Confirmation of TNIP1 but not RHOB and PSORS1C1 as systemic sclerosis risk factors in a large independent replication study

Bossini-Castillo, Lara; Ezequiel Martin, Jose; Broen, Jasper; Simeon, Carmen P.; Beretta, Lorenzo; Gorlova, Olga Y.; Vonk, Madelon C.; Ortego-Centeno, Norberto; Espinosa, Gerard; Carreira, Patricia; Garcia de la Pena, Paloma; Oreiro, Natividad; Andres Roman-Ivorra, Jose; Jesus Castillo, Maria; Gonzalez-Gay, Miguel A.; Saez-Comet, Luis; Castellvi, Ivan; Schuerwegh, Annemie J.; Voskuyl, Alexandre E.; Hoffmann-Vold, Anna-Maria; Hesselstrand, Roger; Nordin, Annika; Lunardi, Claudio; Scorza, Raffaella; van Laar, Jacob M.; Shiels, Paul G.; Herrick, Ariane; Worthington, Jane; Fonseca, Carmen; Denton, Christopher; Tan, Filemon K.; Arnett, Frank C.; Assassi, Shervin; Koeleman, Bobby P.; Mayes, Maureen D.; Radstake, Timothy R. D. J.; Martin, Javier

Published in: Annals of the Rheumatic Diseases

DOI: 10.1136/annrheumdis-2012-201888

2013

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
EXTENDED REPORT

Confirmation of *TNIP1* but not *RHOB* and *PSORS1C1* as systemic sclerosis risk factors in a large independent replication study

INTRODUCTION

Systemic sclerosis or scleroderma (SSc) is a complex autoimmune disorder that affects the connective tissue causing fibrosis in the skin and different internal organs.1 The contribution of different genetic factors to the development and prognosis of the disease is now widely accepted.2 Over the past few years, genome-wide association studies (GWAS) have been a useful tool in the genetic dissection of autoimmune pathologies and other complex diseases.3 Radstake et al4 performed the first SSc GWAS in Caucasian populations, which represented the first large-scale GWAS in SSc. This work reinforced the association within the HLA region, especially with the *HLA-DQB1* gene, which was also reported in a comprehensive multiethnic SSc HLA study.5 It also confirmed the associations found in *STAT4* and *IRF5* and identified *CD247* as a new SSc risk locus. It is worth mentioning that the role of *CD247* in SSc has recently been independently replicated.6 This GWAS has led to three follow-up studies, which have described several novel SSc susceptibility factors, ie, *IRF8, GRB10, SOX5, NOTCH4, IL12RB2, CSK, PSD3* and *NFkB1,*7–9 Interestingly, *SOX5* and *NOTCH4* are directly related to the fibrotic process, which is a main hallmark of SSc. A GWAS has recently been performed in a French Caucasian SSc discovery cohort.10 In this GWAS, 17 single-nucleotide polymorphisms (SNP) showing two associations were selected for follow-up in independent cohorts. Three of the selected SNP were located within the HLA region corresponding to the *HLA-DQB1* and *PSORS1C1* genes; and the remaining SNP were located in six independent non-HLA loci. After the replication step, the associations of *HLA-DQB1, CD247, STAT4* and *IRF5* were confirmed, and six SNP located in three loci (*TNIP1, RHOB, PSORS1C1*) were proposed as novel SSc risk factors.

It has been observed that associations identified from a single GWAS, even passing the established statistical significance thresholds, tend to have...
inflated effect sizes. This effect size is called the winner’s curse, and it also affects the predictive ability of the discovered associations and the estimate of the risk variance explained by the associations. Replication in independent comparable populations is thus essential for firmly establishing a genotype-phenotype association. Therefore, we aimed to perform a large-scale replication study of the novel SSC genetic risk factors identified by GWAS strategy in an independent white European and US SSC population.

