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Abstract—Spatial multiplexing using Massive MIMO has been
shown to have very promising properties, including large gains in
spectral efficiency and several orders of magnitude lower trans-
mit power, as compared to today’s access schemes. The properties
of massive MIMO have been studied mostly for theoretical
channels with independent and identically distributed (i.i.d.)
complex Gaussian coefficients. To efficiently evaluate massive
MIMO in more realistic scenarios, we need channel models that
capture important massive MIMO channel characteristics. We
pursue this by analyzing measurement data from a measurement
campaign in the 2.6 GHz frequency range, using a physically
large array with 128 elements. Key propagation characteristics
are identified from the measurements. We use the cluster-based
COST 2100 MIMO channel model as a basis, and propose an
extension to include those important propagation properties for
massive MIMO. Statistical models of the total number of clusters,
their visibility regions and visibility gains at the base station side
are found based on the measurement data.

I. INTRODUCTION

Massive MIMO, also known as very-large MIMO or large-
scale antenna systems, is an emerging technology in wireless
communications. With massive MIMO, we consider multi-
user MIMO (MU-MIMO) where a base station is equipped
with a large number (say, tens to hundreds) of antennas,
and is serving several single-antenna users in the same time-
frequency resource.

It has been shown both in theory and in real propaga-
tion environments that massive MIMO has very promising
properties, including large gains in spectral efficiency and
several orders of magnitude lower transmit power [1]–[4],
as compared to conventional MIMO systems with a small
number of antennas at the base station. So far, theoretical
studies of massive MIMO are mostly done in channels with
i.i.d. complex Gaussian coefficients. However, to efficiently
evaluate such a new technique in more realistic scenarios, new
channel models are needed that capture important properties
of real massive MIMO propagation channels.

Unlike conventional MIMO with small and compact antenna
arrays, massive MIMO with a large number of antennas can
have antenna arrays that span tens to hundreds of wavelengths
in space. Over this type of large arrays, the propagation
channel cannot be seen as wide-sense stationary (WSS) as
is usually the case for conventional small MIMO. This has
been observed in measured channels using a 128-element
linear array, as reported in [5] and [6]. When we resolve the
propagation channel into scatterers, we observe that some scat-
terers are not visible over the whole array, and for scatterers
being visible over the whole array, their power contribution
may vary considerably. Thus, large-scale/shadow fading can be

experienced over this large array. The power variation caused
by the large-scale/shadow fading over the antenna array can
be critical to performance evaluation and algorithm design for
massive MIMO. Therefore, it is important to model the non-
WSS characteristic of the propagation channel over the array
and include it in new channel models.

We start from a well-known MIMO channel model - the
COST 2100 model [7], in which only small and compact
MIMO arrays have been considered so far. Based on channel
measurements using the 128-element linear array, we identify
propagation properties of massive MIMO channels that are
missing in the COST 2100 model. Then we propose an
extension to include these massive MIMO properties. These
propagation properties are also modeled statistically, using the
measurement data.

The rest of the paper is organized as follows. In Sec. II, we
give a brief introduction on the COST 2100 MIMO channel
model. In Sec. III, we describe our massive MIMO channel
measurements, measurement data processing, and propagation
properties that are observed from the measured channels. Then
in Sec. IV we propose an extension of the COST 2100 model
to include massive MIMO channel characteristics. Finally we
summarize this modeling work in Sec. V.

II. COST 2100 MIMO CHANNEL MODEL

The COST 2100 MIMO channel model is a geometry-based
stochastic channel model (GSCM) that can reproduce the
stochastic properties of MIMO channels over time, frequency,
and space. It characterizes and models the radio channel in de-
lay and directional domains, through the geometric distribution
of scatterers, or clusters, i.e., groups of multipath components
(MPCs), in the propagation environment. This cluster-based
channel model describes the physical channel and is antenna-
independent. The directional domain, when combined with
antenna array responses at transmit and receive side, can be
directly transformed into the spatial dimension for wideband
MIMO channel simulations.

One advantage of cluster-based channel models is that they
model the time-variant/spatially-variant nature of the radio
channels. In the COST 2100 model, this is done by introducing
cluster visibility regions, as one of the key modeling concepts.
A visibility region (VR) is a region on the azimuth plane in the
simulation area, which determines the visibility of a particular
cluster. Each cluster is associated with at least one VR. When
a mobile enters a VR, the related cluster becomes “visible”,
and contributes scattering through the corresponding MPCs in
the radio channel between the mobile and the base station.



