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Abstract: Second harmonic generation is analyzed from a microscopical
point of view using a non-equilibrium Green’s function formalism. Through
this approach the complete on-state of the laser can be modeled and results
are compared to experiment with good agreement. In addition, higher
order current response is extracted from the calculations and together
with waveguide properties, these currents provide the intensity of the
second harmonic in the structure considered. This power is compared to
experimental results, also with good agreement. Furthermore, our results,
which contain all coherences in the system, allow to check the validity of
common simplified expressions.
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Fig. 1. One period of the structure from [15] with the two-well active region in the middle.
Carriers are injected into the upper laser state B ensuring inversion between B and A,
whereas levels A,C and B,D produce SH generation. The states and meanfield potential
bending the conduction band structure are calculated at a bias drop of 190 mV per period.
The period length d is 49.5 nm.

1. Introduction

The Quantum Cascade Laser [1] (QCL) consisting of hundreds of coupled quantum wells is
well known to exhibit strong optical nonlinearities [2, 3] in particular in the infrared [4]. These
nonlinearities have attracted much attention as they have proved a useful tool to achieve room-
temperature terahertz sources through difference-frequency generation [5] and they can also be
used the opposite way, extending the spectral range of the QCLs to lower wavelengths through
Second Harmonic (SH) generation [6, 7].

Already today the QCL is widely used in many applications in both the mid-infrared [8] and
the terahertz [9] spanning a wide range of frequencies [10]. However the fundamental frequency
of a QCL is intrinsically limited by the conduction band offset as well as the energy level of
the L-valley which effectively decreases laser performance when it is below the energy of the
upper laser state [11]. The use of SH generation provides a way to circumvent these limitations.
Among the reasons to extend the operation of QCLs beyond 3.5 µm [12] is the possibility to
access strong spectral lines of important trace gases and also to use the quick modulation speed
of QCLs compared to diode lasers [13, 14]. The latter could prove useful, if the wavelength
could be compressed even further down towards the telecom region [11].

In structure D2912 considered by [15] a nonlinear resonator with high second order suscepti-
bility is placed in the two central wells of the active region of the laser itself. The idea manifests
itself in the ladder structure seen in Fig. 1. This allows for gain at the fundamental frequency
and thus prevents saturation of the pump. The fact that the pump and the nonlinear resonator
are integrated in the same heterostructure [6], provides us with the possibility to model the gen-
eration of second harmonics with our non-equilibrium Green’s function model for QCLs [16].
The same structure has recently been the subject of an optimization study centered at increas-
ing the nonlinear conversion efficiency by Gajić et al. [17], as well as earlier by Bai et al. [18]
where optimization was pursued by the use of supersymmetric mechanics and digitally graded
heterostructures. The results in this work will be compared and evaluated partly in reference to
these efforts.



2. The model

Simulations of quantum lasers are done on many different levels of complexity. Typically rate-
equation based calculations [19, 20] are used as a starting point, where the simple treatment
allows for a straightforward inclusion of additional effects as for example photon densities for
dynamical simulations [21,22]. More advanced are density matrix methods were the coherences
between different states are taken into account [23–26]. Monte-Carlo simulations are also used
with the strong benefit that electron-electron scattering can be included at an early stage of
implementation [27–29]. Finally, a full quantum treatment requires a solution of the two-time
non-equilibrium Green’s function (NEGF) [30–33], as is done in this work.

The two times of the Green’s function contains the memory effects of the system. As an
example, this gives rise to broadening of the levels due to their limited lifetimes. More impor-
tantly, it allows for a consistent treatment of the coherences in the system, as they also will be
resolved in energy. This is problematic in for example density matrix approaches, where the
energy of a coherence between two levels can not be clearly defined. The NEGF formalism
solves this and thus extends further and beyond the semiconductor Bloch equations [35].

In our simulations we use a classical electromagnetic field. The field strength enters the
model as F(t) = Fac cos(ωt) where ω is the driving field frequency and Fac is the field ampli-
tude. In the following we express the ac field strength as eFacd in units of eV, where d is the
period length. High intensities inside the QCL require a model going beyond linear response
to the external electromagnetic field. This is done in our simulations by decomposing the time
dependence of observables of the system in a Fourier series of the fundamental frequency ω

and its higher harmonics. This procedure follows the concepts outlined in [34].
The scattering via impurities, interface roughness, alloy disorder as well as acoustic and

optical phonons is contained in self-energies determined self-consistently. The phonons are as-
sumed to follow a thermalized Boltzmann distribution, and this is the only place where the tem-
perature enters the calculation. We use a lattice temperature of 100 K which is typically slightly
higher than the heatsink temperature defined in experimental work [15]. Throughout these cal-
culations the interface roughness was modeled by a exponential correlation function [16] with
average island size and height of 10 nm and 0.1 nm respectively. The self-energies used are
described in detail in [16] where we also show how solving for the Green’s functions and pro-
jecting them down on to an ordinary density matrix gives access to observables such as the
current density and occupations in different states.