PATIENTS AND METHODS

Subjects
4389 SSC patients and 7611 controls of Caucasian ancestry (Spain, The Netherlands, USA, Italy, Sweden, UK and Norway) were included in this study. Patients were classified as having limited or diffuse SSC, as defined by LeRoy et al. The following clinical data were collected for ascertainment of the clinical phenotype of the patients with SSC: age, gender, disease duration and presence of SSC-associated autoantibodies, anti-topoisomerase (ATA) and anti-centromere (ACA). Supplementary table S1 (available online only) shows the cohort-specific SSC patient data. The control population consisted of unrelated healthy individuals recruited in the same geographical regions as SSC patients and matched by age, sex and ethnicity with the SSC patient groups. Local ethics committees from all the participating centres approved the study. Both patients and controls were included in the study after written informed consent.

In the meta-analysis with previously published data by Allanore et al., which includes 2246 SSC patients and 5702 healthy controls from France, Italy, Germany and Eastern Europe, the total cohort size reached 6655 patients and 15315 controls (except for rs13021401 and rs3792783, which were not available for The Netherlands and US GWAS cohorts, respectively).

Genotyping
Genotype data of six SNP (rs342070, rs13021401 (RHOB), rs2235287, rs4958881, rs3792783 (TNIP1) and rs3150575 (PSORS1C1)) was obtained from both available GWAS genotyping platforms and SNP genotyping assays. When possible, genotypes from the Spanish, Dutch and US cohorts from Radstake et al. were used (Spain I, The Netherlands I and US I cohorts). In addition, additional Spanish SSC patients and controls were genotyped using the Illumina HumanCytoSNP-12 DNA Analysis BeadChip and Illumina Human1M-Duo DNA Analysis BeadChip (Illumina Inc., San Diego, CA, USA), respectively, this information was thus included in the Spain I set when available. The remaining European cohorts (Spain II, The Netherlands II, Italy, Sweden, UK and Norway) were analysed using TaqMan SNP genotyping assays in a 7900HT Real-Time PCR System from Applied Biosystems following the manufacturer’s suggestions (Applied Biosystems, Foster City, California, USA). The differences in the number of samples included in the analyses of each polymorphism correspond to the availability of the genotype data in each platform (see supplementary table S2, available online only). Stringent quality control filters and principal component analysis were applied to the GWAS and the HLA imputed data as described in Radstake et al. The genotyping call-rate for the individuals genotyped using TaqMan assays reached: rs432070 95.77%, rs13021401 94.95%, rs2235287 96.08%, rs4958881 95.75%, rs3792783 95.29% and rs3150575 95.19%.

Statistical analysis
PLINK (V1.07) software (http://pngu.mgh.harvard.edu/purcell/plink/) was used for individual population association tests (significance was calculated by 2×2 contingency tables and Fisher’s exact test or χ² when necessary, and in the case of the haplotypes each haplotype was tested against all others), logistic regression and conditional logistic regression analyses. The different cohorts were considered covariables in the logistic regression analyses. OR and their 95% CI were reported. TNIP1 haplotypes were constructed using PLINK (V1.07) and HaploView 4.2 (http://www.broadinstitute.org/haploview/haplovie) only with those individuals successfully genotyped for the three included variants (2432 SSCs and 3496 healthy controls). The Breslow–Day test was performed as implemented in PLINK and StatsDirect to assess the homogeneity of the association among populations. Pooled analyses and meta-analyses were carried out using a Mantel–Haenszel test under a fixed effects model by PLINK (V1.07), METAL (http://www.sph.umich.edu/csg/abecasis/metal/) and StatsDirect (V2.6.6 StatsDirect Ltd) in the case of haplotypes. Significant heterogeneity among populations was found in the meta-analysis of RHOB locus polymorphisms; consequently, in this case a random effects model was applied using StatsDirect. Genotypic frequency distributions for the meta-analysis were kindly provided by Allanore et al. for the meta-analysis by personal communication. All cohorts were in Hardy–Weinberg equilibrium at a significance level of 0.01 for all the included SNP. Power was calculated using the software Power Calculator for Genetic Studies 2006 and assuming an additive model at the 5% significance level and previously reported OR (rs4958881 minor allele frequency 0.5, OR 1.25).15