The power level is controlled by a function called visibility
gain, which describes the power variation of the scattering
contribution within a VR. The mobile can be located in an
area where multiple VRs overlap, and in this case, multiple
clusters are “visible” simultaneously. The VRs are assumed
to be uniformly distributed in the simulation area. When a
mobile moves in the simulation area, it enters and leaves
different cluster VRs. In this way, the time-variation/spatial-
variation of the channel due to the movement is modeled by
the variation of scattering contribution from different clusters.
In the current COST 2100 model, the cluster VRs are only
used at the mobile side, since the mobile terminal movement
is one of the main causes of temporal and spatial variations
of the channels. However, for a massive MIMO base station,
when the antenna array becomes physically much larger than
today’s small and compact arrays, the effect of a spatially-
variant channel can be experienced, but now over the large
antenna array at the base station. This is shown and discussed
when we analyze channel measurements in Sec. III.

More details on the COST 2100 MIMO channel model,
such as general structure, parameterization, implementation
and validation, can be found in [7]–[9].

III. CHANNEL MEASUREMENTS AND PROCESSING

In order to characterize and model massive MIMO channels,
measurements with a large virtual array were performed. Since
the cluster-based COST 2100 channel model is our modeling
basis, we extract clusters from the measured channels and
investigate the channel behavior of massive MIMO at a cluster
level. Comparing with conventional small MIMO channels, we
identify missing properties of massive MIMO in the current
model. Channel measurements, measurement data processing,
and observed channel behavior are presented in the following.

A. Channel measurements

The measurements were carried out outdoors around the E-
building of the Faculty of Engineering (LTH), Lund University,
Sweden. An overview of the semi-urban measurement area
is shown in Fig. 1 (left). The base station (receive) antenna
array was placed on the roof of E-building. It is a 128-
element virtual linear array and spans 7.4 m in space. The
distance between adjacent antenna element positions is half
a wavelength at 2.6 GHz. Fig. 1 (upper and lower right)
shows this physically large array with an omni-directional
antenna moving on a rail, giving 128 antenna positions. At the
user (transmit) side, an omni-directional antenna was moved
around 8 measurement sites (MS) acting as single-antenna
users. Among these sites, three (MS 1-3) have line-of-sight
(LOS) conditions, and five (MS 4-8) have non-line-of-sight
(NLOS) conditions. At each site, 5 positions were measured.

The measurement data were recorded at a center frequency
of 2.6 GHz and a signal bandwidth of 50 MHz, using an HP
8720C vector network analyzer. With the virtual linear array
and vector network analyzer, it takes around half an hour to
record one measurement, i.e., at the base station, the omni-
directional antenna moves from the beginning of the array

Fig. 1. Left: overview of the measurement area at the campus of the
Faculty of Engineering (LTH), Lund University, Sweden. A 128-element
virtual linear array at the base station was placed on the roof of the E-building.
8 measurement sites (MS 1-8) around the E-building were measured. Upper
right: an omni-directional antenna moving along a rail, forms the virtual linear
array with 128 equidistant antenna positions. Lower right: another view of the
same virtual linear array spanning 7.4 m.

to the end. In order to keep the channel as static as possible
during one measurement, this campaign was performed during
the night when there were few objects, e.g., people and cars,
moving around in the measurement area.

B. Measurement data processing

From the raw measurement data, i.e., the channel transfer
functions, we need to investigate the massive MIMO channel
behavior at a cluster level and identify propagation properties
that are missing in the current model. For each measured
position, in order to extract the clusters in the channel, we
apply a sliding window with 10 neighboring antennas over the
array. From the raw measurement data within each window,
we estimate the MPCs with parameters of delay, angle of
arrival (AoA) in azimuth and complex amplitude, through
the space-alternating generalized expectation maximization
(SAGE) algorithm [10]. Based on the estimated MPC param-
eters, joint clustering and tracking [11] is performed. Clusters
are identified by grouping the MPCs through the Kpower-
Means clustering algorithm [12] for each 10-antenna window,
then the identified clusters are tracked over windows along
the array. The reason we process the channel data based on
10-antenna windows is that the channel can be considered as
wide-sense stationary (WSS) within such window. On the basis
of these WSS sub-channels, we can study the spatial-variation
of the whole channel over the array. Furthermore, when the
SAGE algorithm estimates the directional information1, 10
antennas can provide relatively high angular resolution.

