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Neutron shell structure and the resulting possible deformation in the neighborhood of neutron-drip-line nuclei
are systematically discussed, based on both bound and resonant neutron one-particle energies obtained from
spherical and deformed Woods-Saxon potentials. Owing to the unique behavior of weakly bound and resonant
neutron one-particle levels with smaller orbital angular momenta �, a systematic change in the shell structure
and thereby a change in the neutron magic numbers are pointed out, compared with those of stable nuclei
expected from the conventional j-j shell model. For a spherical shape with the operator of the spin-orbit potential
conventionally used, the �j levels belonging to a given oscillator major shell with parallel spin and orbital angular
momenta tend to gather together in the energetically lower half of the major shell, while the levels with antiparallel
spin and orbital angular momenta gather in the upper half. This tendency leads to a unique shell structure and
possible deformation when neutrons start to occupy the orbits in the lower half of the major shell. Among others,
the neutron magic number N = 28 disappears and N = 50 may disappear, while the magic number N = 82
may presumably survive owing to the large � = 5 spin-orbit splitting for the 1h11/2 orbit. On the other hand, an
appreciable amount of energy gap may appear at N = 16 and 40 for spherical shape, while neutron-drip-line
nuclei in the region of neutron numbers above N = 20, 40, and 82, namely, N ≈ 21–28, N ≈ 41–54, and
N ≈ 83–90, may be quadrupole deformed, although the possible deformation also depends on the proton number
of the respective nuclei.

DOI: 10.1103/PhysRevC.85.064329 PACS number(s): 21.60.Ev, 21.10.Pc, 21.90.+f

I. INTRODUCTION

Thanks to the development of various facilities of radioac-
tive nuclear ion beams, the knowledge of nuclei far away from
the stability line has recently been much increased. Though
the neutron drip line has so far been experimentally pinned
down up to the oxygen isotope (proton number Z = 8), at
the moment the experimental knowledge of nuclei with Z > 8
close to the neutron drip line is quickly increasing.

The study of unstable nuclei, especially neutron-drip-line
nuclei which contain very weakly bound neutrons, has opened
a new field in the study of the structure of finite quantum-
mechanical systems. The study is important not only because
of the interests in nuclear astrophysics, namely, understanding
the production of energy and the synthesis of elements in
stars and during stellar events, but also because it provides
the opportunity to learn the properties of a fermion system
with very loosely bound particles, some density of which
can extend to the region far outside the region of the main
density of the system. Various exciting studies of manmade
finite quantum-mechanical systems, such as clusters of atoms
and quantum dots, have recently been made possible, however,
these systems have so far been limited to be well bound so that
the related potentials are in a good approximation simulated
by a harmonic oscillator. Because the nucleon separation
energy in stable nuclei is 7–10 MeV, the spectroscopic
analysis around the ground state of stable nuclei has been
successfully carried out also in terms of harmonic-oscillator
wave functions. Correspondingly, most systematic nuclear
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shell-model calculations have so far been carried out using
harmonic-oscillator wave functions.

The study of one-particle motion in deformed potentials is
the basis for understanding the structure of deformed nuclei.
Because the Fermi level of drip-line nuclei lies close to
the continuum, both weakly bound and positive-energy one-
particle levels play a crucial role in the many-body correlations
of those nuclei. Among an infinite number of one-particle
levels at a given positive energy, only some selected levels
related to one-particle resonant levels will be important for the
understanding of the properties of bound states of drip-line
nuclei.

The behavior of s neutrons is an extreme example because
the barrier coming from either centrifugal or Coulomb po-
tentials is absent. Therefore, for example, as the separation
energy approaches 0, the probability of s neutrons staying
inside the nuclei approaches 0. When a larger part of a bound
one-particle wave function lies outside the nuclear potential,
the one-particle eigenenergy becomes less sensitive to the
potential provided by the well-bound nucleons in the system.
In contrast, the wave functions of weakly bound but large-�
neutrons stay mostly inside the nuclear potential, owing to
the high barrier coming from the centrifugal potential, of
which the height is proportional to �(� + 1). Consequently,
when the potential changes (or the neutron number for a given
proton number approaches the neutron drip line) so that the
one-particle energies of the last bound neutrons approach 0, the
binding energy of larger-� neutrons, which is more sensitive
to the strength of the potential, decreases much more rapidly
than that of smaller-� neutrons. The height of the centrifugal
potential also greatly affects the properties of one-particle
resonant levels. Thus, the same behavior of � dependence as
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that of weakly bound neutron energies is also obtained for
lower-lying neutron one-particle resonant energies, as shown
in Refs. [1–3]. This �-dependent behavior of one-particle
energies on the potential strength leads to a systematic change
in the shell structure in both weakly bound and resonant
neutron one-particle energies compared with the shell structure
of strongly bound neutrons [4].