RESULTS

Non-HLA loci analysis
In this study we analysed five SNP located in two non-HLA loci, TNIP1 and RHOB. Regarding the TNIP1 locus, we replicated the previously described associations, with rs4958881 showing the most significant relationship, rs4958881 (pMH=5.26×10⁻⁵, OR 1.19, 95% CI 1.09 to 1.29 (table 1). We also observed that the associations were consistent through the different clinical and serological subsets. The Breslow–Day test showed no evidence of interpopulation heterogeneity either in the whole disease analyses or in the stratified groups (supplementary table S3, available online only, shows individual cohort analyses). Statistical power was over 99% for the three SNP. Moreover, all the TNIP1 genetic variants showed significant association at GWAS level in the meta-analysis with the initial report (rs2235287 pMH=1.7×10⁻⁷, OR 1.23, 95% CI 1.15 to 1.32; rs4958881 pMH=2.88×10⁻⁷, OR 1.24, 95% CI 1.16 to 1.32; rs3792783 pMH=9.11×10⁻⁶, OR 1.29, 95% CI 1.23 to 1.40 (figure 1).

As previously described, the three SNP examined belong to the same haplotype block. As reported by Allanore et al., the polymorphisms studied in the TNIP1 region showed moderate to high linkage disequilibrium (see supplementary figures S1 and S2, available online only). Therefore, haplotype analysis was performed. The Breslow–Day test show homogeneity in the association of the haplotypes among populations. Haplotype block analysis revealed the association of two haplotypes with the disease. Haplotypes CTT and TCC (SNP order
Table 1 Pooled analysis of the novel SSc non-HLA susceptibility loci

<table>
<thead>
<tr>
<th>CHR</th>
<th>BP</th>
<th>SNP</th>
<th>Locus</th>
<th>Genotype, N (%)</th>
<th>2/2</th>
<th>MAF N (%)</th>
<th>Allele test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/1</td>
<td>1/2</td>
<td></td>
<td>P<sub>BD</sub> OR (95% CI) P<sub>BD</sub></td>
</tr>
<tr>
<td>2</td>
<td>20548952</td>
<td>rs342070</td>
<td>RHOB</td>
<td>C/T Controls (n=7193) 448 (6.23) 2713 (37.72) 4032 (56.05) 6095 (25.09)</td>
<td>0.76</td>
<td>1.01 (0.95 to 1.08)</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSc (n=4249) 292 (6.87) 1515 (35.66) 2442 (57.47) 2099 (24.70)</td>
<td>0.76</td>
<td>1.01 (0.95 to 1.08)</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>icSSc (n=2649) 184 (6.85) 953 (35.98) 1512 (57.08) 1321 (24.93)</td>
<td>0.75</td>
<td>1.01 (0.94 to 1.09)</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dcSSc (n=1227) 80 (6.52) 444 (36.19) 703 (57.29) 604 (24.61)</td>
<td>0.95</td>
<td>1.00 (0.90 to 1.10)</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACA+ (n=1492) 92 (6.17) 529 (35.46) 671 (58.38) 712 (23.89)</td>
<td>0.52</td>
<td>0.97 (0.88 to 1.07)</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ATA+ (n=864) 71 (6.22) 303 (35.07) 490 (56.71) 445 (25.05)</td>
<td>0.22</td>
<td>1.08 (0.96 to 1.21)</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>20552000</td>
<td>rs13021401</td>
<td>RHOB</td>
<td>T/C Controls (n=6557) 405 (6.18) 2416 (36.85) 3736 (56.98) 3226 (48.60)</td>
<td>0.61</td>
<td>1.02 (0.95 to 1.09)</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SSc (n=4259) 280 (6.57) 1524 (35.78) 2455 (57.64) 2084 (24.74)</td>
<td>0.61</td>
<td>1.02 (0.95 to 1.09)</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>icSSc (n=2644) 174 (6.58) 966 (36.54) 1504 (56.88) 1314 (24.85)</td>
<td>0.49</td>
<td>0.93 (0.91 to 1.11)</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dcSSc (n=1239) 79 (6.38) 444 (35.84) 716 (57.79) 602 (24.29)</td>
<td>0.96</td>
<td>1.00 (0.90 to 1.10)</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACA+ (n=1487) 91 (6.12) 530 (35.64) 866 (58.24) 712 (23.94)</td>
<td>0.91</td>
<td>0.99 (0.90 to 1.09)</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ATA+ (n=872) 65 (7.45) 316 (36.24) 491 (56.31) 446 (25.57)</td>
<td>1.07</td>
<td>0.99 (0.97 to 1.22)</td>
<td>0.11</td>
</tr>
</tbody>
</table>