Through the above processing of raw measurement data, we
can investigate the channel behavior at a cluster level. Angular
power spectrum from the SAGE estimates and corresponding
cluster power variations over the array from joint clustering
and tracking are shown in Fig. 2 as examples. Fig. 2(a) and
2(b) show the angular power spectrum over the array in one
LOS scenario and one NLOS scenario, respectively. From
here we can see the spatial-variation of the channel over the

1The range of directional estimation is 0-180 degrees for the linear array.
This is due to the directional ambiguity problem inherent in this type of array
structure [13], thus it does not affect the channel modeling for it.
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Fig. 2. Angular power spectrum and cluster power variations over the large
array at the base station. (a) and (c) are results from a LOS scenario when
the user is at MS 3. (b) and (d) are results from a NLOS scenario when
the user is at MS 7. For the cluster power variations shown in (c) and (d),
different clusters are indicated by different colors, and the solid lines are the
cluster power variations over the array, which are fitted by linear slopes, i.e.,
the dashed lines, in a least-squares sense. The shadowed regions in the four
plots show examples of the channels that a conventional small MIMO array
extending over a few wavelengths would experience.

large array. For example, in Fig. 2(a), the LOS component
from around 150 degrees is stronger at the beginning of the
array and becomes shadowed at the end of array. The power
contribution from 130 degrees only appears over a part of the
array. In the NLOS scenario shown in Fig. 2(b), we can see that
the scattering is more rich and many scatterers are only visible
over a part of the array. The corresponding cluster power
variations over the array in these two scenarios are shown in
Fig. 2(c) and 2(d) (solid lines). Along with the cluster power
variations, we can also see the distance along the array that
each cluster is visible. Some clusters are visible over the whole
array, while others are only visible for a part of the array.
The above shows that the massive MIMO channel cannot be
considered wide-sense stationary over the large array, and thus
large-scale/shadow fading is experienced.

In comparison with massive MIMO with a large array,
the shadowed regions in Fig. 2 indicate a channel that a
conventional small MIMO would experience. A small and
compact array which spans only a few wavelengths in space
would experience a very small part of the channel that a
large array sees. From the shadowed regions in Fig. 2, we
can see that the small MIMO channels do not have much
spatial-variation: within the indicated range of the small array,
the same clusters are visible and the cluster power has small
variations.

IV. MODELING FOR LARGE ARRAY

From the observation of measured channel behavior dis-
cussed above, we know that massive MIMO channels can have
significant spatial-variation over the large array. To extend the

Fig. 3. Extension of the concept of cluster visibility regions to the base
station side. Each antenna sign represents a small MIMO array.

current COST 2100 model to support large arrays, this spatial-
variation at the base station side needs to be modeled and
included. A simple way for this is to extend the concept of
cluster visibility regions, as discussed in Sec. II, to the base
station side. The idea is that each cluster should have two types
of VRs, one at mobile station side (MS-VR), and one at base
station side (BS-VR). Similar to how a mobile terminal moves
in and out of MS-VRs on the mobile side, antenna elements
along the large array are either inside or outside BS-VRs at the
base station side. This is illustrated in Fig. 3, where colored
regions imply visibility of different clusters along a large linear
array.

After introducing the concept of cluster VRs on the base
station side, we determine what needs to be modeled in the
extension to include massive MIMO. First of all, the total
number of clusters that are visible over a large array should
be modeled. As can be seen from Fig. 2 and Fig. 3, more
clusters are visible for a large array as compared to a small
array, so the number of clusters in the current model is not
suitable any more. Then, for each cluster, we assign BS-
VR to it together with MS-VR, we therefore need to model
the properties of BS-VRs, such as shape and size. It should
be mentioned that the modeling of MS-VR in the current
model cannot be directly used for BS-VR. This is because the
mobile station and the base station usually have very different
propagation environments in their vicinity. Mobile stations are
usually moving on ground, while base stations are typically
positioned on top of buildings. Another thing that should be
taken into account is the cluster power variations within the
BS-VRs. In the current model, the average power contribution
of a cluster depends on the geometry of the cluster location in
the simulated propagation environment. As an extension, what
we need to model here is only the variation of cluster power,
which is the cluster visibility gain at the base station side.

