indicates a primary tumour that is not palpable but that was found 



21 

incidentally. This could occur following a transurethral resection of the prostate 
(TURP) for relieving the symptoms of BPH or following a needle biopsy performed 
upon an elevated level of PSA. T2 describes a tumour that is palpable or visible 
through imaging but still confined to the prostate: a T2a tumour is present in one 
half or less of one lobe, a T2b is still limited to a single lobe but larger than a half, 
a T2c is present on both lobes. T3 stage is given when the primary tumour has grown 
outside the prostate: a T3a has exceeded the prostatic capsule while a T3b has spread 
to the seminal vesicles. Finally T4 stage defines a tumour that has spread to adjacent 
tissues and organs such as the bladder, rectum or pelvis. As for the lymph nodes 
state, NX means the lack of an assessment, N0 and N1 indicate absence or presence 
of tumour in the lymph nodes, respectively. M describes the state of distant 
metastases: M1a indicates the spread to distant lymph nodes, M1b the spread to the 
bones and M1c the spread to other organs such as liver, lungs, brain or bones. Bone 
is the most common site of metastasis for PCa. 

TNM system is used along with blood PSA value and biopsy Gleason score to form 
the stage-grouping, a scale from I to IV from the least to the most advanced disease. 
While patients with low risk might be candidates for active surveillance, the high-
risk patients are offered a number of possible treatments depending on stage and 
clinical data. This would support the doctor in deciding the best treatment for the 
patient.  

Tools called nomograms can help predict the actual extension of the disease from 
the clinical tests. The so called “Partin tables” in their updated version [35] use 
serum PSA, biopsy Gleason score and clinical stage to predict the pathological stage 
(whether or not the tumour is confined or not to the prostate) at radical 
prostatectomy.  

Other staging tools used less frequently include the Whitmore-Jewett system that 
identifies 4 categories and the D’Amico that also uses PSA level, Gleason score and 
T stage to stratify patients in 3 risk groups [36]. 

Gleason grading 

Gleason grading was introduced by Dr D. Gleason in 1966 [37–39] and revised 
recently in the 2005 consensus [40]. The Gleason scoring is an assessment of the 
architectural structure of the prostatic tissue. It identifies five patterns or grades, 
from 1 to 5, indicating tumours ranging from resembling a benign gland to the least 
differentiated, more invasive ones. This scale represents the gradual loss of 
glandular structure that takes place in the most aggressive form of the disease. The 
final Gleason score is the sum of the two most common grades found within the 
tumour, therefore ranging from 2 to 10.However importance has also been given to 
the tertiary pattern, if this is particularly high. 
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The original Gleason grading system was conceived before the PSA testing era and 
the majority of patients, diagnosed with the aid of DRE, presented with advanced 
disease and often metastasis at the time of diagnosis. Only 8% were diagnosed with 
a palpable localized tumour [38]. Since then, advancements in biopsy collection 
(with the aid of 18-gauge thin needle biopsies introduced in the late 1980s [41]) and 
immunohistochemistry (IHC) have shown that PCa is heterogeneous and multifocal. 
Conditions such as adenosis or prostatic intraepithelial neoplasia (PIN) would have 
likely been misinterpreted as very low Gleason grades in the past. Also, newly 
diagnosed forms of PCa such as mucinous carcinoma or foamy gland carcinoma 
need to be taken into account. For these reasons the 2005 USCAP meeting strived 
to reach a consensus over the new issues related to Gleason grading in the PSA era. 
The new reformulation (Figure 4) is defined as [42]: 

• Pattern 1 = a circumscribed nodule of medium sized acini, uniform and still 
separate. 

• Pattern 2 = still circumscribed nodule with glands that are arranged in a 
more loose fashion and less uniform than the first grade. 

• Pattern 3 = the glands are generally smaller than previous grades with more 
variation in size and shape; they are still discrete but the can start to infiltrate 
normal areas. 

• Pattern 4 = there is a fusion of glands that start to lose their normal structure 
with an ill-defined lumen. A cribriform pattern is also observed. 

• Pattern 5 = it is not possible to distinguish discrete glands anymore and they 
are replaced by solid sheets or single scattered cancer cells.  

It should be noted that reporting Gleason scoring for biopsies and for whole 
prostatectomies may differ and different considerations are generally made. Since 
biopsies only show small samples of the whole organ, pathologists are generally 
more careful in dealing with this. As multiple biopsies are taken from different 
locations in the prostate, the samples may display different patterns. One way of 
reporting this would be to identify the most common patterns, however, several 
studies have shown that if some cores show the presence of a highest degree pattern, 
a score reporting the most common and the highest grade (even if not the second 
most common) correlates better with pathological stage at radical prostatectomy 
[43, 44]. This is a different approach from the traditional Gleason grading. 
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Figure 4 - Gleason Grading schematic adapted from An update of the Gleason Grading System. 
Epstein J. The journal of Urology 2010 
The system describes the gradual change in the glandular architecture. With increasing grades, the 
glands tend to become smaller, fuse together and eventually disappear into undifferentiated, 
scattered, highly invasive cancer cells. 

The new modified grading system has resulted in an increase in the concordance 
between biopsy Gleason score and radical prostatectomy score from 58% to 72% 
[45]. 

There are, of course, still incongruences and areas of lacking consensus in analysing 
and reporting Gleason score of needle biopsies and radical prostatectomies [46]. 

One other issue related to Gleason scoring is the difference between pattern 3 and 
pattern 4, as pattern 4 marks a more defined change of prostatic glandular structure 

Grade 1

Grade 2

Grade 3

Grade 4

Grade 5
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with increased tumour invasive capability [47]. This makes the capability if 
distinguishing between grade 3 and grade 4 particularly important. 

Finally it is clear that Gleason grading is highly dependent on the pathologist 
experience and a certain inter and intra observer variability has been shown in some 
studies [48]. 

Treatment  

Choosing the adequate treatment must take into consideration the stage of the 
disease, the general health status of the patient and their life expectancy. Patients 
with tumours that are not expected to grow for several years may be put on a regime 
of active surveillance. This means that regular DRE and PSA tests are conducted 
every three or six months, yet other treatment is deferred until the tumour displays 
signs of progression. 

Localized PCas that are not thought to have spread beyond the organ are candidates 
for curative treatments including surgery or radiotherapy. The surgical operation is 
called radical prostatectomy and consists in removing the whole prostate. While 
retropubic (frontal opening from the belly to the pubic bone) and perineal (incision 
between the anus and the scrotum) are the traditional techniques, nowadays 
laparoscopy is becoming more and more common. It consists of performing several 
small incisions in the abdomen, through which a camera and the operation tools are 
inserted. The robotic-assisted laparoscopy is a an evolution which further reduces 
the bleeding and other side effects (incontinence, impotence) with comparable 
outcome to retropubic prostatectomy [49]. Radiotherapy can be recommended for 
tumours that have started to grow outside the prostate, advanced disease in order to 
shrink the tumour as well as following prostatectomy in case of biochemical 
recurrence (BCR). 

Advanced PCa is not yet curable. Patients that present an advanced stage cancer at 
diagnosis and are not operable as well as those where the tumour has recurred after 
prostatectomy are given palliative treatments. The first treatment is generally 
Androgen Deprivation Therapy (ADT) since, at least in the beginning, PCa cells are 
dependent on the AR-androgen interaction for proliferation [12]. The most used 
ADT therapy involves gonadotropin-releasing hormone (GnRH) agonists and 
antagonists that block production of testosterone from the testes. While the GnRH 
have an effect on testosterone produced from testes, they cannot stop other cells 
from producing the hormone (PCa cells themselves can do that). The drug 
Abiraterone (Zytiga®) is able to stop this process by blocking the enzyme CYP17 in 
tumour cells. Anti-androgens can also be used for their antagonist activity: they bind 
competitively to the AR impeding its activation. Unfortunately the ADT therapy 
only has an initial temporary effect. The cancer inevitably stops responding, 
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becoming castration-resistant (CRPC) and eventually metastasizing to distant areas. 
At this stage chemotherapy can be provided using drugs such as Docetaxel 
(Taxotere®) that, for example, target cell division. New interesting techniques 
include cancer vaccines that make the immune system attack PCa cells, however 
even this is not a curative treatment. 
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Histopathology  

Histopathology is the microscopic assessment of tissue specimens, processed and 
stained, to highlight cellular and tissue architecture for both clinical and research 
purposes.  

The chapter will highlight the following points: 

 The importance and need for biomarkers for diagnostic and prognostic 
purposes 

 Tissue biomarkers have great potential because they carry both expression 
and morphological information in contrast to serum markers. However, 
their use is still hampered by lack of standardization in material processing, 
analysis tools and interpretation. 