Using the numerical result of self-consistent mean-field
calculations with effective interactions used in stable nuclei
while limiting the spherical system to a large box, one-particle
spectra of bound nucleons in spherical drip-line nuclei were
studied in Ref. [5]. And some systematic change in shell
structure in bound neutron energies of spherical neutron
drip-line nuclei was obtained, which is similar to that in the
present work found at β = 0 except for the conclusion in
Ref. [5] that the presence of magic gaps at neutron numbers
N = 28, 50, and 82 does not appreciably change as one
approaches the neutron drip line.

Taking the (N = 2) sd shells and (N = 3) pf shells,
where N expresses the harmonic-oscillator principle quantum
number, the systematic change in shell structure owing to the
unique behavior of one-particle energies of weakly bound
or resonant levels with small � is briefly explained in the
following. In stable sd-shell nuclei, it is well known that
the relation of one-particle energies is such that ε(1d5/2) <

ε(2s1/2) < ε(1d3/2), which agrees with experimental infor-
mation. However, in lighter neutron-rich nuclei, in which
the 2s1/2 level becomes very weakly bound, the relation
ε(2s1/2) ≈ ε(1d5/2) < ε(1d3/2) is expected, which leads to the
new magic number N = 16 [6]. In fact, the appearance of the
N = 16 neutron magic number for unstable nuclei together
with the weakening of the shell closure at N = 20 and 28 was
mentioned in 1975 [7] based on the self-consistent calculations
using the energy density formalism with pairing interaction.
On the other hand, in heavier nuclei where neutrons in the
sd-shell are strongly bound, the relation ε(1d5/2) < ε(1d3/2) <

ε(2s1/2) is obtained from both Hartree-Fock (HF) calculations
and eigenvalues of Woods-Saxon potentials with a practical
strength of spin-orbit potential. Similarly, if we take an
example of the pf shell, the relation ε(1f7/2) < ε(1f5/2) <

ε(2p3/2) < ε(2p1/2) is obtained in the case of strongly bound
pf neutrons. For stable pf -shell nuclei, the relation ε(1f7/2) <

ε(2p3/2) < ε(1f5/2) ≈ ε(2p1/2) is known. However, when
one-particle levels of 1f7/2 and 2p3/2 become very weakly
bound or resonant, the relation ε(1f7/2) ≈ ε(2p3/2) appears.
The relation leads to the disappearance of the magic number
N = 28 [4], and moreover, nuclei with some neutrons in the
almost-degenerate f7/2 and p3/2 shells, which couple strongly
to each other by quadrupole-quadrupole interaction, may be
easily quadrupole deformed. The degeneracy can well be
responsible for the presence of the island of inversion. It is
known that the presence of only like nucleons in a large single
j shell can hardly lead to quadrupole deformation. On the
other hand, the presence of like nucleons in several nearly
degenerate j shells, which couple strongly to each other by
quadrupole-quadrupole interaction, may lead to quadrupole
deformation.

In axially symmetric quadrupole-deformed nuclei the role
of smaller-� neutrons in a spherical shape is replaced by

neutrons with smaller � values, where � denotes the angular
momentum component of neutrons along the axially symmetry
axis. For example, the smallest possible angular momentum
component of �π = 1/2+ orbits is s1/2, which always be-
comes the overwhelming component of angular momentum in
neutron one-particle wave functions with �π = 1/2+ as the
binding energy of the neutron approaches 0 [1,8]. In the case
where the smallest orbital angular momentum is not equal to
0, it depends on the properties of the respective orbits how the
component of the smallest orbital angular momentum becomes
dominant in one-particle wave functions when the binding
energy approaches 0 [1]. Because all spherical one-particle
orbits with positive parity (s1/2, d3/2, d5/2, . . .) have an �π =
1/2+ component, the shell structure change for a deformed
shape close to the continuum owing to the unique property of
an s1/2 orbit is expected to occur more often compared with
the case of a spherical shape. The most convenient way to see
the shell structure of deformed nuclei is to plot one-particle
energies as a function of quadrupole deformation (Nilsson
diagram) [9]. Therefore, in this article Nilsson diagrams that
are relevant to some possible neutron-drip-line nuclei related
to neutron magic numbers in stable nuclei are presented. The
change in nuclear shell structure for neutrons is seen in both
bound and resonant one-particle energies in Nilsson diagrams.

