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Abstract

Cell death in neurodegenerative diseases is often thought to be governed by apoptosis; however, an increasing body of
evidence suggests the involvement of alternative cell death mechanisms in neuronal degeneration. We studied retinal
neurodegeneration using 10 different animal models, covering all major groups of hereditary human blindness (rd1, rd2,
rd10, Cngb1 KO, Rho KO, S334ter, P23H, Cnga3 KO, cpfl1, Rpe65 KO), by investigating metabolic processes relevant for
different forms of cell death. We show that apoptosis plays only a minor role in the inherited forms of retinal
neurodegeneration studied, where instead, a non-apoptotic degenerative mechanism common to all mutants is of major
importance. Hallmark features of this pathway are activation of histone deacetylase, poly-ADP-ribose-polymerase, and
calpain, as well as accumulation of cyclic guanosine monophosphate and poly-ADP-ribose. Our work thus demonstrates the
prevalence of alternative cell death mechanisms in inherited retinal degeneration and provides a rational basis for the
design of mutation-independent treatments.
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Introduction

Apoptosis is a programmed cell death mechanism that is often

invoked for neurodegenerative diseases. The classical apoptotic

pathway starts with a BAX dependent permeabilisation of

mitochondrial membranes, cytochrome c leakage to the cytoplasm

and subsequent activation of initiator and executioner caspases

[1]. Inherited neurodegenerative diseases of the retina are also

generally thought to be governed by apoptotic cell death [2,3],

which has given rise to numerous attempts to use anti-apoptotic

strategies for therapy development [4–6]. Unfortunately, these

approaches were generally unsuccessful and efficient neuropro-

tective therapies for hereditary retinal degenerations (RD) such as

retinitis pigmentosa (RP), Leber’s congenital amaurosis (LCA), or

Stargardt’s disease are still missing. Recent findings suggest

alternative, non-apoptotic cell death mechanisms for photorecep-

tor degeneration [7,8]. Hence, we decided to systematically re-

evaluate the situation in the retina using a variety of markers for

both classical apoptosis and non-apoptotic cell death.

The retina harbours two general types of photoreceptors, rods,

responsible for vision under dim-light conditions (i.e. at night), and

cones, responsible for vision during bright daylight. In addition,

the retina hosts a variety of different 2nd and 3rd order neurons,

responsible for relaying photoreceptor output to the brain. For

studies into hereditary degenerative mechanisms in the retina a

large number of human homologous animal models are available

[9], faithfully reproducing the photoreceptor degeneration phe-

notype. Two major categories of mutations and diseases can be

distinguished: primary rod photoreceptor degeneration, which

usually entails secondary cone death and complete blindness, and

is characteristic of human diseases such as RP, LCA, or Usher

syndrome. Primary cone photoreceptor degeneration, which leaves

rods mostly unaffected but nevertheless causes a severe loss of

visual acuity and daylight vision and typifies human diseases, such
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as cone-dystrophy, Stargardt’s disease or age-related macular

degeneration [10,11].

In the present study, we asked the question whether there was a

common mechanism governing photoreceptor cell death inde-

pendent of the initial causative genetic defect, since this could open

up for broadly applicable therapies. To address the heterogeneity

of hereditary photoreceptor degeneration, we employed ten

different animal models RD (Figure 1), eight models for primary

rod degeneration, as seen in autosomal dominant RP (P23H and

S334ter transgenic rats) and autosomal recessive RP (rd1, rd2,

rd10, Cngb1 KO, Rho KO mice), as well as in LCA (Rpe65 KO

mice). In addition, we also included two animal models for

primary cone death (cpfl1, Cnga3 KO mice).

Surprisingly, our single cell resolution analysis of metabolic

changes at the peak of cell death suggested that hereditary

photoreceptor death was predominantly non-apoptotic, with only

a marginal role, if any, for apoptosis. Instead, our study delineated

a non-apoptotic cell death pathway and highlighted the general

importance of this pathway for photoreceptor neurodegeneration.

This finding has major ramifications for future therapy develop-

ments.

Materials and Methods

Animals
Animals were housed under standard white cyclic lighting, had

free access to food and water, and were used irrespective of

gender. Ten different mouse lines (C3H or C57Bl6 background)

either wild-type or carrying naturally occurring mutations or

engineered genetic deletions were used together with three

different rat lines (CD background) expressing different rhodopsin

transgenes (see Table 1). Day of birth was considered as postnatal

day (P) 0. All procedures were approved by the respective local

ethics and animal protection authorities and performed in

compliance with the ARVO statement for the use of animals in

Ophthalmic and Visual Research. Specifically, procedures per-

formed in Tübingen (concerning C3H wt, C57Bl6 wt, rd1, rd2,

rd10, cpfl1, CD wt, S334ter, and P23H animals) were reviewed

and approved by the Tuebingen University ‘‘Einrichtung für

Tierschutz, Tierärztlichen Dienst und Labortierkunde’’. Proce-

dures performed in Munich (on Cngb1 KO and Cnga3 KO

animals) were reviewed and approved by the "Regierung von

Oberbayern". Procedures performed in Oldenburg (on Rho KO

animals) were reviewed and approved by the Oldenburg

University animal welfare committee. Procedures performed in

Sion (on Rpe65 KO animals) were reviewed and approved by the

Veterinary Service of the State of Valais (Switzerland). Procedures

performed in Lund (rd1, rd2 animals) adhered to permit #
M220/09 issued by the local animal ethics committee. All efforts

were made to minimize the number of animals used and their

suffering.