 There are a number of biomarkers that are currently being investigated. 
Some, such as alpha-methylacyl-CoA racemase (AMACR) and p63, help 
in diagnostic settings while others are under investigation for their 
prognostic role. 

 The introduction of tissue microarrays (TMA) has boosted the research in 
high-throughput analysis of tissue biomarkers.  

 There are different staining techniques: the main methods are chromogenic 
and fluorescence. They both have pros and cons. Chromogenic staining is 
more widely used while immunofluorescence is limited mostly to research 
setting. 

 We investigate a novel immunofluorescence technique, the Time Resolved 
Fluorescence Imaging (TRFI), which seems to be particularly suitable for 
biomarker quantification on formalin-fixed paraffin embedded tissue 
sections. 

Tissue biomarkers 

Broadly speaking, a biomarker is a “characteristic that is objectively measured and 
evaluated as an indicator of normal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention” [50]. Talking about 
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biological processes can be difficult so it is fundamental to define relevant clinical 
endpoints against which to test a specific biomarker [51]. Clinical endpoints in PCa 
include BCR, defined as serum PSA rising after curative treatment, metastasis onset 
and survival.  

A biomarker should not only be objective, quantifiable and reproducible but easily 
accessible. 

During the ‘80s and ‘90s biomarker research in solid tumours mainly focused on 
immunohistochemical markers. However, the majority of these markers were never 
introduced in the clinical setting which led to decreased interest in 
immunohistochemical biomarkers and instead an increased focus on blood/serum 
markers [52]. 

Traditionally, analytes in the blood/serum have been the main biomarkers, probably 
for their easy access. However markers expressed within tissue have the advantage 
that they also carry spatial information, that is, information regarding where a 
specific event is taking place. In fact, in contrast to circulating biomarkers, in tissue 
there are intermingled populations of cancer and normal cells. This allows for a 
differential expression analysis with the possibility to look also at field effects. 

An example of a tissue biomarker that has been successfully implemented in the 
clinical setting is the human epidermal growth factor 2 (HER2), whose expression 
in the membrane of breast epithelial cells is used in breast cancer patients. 
Guidelines for the correct use and interpretation of the biomarker have been issued 
by ASCO/CAP [53] and the test has gone a long way with approval from the 
American Food and Drug Administration (FDA). 

Generally, immunohistochemical analysis of tissue biomarkers has been limited to 
a ‘binary’ assessment (presence/absence of a biomarker) because a quantitative or 
semi-quantitative assessment poses some problems. 

Factors that have been impairing the widespread use of tissue biomarkers include: 

• Limited datasets and lack of validation sets. 

• Lack of appropriate cohort to test tissue biomarkers. 

• Wrong choice of the adequate endpoints (is BCR a good surrogate of failure 
or specific death?). 

• Datasets that are not well described, 

• Inadequate statistical analysis, 

• Heterogeneity of PCa. A problem that especially occurs with biopsies where 
the sampling might miss the most significant foci. 

• Absence of standardized protocols for staining, data assessment and 
interpretation.  
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The reproducibility of many studies has been a problem and therefore we lack 
validation studies. 

Nevertheless tissue biomarkers are still needed for improving diagnosis, better 
staging, stratifying patients and predicting patient outcome with or without a 
treatment. 

It is improbable that a single marker can give a complete description of an aspect of 
the disease; hence the latest studies try to look at a group of biomarkers. 

Also a new biomarker must be powerful enough to significantly improve the current 
prediction model (based on serum PSA) in order to be taken in consideration [54]. 
At the time being, due to the heterogeneity and lack of concordance of the studies 
[55], blood PSA is the only biomarker routinely used in nomograms for PCa. 

The new advances in the ‘omics’ field together with new technologies, high-
throughput schemes and computerized image analysis can aid the search for new, 
reliable biomarkers. 

Diagnostic markers 

Definitive diagnosis of PCa is performed on biopsies that have been stained with 
H&E. Using a microscope, the pathologist analyses the tissue architecture and the 
cellular atypia. However, sometimes this is not sufficient to rule out the presence of 
cancer, possibly due to focus being too small to detect the atypia as it happens in at 
least 5% of biopsies [56]. For this reason other immunohistochemical staining can 
be used to help the diagnosis. The most used ones include the following: 

AMACR 

AMACR [57, 58] is generally expressed in the cytoplasm of cancer epithelial cells 
and is normally negative in benign tissue. It can however be expressed in PIN as 
well as occasionally in benign lesions such as atrophy and adenosis [54]. 

AMACR is reported to be expressed in about 80% of cancer cells, although some 
variability has been observed [59]. Some forms, such as foamy gland PCa, are less 
often positive [60]. Moreover, although quite specific for cancer cells, AMACR 
expression may decrease in more advanced cancers as was suggested by Rubin et 
al. [61]. 
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P63 

AMACR is generally utilized in combination with p63 and/or high molecular weight 
cytokeratins (HMWCK). p63 is a basal cell marker [62, 63] and therefore a marker 
of benign tissue. However false negative p63 stainings can occur and sometimes 
basal cells could be absent in small foci due to the cutting procedure. p63 can be 
used alone or in combination with HMWCK because, differently from epithelial 
cells, they are expressed by basal cells. The problems might arise for those benign 
conditions such as atrophy that are occasionally negative for HMWC or for aberrant 
expression in some adenocarcinomas [64]. 

A double immunohistochemical staining for p63 and AMACR therefore has a very 
important diagnostic utility [25, 65] which is why we employed it in our studies. In 
particular the possibility to simultaneously navigate images of the same tissue 
section stained sequentially for H&E and p63/AMACR can be a valuable 
investigative tool as demonstrated by Helin et al. [66]. 

Prognostic markers 

Prognostic markers are molecules that predict the possible outcome of a disease in 
an untreated individual whereas predictive markers can predict the response to a 
specific treatment for a specific disease [67]. PCa is a very heterogeneous disease: 
it can be very aggressive from its onset or it can present with clusters of tumour cells 
with different phenotypes [54] and different aggressive features. 

There are a number of prognostic markers that have been described and investigated. 

Ki-67 

Ki-67 is a cell proliferation marker and is expressed in G1, S, G2 and M phase of 
the cell cycle. A number of studies have shown its association to aggressive features 
of PCa and its predictive capability after treatment. 

Berney et al. [68] showed that Ki-67 expression in TURP samples was correlated to 
overall survival in conservatively treated patients and added an independent 
prognostic power to Gleason score and serum PSA. Ki-67 seems to correlate with 
Gleason score in diagnostic biopsies [69] as well as in subsequent prostatectomies 
[70]. Rubio et al. [71]observed that Ki-67 in needle-biopsies predicted disease-free 
survival after prostatectomy. 

To summarize Ki-67 expression is related to unfavourable clinicopathological 
characteristics of PCa as well as with cancer specific death. 
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Fusion gene TMPRSS2:ERG 

In 2005 Tomlins et al. [72] used a bioinformatics approach, Cancer Outlier Profile 
Analysis (COPA), to discover oncogenic chromosomal abnormalities. They found 
that ERG and ETV1, two members of the ETS family of protein, were 
overexpressed in a subset of PCas. In addition, they observed recurrent fusion of 
these proteins to the 5’ untranslated region of the androgen dependent TMPRSS2 
gene. In particular the TMPRSS2:ERG fusion occurs in approximately 50% of PCas 
[73]. 

Several groups have tried to study the association of this fusion gene with 
clinicopathological features and outcome of the disease, however the results have 
so far been inconclusive.  

Rajput et al. found the fusion to happen more frequently in moderately to poorly 
differentiated tumours [74]. Perner et al. [75] also observed association of the fusion 
gene (through deletion) with higher tumour stage and metastatic onset. However a 
study by Barros-Silva et al. displayed that the gene fusion detected in biopsies was 
associated with low Gleason score and serum PSA [76]. A similar association with 
low-grade morphological features was observed by Fine et al. [77]. Furthermore, no 
association with clinicopathological parameters was found by Rubio-Briones et al. 
[78] and when checked against outcome in patients treated by prostatectomy 
Gopalan et al. [79] did not find any significant predictive power as we also observed 
in a large cohort of localized PCas, in paper I [80].  

With regards to needle biopsies, immunohistochemical staining for ERG is 
sometimes used to rule out PCa mimickers, although the use of p63-AMACR is 
generally preferred. 

It is likely that the fusion gene is more of an early event in PCa rather than a 
predictor of tumour progression.  