In Sec. II the main points of our model are briefly
summarized, while numerical results are presented in Sec. III.
Conclusions and discussions are given in Sec. IV.

II. MODEL

In order to solve the eigenvalue [1] and eigenphase [2,3]
problems for neutron one-particle bound and resonant levels,
respectively, as a function of axially symmetric quadrupole
deformation, the coupled differential equations obtained from
the Schrödinger equation are integrated in coordinate space
with correct asymptotic behavior at r = Rmax, where Rmax is
so large that both the nuclear potential and the coupling term
are negligible. In this way one-particle resonant energy in
deformed nuclei can also be estimated without any ambiguity.
For β �= 0 the resonant energy is defined as the energy at which
one of the eigenphases increases through π/2 as the energy
increases [2,3,10]. One-particle resonance is absent if none of
the eigenphases increases through π/2 as the energy increases.
For example, a neutron one-particle resonant state with �π =
1/2+ is not obtained as long as the major component of the one-
particle wave function comes from � = 0, because an �π =
1/2+ level with an appreciable amount of the � = 0 component
can very quickly decay via the � = 0 channel. Because the
height of the centrifugal barrier decreases for a larger nuclear
radius, the unique behavior of � = 1 components contained in
the �π = 1/2− and 3/2− orbits will be more easily seen in
heavier nuclei.

On the other hand, because the height of the centrifugal
barrier is proportional to �(� + 1), at a given positive energy
for a given potential the width of a one-particle resonant level
is larger for a level with a smaller orbital angular momentum.
As the energy increases, the width of a given resonant level
becomes larger, and finally, at a certain energy the one-particle
level with a given � is no longer obtained as a resonant level.
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For simplicity, the calculated widths of one-particle resonant
levels are not given in the present article, as the widths are not
of major interest in this work.

Though weakly bound neutrons in nuclei close to the
neutron drip line make a contribution especially to the tail
of the self-consistent nuclear potentials, the major part of
the nuclear potential is provided by well-bound nucleons,
especially by strongly bound protons in the case of neutron-
rich nuclei. Therefore, for simplicity, in this article the
parameters of Woods-Saxon potentials are taken from the
standard ones (see p. 239 of Ref. [11]). Namely, the diffuseness
a = 0.67 fm, the radius r0A

1/3 where r0 = 1.27 fm, the depth
of the Woods-Saxon potential for neutrons is

V = −51 + 33
N − Z

A
(MeV), (1)

and the spin-orbit potential is expressed by

V�s = −0.44V (�� · �s)r2
0

1

r

d

dr
f (r) (MeV), (2)

where

f (r) = 1

1 + exp( r−R
a

)
. (3)

It is noted that the neutron potential for nuclei with a neutron
excess is shallower than that for N = Z nuclei. In fact, the
nuclear potential with the above set of parameters is found to
approximately reproduce the position of the neutron drip line,
which is expected from presently available experimental data.

In the discussion of the possible deformation of given nuclei
examining the Nilsson diagram, we use the following empirical
facts: (a) if pair correlation plays a minor role, the presence of
neutrons in almost-degenerate �j shells around the Fermi level
may make the system deformed, as those neutrons have the
possibility of gaining energy by breaking spherical symmetry
(Jahn-Teller effect); (b) in order to obtain a deviation from a
spherical shape, the energies of one-particle levels just below
and on the Fermi level in the Nilsson diagram need to be mostly
decreasing (downward-going) for β = 0 → β �= 0 so that the
system gains the energy by deformation [9]; (c) the presence
of only like nucleons in a large single j shell may not be
sufficient to deform the system, although the presence of both
neutrons and protons in a given single j shell may induce some
quadrupole deformation (examples are the absence of observed
deformed nuclei in both the 38Sr and the 40Zr isotopes, owing
to the occupation of the 1g9/2 shell by neutrons [12], and in
the 18Ar and 20Ca isotopes, owing to the occupation of the
1f7/2 shell by neutrons); and (d) only prolate deformation is
discussed, as it is empirically known that prolate deformation is
overwhelmingly dominant among deformed nuclei, although
the absolute dominance is not yet fully understood [13].