Histology, immunohistochemistry, and
immunofluorescence

Animals were sacrificed in the morning (10–11 am), their eyes

enucleated and fixed in 4% paraformaldehyde (PFA) in 0.1 M

phosphate buffer (pH 7.4) for 45 min at 4uC. PFA fixation was

followed by cryoprotection in graded sucrose solutions (10, 20,

30%). Unfixed eyecups were directly embedded in cryomatrix

(Tissue-Tek, Leica, Bensheim, Germany). Sagittal 12 mm sections

were obtained and stored at 220uC.

Sections were incubated overnight at 4uC with primary

antibodies (Table 2). Immunostaining was performed employing

the avidin-biotin-peroxidase technique (Vectastain ABC system,

Vector laboratories, Burlingame, CA). Immunofluorescence was

performed using Alexa Fluor 488-conjugated secondary antibodies

(Molecular Probes, Inc. Eugene, USA). Negative controls were

carried out by omitting the primary antibody. Sections were

mounted with Vectashield (Vectorlabs, Burlingame, CA, USA) for

imaging.

Figure 1. RD animal models used and their genetic defects. The cartoon illustrates the anatomical localization and metabolic consequences of
the causative genetic mutations in the ten different RD animal models used in this study. RD causing mutations in these animal models interfere with
the various stages of the phototransduction cascade, from the 11-cis-retinal recycling enzyme RPE65 (Rpe65 KO), via the light-sensitive Rhodopsin
(Rho KO, P23H, S334ter), cGMP-hydrolyzing phosphodiesterase-6 (PDE6; rd1, rd10, cpfl1), the structural protein Peripherin (Prph2; rd2), to the cyclic-
nucleotide-gated (CNG; Cngb1 KO, Cnga3 KO) channel that allows for Ca2+-influx.
doi:10.1371/journal.pone.0112142.g001
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TUNEL Assay
Terminal deoxynucleotidyl transferase dUTP nick end labelling

(TUNEL) assay was performed using an in situ cell death detection

kit (Fluorescein or TMR; Roche Diagnostics GmbH, Mannheim,

Germany). For controls terminal deoxynucleotidyl transferase

enzyme was either omitted from the labelling solution (negative

control), or sections were pre-treated for 30 min with DNAse I

(Roche, 3 U/ml) in 50 mM Tris-HCl, pH 7.5, 1 mg/ml BSA to

induce DNA strand breaks (positive control). While negative

control gave no staining, positive control stained all nuclei in all

layers of the retina [12].

Calpain in situ activity assay
Calpain activity was investigated with an enzymatic in situ assay

[13]. Briefly, unfixed cryosections were incubated for 15 min in

calpain reaction buffer (CRB; 25 mM HEPES, 65 mM KCl,

2 mM MgCl2, 1,5 mM CaCl2, 2 mM DTT) and then incubated

at 35uC for 1 h in the dark in CRB with 2 mM fluorescent calpain

substrate 7-amino-4-chloromethylcoumarin, t-BOC-Leucyl-L-me-

thionine amide (CMAC, t-BOC-Leu-Met; Molecular Probes, Inc.

Eugene, USA). Fluorescence was uncaged by calpain-dependent

cleavage of t-Boc-Leu-Met-CMAC.

Poly-ADP-ribose polymerase (PARP) in situ activity assay
Unfixed cryosections were incubated in an avidin/biotin

blocking kit (Vector Laboratories, Burlingame, USA), followed

by incubation at 37uC for 2 h in PARP reaction mixture

containing 10 mM MgCl2, 1 mM DTT, 5 mM biotinylated

NAD+ (Trevigen, Gaithersburg, USA) in 100 mM Tris buffer

with 0.2% Triton X-100 (pH 8.0). Biotin incorporation was

detected by avidin - Alexa Fluor 488 conjugate (1:800, 1 h at room

temperature). For controls biotinylated NAD+ was omitted from

the reaction mixture [14].

HDAC in situ activity assay
HDAC activity assays were performed on retinal cryosections

obtained from 4% PFA fixed eyes. Retinal sections were exposed

to 200 mM Fluor de Lys-SIRT2 deacetylase substrate (Biomol,

Hamburg, Germany) and 500 mM NAD+ (Biomol) in assay buffer

(50 mM Tris/HCl, pH 8.0; 137 mM NaCl; 2.7 mM KCl; 1 mM

MgCl2) and incubated for 2 h at 37uC. The tissue sections were

then washed three times for 5 min in PBS and subsequently fixed

in Methanol at 220uC, for 20 min. After refixation, the sections

were washed once again for 5 min in PBS, then incubated in 1x

Developer II (Biomol) in assay buffer and immediately coversliped

and viewed under the microscope. The inclusion of either 100 mM

TSA (Sigma, Steinheim, Germany) or 2 mM NAM (Sigma) in the

assay allows to distinguish between HDAC activities coming from

class I, II or IV (inhibited by TSA) or from class III (sirtuin-type

HDACs, inhibited by NAM) [15].