controls are used as reference for all comparisons. *All p values have been calculated for the allelic model.

ACA+, anti-centromere autoantibody-positive patients; ATA+, anti-topoisomerase autoantibody-positive patients; BP, base pair; CHR, chromosome; CTRL, healthy controls; dcSSc, diffuse cutaneous systemic sclerosis; lcSSc, limited cutaneous systemic sclerosis; MAF, minor allele (A) frequency; P_{BD}, Mantel–Haenszel test under fixed effect; P_{BD}, homogeneity Breslow–Day test; 1/2, minor allele/major allele; SNP, single nucleotide polymorphism.

rs2235287–rs4958881–rs792783 represent the combinations of the major and minor alleles of each SNP, respectively, and subsequently show a protective or a susceptibility role that is concordant with the individual SNP associations, ie, major alleles are protective while minor alleles are risk variants (see supplementary table S4, available online only). However, haplotype block analysis did not show more significant p values than individual SNP analyses, and no additive or multiplicative effect of the SNP was observed. With the aim of clarifying possible underlying dependence among the SNP, we performed conditional logistic regression analysis. Nevertheless, due to the linkage disequilibrium between the analysed SNP, this approach did not enable us to identify an independent association signal (see supplementary table S5, available online only).

As shown in table 1, none of the tested polymorphisms in RHOB showed significant associations with SSc, or any of the examined subgroups. Only weak association signals could be detected in the Italian cohort. The power for the analyses of the rs342070 and rs13021401 RHOB genetic variants in the overall cohort was of 99% in both cases. Meta-analyses with the previous report showed significant OR heterogeneity in the Breslow–Day tests and no significant association under a random effects model for both polymorphisms (rs342070 P_{random}=0.19; rs13021401 P_{random}=0.15).