III. NUMERICAL RESULTS

Though the near-degeneracy of both the 1d5/2 − 2s1/2 levels
in the N = 2 oscillator shell and that of the 1f7/2 − 2p3/2

levels in the N = 3 shell of the spherical potential in neutron-
drip-line nuclei as well as the resulting possible deformation
are partially discussed in Ref. [4], in the following we include

a brief description of these cases for completeness. The two
remaining n�j levels, 1f5/2 and 2p1/2, in the N = 3 oscillator
major shell other than the 1f7/2 and 2p3/2 levels, in which spin
and orbital angular momenta are antiparallel, may also become
almost degenerate around the Fermi level of certain nuclei.
Nevertheless, the degeneracy may not lead to a deformation,
because these levels lie in the second half of the N = 3 major
shell, and thus, the general behavior of the deformed one-
particle energies originating from these levels in the spherical
limit is energetically upward-going for β = 0 → β �= 0. The
relation between deformation of the system and upward-going
(or downward-going) energy levels in the Nilsson diagram is
known already from the study of stable rare-earth nuclei [9].
Namely, energetically downward-going one-particle levels for
β = 0 → β > 0 (prolate shape) around N � 88–90, which
lead to stable deformed rare-earth nuclei, end at N ≈ 110,
around which the observed deformation of stable rare-earth
nuclei also ends. (See, e.g., Fig. 5-3 in Ref. [9].) As shown
in the following, the shell structure unique in neutron weakly
bound and resonant levels leads to the bunching of one-particle
levels in a given N major shell for a spherical shape: levels with
parallel spin and orbital angular momenta gather together in
the lower half of the major shell, while levels with antiparallel
spin and orbital angular momenta gather in the upper half-shell.
Levels within the respective groups couple with each other
strongly by spin-independent quadrupole-quadrupole interac-
tion. However, we note that there is a difference between the
two groups concerning the possible deformation. Namely, hav-
ing neutrons in the nearly degenerate levels with parallel spin
and orbital angular momenta may make the system deformed,
because one-particle energies in the lower half of a given N ma-
jor shell are, in general, decreasing for β = 0 → β �= 0, as can
be seen from the Nilsson diagram. Because the levels belong-
ing to each group have different orbital angular momenta, the
occurrence of near-degeneracy depends on the actual strength
of spin-orbit splitting and the values of relevant orbital angular
momenta. As shown in the 1h11/2 orbit in Fig. 4, the highest j
level with parallel spin and orbital angular momenta tends to
go out of the group of degenerate levels in heavier nuclei.

A. Near-degeneracy of 1d5/2 and 2s1/2 levels

In Fig. 1 we show the Nilsson diagram for neutrons, in
which parameters of the Woods-Saxon potential are chosen for
the nucleus 18

6 C12. It is noted that the observed ground-state
spins of nuclei 15

6 C9, 17
6 C11, and 19

6 C13 are 1/2+, 3/2+, and
1/2+, respectively, and are most easily understood in terms of
prolate deformation for β > 0.1, where the last odd neutron
occupies the �π = 1/2+, 3/2+, and 1/2+ levels, which cor-
respond to the 9th, 11th, and 13th neutron one-particle levels,
respectively, assuming that the respective even-even core
nucleons occupy pairwise the lower-lying Nilsson one-particle
levels and couple to Iπ = Kπ = 0+. For some experimental
evidence of the deformation of these C isotopes, see Refs. [14]
and [15]. At β = 0 the calculated energy difference between
the 2s1/2 and the 1d5/2 levels in Fig. 1 is only 509 keV. In
contrast, a large energy gap for a spherical shape (β = 0)
appears at N = 16, as the calculated 1d3/2 resonant energy is
4.36 MeV.
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Neutron one-particle levels of 18C in W-S potential
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FIG. 1. Calculated neutron one-particle energies as a function of quadrupole deformation. Parameters of the Woods-Saxon potential are
chosen for the nucleus 18

6 C12. Bound one-particle energies at β = 0 are −1.17 and −0.66 MeV for the 1d5/2 and 2s1/2 levels, respectively,
while the one-particle resonant 1d3/2 level is obtained at + 4.36 MeV, denoted by the filled circle. One-particle resonant levels for β �= 0 are
not plotted unless they are important in the present discussion. For simplicity, calculated widths of one-particle resonant levels are not shown.
The neutron numbers, 8, 10, and 12, which are obtained by filling all lower-lying levels, are indicated by open circles. One-particle levels with
� = 1/2, 3/2, and 5/2 are expressed by solid, dotted, and long-dashed curves, respectively, for both positive and negative parities. The parity
of levels can be seen from the � values denoted at β = 0, π = (−1)�.