Microscopy, cell counting, and statistical analysis
Light and fluorescence microscopy were usually performed at

room temperature on an Axio Imager Z.1 ApoTome Microscope,

Table 1. List of animals used, genes affected, and original references (where applicable).

Background/Line Mutant Gene Reference

C3H wild-type - [51]

C3H rd1 Pde6b [52]

C3H rd2 Prph2 [53]

C57Bl/6J wild-type - -

C57Bl/6 Rho KO Rho [54]

C57Bl/6N Cngb1 KO Cngb1 [55]

C57Bl/6N Cnga3 KO Cnga3 [56]

C57Bl/6J cpfl1 Pde6c [57]

C57Bl/6 Rpe65 KO Rpe65 [49]

C57Bl/6J rd10 Pde6b [58]

Crl: CD(SD) wild-type - -

Crl: CD(SD) P23H tg Rho [59]

Crl: CD(SD) S334ter tg Rho [59]

Italic fonts indicate mutant name or affected gene.
doi:10.1371/journal.pone.0112142.t001

Table 2. List of antibodies used in this study.

Antigen Source/Cat. Number Dilution IF/IHC Reference

BAX (clone 6A7) Sigma/B8429 1:20 [60]

Cleaved Caspase-3 (Asp175) (clone 5A1E) Cell Signalling/9664 1:300 [61]

Cleaved Caspase-9 (Asp353) (rabbit, polyclonal) Abcam/ab52298 1:100 [16]

Cytochrome C (clone 7H8.2C12) Abcam/mab13575 1:2000 [62]

cGMP (sheep, polyclonal) Prof. Harry Steinbusch, Maastricht University, The Netherlands 1:500 [63]

PAR (clone 10H) Enzo/ALX-804-220 1:200 [12]

doi:10.1371/journal.pone.0112142.t002
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equipped with a Zeiss Axiocam MRm digital camera. Images were

captured using Zeiss Axiovision 4.7 software; representative

pictures were taken from central areas of the retina using a 20x/

0,8 Zeiss Plan-APOCHROMAT objective. Adobe Photoshop

CS3 (Adobe Systems Incorporated, San Jose, CA) was used for

primary image processing.

For quantifications, pictures were captured on three entire

sagittal sections for at least three different animals for each

genotype and age using Mosaic mode of Axiovision 4.7 at 20x

magnification. The average area occupied by a photoreceptor cell

(i.e. cell size) for each genotype and age was determined by

counting DAPI-stained nuclei in 9 different areas (50650 mm) of

the retina. The total number of photoreceptor cells was estimated

by dividing the outer nuclear layer (ONL) area by this average cell

size. The number of positively labelled cells in the ONL was

counted manually. To be able to compare the various markers in

the different genotypes, we considered cells as positively labelled

only if they showed a strong staining of either the photoreceptor

nuclei or perinuclear areas. Since some markers actually stained

predominantly the photoreceptor inner and/or outer segments

(i.e. BAX, cGMP in Cngb1 KO retina) these may thus in the

present study have been systematically underestimated. Values

obtained are given as fraction of total cell number in ONL (i.e. as

percentage) and expressed as mean 6 standard error of the mean

(SEM). For statistical comparisons the unpaired Student t-test as

implemented in Prism 5 for Windows (GraphPad Software, La

Jolla, CA) was employed.

Results

In RD models the peak of cell death varied depending on
severity of genetic insult

To study the cell death mechanisms governing RD, we first

performed a detailed analysis of the temporal progression of the

degeneration for each of the 10 animal models used (Figure 1). We

used the TUNEL assay to label dying cells at different postnatal

ages and quantified the percentages of TUNEL-positive cells in the

outer nuclear layer (ONL), i.e. the photoreceptor layer (Figure 2).

In all RD models, once the degeneration sets in, the TUNEL

assay detected a moderate to strong elevation of dying cells when

compared to the respective wild-type, depending on degeneration

speed and whether rods or cones were affected. In each RD

animal model the peak of cell death was identified (Figure 2) and

all following experiments were performed at this time-point to

increase the chances of detecting characteristic cell death

processes. From previous experiments [12,15–17], we know that

the peak of TUNEL also corresponds to a strong activation of

critical cell death processes; both for apoptotic and non-apoptotic

cell death (cf. Figure S1). For the different animal models these

time-points were: rd1 = Postnatal day 13 (P13), rd10 = P18, rd2
= P18, Cngb1 KO = P24, Rho KO = P42, Rpe65 KO = P16,

cpfl1 = P24, Cnga3 KO = P35, S334ter = P12, P23H = P15

(Data for rd1, cpfl1, S334ter, and P23H adapted from [16–18],

respectively).