Due to the time periodicity enforced on the system, the current response can be written as a
Fourier series

J(t) = J0 +
nmax

∑
n=1

(
Jcos

n cos(nωt)+ Jsin
n sin(nωt)

)
(1)

where J0 is the stationary response and the Jn-terms are induced by the oscillating field. The
dynamical response given by Jcos

1 can be directly related to the gain coefficient after division
by Fac. In the same manner the J2-terms can be seen as generators of second harmonics inside
the waveguide of the structure considered.

For numerical reasons the value of nmax should be kept as low as possible as computational
time increases by the square of the system size, which is linear in nmax. In practice this amounts
to converging the calculations of the desired parameters with respect to nmax for a given ac field
strength. Naturally convergence is more easily reached for observables involving terms related
to n = 1 than those relying on terms with n = 2.



 0

 50

 100

 150

 200

 250

 300

 0  2  4  6  8  10  12  14  16  18
 0

 200

 400

 600

 800

 1000

B
ia

s
 p

e
r 

p
e

ri
o
d

 [
m

V
]

P
o

w
e

r 
[m

W
]

Current density [kA/cm
2
]

linear power
SH-power
x 10

5

off-state
on-state

180
190

210
230

250

Fig. 2. Simulated bias-current relation of the structure studied for both the off- and on-state.
The level of losses used to simulate the laser under operation was 40 cm−1. Also shown is
the output power at the pump and second harmonic frequency, respectively, using the TW
model, which constitutes an upper bound. The second harmonic signal is scaled by a factor
of 105. At the marked points 180, 190, 200, 210, 230 and 250 mV further analyses of gain
and SH generation were carried out. A lattice temperature of 100 K was used.

3. Laser operation analysis

Calculations restricted by nmax = 0 provide the stationary response J0 from Eq. (1). The os-
cillating electromagnetic field is thus not taken into account, giving the current density in the
off-state of the laser, as shown in Fig. 2. Here, a number of bias points are marked indicating
the points were more extensive analyses were made.

Gain is obtained through the dynamical response Jcos
1 and thus accessible with nmax = 1. In

Fig. 3, gain spectra as a function of photon energies are shown for the different bias points
marked in Fig. 2. In the experiment of [15] a plasmon enhanced waveguide was used, similar
to the one described in [36], where the overlap factor was calculated to be Γ = 0.41. Using
reported waveguide loss from the experimental work, αW = 15 cm−1, and by calculating the
mirror loss from the reflectivity, αM = 5.6 cm−1, the gain in the QCL structure required to
compensate the losses is

gthreshold =
αW +αM

Γ
.

In this work the overlap factor is set to Γ = 0.5 following [18]. This enables easy comparison
between results and yields the value gthreshold = 40 cm−1. Studying Fig. 3, it can be seen that
gain well above the level of the losses is reached for a large range of bias points. It can also be
seen how the gain has a two-peak structure (e.g. 131 and 142 meV at Fd = 210 mV), where the
lower energy transition becomes dominating with increasing bias. This indicates that the level
structure is complex and that a crossing occurs at these bias points.

The gain spectra in Fig. 3 clearly show how the simulations predict the current threshold
to be around 8 kA/cm2, corresponding to 190 mV, for the design laser wavelength of 9.5 µm,
or h̄ω = 136.25 meV. This value compares well to experiment, where a threshold current of
6.6 kA/cm2 was reported. It can also be seen that the gain at the laser energy increases mono-
tonically with bias, suggesting a steady increase in output power with bias. Provided that the
nonlinear resonator in the active region is capable of sum frequency generation, conditions
are thus fulfilled for observation of second harmonic generation in the structure. Experimental
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measurements stop at 15 kA/cm2, but it is clear from the simulations that gain persists even at
higher bias points with higher currents.