B. Near-degeneracy of 1 f7/2 and 2 p3/2 levels

In Fig. 2 the Nilsson diagram for neutrons is shown, in
which parameters of the Woods-Saxon potential are chosen for
the nucleus 34

12Mg22. At β = 0 the calculated energy difference
between the very weakly bound 1f7/2 level and the very
low-lying one-particle resonant 2p3/2 level is only 387 keV,
which clearly indicates that the N = 28 energy gap at β = 0
disappears in neutron-drip-line nuclei. This near-degeneracy
of the two levels, which couple strongly to each other by spin-
independent quadrupole-quadrupole interaction, may lead to
the deformation of a system with N ≈ 21–28, as a result of
the Jahn-Teller effect. In particular, odd-A nuclei with N = 21
such as 33

12Mg21 [16,17] and 31
10Ne21 [18] are observed to be

deformed, which is consistent with the strongly down-sloping
Nilsson one-particle levels with �π = 1/2− and 3/2− for β >

0, which originate from the 1f7/2 shell in the spherical limit
(β = 0). Neutron-drip-line nuclei with N = 21–28 can well
be deformed, although the possible deformation also depends
on the proton number of the respective nuclei. Examining
the Nilsson diagram for protons, it is seen that the proton
numbers Z = 9 (F), Z = 10 (Ne), Z = 11 (Na), and Z = 12
(Mg) may prefer some deformation, as the energies of the
two lowest-lying Nilsson one-proton levels in the sd shell
decrease sharply as β = 0 → β �= 0. The recent experimental

information on the Mg isotope with N = 21–26 [19] seems
to go well with this interpretation using the Nilsson diagram.
Indeed, this near-degeneracy of the 1f7/2 and 2p3/2 levels can
be an important element for creating the island of inversion.
In other words, heavier nuclei in the island of inversion could
survive inside the neutron drip line thanks to the deformation.

In Fig. 2 it is also shown that at β = 0 the well-bound 2s1/2

level lies approximately in the middle of the 2d5/2 and 2d3/2

levels, in contrast to the sd-shell level scheme shown in Fig. 1.

C. Near-degeneracy of 1g9/2, 3s1/2, and 2d5/2 levels

Figure 3 shows the Nilsson diagram for neutrons in which
the parameters of the Woods-Saxon potential are chosen for
the nucleus 66

22Ti44. A considerable amount of energy gap
appears at N = 40 for a spherical shape, while the possible
location of the 3s1/2 level slightly above 0 (indicated by the
open circle in Fig. 3) is obtained from the extrapolation of the
bound one-particle energy level with �π = 1/2+ for β > 0.12
denoted by the solid curve in Fig. 3, which reaches 0 at
β = 0.12, as the continuation of the one-particle resonant
level to the region of β < 0.12 cannot be obtained owing
to the predominant � = 0 component of the orbit. Thus, the
calculated 1g9/2, 3s1/2, and 2d5/2 levels, which are the three
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Neutron one-particle levels of 34Mg in W-S potential
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FIG. 2. Calculated neutron one-particle energies as a function of quadrupole deformation. Parameters of the Woods-Saxon potential are
chosen for the nucleus 34

12Mg22. Bound one-particle energies at β = 0 are −9.80, −6.84, −4.75, and −0.24 MeV for the 1d5/2, 2s1/2, 1d3/2, and
1f7/2 levels, respectively, while one-particle resonant 2p3/2 and 1f5/2 levels are obtained at + 0.15 and + 6.18 MeV, respectively. The 2p1/2

one-particle resonant level is not obtained for the present potential, however, its approximate position at β = 0 is denoted by an open circle, at
which an eigenphase does not reach, but comes close to, π/2. One-particle resonant levels for β �= 0 are not plotted unless they are important in
relation to the present interests. The neutron numbers, 20, 22, and 24, which are obtained by filling all lower-lying levels, are indicated by open
circles. One-particle levels with � = 1/2, 3/2, 5/2, and 7/2 are expressed by solid, dotted, long-dashed, and dot-dashed curves, respectively,
for both positive and negative parities.

n�j levels belonging to the N = 4 oscillator shell with parallel
spin and orbital angular momenta and couple strongly to each
other by spin-independent quadrupole-quadrupole interaction,
lie within 1.43 MeV. This means that the energy gap at the
magic number N = 50 clearly disappears.