Since photoreceptor cell death is often seen as an apoptotic

process [2,3], we initially focused our analysis on detecting

characteristic markers for apoptosis, and then extended our

investigation to also include metabolic processes involved in

alternative cell death mechanisms. To assess the extent to which

apoptotic or non-apoptotic cell death mechanisms were active in

the different animal models, we compared the number of cells

displaying a specific metabolic activity with the number of

TUNEL-positive cells in both mutant and wild-type retina (Table

S1 and S2).

Apoptosis was restricted to degenerating S334ter retina
We looked for increased expression, localization, or activation of

Bcl-2–associated X protein (BAX), cytochrome c, cleaved,

activated caspase-9 and -3 (Figure 3, quantification in Table S1

and S2). Increases in these apoptotic markers were found only in

the S334ter model when compared to the corresponding wild-

type.

Classical apoptosis starts with an activation of BAX [1].

Although early studies have already ruled out an involvement of

BAX in RD [19], a recent study reported on the apparent

activation of BAX in rd1, P23H, and Rho KO mice [20].

Nevertheless, in our hands a significant BAX activation (using the

same antibody as in [20], Table 2) was observed only in S334ter

retina. Here, prominent BAX staining was observed near

mitochondria, in particular in individual photoreceptor inner

segments, synaptic terminals, and occasionally around nuclei

(Figure 3, Figure S2). This staining pattern in S334ter ONL is

consistent with the reported role of BAX in the formation of the

mitochondrial permeability transition pore [1].

Consequently, cytochrome c release from mitochondria was

observed as an increased staining of individual photoreceptor cells

in the S334ter ONL (Figure 3). A relative increase of cytochrome c

leakage was found in cpfl1 retina, however, this was not

statistically significant (Table S1). Increased caspase-9 staining

was present in S334ter retina only, with a peri-nuclear staining

predominantly in the lower part of the ONL. A very similar

staining pattern was found using an antibody specific for activated,

cleaved caspase-3, again exclusively in S334ter retinal sections.

These data are in line with previous studies [16,21].

Thus, whereas large numbers of TUNEL-positive cells were

detected in all analysed RD models, clear evidence for apoptosis

was only detected in S334ter rats. This suggested the execution of

alternative, non-apoptotic cell death mechanisms.

Non-apoptotic cell death in photoreceptor degeneration
We have previously shown that rod photoreceptor degeneration

in rd1 mice is characterized by accumulation of cyclic guanosine

monophosphate (cGMP), increased activities of histone deacety-

lases (HDAC), poly-ADP-ribose polymerases (PARP), and calpains

[13,15,22].

cGMP accumulation in phosphodiesterase-6 mutants (rd1,

rd10, cpfl1) is a direct consequence of the lack of phosphodies-

terase activity that normally hydrolyses cGMP. Surprisingly,

significant cGMP accumulation was observed also in all other

analysed mouse and rat models (Figure 4, Table S1) except for

Rpe65 KO retina, where the initial causative defect does not

reside in photoreceptors themselves but in retinal pigment

epithelial cells. However, the patterns of cGMP accumulation

varied between different RD models (Figure 4). In the case of rd1,

rd10, rd2, Cnga3 and cpfl1 cGMP was visible in cell bodies as

well as in photoreceptor inner/outer segments, whereas in Cngb1
KO retina the signal was more prominent in inner/outer

segments. For methodological reasons, we only quantified cGMP

positive cell bodies. As a consequence, most likely the true number

of photoreceptors showing elevated cGMP levels is higher in

Cngb1 KO retina than assessed here. P23H and S334ter rat

retinas were characterized by diffuse cGMP accumulation in the

ONL, contrary to Rho KO mice in which only very few nuclei

were cGMP-positive.

The HDAC assay revealed significantly increased activity in all

the analysed mutants when compared to corresponding wild-type

(Figure 4). The number of nuclei stained with the HDAC assay

varied between different mutants (Table S1 and S2) with more

Non-Apoptotic Cell Death in Hereditary Retinal Degeneration
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cells showing HDAC activity in the case of rd1, rd10, and S334ter

and less positive cells in the case of Cngb1 KO and Rpe65 KO.

To determine if poly-ADP-ribosylation, as an additional

epigenetic process, was involved in photoreceptor degeneration,

we looked for increased PARP in situ activity as well as for

accumulation of poly-ADP-ribosylated proteins (PAR), i.e. the

products of PARP activity. Nuclear staining of both PARP activity

and PAR followed the patterns observed for HDAC activity.

Mutants characterized by a high number of TUNEL-positive cells

(rd1, rd10, S334ter and Rpe65 KO) also displayed comparatively

higher numbers of both PARP and PAR stained cells compared to

models with low degeneration rates. The in situ staining for

calpain activity was also significantly increased in all analysed RD

models (Figure 4, quantification in Table S1).