SPINK1 

SPINK1 which encodes the tumour associated trypsin inhibitor (TATI) is expressed 
in various tissues, both normal and cancerous and its prognostic role was 
investigated by Paju et al. [81]. The use of COPA unveiled SPINK1 as another 
outlier in PCa, being highly expressed in a subset of cancer cases that did not 
harbour any ETS rearrangements [82]. These cases (approx. 10% of all cases) 
seemed to have an increased risk for BCR. 

Subsequent studies further investigated the association of TATI with the features of 
the disease. TATI expression seems to increase in high grade tumours and to be 
associated with invasiveness in the PCa cell line 22RV1 where it is regulated by 
androgens [81]. Leinonen et al. [83] analysed the status of the TMPRSS2:ERG 
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fusion gene and SPINK1 in a set of endocrine-treated PCas. They observed that the 
fusion gene was not associated with patient outcome after treatment, while the 
SPINK1 expressing cases had more aggressive disease and a shorter progression-
free survival. However there was no association with clinicopathological 
parameters. In our work in paper I, we did not observe any association between 
TATI in localized PCa and BCR.  

In order to understand more about SPINK1 biology, some groups have studied the 
association of TATI with other potential biomarkers in castration-resistant PCa. 
TATI overexpression was observed in tumours characterized by absence of AR 
amplification and PTEN deletion [84]. 

AR 

The AR is a nuclear receptor that becomes active and translocates from cytoplasm 
to nucleus when bound by androgens. In the nucleus, the activated AR binds to DNA 
and acts as a transcription factor regulating expression of several target genes. 

The AR is involved in the maintenance of the normal prostate [85] however it also 
plays a role in prostate tumorigenesis [86], development and CRPC [87]. The AR 
pathway is also the target of modern hormonal treatment with abiraterone and 
enzalutamide although more evidence is being brought forward suggesting that the 
resistance pattern in advanced disease are related to ligand independent AR 
activation, intra-tumoral androgen production, increased mRNA, AR mutation and 
AR splice variants [88]. 

The prognostic role of AR has been debated for some time and some studies have 
concluded a limited prognostic power [89]. An increase in the AR gene expression 
[90] in tumour areas compared to normal tissue has been reported to correlate with 
worse prognosis after radical prostatectomy. In addition, an increase in AR protein 
seems to be associated with shorter BCR free survival and more aggressive 
clinicopathological features [91, 92]. High level of AR was also associated with Ki-
67 and therefore with proliferative features [91]. 

In patients with advanced disease like CRPC, the increased AR expression upon 
biopsy as well as in radical prostatectomy was associated with shorter cancer-
specific survival [93].  
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PSA 

The PSA is the protein encoded by the KLK3 gene which belongs to the kallikrein 
gene locus consisting of 15 genes on chromosome 19q13-4 [94].  

KLK3 is a known target of the AR and the PSA is expressed by prostatic epithelial 
cells in both normal tissue, BPH and most tumours [95]. This makes the PSA a 
tissue specific but not a tumour specific marker. For this reason the diagnostic 
specificity is far from optimal, as changes in serum PSA can be due to several 
conditions. While its diagnostic specificity is not very high, its predictive role after 
treatment is still important. 

Only few studies have been conducted on PSA expression in tissue. Some of these 
have observed a decrease of PSA at both mRNA and protein level in cancer 
compared to benign tissue [95, 96] and an adverse association with adverse 
clinicopathological features [97]. However tissue PSA has not proven to be an 
independent predictor of BCR [97]. 

The role of TMAs 

The analysis of immunohistochemical markers has received a great boost by the 
introduction of TMAs. 

TMAs have represented a decisive step forward in translational research in the 
attempt to bring the discoveries of important genes and proteins from the basic 
research to the large-scale clinical studies with direct implications for patients’ 
health. 

TMAs, along with automated image analysis applications, contributed to the 
creation of high-throughput systems for the simultaneous analysis of hundreds of 
samples, considerably reducing costs [52]. 

The high density TMAs were introduced in a study of breast cancer by Kononen et 
al. [98] and since then the technology has become automated [99] and well described 
[100]. The technique is based on collecting core biopsies (generally 0.6 mm 
diameter) from paraffin-embedded tissue samples of different patients and arraying 
them in another paraffin block resulting in a ‘matrix’ of potentially thousands of 
samples. At this point the new block can be sliced into a large number of sections 
that can be utilized for the study of several biomarkers by means of any method 
including IHC, immunofluorescence or in situ hybridization. 

The major advantage of TMAs is the possibility to analyse a large quantity of 
samples at once with reduced amount of resources. In addition, TMAs provide 
certainty that all samples are processed in the same way during the staining 
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procedure, reducing in this way the sources of error and variability. Any following 
analysis can be done in an easier and faster way. 

A drawback, that could be relevant especially for PCa, is that a single core of such 
limited size is not likely to represent and capture the heterogeneity of the disease. 
Rubin et al. [101] tried to address the issue in a TMA study of Ki-67. They 
concluded that the optimal number of cores coming from single donor was 3 and 
that these would represent accurately the intrinsic variability of PCa. 

The potential of TMA format can be significantly and successfully exploited when 
it is coupled with a well-organized dataset reporting pathological and clinical 
information of each core. 

There are different types of TMAs according to the nature of the samples 
represented. The main interest is in constructing TMAs that show the transition from 
normal to precancerous (HPIN) and cancer lesions or from normal to cancer and 
metastatic disease [102]. In the first case, being able to identify markers that change 
expression at the normal/HPIN interface, might give the basis for preventive studies. 
In the second case, biomarkers differently expressed in primary and metastatic 
tumours could represent potential targets for treatment studies. 

In the case of PCa, the construction of TMAs that can unveil the association of 
certain markers with the disease outcome (cancer-specific death) is made difficult 
by the long natural history of the disease. For a biomarker to be significant it is 
necessary to collect outcome data for at least 10 to 20 years. 

Despite the increasing number of TMA studies and the identification of candidate 
biomarkers, very few tissue biomarkers have been implemented in the clinical 
setting. 

Chromogenic staining  

Chromogenic staining is based on enzyme-based precipitations of chromogens that 
produce a colour allowing the detection of a certain substrate. They are still the most 
used staining methods in IHC. In this procedure an antibody generally carries an 
enzyme that reacts with the chromogen. This means that any substrate that attaches 
to the antibody becomes detectable through traditional bright-field light microscopy 

The most common chromogen is diaminobenzide (DAB). This molecule is highly 
thermochemically stable and produces a brown staining. Other chromogens are 
available such as Vina Green and Warp Red. The imaging process is based on the 
absorption of light. The more substrate is present, the more light would be blocked, 
resulting in a more intense staining. The chromogenic staining is generally used 
with a counterstain like Haematoxylin in order to create a contrast that can be easily 
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read. However the simultaneous use of multiple chromogens is limited by the ability 
to distinguish colours on normal light microscopy especially in co-localization 
studies. Moreover the qualitative quantification of colour by eye is a hard task, as it 
has been shown to suffer of inconsistencies within and across different observers 
and labs [103]. 

H&E staining 

H&E is a routine staining that has been used since the beginning of the 20th century 
and it is the most common technique in pathology laboratories for cancer diagnosis 
and evaluating tissue morphology. Haematoxylin is a basic dye formed by hematein 
and aluminium ions that bind basophilic structures, such as nucleic acids and colours 
them blue. Eosin is an acidic dye and therefore binds to acidophilic structures like 
proteins and other components in the cytoplasm, colouring them pink [104]. 

A good H&E staining should allow for visualization of nuclei and nuclear structures 
(like the presence of nucleoli), cytoplasmic compartments, stromal cells and other 
structures. 

In the PCa setting, H&E staining of the biopsy is the way to establish cancer 
diagnosis (sometimes with other immunohistochemical staining like p63/AMACR) 
[25] and to perform Gleason grading. 

Even if H&E is an old, quite standardized technique, there are still some issues 
related to inter-patient variation and preparation inconsistencies that should be taken 
into account [105]. 

Fluorescent staining 

Fluorophores are molecules that absorb and emit light at different wavelengths. The 
light absorption causes a change of the molecule’s electronic state (excitation) that 
is followed by relaxation with a consequent emission of photons at a longer 
wavelength. Optical detection needs a proper excitation light source such as xenon-
arc or mercury-vapour lamps, and a system of mirrors and filters to acquire the 
specific signal emitted by the fluorophore of interest. Fluorescent microscopy has 
proven to be quite sensitive and especially suitable for multistaining, providing that 
the fluorophores used have non-overlapping emission-spectra. Because of this, we 
can have generally up to 4-5 fluorophores simultaneously. Fluorescence has been 
extensively used in in vitro and in vivo applications. However even fluorescence 
microscopy suffers from some drawbacks including photobleaching, short life-
times, pH sensitivity as well as unspecific autofluorescent phenomena that 
especially limit its use in paraffin-embedded tissues. 
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In the last years, in addition to traditional organic molecules such as Alexa dyes, 
DAPI, cyanines, some inorganic molecules have with useful features have been 
developed. Nanoparticles have been recently introduced in bio-assays for their 
ability to overcome some of the problems of traditional fluorophores. For instance, 
Quantum dots [106] are nanocrystals of semiconductors with high quantum yield 
and narrow emission wavelengths. In addition, they show a good resistance to 
phtobleaching and degradation. 