The modeling of the total number of clusters, cluster
visibility region and visibility gain at the base station side
are discussed in the following. We model them statistically
based on the processed measurement data. As being done
for the current model in [8], LOS and NLOS scenarios
are modeled and parameterized separately, since they show
different statistics from the measurement data. Here we show
the modeling and parameterization for NLOS scenarios, based
on the measurements at MS 4-8 (see Fig. 1), as an example.
For LOS scenarios, the modeling and parameterization are
done in the same way, but result in different values on the
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estimated distribution parameters.

A. Total number of clusters

Fig. 4 shows the statistics of the total number of clusters
that are visible in the range of 7.4 m linear array in the NLOS
scenarios. Since the data can only take on discrete values, we
use a negative binomial distribution to model it, as can be seen
in Fig. 4. The two parameters of the negative binomial dis-
tribution are obtained through maximum-likelihood estimation
(MLE). Note that the clusters are extracted from the channel
when the mobile is at one measurement position. It means
that only clusters with MS-VRs overlapping that position are
visible. If the movement of mobile station is considered, the
total number of clusters in the environment should be even
higher than what we observe in this measurement.

B. Cluster visibility region at the base station side

In the current model, the MS-VRs are modeled as circular
regions of a fixed size. However, a modification has been
suggested in [8] to introduce variations in the VR size. In
contrast to the MS-VRs which are two-dimensional regions
on the azimuth plane, the BS-VRs have to be modeled as
intervals for now, since the large linear array only spans one
dimension. The lengths of these intervals are the BS-VR sizes,
for which the modeling is discussed in the following.

As can be seen in Fig. 2, some clusters have BS-VRs
entirely inside the array, and some clusters have BS-VRs
that overlap one or both ends of the array. For the former

case, the observed BS-VR length on the array is the cluster’s
true BS-VR length, while for the latter case, the true BS-
VR length may be much longer than what is observed on the
array. Since the physical size of the linear array is limited,
we can only measure part of the length of many cluster BS-
VRs. In order to model the true BS-VR lengths from the
observed data, we derive the relationship between the true
BS-VR length and the observed BS-VR length, depending on
the BS-VR center position along the array. This relationship
is illustrated in Fig. 5. For the three cases of the BS-VR
being entirely inside the array, outside the array at one end
and outside the array at both ends, we can write the observed
BS-VR length ∆ as a function of the true length α and the
center position Xc. We assume that the cluster BS-VR center
positions Xc are uniformly distributed along the line of the
array in space, just as in the current model the MS-VRs are
uniformly distributed in the simulation area. Then we can find
the relationship between the distributions of ∆ and α. The
cumulative distribution function (CDF) of the observed BS-VR
lengths, K∆(y), can be written as a function of the probability
density function (PDF) of the true BS-VR lengths, fα(ν), as

K∆(y) =

{
K ′

∆(y), y≤L
1, y>L,

(1)

where

K ′
∆(y) =

∫ y

∆0

fα(ν)dν+2y

∫ ∞

y

1

L+ν
fα(ν)dν

−2∆0

∫ ∞

∆0

1

L+ν
fα(ν)dν,

(2)

L is the length of the array, and ∆0 is the smallest observation
of the BS-VR length on the array due to measurement data
processing.

Having the relationship of the distributions of the observed
BS-VR lengths and the true BS-VR lengths above, we can
assume any particular distribution of the true BS-VR lengths,
i.e., fα(ν), and find its parameters through an MLE approach
based on the observed data. Here we select a log-normal dis-
tribution, judging from the shape of the empirical distribution
seen in the measurements, and estimate its two parameters.
The estimation result is shown in Fig. 6(a), where the true BS-
VR length follows log-normal distribution with the estimated
parameters. We can also see the fitting of the distribution of
observed BS-VR lengths from the MLE result to the measured
data, as shown in Fig. 6(b) and Fig. 6(c). Fig. 6(c) shows the
data of BS-VR entirely inside the array and the data of BS-VR
outside the array separately. We can see that for the part that
BS-VRs are entirely inside the array, the MLE result fits quite
well, while for the part that BS-VRs are outside the array,
the MLE fitting in the CDF plot is slightly higher than the
measured data. Despite this, we can see in Fig. 6(b) the MLE
fitting is quite good for the whole data set.