To compare the different cell death processes, we related the

numbers of positive cells detected by each individual assay to the

numbers of TUNEL positive cells. To match the various RD

models and their very different degeneration kinetics with each

other, all values were expressed as logarithm to base 10. Since the

TUNEL values were defined as 100%, its logarithm was 2. This

comparative analysis highlighted the fact that non-apoptotic

processes were clearly dominant for photoreceptor degeneration

in all RD models (Figure 5). This was also true for the S334ter

model which, interestingly, showed the additional involvement of

apoptotic cell death. We also analysed the relative contribution of

apoptotic and non-apoptotic processes to developmental cell death

in wild-type retina (P13-P42). Here, the relative contributions of

Figure 2. Progression of cell death in inherited RD models. Depending on the causative genetic insult, the temporal development of retinal
degeneration is highly variable in the different animal models. The quantification of dying, TUNEL-positive photoreceptor cells in the outer nuclear
layer (ONL) allowed determination of the evolution and the peak of photoreceptor death for each of these animal models (A). The peak was taken as
reference point for the ensuing analysis of cell death mechanisms. The bar graph (B) shows a comparison of maximum peak heights for all ten RD
models studied. Note the different scales in line graphs. Values are mean 6 SEM from at least three different animals. See also Table S1 and S2.
doi:10.1371/journal.pone.0112142.g002

Figure 3. Apoptosis in the retina is restricted to the S334ter rat model. The analysis of BAX expression, mitochondrial cytochrome c release,
activation of caspase-9 and -3 shows essentially no positive detection in 9 out of 10 animal models for hereditary retinal degeneration. The notable
exception was the S334ter transgenic rat which harbours a mutation in the rhodopsin gene leading to a truncated protein and in which many
photoreceptors were positive for apoptosis. In all other animal models, while there were cells displaying clear evidence for apoptosis, their numbers
were within the wild-type levels, indicating that this was related to physiological, developmental cell death, which is characteristic for the postnatal
rodent retina. Importantly, the numbers of apoptotic cells did not match the numbers of mutation-induced dying cells as evidenced by the TUNEL
assay. Scale bar 20 mm.
doi:10.1371/journal.pone.0112142.g003
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apoptotic and non-apoptotic cell death mechanisms appeared to

be equally important (Figure S3).

Discussion

Our study provides a detailed and comprehensive overview of

the temporal progression and the kinetics of cell death in ten

different, commonly used RD animal models. These RD models

harbour genetic defects mostly affecting the phototransduction

cascade but include also such which are disturbing the visual cycle

(Rpe65 KO) and the structural integrity of the outer segment (rd2).

As a result, the comparative analysis of characteristic cell death

processes for the first time highlights the over-riding importance of

a common, alternative mechanism for photoreceptor degenera-

tion. Contrary to previous studies on retinal degeneration

mechanisms [23,24] our study focused on the elevated activity

and presence of key enzymes and/or metabolites, respectively, and

thus may be seen as a first attempt to assess the so called reactome

or metabolome (www.reactome.org; [25]) of photoreceptor

degeneration at the level of the individual dying cell.

To put our report in a perspective, many studies on cell death in

the retina and other parts of the central nervous system have

previously resorted to tissue based methods (e.g. micro-array,

western blot) [23,24]. Such methods are particularly useful in

conditions where there is a homogenous cell population and a

highly synchronized onset of cell death and are thus ideal, for

instance, for cell culture. However, in a complex neuronal tissue

such as the retina, with.50 different neuronal cell types among

which only one – the rod photoreceptor – undergoes non-

synchronized primary degeneration, with cell death of individual

photoreceptors spread out over a time of weeks to many years,

tissue based analysis runs the risk of suffering from very low

detection rates and overall poor signal-to-noise ratio. For our

analysis, we thus focussed on methods that afforded cellular

resolution to be able to unequivocally attribute cell death related

processes to primary photoreceptor death and to distinguish these

processes from secondary or tertiary events.

Apoptosis during retinal degeneration
Previous studies on cell death in hereditary retinal degeneration

have often suggested apoptosis as the main degenerative mecha-

nism [2,3,26]. These earlier studies, however, based their

conclusion on analysis methods now known not to discriminate

between apoptosis and other forms of cell death. For instance, the

Figure 4. Cell death in hereditary retinal degeneration is predominantly non-apoptotic. In 10 out of 10 animal models for hereditary
retinal degeneration, large numbers of photoreceptors display cGMP accumulation, HDAC and PARP activity, PAR accumulation, and calpain activity,
respectively. Intriguingly, these non-apoptotic markers are prominent even in the S334ter retina, concomitant with this also showing signs of
apoptosis. This suggests that in S334ter retina two different cell death mechanisms may run in parallel while in all other studied RD models the
mutation-induced cell death followed a non-apoptotic mechanism. Scale bar 20 mm.
doi:10.1371/journal.pone.0112142.g004
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TUNEL assay, originally thought to be a marker for apoptosis

[27], generally labels all kinds of dying cells, including necrotic

cells [28].