The strong quadrupole coupling of these three levels can
be seen in the Nilsson diagram in Fig. 3. For example, the
lowest-lying one-particle level with �π = 1/2+ for β > 0,
which is connected to the 1g9/2 shell at β = 0, contains a
considerable amount of 3s1/2 and 2d5/2 components already at
moderate values of β. This can be seen from the comparison
of the slopes of the �π = 1/2+ curve for β > 0 versus the
�π = 9/2+ curve for β < 0, both of which originate from the
1g9/2 level at β = 0. The wave function of the �π = 9/2+ orbit
is almost pure 1g9/2 in the present range of β values, as there
is no �π = 9/2+ one-particle orbit in the neighborhood. If
both orbits, �π = 1/2+ for β > 0 and �π = 9/2+ for β < 0,
consist only of a single j shell, namely, g9/2, then the absolute
magnitude of the slope, | dε�

dβ
|, of the �π = 9/2+ level is a

factor of 2 larger than that of the �π = 1/2+ level. On the
other hand, for a pure harmonic-oscillator potential (namely,
the strong mixing limit), the former is half (=0.5) of the latter.
In Fig. 3 the ratio of the former to the latter is about 2, of
course, for |β| � 1, while the absolute magnitude of the slope

of the �π = 1/2+ energy level becomes larger than that of the
�π = 9/2+ energy level already at |β| < 0.3.

The near-degeneracy of these three levels, 1g9/2, 3s1/2,
and 2d5/2, corresponds to that of the 1f7/2 and 2p3/2 levels
discussed in the previous subsection, which leads to the island
of inversion. First, neutron-drip-line nuclei with N = 41 are
likely to be deformed, though the possible deformation also
depends on the proton number of the respective nuclei. The
ground-state spin of neutron-drip-line nuclei with N = 41 can
be either 1/2+ or 5/2+ or 1/2− or 3/2−, depending on the
β values if they are prolately deformed, instead of the 9/2+

expected for a spherical shape. Second, a system having several
neutrons in these (1g9/2-3s1/2-2d5/2) almost-degenerate shells
such as N ≈ 41–54 is likely to be deformed in a similar way to
the island of inversion when pairing interaction plays a minor
role. See the fourth paragraph in Sec. IV for a discussion of
the role of pairing interaction in the determination of the shape
of neutron-drip-line nuclei.

Near-degeneracy of the 1g9/2 level with the other two levels
has occurred for the phenomenological strength of the spin-
orbit splitting, which is still not as strong for the 1g9/2 orbit.
As shown in Sec. III D, in the N = 5 oscillator major shell the
spin-orbit splitting of the 1h11/2 level is so strong that a similar
degeneracy of all levels with parallel spin and orbital angular
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FIG. 3. Calculated neutron one-particle energies as a function of quadrupole deformation. Parameters of the Woods-Saxon potential are
chosen for the nucleus 66

22Ti44. Bound one-particle energies at β = 0 are −8.82, −5.54, −3.99, −3.94, and −0.48 MeV for the 1f7/2, 2p3/2,
2p1/2, 1f5/2, and 1g9/2 levels, respectively, while one-particle resonant 2d5/2, 1g7/2, and 1h11/2 levels are obtained at + 0.96, + 5.66, and
+ 7.57 MeV, respectively. The 2d3/2 one-particle resonant level is not obtained for the present potential, however, its approximate position at
β = 0 is denoted by an open circle, at which an eigenphase does not reach, but comes close to, π/2. The 3s1/2 resonant level does not exist in
any case, but the open circle at β = 0 indicates the energy obtained by extrapolating the solid curve of the bound �π = 1/2+ orbit for β > 0.12
to β = 0, although the calculated solid curve reaches 0 at β = 0.12 and cannot continue to β < 0.12. The major component of the solid curve
for ε�(<0) → 0 is clearly 3s1/2. One-particle resonant levels for β �= 0 are not plotted if they are not relevant for the present discussion. The
neutron numbers, 28, 40, 42, 44, and 48, which are obtained by filling all lower-lying levels, are indicated by open circles. One-particle levels
with � = 1/2, 3/2, 5/2, 7/2, and 9/2 are expressed by solid, dotted, long-dashed, dot-dashed, and short-dashed curves, respectively, for both
positive and negative parities.

momenta belonging to the N = 5 major shell can hardly
occur.

The remaining two levels in the N = 4 oscillator major
shell, 1g7/2 and 2d3/2, may be almost degenerate around the
Fermi level of certain neutron-drip-line nuclei. However, it
may be difficult to gain energies by deforming those nuclei
which have neutrons in those two levels, as one-particle
energies originating from the 1g7/2 and 2d3/2 levels are located
in the second half of the N = 4 major shell and thus the
energies of the majority of one-particle levels increase for
β = 0 → β �= 0.