PSORS1C1 analysis

The study of the PSORS1C1 reported variant, rs5130573, showed a suggestive but heterogeneous association of this polymorphism with increased SSc susceptibility (table 2). Moreover, the association was maintained in all the subgroups (including the ACA-negative and ATA-negative subsets) except for the ACA-positive patients. Considering that the association of the HLA region with SSc is influenced primarily by the autoantibody profile of the patients, we aimed to test for an uncovered influence of the HLA genes. We thus carried out a step-wise logistic regression conditional analysis of the analysed PSORS1C1 variant with all the independent signals from the most significant to the lowest observed p values in the HLA region. The considered conditions included SNPs, imputed aminoacids, positions and imputed classic HLA-alleles (as described in Raychaudhuri et al). 6 In the analysed GWAS cohorts (Spain I, The Netherlands I and USA I) (unpublished data). Standard logistic regression analyses in the GWAS cohorts showed evidence of association only in the whole disease versus controls and in the ACA-negative patients versus controls comparisons (P_B=0.054, OR 1.09; P_B=0.01, OR 1.12, respectively). However, the previously mentioned association with the whole set of SSc patients lost its significance when it was conditioned to the HLA-DRB1*1301 allele (p value
Figure 1 (A) Forest plot for the meta-analysis of the rs2233287 TNIP1 genetic variant. (B) Forest plot for the meta-analysis of the rs4958881 TNIP1 genetic variant. (C) Forest plot for the meta-analysis of the rs3792783 TNIP1 genetic variant.
conditioning on DPB1*15:01=0.06; OR conditioning on DPB1*15:01=0.08). HLA-DRB1*11:04 (p value conditioning on DRB1*11:04=0.08; OR conditioning on DRB1*11:04=0.07) and the HLA-DQA1*05:01 (p value conditioning on DQA1*05:01=0.36; OR conditioning on DQA1*05:01=0.1). Moreover, the association with the ACA-negative subset of patients was also shown to be dependent on the HLA-DQA1*05:01 allele (p value conditioning on DQA1*05:01=0.02; OR OR conditioning on DQA1*05:01=0.07). Therefore, our data suggest that the association of PSORS1C1 with SSC is not independent from the HLA region.

DISCUSSION

In this study we conducted a large multicentre replication of the novel SSC risk variants identified by Allanore et al. and we confirmed the association of the TNIP1 locus with SSC. However, the associations observed in the RHOB gene and the independence of PSORS1C1 from the HLA region were not supported by our data.

Due to the lack of association observed in the RHOB locus, we suggest that the initial association reported in this gene might have been a false positive finding. It is worth mentioning that RHOB has never been robustly associated with an autoimmune disease, and the previously reported association with SSC in this gene did not reach the GWAS significance level even after replication. Furthermore, recent studies focused on the control of transcription and expression of TNIP1 showed that the transcription and expression of TNIP1 is decreased both in the skin of SSC patients and SSC cultured fibroblasts, thus the anti-inflammatory effect of this molecule may be reduced in SSC patients, providing evidence for a relevant role of TNIP1 in the disease. TNIP1 is also a well-established risk factor for different autoimmune diseases, such as psoriasis, psoriatic arthritis and systemic lupus erythematosus. Furthermore, TNIP1 association with psoriasis has also been reported in Asian populations, suggesting that the role of TNIP1 in autoimmune diseases is consistent through different ethnicities. Therefore, this locus can be considered a common autoimmune disease risk factor that can be used as a new therapeutic target.

To conclude, our replication study has reinforced the influence of TNIP1 in an increased susceptibility to SSC and its role as a new player in the autoimmunity genetic background. Future research will identify the causal variant for the TNIP1 association and its implication in SSC pathophysiology.

Author affiliations

1Department of Immunology, Instituto de Parasitología y Biomedicina López-Neyra, IPBUC-CSIC, Granada, Spain
2Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
3Servicio de Medicina Interna, Hospital Valle de Hebron, Barcelona, Spain
4Department of Clinical Immunology and Rheumatology, Allergy, IRCSS Fondazione Policlinico-Mangiagalli-Regina Elena and University of Milan, Milan, Italy