Some methods have been proposed to increase the number of used fluorophores by 
applying sequential staining, signal acquisition and alkaline quenching which would 
allow for detection of more than 60 targets [107]. 

Other proposed methodologies include the use of lanthanide chelates as 
fluorophores with desirable features to improve fluorescent microscopy (see TRFI 
section).  

To summarize, fluorescence staining are more suitable for for co-localization 
studies as well as signal quantification on digital images, however, absence of 
standardized quantitative methods, analytical tools and physical drawbacks still 
hamper their use in clinical setting. 

TRFI 

TRFI is an evolution of traditional immunofluorescence. As described above 
immunofluorescence is not particularly suitable for staining of paraffin embedded 
tissue sections because they produce a large, unspecific autofluorescence signal 
making immunofluorescence less sensitive. TRFI overcomes some of the 
limitations of immunofluorescence. First of all, it makes use of a special family of 
fluorophores, the lanthanide chelates such as europium, terbium and samarium. 
These fluorophores were used in time-resolved fluoroimmunoassays [108] and they 
have then been tested in cytochemistry [109], in histochemistry and in-situ 
hybridization [110–116]. Lanthanide chelates have also been used in high 
performance RT-PCR [117]. 

The production of these fluorophores involves a development step, Delfia principle 
[118] which makes the chelates fluorescent. 

These lanthanide chelates have: 

• long stokes shifts (wavelength distance between excitation and emission 
peaks) (figure 5),  

• long decay times (Figure 6) 

• high stability 
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Figure 5 - absorption and emission spectra for europium 
The schematic shows the absorption/emission spectrum of europium and its long Stokes shift 
(maximum absorption peak at 340nm and maximum emission at 615nm).  

Autofluorescence is a fluorescence signal emitted by substances other than the 
fluorophores of interest. Both assay buffers and biological samples can contain 
substances that autofluoresce, in response to the same excitation light used for the 
specific fluorophore. The autofluorescence intensity, which increases the 
background signal may depend on the excitation wavelength and in general tends to 
be lower at wavelength above 650nm.  

Autofluorescence of a biological sample has a short decay time (100ns) [110]. As a 
result, if the fluorophores of interest emit light with significantly longer decay time, 
part of the emitted signal can be free of autofluorescence. Lanthanide chelates have 
a decay time from 10 up to 1000μs which is more than 4 fold larger than normal 
background duration. 

When applied to tissue sections, TRF has been used to investigate PSA, alpha-1-
antichymotripsin [114, 115] and kallikrein 2 in prostatic tissue sections [119] where 
the use of two lanthanide chelates, europium and terbium, to label the antibodies of 
interest was shown. 

In paper II we used anti-PSA (clone 2E9) and anti-AR (clone AR-441) monoclonal 
antibodies conjugated respectively to terbium and europium chelates [120]. A direct 
staining of prostatic tissue using only primary antibodies can make the signal 
intensity more linear with antigen concentration. 
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Figure 6 - Emission time of lanthanides 
The lanthanide emission (1000μs) lasts much longer than the autofluorescence (100ns). This 
property allows for gated acquisition of the signal that can start when the autofluorescence decays. 

A TRFI workstation [110], like the one used in our work is described in Figure 7 
and it consists of a Nikon Eclipse E600 light microscope with ET630/50m and 
ET560/40m as well as standard FITC filters (Chroma technologies). The system is 
equipped with a Xenon flash lamp (60 W, Perkin-Elmer Life Sciences, Boston, MA, 
USA) which has suitable spectral and temporal characteristics for the detection of 
europium and terbium. The Xenon lamp produces a pulsed excitation of circa 1μs 
and energy of 0.4 J/pulse at 340 nm wavelength which is the wavelength of 
maximum absorption for the lanthanides. The acquisition of the lanthanide signal is 
gated after a lapse of time longer than the decay time of the autofluorescent 
compounds. A rotating chopper is placed in the emission light path to block the light 
for 300μs. The chopper is electronically controlled in order to be synchronized with 
the excitation pulse. A CCD camera, Apogee Alta U32 (Apogee Imaging Systems) 
is used to capture the image. 
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Figure 7 - schematic of TRFI prototype microscope 
A normal fluorescent microscope is equipped with a Xenon flash lamp, suitable filters for europium 
and terbium spectra and an electronically controlled chopper, which gates the signal acquisition after 
the autofluorescence has decayed. 
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Image Analysis 

This chapter gives an overview of the increasing use of image analysis in 
histopathology. The following points will be highlighted: 

 New imaging techniques, scanning devices, increased storing possibility 
and computational power have extended the use of image analysis in 
biomedical and histopathological research 

 The main aim of using image analysis in biomedical and histopathological 
research is to make assessment more consistent and independent of observer 
ability and momentary condition. 

 Image analysis tools aim at automatically extract quantifiable 
characteristics that can be used to segment objects of interest (i.e. cells, 
glands), quantify marker expression, classify and align multi-modality 
images 

 Digital imaging allows for visualization at any time and for easy and fast 
sharing of interesting diagnostic cases across different institutions.  

 Some image analysis tools applied to different tasks will be presented.  

Needs and aims 

The application of image analysis to microscopy imagery and histopathology is not 
new but only in the last years it has acquired an important place both in research and 
in the clinical setting. This is due to a great improvement in hardware and software 
that have made possible an easier access to fast scanning devices, to larger storing 
facilities for digital images and to increased computational power to run complex 
algorithms. 

The use of image analysis serves several purposes: 

• To assess images of cytological and histological samples in a fast, 
consistent, and reproducible way and in a high-throughput manner. 

• To provide a quantitative rather than qualitative analysis of biomarkers 
expression, cell and tissue details, morphological features 
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• To make easier the user’s (pathologist/researcher) work by providing 
assistive tools, like Computerized-Assisted Diagnosis (CAD) systems [121] 

• To analyse the samples in an unsupervised way, in order to find 
characteristics that are not immediately clear to a human observer but that 
can be related to important aspects of the disease. 

The digitization that is taking place in almost any lab has also another advantage 
which is the possibility to easily share images with web-based applications [122] 
between researchers and pathologist across the world, allowing for multisite 
collaborations, teaching [123], and second opinion in difficult diagnostic cases. 

Need for biomarker quantification 
Quantification of tissue biomarkers through image analysis is often based on 
segmentation techniques that identify the regions of interest (ROI) where the 
biomarker is expressed. There is a vast literature on nuclear, cytoplasmic and 
membrane algorithms for both chromogenic and fluorescent stainings [124] and 
using these tools there have been attempts to improve for example current prediction 
of BCR [125]. All these algorithms return quantitative values like number of cells 
positive for certain biomarker and signal intensity and they can be applied on large 
TMAs for high-throughput biomarker discovery.  

Need for morphology quantification 
Heterogeneity of tissue architecture and tumour features need to be closely analysed 
to evaluate the aggressiveness of a tumour. Given the variability in human 
assessment [48], researchers have tried to implement algorithms for automated 
Gleason grading, using different approaches and sets of features. The ability to 
accurately recognize and distinguish grades can have huge consequences on patient 
prognosis and treatment planning [47]. 

In the rest of the chapter we will go through some technical aspects concerning 
image analysis in tissue investigation. 

Digital images 

A digital image is produced by a device which collects the light hitting a sensor and 
transforms it into a quantized value. The resulting digital image is therefore an array 
of elements (pixels) whose values (uni- or multi-dimensional) are limited to a 
specific range.  

The size of a pixel defines the resolution of the image which is the smallest detail 
that can be distinguished.  
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In our applications, the value of a pixel can be either mono-dimensional (in the case 
of grey-scale images produced by CCD camera in immunofluorescence application) 
or 3-dimensional, (in the case of brightfield microscopy). In the latter case, the 3 
channels, red (R), green (G) and blue (B) represent the most common system to 
describe the colour of an image. In most cases the values of the pixels are quantized 
using 8-bit format which produces a maximum of 256 intensity values (in our 
brightfield images). 