D. Near-degeneracy of 1h11/2, 2 f7/2, and 3 p3/2 levels?

In Fig. 4 the Nilsson diagram for neutrons is shown, in
which parameters of the Woods-Saxon potential are chosen
for the nucleus 126

44 Ru82. A considerable amount of the energy
gap remains at N = 82 for a spherical shape owing to the
large spin-orbit splitting of the � = 5 level, 1h11/2, while the
very weakly bound 2f7/2 and 3p3/2 levels are very close-lying.

The calculated energy distance between the two levels is only
419 keV.

The set of three levels, 1h11/2, 2f7/2, and 3p3/2, which
strongly couple to each other by spin-independent quadrupole-
quadrupole interaction, is the set of the N = 5 oscillator major
shell analogous to the set of three levels, 1g9/2, 2d5/2, and
3s1/2, of the N = 4 major shell discussed in Sec. III C. In the
latter case a deformation may be energetically preferred for a
system where some neutrons occupy the set of levels owing to
the Jahn-Teller effect, while in the present case a deformation
may not be preferred, as the one-particle levels for a moderate
size of prolate shape in Fig. 4 originating from 1h11/2 seem
mostly to maintain the feature of the single j shell. On the other
hand, the occupation of the almost-degenerate shells, 2f7/2

and 3p3/2, by some neutrons may lead to a deformed system
for N = 83–90 when the proton part of the respective nuclei
is energetically easily deformable and the pairing interaction
plays a minor role. For example, the nucleus 127

44 Ru83 may be
deformed in a similar way to the nucleus 33

12Mg21 in the island
of inversion (see Fig. 2.). If it is deformed, the ground-state
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FIG. 4. Calculated neutron one-particle energies as a function of quadrupole deformation. Parameters of the Woods-Saxon potential are
chosen for the nucleus 126

44 Ru82. Bound one-particle energies at β = 0 are −7.28, −6.90, −5.70, −5.29, −4.05 −0.48, and −0.06 MeV for
the 2d5/2, 1g7/2, 3s1/2, 2d3/2, 1h11/2, 2f7/2, and 3p3/2 levels, respectively, while one-particle resonant 2f5/2, 1h9/2, 1i13/2, and 2g9/2 levels
are obtained at + 1.71, + 1.91, + 3.38, and + 6.07 MeV, respectively. The 3p1/2 one-particle resonant level is not obtained for the present
potential, but the open circle at β = 0 indicates the energy obtained by calculating the spin-orbit splitting of the � = 1 levels from that of the
� = 3 (2f5/2 and 2f7/2) levels and using the calculated energy of the 3p3/2 level. One-particle resonant levels for β �= 0 are not plotted if they
are not relevant for the present discussion. The neutron numbers 82 and 86, which are obtained by filling all lower-lying levels, are indicated
by open circles. One-particle levels with � = 1/2, 3/2, 5/2, 7/2, 9/2, and 11/2 are expressed by solid, dotted, long-dashed, dot-dashed,
short-dashed, and dot-dot-dashed curves, respectively, for both positive and negative parities.

spin of the N = 83 nucleus is likely to be 1/2− or 3/2− or
3/2+, depending on the β values, instead of the 7/2− expected
for a spherical shape.

In contrast to the three levels with parallel spin and orbital
angular momenta belonging to the N = 5 oscillator major
shell, filling the three levels, 1h9/2, 2f5/2, and 3p1/2, with
some neutrons which belong to the same major shell with
antiparallel spin and orbital angular-momenta may not lead to
deformation, in spite of the fact that these three levels may
become almost degenerate around the Fermi level of certain
nuclei as suggested by Fig. 4.

IV. DISCUSSION and CONCLUSIONS

A systematic study of the shell structure and the resulting
possible deformation around neutron-drip-line nuclei has been
carried out based on both bound and resonant neutron one-
particle energies obtained from phenomenological Woods-
Saxon potentials. In order to solve the eigenvalue and eigen-
phase problems for neutron one-particle bound and resonant
levels, respectively, for a given deformed potential, the coupled
differential equations obtained from the Schrödinger equation

are integrated in coordinate space with correct asymptotic
behavior. The coupling of a bound (or resonant) one-particle
level with other levels, which are not obtained as resonant
one-particle levels, is also properly taken into account in the
method of the present work.

For a spherical shape with the operator of the spin-orbit
potential conventionally used, weakly bound and/or low-lying
resonant one-particle levels with parallel spin and orbital
angular momenta tend to gather together in the energetically
lower half of the oscillator major shell, while those levels with
antiparallel spin and orbital angular momenta gather in the
upper half. This grouping of energy levels in the spherical
potential may lead to a possible deformation when neutrons
start to occupy the lower half of the major shell. In contrast,
the occupation of the upper half-shell by neutrons may not
lead to a deformation.