Apoptosis may be defined as an active process resulting in

orderly self-disintegration of a cell. Hallmark features of apoptosis

include an up-regulation of pro-apoptotic genes and proteins, such

as the transcription factor c-fos and in particular Bcl-2 family

proteins such as BAX, which participate in forming the

mitochondrial permeability transition pore (MPTP), allowing

mitochondrial proteins including cytochrome c to enter the

cytoplasm. Cytoplasmic cytochrome c aggregates with apoptotic

protease-activating factor (APAF) and caspase-9 to form a

multimeric protein complex termed the apoptosome [1]. This

complex then cleaves and activates down-stream executioner

caspases such as caspase-3.

Classical apoptosis occurs during retinal development until

about 3–4 weeks post-natal [29]. Indeed, developmental apoptosis

temporally coincides, at least partially, with mutation-induced cell

death [7]. This introduces a confounding factor which may

explain some of the contradictory reports in the literature. Our

study demonstrates that wild-type photoreceptors are capable of

executing apoptosis at least until P42; by contrast, however, we see

that mutant photoreceptors normally take a non-apoptotic route as

a means for orderly self-destruction.

Importantly, therapeutic strategies based on the inhibition of the

apoptotic cascade have had little success or produced conflicting

findings. For instance, neither the pharmacological inhibition of

the caspase cascade [5], nor the genetic manipulation of Bcl-2 and

Bcl-XL [30], c-fos [31], or caspase-3 [6] promoted long-term

photoreceptor survival. On the other hand BAX KO may delay

rod but not cone death in the Rpe65 KO animals [4].

Recently, increased BAX activation was suggested to be

connected to retinal degeneration in rd1, Rho KO, and P23H

mice [20]. At present it is not clear whether these findings relate in

part to developmental cell death (see above) or would have been

interpreted differently if the study [20] had also included

observations of a model with a much stronger BAX response,

such as the S334ter rat investigated by us. At any rate, our results

do not show any evidence for major BAX activation in

degenerating retina, with the notable exception of S334ter

photoreceptors. This model thus constitutes a ‘‘positive control’’

for BAX and further apoptotic markers, lending additional credit

to our findings in all other mutants.

Alternative cell death mechanisms
In recent years a growing body of evidence has suggested the

activity of alternative cell death mechanisms in RD [8,32–34]. The

analysis of such mechanisms faces the major obstacle of identifying

alternative and causative metabolic processes. In a number of

previous studies, we showed activation of the cGMP targets

protein kinase G (PKG) and cyclic nucleotide-gated (CNG)

channel [22,35] in degenerating rd1 photoreceptors. Excessive

cGMP signalling was associated with a strong increase in

enzymatic activities of calpain-type proteases [13], PARP [12],

and HDAC [15], which we found to be causally involved in

photoreceptor cell death. Calpain activation, which was also seen

by others in different RD models [20], is a well-established

phenomenon in necrosis and alternative cell death mechanisms

[21,36]. While HDAC and PARP enzymes are ubiquitously

expressed and involved in epigenetic gene regulation and DNA

repair [37], respectively, their excessive activation has repeatedly

been connected to alternative mechanisms of neuronal cell death

[38–40].

We found that all these processes were also involved in RD

caused by the different mutations, in various genes and in both

mouse and rat. Importantly, the cellular resolution afforded by the

used assays allowed clear distinction between cells dying an

apoptotic death and cells dying through an alternative pathway. In

this alternative pathway the activities of calpain and PARP activity

co-localize to a large extent with the TUNEL assay [12,17], while

cGMP detection and HDAC activity do not [15,41]. This could

suggest that the latter two relate to early metabolic processes in the

execution of cell death.

Together with other earlier data [8,16,42,43] our present

findings prompt us to propose a potential pathway for cGMP-

induced cell death: Elevated levels of cGMP activate CNG

channels and/or PKG to cause excessive Ca2+-influx and protein

phosphorylation, respectively. As a possible consequence of the

latter, PKG dependent phosphorylation could trigger HDAC

activation [44], down-stream of which PARP can be activated

[15]. Ca2+-influx might on the other hand, and in parallel, cause

calpain activation [13,35]. Both routes (Figure 6) act in unison to

drive a photoreceptor cell to its demise, but, surprisingly, this

Figure 5. Heat map representing metabolic activities in different RD models. The RD models were grouped according to the peak of
degeneration, the cell type affected by the mutation (rod, cone, RPE), and species (mouse, rat). The number of TUNEL-positive cells in each model was
normalized to 100, expressed as logarithm, and compared with the number of positively labelled cells for each marker. The heat map clearly
illustrates the prevalence of non-apoptotic vs. apoptotic cell death in 9 out of 10 RD models. The S334ter rhodopsin mutant was unique, showing
concurrent activation of both cell death pathways. n.p.: null positive. See also Table S1 and S2.
doi:10.1371/journal.pone.0112142.g005
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alternative form of cGMP-induced cell death appears to be 4–6

times slower than apoptosis [41]. Importantly, the presence of this

pathway and the connections between the different metabolic

processes were confirmed by interventional experiments in the rd1
mouse demonstrating the neuroprotective effects of inhibition of

PKG [22], calpain [13], PARP [12], and HDAC [15].