Colour deconvolution 

Typically histological images contain two or three different stains. The purpose of 
Colour Deconvolution is to separate a digital image into channels corresponding to 
the specific stains in order to analyse selectively each of those (Figure 8). Ruifrok 
et al. [126] suggested a deconvolution method based on the Lambert-Beer’s law. 
According to this law, the intensity of Ic, the detected light in channel C, transmitted 
by the sample, is given by: 

 

 

 

Where Io is the incident light,  is the absorbance of the pure stain and C is the 
concentration of the stain. From this the optical density (OD) can be derived as 

 

 

 

The OD has the property of being linearly related to the stain concentration. If we 
had three stains and considering that the camera captures three colour channels (red, 
green and blue) then we would have three characteristic wavelength absorbance for 
each stain. The OD can then be expressed as 

 

 



44 

 

So the stain concentration can be expressed as 

 

  

 

With  where the elements of the matrix M could be found by 

measuring the optical density of single pure stains. 

 

 

Figure 8 - colour deconvolution result 
A, original image of a p63/AMACR stained sample. p63 (D) is expressed in the nuclei of basal cells 
and it is stained brown; AMACR (C) is expressed in the cytoplasm of cancer cells and it is stained 
red. A blue counterstain is obtained by applying Haematoxylin (B). Colour deconvolution separated 
the three stains in three images. 
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Stain Normalization 

Stain/colour variation is an intrinsic problem in histopathology.  

Theoretically it would be desirable that two specimens that contain the same amount 
of antigen would produce the same staining appearance. 

However, the staining procedure involves many steps and each one of these affects 
the quality of the final result. Factors that play a role in the variability are: origin of 
the biological sample (large specimens like whole prostates or small biopsies pose 
different levels of difficulty on handling), the pre-processing steps which include 
the quality of the fixation and the appropriate storing method, the differences in the 
staining procedures across different labs but also the variability at a single institution 
depending on the technician’s experience, the differences in the manufactures or 
batches of stains and, in the case of digitized images, the difference in the scanning 
systems. 

 

Figure 9 - stain normalization 
Original images A and B coming from samples stained for H&E produced in two different 
laboratories. The colour appearance is different. By applying Macenko normalization, the two 
images are brought into the same colour space and now appear more similar (C and D).  
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The quality of the staining can be problematic for a correct assessment by a human 
eye through a microscope but such variation can even be problematic for 
computerized systems. In fact even such automated approaches often analyse digital 
histological images, based on some expected colour parameters. 

For this reasons several methods have been suggested to normalize the colour 
distribution of an acquired image to the one of a reference (or target) image in order 
to make them comparable [127, 128]. Some studies propose histogram equalization 
[129], some other have used more articulated methods to first detect nuclei and 
stroma and then estimate the stain information [128]. Another approach is to 
estimate the stain concentrations through Single Value Decomposition (SVD) as 
done by Macenko et al. [130] (Figure 9). 

Registration 

Image registration is the process of aligning two images, generally called reference 
and sensed one. Under the last decades many new image acquisition devices have 
been developed and there is an unprecedented amount of data of different modalities 
that requires registration procedures. Registration is required when the images to be 
compared/integrated are either captured from different viewpoints or in different 
moments in time or from different sensors (multimodality) or when an image is 
compared to a model one (for example actual patients imaging and anatomical 
atlases). 

The applications in medical imaging include for example the combination of 
different imaging modalities like ultrasound, CT, PET, MRI or histological images 
[131–136] that can be useful for examining tumour growth or treatment progress or 
for image guided radiotherapy. Registration of 2D images for 3D reconstruction is 
important not only in radiology but also in histology to see tumour invasion fronts 
[137, 138]. Microscopic image registration [139] and fluorescence [140] are 
important for localization studies. Registration is often a necessary step before 
further image segmentation and analysis [141]. 

In order to perform alignment, corresponding points on the reference and sensed 
images need to be identified. 

In general there is no best registration procedure in absolute terms but every 
application might benefit from a specific algorithm. However any registration 
procedure includes 4 steps as described by Zitova et al. [142]: 1)feature detection, 
2)feature matching, 3)transformation estimation, 4)transformation application and 
resampling. 
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Feature detection 
This is the process of searching the images for finding corresponding features. They 
should be, frequent and robust to image degradation and noise. The features should 
also be invariant to the kind of transformation that reference and sensed images are 
linked through. This step defines two families of registration procedures: the area 
(or intensity) based ones and the features based ones. In the first case, there is no 
real feature detection. Instead this methodology is based on direct intensity 
correlations between the two images. Therefore here we speak of direct matching. 
Among the area based algorithms there are the normalized correlation-like methods 
that directly use the intensity of the reference and sensed images and find the 
translation (in its original formulation) that maximize the correlation of the images. 
The problem here is that this approach is sensitive to illumination changes, noise 
and it is computationally expensive. Fourier methods use the representation of the 
image in the frequency domain. They are faster and less sensitive to disturbance. 
When translation, rotation and scale change are present, other formulations [143] 
are needed. Another algorithm belonging to this family is the Mutual Information 
which is based on the maximization of the statistical dependence of two datasets. 
The method is well described by Viola and Wells [144]. 

On the other hand the feature-based approach requires the detection of some salient 
objects which can be closed-boundary regions (with their centre of gravity), lines 
(like object contours) or points (line intersections, corners, local extrema). Region-
like features rely on an initial segmentation step, the accuracy of which can 
influence the accuracy of the registration. Goshtasby et al. [145] suggested an 
iterative technique where registration and segmentation were done in parallel with 
iterative refinement. More recent approach include affinely invariant 
neighbourhoods and Maximally Stable Extremal Regions (MSER) [146]. Line 
features are based for example on edges like Canny detector [147] and point features 
include for example corners like Harris-corners [148] or extrema of Laplacian of 
Gaussians [149–152]. The feature based approach is preferable in situations where 
the images contain many distinctive objects with some structure. 

Area-based approaches are used when the main information is contained in the pixel 
intensity of the images rather than in an underlying geometrical structure. This 
implies that the images must have similar intensities or at least statistically 
dependent [142]. The feature based methods instead are based on higher level 
features and can therefore be used successfully for the registration of images with 
different modalities. Moreover they are generally faster than the area-based ones but 
they can fail if the images do not contain clearly distinctive characteristics.  

Some medical images might be difficult to handle because they sometimes lack 
enough distinctive structures. This situation requires the user to interact by setting 
corresponding control points on both images. 
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Feature matching 
This step aims at finding the pair-wise correspondences between the detected 
features on both images. While some methods use spatial relationships between 
points, another approach is to identify a descriptor for each feature, that is, a 
mathematical characterization of the local neighbourhood of a feature. These 
descriptors should be stable (robust to small deformations and noise), invariant (they 
should be the same regardless of geometric transformations that can be applied to 
them), and unique (two different features should have different descriptors) [142]. 
The matching is done by looking for the pairs of most similar descriptors. The most 
popular features and corresponding descriptors include Scale Invariant Feature 
Transform (SIFT) [152] (see SIFT section), the Speeded Up Robust Features 
(SURF)[153], Histogram of oriented Gradient (HOG) [154], MSER [146], 
Pyramidal Histogram of Visual words (PHOW) [155].  

Sometimes, the set of preliminary matching points can contain many false matches. 
In this case, the RANdom SAmple Consensus (RANSAC) algorithm [156] can be 
used to overcome the problem. 

Transformation estimation 
Once the corresponding points on both images have been identified, then the 
following step is to estimate the transformation that maps one image onto the other 
so that the corresponding keypoints are as close as possible. This implies to decide 
the model of the transformation and the parameters of the corresponding function. 
The choice of the function depends on the specific application, on the prior 
knowledge about the two images and on the required accuracy. There exist global 
and local, rigid and elastic methods. Often the detected points used to estimate the 
transformation are more than the minimum number required; the transformation is 
then estimated using least-square fitting. 

Transformation application and resampling 
The mapping function is used to transform each pixel of the sensed image into the 
new coordinate system of the reference image. In doing so, an interpolation 
procedure is needed to reconstruct the values of the sensed image on the new grid. 
Most common interpolation procedure are nearest neighbour, quadratic splines 
[157], cubic B-splines [158]. 

In tissue biomarker research field, there is an increasingly compelling need to 
analyse simultaneously multiple markers as they could describe more thoroughly 
some biological processes and to integrate the expression date with morphological 
information related to the spatial localization of the marker (Figure 10). The ability 
to selectively analyse biomarker expression in benign as opposed to cancer areas 
and moreover in region of a specific grade of disease aggressiveness can produce 
relevant knowledge. 
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Figure 10 - multi staining analysis 
Three consecutive sections from prostatectomy have been stained for H&E for morphological 
analysis (A) and for two other markers through ICH (B and C). The yellow circle indicates a ROI, 
the same corresponding area on the three images that should be analysed. In order to perform the 
analysis the images have to be aligned. However, due to morphological deformations, colour 
differences and scanning process, registration is not a trivial problem.  