C. Cluster visibility gain at the base station side

For the cluster power variations within the BS-VRs, since
the small-scale fading has already been modeled as the con-
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structive and destructive effects of the MPCs in the current
model, what we need to capture here is the large-scale fading
along the array. For simplicity, we use linear slopes in dB to
fit the cluster power variations, as shown in the dashed lines
in Fig. 2(c) and (d). These linear slopes are estimated in a
least-squares sense in the dB domain. The CDF of the slopes
of these linear changes in dB are shown in Fig. 7. Note that
for clusters with small observed BS-VRs, the estimation of
the slopes may be unreliable. Thus in Fig. 7, the slopes for
the clusters with observed BS-VRs larger than 25 windows,
i.e., about 2 m, are shown and fitted well by the normal
distribution.

V. SUMMARY

In this paper, the ongoing work of cluster-based modeling
for massive MIMO channel is presented. We start from the
well-known COST 2100 MIMO channel model, in which
only small and compact MIMO arrays have been considered
so far. Based on channel measurements using a physically
large array with 128 elements, we have studied the massive
MIMO channel behavior and identified important propagation
properties missing in the current COST 2100 model. The
observation is that the channel cannot be seen as wide-sense
stationary over the large array at the base station. Therefore,
an extension of the current model to support large arrays
is proposed. The concept of cluster visibility regions in the

current model is extended to the base station side to model
the spatial-variation of the channel over the large array. Then
statistical models of the total number of clusters, their visibility
regions and visibility gains at the base station side are found
based on the measured data.

REFERENCES

[1] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta,
O. Edfors, and F. Tufvesson, “Scaling up MIMO: Opportunities and
challenges with very large arrays,” IEEE Signal Processing Magazine,
Jan. 2013.

[2] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” CoRR, vol. abs/1304.6690,
2013.

[3] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral
efficiency of very large multiuser MIMO systems,” IEEE Transactions
on Communications, vol. 61, no. 4, pp. 1436–1449, 2013.

[4] X. Gao, F. Tufvesson, O. Edfors, and F. Rusek, “Measured propagation
characteristics for very-large MIMO at 2.6 GHz,” in 2012 4th Asilomar
Conference on Signals, Systems and Computers (ASILOMAR), 2012, pp.
295–299.

[5] S. Payami and F. Tufvesson, “Channel measurements and analysis for
very large array systems at 2.6 GHz,” in 2012 6th European Conference
on Antennas and Propagation (EUCAP), Mar. 2012, pp. 433–437.

[6] X. Gao, F. Tufvesson, O. Edfors, and F. Rusek, “Channel behavior for
very-large MIMO systems - initial characterization,” in COST IC1004,
Bristol, UK, Sep. 2012.

[7] L. Liu, C. Oestges, J. Poutanen, K. Haneda, P. Vainikainen, F. Quitin,
F. Tufvesson, and P. Doncker, “The COST 2100 MIMO channel model,”
IEEE Wireless Communications, vol. 19, no. 6, pp. 92–99, 2012.

[8] M. Zhu, G. Eriksson, and F. Tufvesson, “The COST 2100 channel
model: Parameterization and validation based on outdoor MIMO mea-
surements at 300 mhz,” IEEE Transactions on Wireless Communications,
vol. 12, no. 2, pp. 888–897, 2013.

[9] R. Verdone and A. Zanella, Pervasive Mobile and Ambient Wireless
Communications: COST Action 2100. Springer, 2012.

[10] B. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. Inge-
man Pedersen, “Channel parameter estimation in mobile radio environ-
ments using the SAGE algorithm,” IEEE Journal on Selected Areas in
Communications, vol. 17, no. 3, pp. 434–450, Mar. 1999.

[11] N. Czink, The Random-Cluster Model - A Stochastic MIMO Channel
Model for Broadband Wireless Communication Systems of the 3rd
Generation and Beyond. Dissertation, Telecommunications Research
Center Vienna (FTW), 2007.

[12] N. Czink, P. Cera, J. Salo, E. Bonek, J.-P. Nuutinen, and J. Ylitalo,
“A framework for automatic clustering of parametric MIMO channel
data including path powers,” in Vehicular Technology Conference, 2006.
VTC-2006 Fall. 2006 IEEE 64th, Sep. 2006, pp. 1–5.

[13] A. Manikas and C. Proukakis, “Modeling and estimation of ambiguities
in linear arrays,” IEEE Transactions on Signal Processing, vol. 46, no. 8,
pp. 2166–2179, 1998.