A concrete result derived in the present study is that the
magic number N = 28 disappears and N = 50 may disappear,
while the magic number N = 82 may presumably survive. For
a spherical shape an appreciable amount of energy gap appears
at N = 16 and 40. Neutron-drip-line nuclei in the region of
neutron number above N = 20, 40, and 82, namely, N ≈
21–28 (island of inversion), N ≈ 41–54, and N ≈ 83–90,
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respectively, may be quadrupole deformed, though the
possible deformation depends on the proton number of the
respective nuclei.

In actual nuclei it is possible that pair correlations may play
an important role in the determination of the nuclear shape.
It is generally understood that the pairing interaction tries to
keep nuclei spherical, while the long-range part of two-body
interactions such as quadrupole-quadrupole interactions is
responsible for deformation. In stable nuclei deformed ground
states are usually observed first after several nucleons have
filled one-particle levels above the respective magic numbers.
It is qualitatively understood that the presence of several
nucleons makes the deformation induced by the long-range
part of the interaction win against the spherical shape preferred
by the pairing interaction. However, it is noted that the first
two low-lying �j shells above the magic numbers of stable
nuclei do not couple strongly to each other by the quadrupole-
quadrupole interaction because there is a spin-flip between
the two �j shells, for example, the 2p3/2-1f5/2 shells just
above N = 28, the 2d5/2-1g7/2 shells above N = 50, and the
2f7/2-1h9/2 shells above N = 82. Therefore, the deformation-
driving effect in stable nuclei caused by the presence of several
nucleons above the magic numbers may be weaker than in
the case of neutron-drip-line nuclei. In the latter case the
deformation-driving force obtained by filling neutrons in the
almost-degenerate �j shells that couple strongly to each other
by quadrupole-quadrupole interaction may more easily win
against the spherical shape preferred by the pairing interaction.
On the other hand, the effect of the pairing interaction, which
tries to keep nuclei spherical, can also be different in stable
and neutron-drip-line nuclei, but the difference does not yet
seem to be fully pinned down.

In order to pin down a deformed shape of nuclei, mea-
surement of both the energy of the lowest 2+ state and the
B(E2; 2+

1 → 0+) values in even-even nuclei is important, but
observation of the spin parity of the ground state of odd-A
nuclei is often decisive. For example, noting that the proton
numbers Z = 21(Sc), Z = 22 (Ti), Z = 23 (V), and Z = 24
(Cr) may help to have some deformation as shown by the fact

that the energies of the two lowest-lying Nilsson one-proton
levels in the pf shell decrease strongly as β = 0 → β > 0, the
study of odd-N neutron-drip-line nuclei with N = 41 such as
63
22Ti41 is highly desirable. In fact, the spin parity 1/2− is already
preliminarily assigned to the ground state of 65

24Cr41 [20]. On the
other hand, the experimental study of neutron-drip-line nuclei
with N = 83 may not be possible in the very near-future.

The possibility of deformation and the shell structure
unique to neutron-drip-line nuclei, which are discussed in
this article, should be duly studied by properly carrying out
self-consistent HF calculations with appropriate effective in-
teractions including pairing interaction. However, the effective
interactions to be used in HF calculations of neutron-drip-line
nuclei are not yet properly fixed. Moreover, such HF calcula-
tions have to be done by integrating the coupled differential
equations in coordinate space with proper asymptotic behavior
of wave functions for r = Rmax, at which both nuclear potential
and the coupling term are negligible, instead of using the
expansion of wave functions in terms of harmonic-oscillator
bases or confining the system to a finite box. This kind of
proper HF calculation is not yet available for neutron-drip-line
nuclei. It remains to be seen whether or not neutron-drip-line
nuclei with certain neutron numbers are actually deformed as
suggested in the present work.

It is noted that the neutron one-particle states obtained from
Nilsson diagrams for β �= 0 are those to be recognized as
band-head configurations of odd-N nuclei. Thus, rotational
states, which are constructed based on these band-head states,
should, in principle, be observed using a proper experimental
method, and these high-spin states will have narrow widths if
they appear in the low-energy region.

The systematic change of the shell structure in the spherical
potential discussed in the present paper is strictly related to
the characteristic features of both the weakly bound and the
low-lying resonant one-particle orbits with small � values.
The change in the shell structure and the resulting one-particle
energies in neutron-drip-line nuclei must be taken into account
in shell-model calculations when the shell model is applied to
neutron-drip-line nuclei.
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