Table 2 Pooled-analysis of the rs3130573 PSORS1C1 HLA-region genetic variant

<table>
<thead>
<tr>
<th>CHR</th>
<th>BP</th>
<th>SNP</th>
<th>1/2</th>
<th>Controls (N=7139)</th>
<th>SSC (n=4130)</th>
<th>lcSSc (n=2575)</th>
<th>dcSSc (n=1187)</th>
<th>ACA+ (n=645)</th>
<th>ATA+ (n=3147)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>31214247</td>
<td>rs3130573</td>
<td>G/A</td>
<td>892 (12.49) 3220 (45.10) 3027 (42.40) 5004 (35.05)</td>
<td>754 (18.90) 2582 (41.50) 2355 (37.70) 4062 (32.90)</td>
<td>350 (13.59) 1211 (47.42) 1003 (39.08) 1902 (37.40)</td>
<td>177 (14.91) 561 (46.06) 449 (37.40) 915 (35.55)</td>
<td>123 (14.56) 411 (48.64) 311 (36.80) 657 (38.80)</td>
<td>413 (13.92) 1395 (47.00) 1160 (39.08) 2221 (37.42)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype, N (%)</th>
<th>1/1</th>
<th>1/2</th>
<th>2/2</th>
<th>MAF N (%)</th>
<th>Allele test</th>
<th>(\text{p}_{\text{BM}})</th>
<th>OR (95% CI)</th>
<th>(\text{p}_{\text{BD}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (N=7139)</td>
<td>892 (12.49)</td>
<td>3220 (45.10)</td>
<td>3027 (42.40)</td>
<td>5004 (35.05)</td>
<td>1.17E-05</td>
<td>1.14 (1.07 to 1.21)</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>SSC (n=4130)</td>
<td>754 (18.90)</td>
<td>2582 (41.50)</td>
<td>2355 (37.70)</td>
<td>4062 (32.90)</td>
<td>3.09E-04</td>
<td>1.18 (1.08 to 1.29)</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>lcSSc (n=2575)</td>
<td>350 (13.59)</td>
<td>1211 (47.42)</td>
<td>1003 (39.08)</td>
<td>1902 (37.40)</td>
<td>1.16E-03</td>
<td>1.12 (1.05 to 1.20)</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>dcSSc (n=1187)</td>
<td>177 (14.91)</td>
<td>561 (46.06)</td>
<td>449 (37.40)</td>
<td>915 (35.55)</td>
<td>0.28</td>
<td>1.05 (0.96 to 1.14)</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>ACA+ (n=645)</td>
<td>123 (14.56)</td>
<td>411 (48.64)</td>
<td>311 (36.80)</td>
<td>657 (38.80)</td>
<td>1.00E-07</td>
<td>1.18 (1.08 to 1.29)</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>ATA+ (n=3147)</td>
<td>413 (13.92)</td>
<td>1395 (47.00)</td>
<td>1160 (39.08)</td>
<td>2221 (37.42)</td>
<td>1.03E-04</td>
<td>1.13 (1.07 to 1.21)</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

*All p values have been calculated for the allelic model.

Abbreviations: ATA, antitopoisomerase; ACA, anticentromere; dcSSc, diffuse cutaneous systemic sclerosis; lcSSc, limited cutaneous systemic sclerosis; MAF, minor allele frequency; BM, Mantel–Haenszel test under fixed effect; BD, homogeneity Breslow–Day test; 1/2, minor allele/major allele; SNP, single nucleotide polymorphism.

Note: Controls are used as reference for all comparisons.
5. Department of Epidemiology, M.D. Anderson Cancer Center, The University of Texas, Houston, Texas, USA
6. Servicio de Medicina Interna, Hospital Clínico Universitario, Granada, Spain
7. Servicio de Enfermedades Autoinmunes, Hospital Clínico, Barcelona, Spain
8. Servicio de Reumatología, Hospital Universitario 12 de Octubre, Madrid, Spain
9. Servicio de Reumatología, Hospital Madrid Norte Sanchinarro, Madrid, Spain
10. Servicio de Reumatología, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
11. Servicio de Reumatología, Hospital Universitari i Politecnic La Fe, Valencia, Spain
12. Servicio de Medicina Interna, Hospital Virgen del Rocío, Sevilla, Spain
13. Servicio de Reumatología, Hospital Universitario Marqués de Valdecilla, IFIMAV, Santander, Spain
14. Unidad de Enfermedades Autoinmunes Sistémicas, Servicio de Medicina Interna, Hospital Universitario Miguel Servet, Zaragoza, Spain
15. Servicio de Reumatología, Hospital Sant Pau, Barcelona, Spain
16. Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
17. Department of Rheumatology, VU University Medical Center, Amsterdam, The Netherlands
18. Department of Rheumatology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
19. Department of Rheumatology, Lund University, Lund, Sweden
20. Karolinska Institute, Stockholm, Sweden
21. Department of Medicine, Università degli Studi di Verona, Verona, Italy
22. Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle, UK
23. University of Glasgow, Glasgow, UK
24. Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
25. Centre for Rheumatology, Royal Free and University College Medical School, London, UK
26. Department of Rheumatology and Clinical Immunogenetics, The University of Texas Health Science Center-Houston, Houston, Texas, USA
27. Section Complex Genetics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
28. Department of Rheumatology and Clinical Immunology, Utrecht Medical Center, Utrecht, The Netherlands