SIFT features 

As mentioned before, SIFT [152] are some of the most popular features. They are 
used for registration purposes (as in paper II [159]) as well as for object detection 
(as in paper IV).  

A SIFT feature is a region of an image (keypoint) with an associated descriptor. 
Keypoints are defined as the extrema of difference of Gaussians (DoG) in scale and 
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space. The Gaussian scale space can be thought as a pyramid formed by 
progressively smoothed (and resampled) version of the input image. This is 
basically equivalent to reducing the resolution of the image. The smoothing level is 
then referred to as scale of the image. The keypoints represent blob-like structures 
that keep stable at different scales.  

Each keypoint is given an orientation which is determined by the local properties of 
the image. The local descriptor is then expressed relative to this principal 
orientation, in this way acquiring rotation invariance. 

Some keypoints are then filtered out based on their stability. Those that are located 
on image edges or those with low contrast are excluded. 

The SIFT descriptor is a 3-D spatial histograms of the image gradients in a square 
patch around the keypoint. The gradient calculated at each pixel location in the patch 
is regarded as a sample of feature vector formed by gradient orientation and pixel 
location. The sample is then weighed by gradient norm and stored in the 3D 
histogram. This is then normalized to form the SIFT descriptor. The original patch 
is constituted by a 4 X 4 bins square cantered in the keypoint. The size of the bin (in 
pixels) is a certain multiple of the keypoint scale. In each bin the gradients are 
accumulated in 8 orientations so that at the end the SIFT descriptor results in a 128 
dimension feature vector (Figure 11). 

 

 

Figure 11 - SIFT keypoints and zoom of local SIFT descriptor. 
Left: SIFT detector applied to an H&E image. The yellow circles represent the keypoints, extrema of 
DoG in scale and space, with their main orientation. Right: the local patch (4x4 bin) where the image 
gradients are accumulated in a histogram to form a descriptor. 

Performance of several descriptors confirming the efficacy of SIFT was investigated 
by Mikolajczyk et al. [160]. 
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Segmentation 

Segmentation is the process of assigning a label to each pixel of a digital image in 
order to partition the image in ’segments’ which share certain characteristics that 
make them more meaningful to a human user. Segmentation is often the basis of 
following analysis including feature extraction and classification.  

In histopathology this implies to segment the image in order to distinguish for 
example background from tissue, or specific objects like glandular structures, or 
identify cells and sub-cellular compartments like nuclei and cytoplasm (Figure 12). 
Segmentation techniques can be categorized in several ways. One is based on image 
properties and mainly divides the methods in two families: discontinuity and 
similarity detection based [161].  

The first are based on discontinuities in certain image properties: examples are 
represented by edge-based algorithms like Canny, corner detectors or borders and 
line detectors based on the Hough transform [162]. Once the borders of an object 
are found a postprocessing method is used to create closed-boundary regions. 

The second family on the other hand is based on the uniformity of certain properties, 
like intensity, texture and first and second order statistics in a certain image region. 
The most popular examples are: thresholding like the traditional Otsu method [163], 
watershed [164], region growing [165]. There exists several ways of selecting a 
proper threshold which can be unique (global) over the whole image or adaptive 
which means that the image is tiled and each tile has an optimal threshold. Some 
methods estimate the intensity distribution of background and foreground objects 
and choose a safe threshold above the background intensity as in the case of robust 
background thresholding used in paper III. Segmentation of fluorescent cytological 
images [166] is generally easier than histological ones because the latter are more 
complex and contain more structures [167]. 

Other segmentation techniques are based on assumed model of neighbourhood pixel 
dependency like in Markov Random Fields or on a priori models of the objects to 
be segmented like in active contours [168]. 
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Figure 12 - segmentation of multimodality images. 
The figure shows an automated pipeline that includes:1) segmentation of ROIs, that is, benign and 
cancer (AMACR+ and AMACR-) epithelial cells using pancytokeratin (immunofluorescence) and 
p63/AMACR (IHC) (A, D, G, J, M); 2) segmentation of cells and nuclei in the ROIs and 
quantification of AR and PSA on a per-cell base (see paper III for more details). 
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Segmentation results can be improved by preprocessing steps such as image de-
noising, spatial and frequency filtering, which tend to enhance certain properties of 
the image. Another class of algorithms that are used in object identification are the 
ones based on image saliency such as the spectral residual saliency filter [169] 
which we used in paper III to segment glandular structures. 

Superpixels  

Superpixel approach was introduced by Ren and Malik [170] and consists in 
oversegmenting an image into smaller homogenous regions that adhere to object 
boundaries. These regions are perceptually more meaningful to a human eye and 
can replace the individual pixels. They are often used as an initial step to facilitate 
other segmentation techniques or feature extraction. There exist several 
implementations of superpixels; an adaptation of the Simple Linear Iterative 
Clustering (SLIC) [171] was used in paper III to perform segmentation of glandular 
structures.  

Classification  

Classification is the process of assigning a certain object to a specific category, or 
class. In order to perform the classification, an object has to be described adequately. 
In computer vision terms an object is also called instance, the object characteristics 
features and the specific classification procedure is called classifier. A classifier is 
a mathematical function that categorizes new instances.  

There are two types of classifications: supervised and unsupervised. Supervised 
methods build a classifier based on a training dataset, where the class of each 
instance is known. A good classifier is a method that not only well describes the 
training data but also generalizes well to a new, independent, dataset. On the other 
hand, unsupervised classification, which is also called clustering, does not use any 
pre-labelled training data. The classification in this case is based on some similarity 
measurement on the features; objects that are close together in the feature space 
belong to the same class. 

Since in many cases the size of available dataset is limited or there is no access to 
several independent sources, cross-validation techniques can be used to estimate the 
accuracy of the classifier. An example is k-fold cross-validation technique which 
splits the dataset in k groups, trains the classifier on k-1 groups, tests it on the kth 
group left out and repeats the process k times with each of the k groups used exactly 
once as testing set. The k accuracies are then averaged to give an estimated accuracy 
of the model. 

In histopathology, objects to be classified can be for instance whole images, ROIs, 
in case one wants to distinguish between benign and malignant areas or single cells. 
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Features selection 

A feature can be any numerical or categorical descriptor of an object. In 
histopathology, depending on the specific task, many different features can be 
extracted from the images. Some features can be related to physical entities directly 
understandable by a human user, i.e. size of a gland, some others can be the result 
of mathematical operations like filtering, that a human eye could miss.  

Low-level features directly based on pixel values are colour statistics and textural 
features. Haralick [172] features and Gabor filters [173] are some of the oldest 
techniques to describe image texture and have been massively used. More modern 
approach include local binary patterns (LPB) [174, 175] fractal measurements [176] 
and SIFT-like features based on local gradient histograms (strategy used in paper 
IV). 

Some approaches are based on regular tiling of an image. Multiple features are then 
extracted from each tile which is then classified independently from neighbouring 
tiles. Colour and texture features can be used to distinguish for example between 
stroma and epithelial compartment [177] or between benign and cancer [178].  

Other approaches aim at segment objects and then extract object-level features; 
gland segmentation for example can be a first step before tumour identification and 
grading [179, 180]. 

Spatially related features represent another valuable set of topological features that 
can be described in a mathematically efficient way using graph theory. Voronoi, 
Delaunay, minimum spanning trees features have been used to describe the cells 
arrangement in tissue [181]. 

Attempts to perform Gleason grading have often used large sets of features [176, 
182–186] even with multiscale approach to capture significant tissue characteristics 
[187]. 

The high dimensionality of the feature space can pose a problem for classification. 
The so called ‘curse of dimensionality’ describes this phenomenon when adding 
more variables (features), increases exponentially the complexity of the problem, 
the computational and storing resources required and the sparsity of the data with 
consequent detriment for classification. For this reasons dimensionality-reduction 
methods are applied to try to get rid of redundant or insignificant features before 
building a classifier. An example is principal component analysis (PCA).  
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Bag of Words (BoW) approach 

BoW model was first introduced in Information Theory as a tool for information 
retrieval and has then been adopted in computer vision to classify/retrieve images 
or part of those [188–191]. 
Given a training dataset of images, the approach consists in the following steps:  

• Extract features from every single image 
• Encode these features into ‘words’ and learn a vocabulary of such words 
• Create a histogram of occurrences of such words for each image 
• The resulting histogram is used as an image descriptor for classification 

purposes. 
The feature extraction techniques are mainly based on two approaches: regular grid 
(i.e. dense SIFT) and interest point detector [188]. 
Features encoding is done through vector quantization using for instance k-means 
or Gaussian mixture models. The histogram can be built over the whole image or as 
a concatenation of histograms from tiles of an image to retain more spatial 
information [192]. 