By the use of a finite ac field strength in the simulations, the operation dynamics of the laser
can be modeled as previously shown by our group in [37]. Increasing the ac field strength,
the dynamical response Jcos

1 increases sublinearly which leads to a saturation of the gain. This
process can be studied in Fig. 4, again for the bias points indicated in Fig. 2. By increasing the
ac field strength until gain reaches the level of the losses, the intensity at each bias point can be
found, as well as the increase in current from Eq. (1) due to the stimulated emission.

In order to determine the optical power emitted by the laser, we proceed as follows: In the
wave guide the electric field component F0ez cos(kω x−ωt) is traveling towards the facet with
an intensity given by the Pointing vector. Neglecting the intricate mode structure, we assume



a constant field over the active region of the waveguide. The corresponding facet area is given
by 32.5 µm2 from experimental data (#periods× d×waveguidewidth). Furthermore 71% is
transmitted due to the Fresnel losses at the fundamental frequency. This provides the output
power from our data, which is proportional to F2

0 .
Now, we have to relate F0 to Fac used in our simulation. If the electric field is dominated by

the travelling wave (TW) F0ez cos(kx−ωt), we can identify F0 = Fac and the resulting power is
shown in Fig. 2. On the other hand, there is a reflected wave, which is amplified and becomes
of the same magnitude as the incoming wave further away from the facet. In the middle of the
waveguide we have actually a standing wave (SW)

F(x, t) = F0ez cos(kω x−ωt)+F0ez cos(kω x+ωt) = 2F0 cos(kω x)cos(ωt)ez. (2)

As can be seen in Fig. 4 the gain saturation is roughly proportional to F2
ac. Thus the spatial

average 〈F2(x, t)〉 = 2F2
0 cos2(ωt) should be compared to the simulated F2

ac cos2(ωt), and we
obtain F0 = Fac/

√
2, i.e. a reduction of output power with a factor of 2 compared to the TW

case above.
Obviously, the TW and SW are extreme cases and the reality is in between. In addition, the

z dependence of the electric field due to the mode profile will further complicate the situation.
Thus, the TW and SW values should be taken as a confidence range for our results when we
compare to experimental data in the following.

For a current density of 15 kA/cm2, we find an output power of 280 mW for the TW case
and 140 mW for the SW case. Here the experimental value is about 100 mW [15]. Taking into
account, that the experimental collection efficiency is never unity and the Fresnel losses at the
facet provide an upper bound for the transmission, we conclude that our results are in good
agreement with the experimental data.

Finally, we compare the current simulations in the on-state with theoretical results obtained
by Gajić et al. [17] and Bai et al. [18] who used a photon density equation coupled to the
electron rate equations. Bai et al. finds an on-state current that shows NDR features already at
biases that compare to 200 mV per period with a maximum current of 22 kA/cm2. The features
of an early NDR is also observed by Gajić et al. where the maximum current is however lower,
at 8 kA/cm2. Both results differ from our findings and experimental observations. The linear
increase in gain with respect to Fd, below saturation, see Fig. 3, is also reported by Bai et
al.. The output is estimated by both groups and their results are in the range of 300-400 mW,
showing a larger discrepancy with experiment than our results.

4. Second harmonic generation

The current at the second harmonic is given by the terms Jcos
2 and Jsin

2 in Eq. (1), which are
generated by our simulations if nmax ≥ 2 is used. Its total amplitude |J2|= ((Jcos

2 )2+(Jsin
2 )2)1/2

is plotted versus ac field strength in Fig. 5 for different dc bias points. As expected for the
process of SH generation, the second order current in the inset of Fig. 5 shows a quadratic
behavior for small ac field strengths. The convergence of the higher order terms in Eq. (1) with
respect to nmax can also be studied in Fig. 5. Here calculations with nmax = 3 and nmax = 4 are
compared for the bias of 230 mV per period. As seen, the inclusion of four-photon-processes
slightly affects the result, especially at high ac field strengths. However, the main features are
not changed (this is true for all bias points) and the values are very similar, which is the reason
that the computationally lighter simulations with nmax = 3 were used to calculate the mainstay
of the results.