The observed PARP activity deserves some additional consid-

erations: In classical apoptosis the PARP enzyme is cleaved and

inactivated by caspases, resulting in a specific 85 kDa PARP

fragment, the presence of which is often used to characterize

apoptosis as such [45]. In our study, we used two independent

methods – immunostaining for the PARP activity product PAR

and direct in situ PARP activity detection based on incorporation

of NAD+ – to demonstrate PARP over-activation. Hence, what we

found in mutant photoreceptors is the exact opposite of what

would happen in apoptosis, which thus provides further evidence

for a non-apoptotic photoreceptor cell death, an alternative cell

death mechanism that could share some features with PARtha-

natos [40].

The fact that photoreceptors use a non-apoptotic mechanism

when in principle they are capable of executing apoptosis raises

the question as to what the physiological and even evolutionary

advantage of this mechanism may be. Apoptosis is a process that

requires energy in the form of ATP [1]. The insult caused by a

genetic mutation may exhaust such energy resources to the point

that apoptosis can no longer be executed. Necrosis on the other

hand would result in inflammation and could cause additional

extensive tissue damage. Hence, it may make sense for a cell to

execute the slow, alternative and probably ATP-independent

pathway laid out here to limit the damage to the surrounding

neuronal tissue.

Perspectives for mutation-independent RD treatment
An important consequence of the high genetic heterogeneity of

retinal degenerations is that for any pathogenic mutation there

may be only a very low number of patients [10,11]. This calls for

the development of mutation-independent treatments that could

address larger groups of RD patients. The finding that the same

non-apoptotic mechanism was the prevalent mode of cell death in

9/10 RD models strongly increases the chances to find neuro-

protective treatments that are independent of the initial causal

mutation. In the context of rare retinal diseases, such treatments

appropriate for a large number of patients may dramatically

improve the perspectives for both a successful clinical translation

and the commercial viability of corresponding drugs.

We found that the alternative cell death mechanism described

above was active in all investigated animal models. Of particular

importance for this mechanism may be the observed accumulation

of cGMP in mutant photoreceptors. While this was already known

for retina suffering from mutations in Pde6b and Pde6c (i.e. rd1,

cpfl1; [18,46]), Prph2 (i.e.rd2 [22]), Cngb1 and Cnga3 [35,42],

our work also showed cGMP accumulation in retina suffering for

three different types of rhodopsin mutations (Rho KO, S334ter,

P23H). A potential explanation for this remarkable phenomenon

in rhodopsin mutants could be either the longer life-times of

activated rhodopsin resulting in a stimulation of cGMP synthesis

and an increase in net cGMP [47] or a failure to activate

downstream PDE6 in cases where rhodopsin is absent (i.e. in Rho
KO).

While these findings highlight cGMP-signalling for the devel-

opment of novel neuroprotective treatments, there is one

exception: in Rpe65 KO retina, we did not find elevations of

cGMP. Indeed, here, unliganded opsin was proposed to cause a

constitutive activation of phototransduction and hence low cGMP-

levels [48]. On the other hand, since all further down-stream

processes appear to be the same in all mutants investigated, a

disruption of the visual cycle by Rpe65 KO [49] might cause

minor elevations of cGMP – perhaps below the detection levels of

our immunohistological methods – and still trigger cell death.

Mutations in the same gene may potentially trigger distinct

degenerative processes [16]. Our study more extensively shows

how intragenic variability of RD mutations may initiate different

cell death mechanisms: The recessive rd1 and rd10 mutations in

the Pde6b gene result in activation of the same non-apoptotic

pathways. This is also true for the recessive Rho KO and the

dominant P23H mutation, but not for the dominant S334ter

mutation. While all three mutations reside in the rhodopsin gene,

the concurrent activation of apoptotic and non-apoptotic cell

death observed in the S334ter situation suggests that human

patients with similar mutations may need combination therapy

targeting both degenerative pathways simultaneously. Likewise,

since we found that photoreceptors (wild-type) are in principle able

to execute apoptosis, we cannot exclude the possibility that under

circumstances in which non-apoptotic cell death is blocked, the

cell may switch to apoptosis. This possibility needs further

investigation and might also require the development of combi-

nation therapies.