Support vector machine (SVM) 

SVM is a linear classifier in a high-dimensional feature space.  

Let’s consider a binary (two classes) classification problem where we have a 
training set of N labelled instances , where  is called a 
positive instance if  and a negative example if . Let’s consider that 
an instance is described by a d-dimensional feature vector. 

In this  feature space, the SVM-predictor is the (d-1)-dimensional hyperplane 
 that can separate the training examples in the two positive and 

negative classes (figure 13). 
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Figure 13 - SVM in a simplified 2D case 
The SVM finds the hyperplane  the best separates the two classes 

The coefficients  and  are calculated based on maximization of the 
margins between the classes and the problem can be solved with a quadratic 
programming optimization. In many cases the instances of two classes are not 
perfectly separable; therefore the soft margin approach [193] is used, where the 
optimization is a trade-off between maximal margins and number of misclassified 
samples. Once the SVM has been trained, that is, after the coefficients have been 
trained, any new image will be classified based on the value ). 

The value , called score can be used for multiclass classification.  

SVM can also be used for non-linear classification by using kernel methods [194] 
which map the feature space to a higher dimensional one, making still possible to 
use a linear classifier. Linear, polynomial, Gaussian, Chi square kernels (used in 
paper IV) are examples of this method. 

margin
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The present investigation 

Aims 

The overall objective of the present work was to investigate a defined group of PCa 
tissue markers by applying a suit of novel technologies and Image Analysis tools. 

The work can be seen as an itinerary that started with the application of traditional 
methods for the assessment of tissue biomarkers and developed further towards an 
automated and more consistent approach. 

The specific aims were: 

• To confirm the mutually exclusive expression of ERG and TATI protein in 
PCa tissue. 

• To investigate the potential of TRFI as a tool for tissue biomarker 
quantification. 

• To investigate the feasibility of a multimodal, automated system for 
analysis of tissue sections. 

• To apply the developed procedure for analysis of AR and PSA in prostate 
tissue sections. 

• To develop a system for automated Gleason grading. 

Paper I: ERG and TATI are expressed in a mutually 
exclusive way in PCa cells 

The multifocality and heterogeneity of PCa poses many problems with regards to 
determining an accurate prognosis [195]. As in other malignancies, genetic 
mutations affecting oncogenes and tumour suppressors genes [196], occur in PCa 
as well.  

In 2005, by using COPA bioinformatics tool, Tomlins et al. [72] identified the 
transcription factors ERG and ETV1, belonging to the ETS family, as outliers in 
PCa. By using fluorescence in situ hybridization (FISH), a recurrent fusion between 
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the 5’-untranslated region of TRMPRSS2 and ERG or ETV1 in those outliers PCas 
was observed [72]. ERG is the most common fusion partner and this rearrangement 
occurs in at least 50% of PCas [73]. While this seems to be an early event in PCa 
onset, association with disease stage and the prognostic or predictive role of the 
fusion gene is still debated [74, 75, 77–79]. 

In 2008, using the same in silico methodology, the SPINK1 gene was identified as 
an outlier in PCas that did not harbour the fusion gene event [82]. This subset of 
SPINK1 expressing tumours seems to be associated with higher risk of BCR. 
Moreover SPINK1 positive cases seem to have worse prognosis following endocrine 
therapy [83]. 

Results and discussion 
While these findings were based on bioinformatics analysis, there had not been any 
study that showed mutually exclusive expression at the protein level of 
TMPRSS2:ERG and SPINK1 in prostatic tumours. Confirming this would support 
the research in targeting and treating differently patients with genotypically 
different PCas differently. 

We used ERG staining as a surrogate marker of TMPRSS2:ERG fusion marker, as 
described previously [197, 198] and a TATI (the protein encoded by SPINK1) 
monoclonal antibody to perform a double staining of a TMA built from a cohort of 
4177 patients who underwent radical prostatectomy with no hormonal adjuvant 
therapy. Clinicopathological information was collected and TMAs were built as 
described in previous studies taking one core per patient [199]. 

Scoring of the TMA was performed manually using a bright field microscope. 

We observed ERG positivity in 41.7% and TATI positivity in 5.7% of the cases, in 
accordance with previous studies. ERG was not expressed by benign epithelial cells. 
Interestingly we observed ERG positivity also in some PIN, as already described by 
Furusato et al. [200], which could support the theory that the gene fusion is an early 
event in PCa onset. 

Our data did not show any association between ERG and BCR nor metastatic onset. 
ERG was positively associated with pathological stage, Gleason score and surgical 
margin status but not with lymph node status or pre-operative PSA. TATI was 
moderately associated with pathological stage but not with other parameters, nor 
was it a predictor of BCR or metastasis. 

Our study confirmed, for the first time by immunohistochemical staining, that ERG 
and TATI are mutually exclusive in PCa cells and therefore provide a basis for 
stratification and selectively targeting patients with different PCas in order to strive 
toward personalized treatment. 
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Paper II and III: integrated image analysis based 
approach for assessment of PSA and AR in prostatic 
tissue  

The assessment of histological sections is a labour-intensive procedure when one 
considers the increasing amount of available material. The analysis of tissue 
biomarkers is now rarely conducted on a single marker, as this is often not enough 
to understand underlying biological processes. Multi-staining procedures of several 
markers are therefore necessary. However there is a limit in the number of 
biomarkers that can be studied at the same time, due to overlapping problems. 
Various methods have been suggested to analyse multiple markers [107, 201] 
alternatively registration techniques can be used to analyse consecutive sections. 

The use of tissue biomarkers in clinical routine [202] is limited by: 

• Pre-processing steps 

• Staining procedures 

• Objective and reproducible analysis 

Even if immunohistochemical staining is still the standard, manual scoring of IHC 
is rarely reproducible and it has been shown to suffer from inter and intra-observer 
variability [203–205]. 

Moreover, there is an unmet need to integrate the biomarker expression data to its 
spatial location within the tissue. The expression of a protein in specific areas 
(cellular compartments, benign epithelium, malignant epithelium, stroma, tumour 
areas with specific aggressive features), can carry important information. The use 
of a consecutive section stained for H&E is therefore necessary for pointing out 
ROIs where the biomarkers can be differently expressed. 

Such an integrated analysis would rely on an accurate alignment of images from 
consecutive tissue sections stained for different markers. 

Results and discussion paper II 
In paper II, we aimed at investigating the feasibility of an automated registration of 
triplets of images coming from tissue sections stained respectively for H&E, p63-
AMACR (standard IHC) and AR (TRFI). As earlier explained, H&E is the primary 
technique for diagnostic purposes, however it can be assisted by p63-AMACR in 
particularly complicated cases [25, 65]. We tested a feature based approach using 
SIFT [152] and Lowe’s criterion to detect initial corresponding points on images, 
RANSAC [156] to reduce the number of points, excluding false correspondences 
and Procrustes fit to estimate the alignment transformation. We assessed the 
performance qualitatively and quantitatively and reported the results for different 
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Gleason grades to see how much the disruption of the normal tissue architecture can 
affect the accuracy of registration. 

We tested the accuracy of the registration for pairs of images: in the first experiment, 
we performed alignment of H&E and p63-AMACR, in the second, H&E and AR 
were aligned and in the third, registration of H&E progressively further away from 
each other was evaluated. 

Correct registration was achieved as follows: 96.6% of images in the experiment 1 
and 97.2% in experiment 2. Experiment 3 showed a dropped registration success 
rate in more distant sections. Moreover, as we expected, the performance of the 
algorithm slightly decreased for the highest Gleason scores cases. 

We demonstrated the reliability and speed of the automated registration approach 
which could therefore be used in paper III. 

Results and discussion paper III 
In paper III we investigated the expression of PSA and AR, in a TMA from primary 
PCa samples, as potential biomarkers for the disease. PSA is one of the targets of 
AR pathway [206]. AR is involved in the normal maintenance of the prostate as well 
as in the development of PCa and in CRPC [13, 85].  

Immunofluorescence allows for multistaining, however it is affected by bleaching 
problems and it is generally not suitable for paraffin embedded tissues sections due 
to the high autofluorescence signal from the background. 

We suggest the use of TRFI as a method for biomarker quantification at the tissue 
level. This technique makes use of lanthanide chelates as fluorophores which have 
high emission peaks, long stokes shifts and long decay times [110]. Thanks to these 
features we can gate the acquisition of the fluorescent signal after a lapse of time 
sufficient to almost eliminate the autofluorescence and thereby increasing the SNR. 
We have optimized a protocol for direct immunostaining of AR and PSA with 
europium and terbium labelled antibodies which guarantees a better linearity of the 
signal compared to indirect immunostaining. 