In order to estimate the power emitted at the second harmonic, the waveguide is considered
isotropic in the direction transverse to both the growth direction and the propagation direction
of the laser field. The second order current response is then assumed to be modulated by the
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intensity of the traveling wave, used for the linear power, at the fundamental frequency. Through
the Helmholtz equation the vector potential generated by this oscillating current density can be
calculated and related to a field propagating in the waveguide. Losses and the mismatch in
wavevector k for the fundamental and second harmonic frequency are then naturally taken into
account. A sketch of this derivation can be found in the Appendix. The resulting equation relates
the intensity and the second order current response as

I2ω =
µ0|J2|2c

8n2ω

∣∣∣∣∣1− e−k′′2ω
Lei∆kL

∆k+ ik′′2ω

∣∣∣∣∣
2

(3)

where µ0 is the magnetic permeability, c the speed of light, nω the refractive index at frequency
ω , L is the length of the cavity, ∆k is the mismatch defined by ℜ{k2ω}− 2kω , k′′2ω

= ℑ{k2ω}
is the waveguide attenuation at 2ω . Equation (3) is similar to Eq. (13) of [15], where it was
pointed out that ∆k dominates over k′′2ω

. By achieving true phase matching and thus drastically
decreasing the k-mismatch, Malis et al. [38] was able to increase the conversion efficiency
almost three orders of magnitude compared to [15]. For the bias point of Fd = 215 mV and the
ac field strength of 82 meV, corresponding to the maximum experimental current and the value
eFacd which saturates the gain to the level of the losses, the second order current response is

case: TW SW Exp. res.
Iω 280 mW 140 mW 100 mW
I2ω 6.0 µW 1.5 µW 550 nW

Table 1. Intensities for the different waveguide models outside the waveguide. These are
calculated for a transmission coefficient of 71%. For comparison the experimental results
from [15] are shown.
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about |J2| ≈ 1450 A/cm2. Using Eq. (3) this would generate an intensity of I2ω = 260 nW/µm2

inside the waveguide yielding, including Fresnel losses, a total power outside the facet of 6.0
µW. The parameters of [15] were used, with a refractive index of n2ω = 3.35, an attenuation
of k′′2ω

= 3 cm−1 together with a sample length of L = 2.25 mm. Here as well, the reduction
in output power due to additional saturation from the back reflected wave should be taken into
account. For a SW, the factor of one half enters the SH intensity squared, giving a reduction of
25% compared to a TW. All results are summarized in Table 1.

Compared to the calculations of Bai et al. and Gajić et al. which yielded powers of 90 µW
and 45 µW respectively, our findings are significantly closer to the experimental results, where
the maximum SH output power was reported to be 550 nW in total. As the mode structure in
the waveguide is not taken into account in the calculation, it is expected to overestimate the
experimental value. Although the quantitative agreement of the SH power is not perfect, the
final estimation of the second harmonic signal so close to the experimental value should still
be regarded as a good indication towards the validity of the approach and the robustness of the
finite-intensity-model that we have applied to the problem.

5. Density matrix calculation

The benefit from our approach described above is that the current response at 2ω can be re-
lated directly to the coherences in the density matrix between the different states in the SH
generating ladder. Often these coherences are approximated using the difference in popula-
tions, i.e. the diagonal elements in the density matrix, and the widths of the transitions. This
approach is common when nonlinear conversion is considered [3, 6, 39] and the concept is
outlined by both Shen [40] and Boyd [41]. In the following we compare our data with the
standard density matrix approach of calculating the second order susceptibility. Using the defi-
nition P(t) = ε0 ∑ωi χ(2ωi)E2(ωi)e−i2ωit (negative frequencies allowed) the current at 2ω can



be expressed as

J(t) = Ṗ(t) =−ωε0F2
ac

[
ℜ{χ(2)(2ω)}sin(2ωt)

− ℑ{χ(2)(2ω)}cos(2ωt)
]

(4)

where Fac enters the classical driving field as E(±ω) = Fac/2 and the susceptibility χ(2) is
calculated following Boyd [41] from

χ
(2)(2ω) =− e3

h̄2dε0
∑
mnv

(nm−nv) · zmnznvzvm

(ωnm−2ω− iγnm)(ωvm−ω− iγvm)

− (nv−nn) · zmnzvmznv

(ωnm−2ω− iγnm)(ωnv−ω− iγnv)
(5)

where the populations ni are sheet densities and z are the dipole matrix elements. In order
to use this formula we use the electron densities and states of our simulations. Our system
Hamiltonian is rediagonalized using the information of the already converged self-energies.
This way the Wannier-Stark states are found, giving an adequate description of the energy
eigenstates at the given bias point. The values for the level differences ωi j, occupations, and
dipole matrix elements are then extracted from these eigenstates, whereas the broadenings Γi
are extracted from the self-energies. The values of γi j in Eq. (5) are the widths of the transitions
and this is taken to be γi j = (Γi +Γ j)/4 which is half of the mean. This is done in order to take
correlation effects [42] into account phenomenologically.