Another question, that will be important to address in the

future, relates to the fact that all mutant photoreceptors carry a

genetic defect that will eventually destroy them. Yet, the time-

Figure 6. Two routes to cell death. Classical apoptosis, such as it
occurs in S334ter transgenic photoreceptors, involves a mutation-
induced up-regulation and translocation of BAX protein to form the
mitochondrial permeability transition pore (MPTP). This leads to leakage
of cytochrome c from the mitochondria to the cytoplasm, where it
combines with apoptotic protease activating factor (APAF) and caspase-
9 to form the apoptosome, which in turn activates down-stream
executioner caspases, including caspase-3. In 9/10 RD animal models
investigated here, photoreceptor death followed a different route:
mutation-induced up-regulation of cGMP on the one hand causes
activation of the CNG channel, leading to Ca2+ influx and calpain
activation. On the other hand cGMP-dependent activation of protein
kinase G (PKG) is associated with histone deacetylase (HDAC) and poly-
ADP-ribose-polymerase (PARP) activation. Importantly, this alternative,
non-apoptotic cell death mechanism offers a number of novel targets
for neuroprotection of photoreceptors.
doi:10.1371/journal.pone.0112142.g006
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point at which a mutant photoreceptor dies appears to be entirely

random, and, in the human situation, the time from the first to the

last photoreceptors’ death may cover many decades [10]. The

exact reasons for this phenomenon are unknown but could be

explained by stochastic effects similar to what is seen in the decay

of radioactive elements [50]. This opens the possibility that even a

minor shift in the dynamics of these stochastic processes – such as

interference with processes like those studied here – could improve

photoreceptor survival dramatically.

In conclusion, this work demonstrates the existence of a

common, non-apoptotic cell death mechanism for hereditary

photoreceptor degeneration. The tentative cell death pathway laid

out here (Figure 6) provides a number of novel targets for

neuroprotective treatment approaches [12,13,15,16,22] and,

importantly, a unifying principle for RD caused by a variety of

different mutations in different genes. As such, this common cell

death pathway may be of major importance for future RD therapy

developments and possibly for also other neurodegenerative

diseases.

Supporting Information

Figure S1 Correlation of selected cell death markers to loss of

photoreceptors, related to Figure 1. Percentage of labelled

ONLcells (left y-axis) and number of surviving photoreceptor

rows (right y-axis) for (A) rd1 mice, (B) P23H, and (C) S334ter

transgenic rats. In all three models, calpain activation peaked

together with the TUNEL assay, and correlated with the strongest

loss in the number of photoreceptor rows. The grey area indicates

the loss of photoreceptors. Throughout the retinal degeneration,

activation of caspase-3 was absent in rd1 and P23H retina, but

present in S334ter retina. Values are mean from at least three

different animals.

(TIF)

Figure S2 Expression of activated BAX in wild-type, rd1 and

S334ter retina. In wild-type mouse retina at P11 (left panel), a

mouse monoclonal antibody directed against activated BAX (clone

6A7) detected positive cells only rarely, but then in all layers of the

retina. The white arrowhead indicates a cell positive for activated

BAX in the ganglion cell layer (GCL). In rd1 mouse retina at P11

– the onset of RD in this model – activated BAX is detected only

very rarely, with BAX detection levels very similar to age-matched

wild-type (middle panel; cf. Table S2). In contrast to this, in the

outer nuclear layer (ONL) of P12 S334ter rat retina, the BAX

antibody immunodecorates mitochondria, in particular in indi-

vidual photoreceptor inner segments, synaptic terminals, and

perinuclear areas (right panel). This mitochondria specific staining

pattern in S334ter retina is consistent with the reported role of

BAX in the formation of the mitochondrial permeability transition

pore and the initiation of apoptosis. Images are representative for

immunostainings obtained from at least three different animals for

each genotype. Note that use of secondary anti-mouse antibodies

led to an unspecific IGG decoration in inner retinal blood vessels

in mouse tissues (see asterisks in wild-type, rd1). INL = inner

nuclear layer.

(TIF)

Figure S3 Cell death markers in wild-type mouse retina. Well-

type retina occasionally showed cells positive for both apoptotic

and non-apoptotic cell death markers (A). As the number of

positive cells is rather small, please note that the pictures shown

are selected not as the representative but somewhat an

exaggeration of the real number of dying cells. Heat map

representing metabolic activities in corresponding wild-types (B),

similarly as in Figure 5 for RD mutants, shows that cell death

during wild-type retina development displayed activation of both

apoptotic and non-apoptotic pathways. Scale bar 20 mm. n.p.: null

positive. See also Table S2.

(TIF)

Table S1 Quantification of cell death processes in 10 different

RD animals related to Figures 1 and 4. Numbers given represent

mean values for the percentages of positive cells for each marker,

followed by standard error of the mean (SEM), and p-values for

comparisons with corresponding, age-matched WT. Green label

indicates statistically significant p-values (p,0.05); red label

indicates non-significance. Significant differences between RD

mutants and WT were found almost only for non-apoptotic

processes, with the notable exception of the S334ter mutant where

also apoptotic processes were significantly activated. Note that in

contrast to Fig. 4, here, values were not normalized to the

numbers of TUNEL positive, dying cells.

(TIF)

Table S2 Quantification of labelled photoreceptors in different

RD models related to Figures 1 and 4. For each genotype, at the

respective peak of degeneration, the percentage of cells positively

labelled for the various cell death processes is given as mean value,

followed by SEM, and number (n) of different specimens analysed.

To assess the relative importance of these processes for retinal

degeneration the percentage of TUNEL positive cells is also given.

(TIF)
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