Our approach included several staining modalities and techniques: H&E, 
p63/AMACR - IHC, AR and PSA - TRFI and cytokeratin - immunofluorescence. 

The workflow included: 

• Automated registration of IHC, H&E and TRFI/immunofluorescence as 
explained in paper II. 

• Identification of ROIs 

o Automated segmentation of IHC image: colour deconvolution of 
the p63-AMACR images to create a binary mask for benign areas 
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(those containing p63 positive basal cells) and p63 negative areas 
containing AMACR (potentially cancer) 

o Segmentation of the immunofluorescence image: pancytoketatin 
channel is segmented based on the textural features of the glands. 
We used saliency filter, entropy filter and SLIC superpixel 
segmentation. The resulting segmented epithelium is then 
combined with benign and AMACR+ region masks. This results in 
the final benign, AMACR+ and AMCR- areas. 

• Cell segmentation: nuclei are segmented on the europium channel using 
robust background thresholding and morphological smoothing. We then 
applied a propagation algorithm to the cytokeratin image using nuclei as 
seeds to identify corresponding cytoplasm component. 

• Extraction of AR and PSA intensity statistics in the ROIs. 

We demonstrated differential expressions not only between benign and cancerous 
tissue but also between AMACR+ and AMACR- cancer areas. We observed a 
decrease of PSA in cancer tissue versus benign and a negative correlation with high 
Gleason score as reported in other previous works. PSA was higher in AMACR+ 
than in AMACR- regions. AR expression did not significantly change between 
benign and cancer areas overall but when analysed separately in AMACR+ and 
AMACR-, there was a significant increase in the AMACR+ compared to benign 
and a decrease in AMACR- compared to benign regions. We did not observe any 
significant correlation between AR and PSA which could be explained with the fact 
that our data were reported as an average measurement of ROIs and not on a cellular 
level. Moreover PSA is a secretory protein and this dynamic could be part of the 
explanation. 

Paper IV: automated Gleason grading 

Among the current prognostic tools for PCa, the single most important attribute is 
Gleason grading. Introduced in the 1960’s and partially revised in 2005 [40], the 
system describes the architecture of the prostatic tissue classifying the gradual 
disruption of the normal glandular structures in more aggressive diseases. The 
Gleason grade ranges from 1 (most resembling a benign gland) to 5 (loss of 
glandular structure and scattered cancer cells) and the 2 most common grades in a 
sample are summed up to form the Gleason score. 

Since it has been shown that the scoring is highly dependent on the pathologist’s 
experience and therefore prone to inter as well as intra observer variability [48], in 
this paper we investigated the possibility to create a computerized Gleason grading 
system. 
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Results and discussion paper IV 
Our approach involves the use of SIFT features that describe the local texture of 
patches of an image, the BoW approach to create the image descriptor and the SVM 
for model building and testing. 

In contrast to other studies we used a heterogeneous dataset derived from both 
prostatectomy and biopsy material and collected and processed at two different 
institutions. Since each lab has its own protocols and procedures, the resulting H&E 
staining can be slightly different in appearance. For this reason we considered the 
use of stain normalization, an algorithmic procedure to make the colours of the 
images uniform. Using the Macenko formulation [130] we estimated the stain 
concentration vectors (through SVD) and replaced them with pre-calculated 
prototype vectors. 

The classification framework is based on an appropriate choice of features. Since 
the Gleason grading is essentially a description of the architecture of prostatic tissue, 
we decided to focus our analysis on the sole use of texture features. The SIFT [152] 
finds significant keypoint in an image and appends a mathematical description of 
their local neighbourhood. SIFT descriptors are rotationally and scale invariant. 

After extracting the SIFT feature vectors we then used a BoW approach to cluster 
the features in visual words and accumulate them in a histogram which is the final 
image descriptor. This descriptor is then used in the subsequent classification. We 
used SVM to perform automated classification of different histological cases 
(benign, Gleason grade 3, Gleason grade 4, and Gleason grade 5) in a binary fashion 
and reported cross-validation accuracies. 

The suggested framework was able to distinguish benign from tumour (images of 
grade 3, 4 and 5) with 98.1% accuracy. Grade 3 was distinguished from grade 4 with 
93.3% accuracy and Grade 3 vs grade 5 yielded 98.2% accuracy. Grade 4 vs grade 
5 reached the lowest accuracy, being 87.2%. When we tested the system for low 
grade (Gleason grade 3) vs high grade (Gleason grade 4 and 5 put together), we 
observed 93.8% accuracy. Benign tissue seemed to be highly separable from each 
grade, reaching 98.1%, 97.1% and 100% when compared to grade 3, grade 4 and 
grade 5, respectively. In a multiclass scheme (one-vs-all), the system performed 
with 87.3% accuracy. 

The use of SIFT was shown to be a valid choice for its scale and rotation invariance 
and maybe better than dense SIFT, as some of our preliminary experiments suggest. 
The possible advantage of SIFT is that it identifies the most important landmarks. 
Our preliminary data seem to show that stain normalization is generally a good 
method to be applied when working with heterogeneous images. Even if we do not 
use colour features, the stain normalization is a non-trivial process that changes the 
appearance of the image and therefore can contribute to producing ‘better’ 
descriptors. 
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When compared to other studies[184, 186], the current work has a focus on only 
one class of features (texture), as they are the ones most closely related to the 
Gleason system. The proposed framework performed comparably or better than 
other systems previously described. 
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Popular science summary 

Prostate cancer is one of the most common cancers in the world and the second most 
common in men. The western world has the highest incidence rates. The causes of 
prostate cancer are not yet clear, however a number of risk factors have been 
identified such as familial history, ethnicity, diet and genetic events. Prostate cancer 
affects primarily elderly men with the majority of the cases happening above 65 
years of age. If caught at an early stage, prostate cancer is curable by removal of the 
whole prostate whereas advanced or recurrent disease is lethal and only palliative 
methods are available for patients. 

Nowadays the tools to diagnose the disease include PSA blood test and a rectal 
examination conducted by a pathologist to detect suspicious lumps. PSA is a protein 
produced by the prostate; when its amount goes up beyond a certain level, it may 
indicate cancer or other pathological conditions that are not life threatening. The 
only way to be sure that a patient harbours a tumour in the prostate, is to perform a 
biopsy (generally from multiple areas at once) and analyse it using a microscope. 
The problem with blood PSA test is that it unfortunately detects many false 
positives. This can expose the patient to unnecessary treatment and side effects. 

The biopsy is used not only to diagnose, but also to assess the potential 
aggressiveness of the disease by looking at the architecture of the tumour lesions 
and assigning the so-called “Gleason grade”. The Gleason grade is a prognostic tool, 
meaning that it is able to predict, to a certain extent, the development of the disease 
and the response to treatments.  

In order to improve both diagnosis and prognosis, we need more reliable markers. 
A class of such markers is represented by proteins present in the prostatic tissue. 
Traditionally the way to look at them is by using a normal light microscope, 
however, this technique is slow and prone to errors and inconsistencies.  

In this thesis we investigated the role of ERG, TATI, PSA and AR proteins in 
prostate cancer by using novel methodologies based on Time Resolved 
Fluorescence Imaging, digital imaging and automated image analysis.  

In paper I we analysed the expression of ERG and TATI in prostate cancer from 
4177 patients with a localized disease. We observed that the two proteins were 
mutually exclusive, as cancer cells that expressed one, did not express the other. 
This finding is very important because confirms the heterogeneity of prostate cancer 
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and identifies different families of cancer cells. As a result, the research could focus 
on targeted therapies and personalized treatments. 

In paper II, III and IV we introduced the use of image analysis to study tissue 
biomarkers. In paper II and III we develop a system for automatic analysis of PSA 
and AR in tissue sections employing mathematical algorithms for alignment of 
images, recognition of specific areas of interest within the tissue, and quantification 
of the markers in those areas. To quantify the markers, we used a novel fluorescence 
technique that has several advantages over other existing methods. Moreover the 
use of computerized image analysis allows for consistent and reproducible 
assessment of tissue sections. Our methods allowed us to observe some interesting 
expression patterns of the proteins in different clusters of tumour cells and in normal 
tissue. This kind of differential expression would need to be analysed further to 
uncover some aspects of the disease. Finally in paper IV we developed an algorithm 
for automated Gleason grading, which is a system that resembles the pathologist 
analysis. The system was able to recognize with high accuracy the different Gleason 
grades and it represents a promising supporting tool for aiding pathologists’ work 
and possibly increasing the accuracy of prognosis. 
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