*For members of the Spanish Scleroderma group see supplementary appendix, available online only.

Acknowledgements The authors would like to thank Sofia Vargas, Sonia García and Gema Robledo for excellent technical assistance and all the patients and control donors for their essential collaboration. They thank Banco Nacional de ADN (University of Salamanca, Spain) and the Norwegian Bone Marrow Donor Registry who supplied part of the control DNA samples. They are also grateful to EUST AR (University of Salamanca, Spain) and the Norwegian Bone Marrow Donor Registry and DNA Repository (N01-AR-0-2251), NIH/NIAMS-RO1-AR055258 and Andalucía, Spain. The USA studies were supported by NIH/NIAMS Scleroderma (RIER) from Instituto de Salud Carlos III (ISCIII), Spain and by Fondo Europeo de las Comunidades Europeas (FEDER). The Spanish Ministry of Science, CTS-3077 from Junta de Andalucía, Spain, in part by Redes Temáticas de Investigación Cooperativa Sanitaria Program, RD08/0075 (RIER) from Instituto de Salud Carlos III (ISCIII), Spain and by Fondo Europeo de Desarrollo Regional (FEDER). TRDJR was funded by the VIII laureate from the Dutch Association of Research (NVMO) and Dutch Arthritis Foundation (National Reumafonds). JM and TRDJR were sponsored by the Orphan Disease Programme grant from the European League Against Rheumatism (EULAR). BPCX is supported by the Dutch Diabetes Research Foundation (grant 2008.40.001) and the Dutch Arthritis Foundation (Reumafonds, grant NR 09-1-408). TW was granted by DFG WI 1031/6.1. This study was also funded by PI05090-2010, Consejería de Salud, Junta de Andalucía, Spain. The USA studies were supported by NIH/NIAIMS Scleroderma Registry and DNA Repository (R01-AR-0-2251), NIH/NIAIMS-R01-AR055258 and NIH/NIAIMS Center of Research Translation in Scleroderma (1P30AR051444), and the Department of Defense Congressionally Directed Medical Research Programmes (WB1XWH-07-01-0111).

Competing interests None.
Patient consent Obtained.

Ethics approval Local ethics committees from all the participating centres approved the study.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
Confirmation of \textit{TNIP1} but not \textit{RHOB} and \textit{PSORS1C1} as systemic sclerosis risk factors in a large independent replication study

Lara Bossini-Castillo, Jose Ezequiel Martin, Jasper Broen, et al.

\textit{Ann Rheum Dis} 2013 72: 602-607 originally published online August 15, 2012
doi: 10.1136/annrheumdis-2012-201888

Updated information and services can be found at:
http://ard.bmj.com/content/72/4/602.full.html

\textit{These include:}

\textit{Data Supplement}
http://ard.bmj.com/content/suppl/2012/08/14/annrheumdis-2012-201888.DC1.html

\textit{References}
This article cites 24 articles, 8 of which can be accessed free at:
http://ard.bmj.com/content/72/4/602.full.html#ref-list-1

\textit{Email alerting service}
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

\textit{Topic Collections}
Articles on similar topics can be found in the following collections
- Genetics (730 articles)
- Connective tissue disease (3232 articles)
- Immunology (including allergy) (3820 articles)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/