The result from this calculation is shown alongside the simulation results of the NEGF model
in Fig. 6. Results are shown for a large range of bias points, although experimental studies most
likely do not reach beyond biases of 215 mV per period as discussed above. The calculations
via Eq. (5) show the same magnitude and general trends as the full simulations, although the
behavior appears erratic and shows a lot of jitter. Moreover the simulations show a large dip
in conversion efficiency around the bias point of Fd = 230 mV, also visible in Fig. 5. In the
density matrix calculation this is heavily damped, which indicates that the full model, where
also higher than second order parts are included, shows additional features not pursueable with
ordinary population- and rate-based calculations. It is our belief that these effects are better
described in the full model as the nonlinear current response is directly extracted from the
off-diagonal density matrix elements, i.e. the coherences in the system.

6. Conclusion

We reported microscopic simulations within our NEGF model for the sample of [15]. Using
nominal sample parameters, our results for the threshold current and the lasing power agree
well with experimental data. Having a full description of the physical state under operation, our
model also provides higher harmonics in the output. The intensity obtained for second harmonic
generation is comparable with experimental data. As earlier calculations with simplified models
were more of qualitative nature, this demonstrates the necessity of a more detailed model, such
as the one used here. The second harmonic generation is compared with a common expression
for the second-order susceptibility, which reproduces the full numerical results qualitatively,
but shows some deviations and jitter due to the neglect of coherences.



Appendix

In this section we discuss Eq. (3), used to compare the current response to the generated in-
tensity in the waveguide. Both phase matching and absorption in the waveguide is included in
the expression, yielding a simple though reasonable estimate of the intensity due to the current
response function.

Waveguide models

In the simulations a local field F(t) = Fdc +Fac cos(ωt) is assumed. If the electric field has a
phase shift ϕ , this corresponds to a local shift in time to t ′ = t−ϕ/ω and the current response
is

J(t) = J0 +ℜ{J1e−i(ωt−ϕ)+ J2e−i(2ωt−2ϕ)} for F(t) = Fdc +Fac cos(ωt−ϕ). (6)

In the waveguide a traveling wave has the form

F0 cos(kω x−ωt) (7)

where kω = nω ω/c is approximately real, as absorption and gain compensate (this is not en-
tirely true, as the absorption contains waveguide losses). This wave has the intensity given by
the time-averaged Poynting vector

S = F2
0

nω cε0

2
ex

which is then subject to reflection and transmission when it reaches the facet at the end of the
waveguide.

Second harmonic generation neglecting reflecting wave

Without the reflecting wave, we have the local field (7) and we can apply Eq. (6) with the phase
shift ϕ = kω x. Thus we can identify

F0 = Fac,0

where Fac,0 is the ac field strength of a traveling wave in balance with the gain medium. This
simple equality would not hold for a standing wave, as the back reflected wave would increase
the gain saturation.

Assuming a second order current distribution

Jsh(x, t) = ℜ{J̃sh(x)e−2iωt}ez

within the one-dimensional waveguide between x = 0, and x = L, where the complex current
J̃sh(x) = J2ei2kω x can be found from inspection of Eq. (6). Next we evaluate the electromagnetic
field radiated from this current distribution. We consider the Helmholtz equation for the z-
component of the vector potential Az at a frequency 2ω

∂ 2

∂x2 Az(x,2ω)+ k2
2ω Az(x,2ω) =−µ0J̃sh(x)

where k2ω is the complex wavevector at frequency 2ω in the waveguide. With the outgoing
Green’s function ieik2ω |x−x′|/(2k2ω) the solution for the Helmholtz equation reads for x≥ L

Az(x,2ω) =
∫ L

0
dx′µ0J̃sh(x′)

i
2k2ω

eik2ω (x−x′). (8)



For a given vector potential ℜ

{
ezA0ei(k2ω (x−L)−2ωt)

}
we obtain the time-averaged Poynting

vector P within a standard calculation as

P = |A0|2
ωℜ{k2ω}

µ0
e−2k′′2ω

(x−L)ex (9)

where k′′2ω
= ℑ{k2ω} is the waveguide attenuation at the second harmonic. Inserting A0 from

Eq. (8) will yield Eq. (3) with x = L and assuming that ℜ{k2ω}>> ℑ{k2ω} holds.
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