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Abstract—In this paper, we explore positivity preserving
model reduction. The reduction is performed by truncating
the states of the original system without balancing in the
classical sense. This may result in conservatism, however, this
way the physical meaning of the individual states is preserved.
The reduced order models can be obtained using simple
matrix operations or using distributed optimization methods.
Therefore, the developed algorithms can be applied to sparse
large-scale systems.

Index Terms—model reduction; positive systems; nonnega-
tive matrices

I. INTRODUCTION

Model order reduction is one of the classical problems in

systems theory with a vast number of methods reported in

the literature (cf. [1], [2]). The classical model reduction

techniques are balanced truncation ([3]), optimal Hankel

approximation ([4]), methods based on Krylov subspaces

([2], [5]). However, all these methods do not, in general,

preserve some properties of the systems. Positivity is one of

these properties. Positive systems are linear time-invariant

systems, which will always have a nonnegative state vector

x given a nonnegative initial condition and nonnegative input

signals. Positive systems are met in many applications, such

as networked systems, graphs, systems biology etc. In some

applications the systems are extremely large, which is a

major bottleneck for analysis. Clearly, model reduction could

facilitate analysis or simulation of such systems. However,

positivity preserving model reduction is a relatively new

and not extensively studied topic. In a general setting, the

authors are aware of only a few published references, these

are [6], [7]. These methods require solving large linear matrix

inequalities and therefore, considerable computational effort

to obtain an approximation. We should also mention [8] and

[9], which deal with a similar problem setting.

The positive systems possess a number of extraordinary

properties. For example, Lyapunov functions can be linear

with respect to the state-space vector x, while in general they

are quadratic (cf. [10]). The computation of the H∞ norm

requires simple matrix operations, in general, it requires

solution of matrix Riccati equations. The goal of this paper

is to extend this list to model reduction. Although, the

algorithms obtained in this paper are far from optimal in

the H∞ norm, they are scalable and require simple matrix

manipulations. Therefore, the presented algorithms can be

used for large-scale systems, while [6], [7] employ linear

matrix inequalities and can be applied to systems of relatively

low-order.

The paper is organized as follows. In Section II theoretical

background of model reduction is sketched and a theoretical

base for the positivity preserving reduction procedure is

outlined. In Section III the positivity preserving reduction

methods are presented and in Section IV these are illus-

trated on numerical examples. All the propositions, which

are mostly known facts about nonnegative matrices, are

formulated and proved in Appendix.

Notation

Throughout the paper we use standard notation for spaces

of sequences lp, as well as standard H∞ (‖ · ‖H∞
) and

Hankel (‖ · ‖H) norms (cf. [1]). Let Rn×m
+ stand for the

positive orthant of Rn×m. Let also A′ denote the transpose

of a matrix A, and A ≥ B stand for an entry-wise inequality

for matrices of the same size A and B. We say that a

matrix is Schur stable, or simply Schur, if all its eigenvalues

have absolute values smaller than one. A matrix A is called

nonnegative if A ≥ 0 and A 6= 0, and it is called positive if

A > 0. Given a partition of matrices

A =

(

A11 A12

A21 A22

)

B =

(

B1

B2

)

C =
(

C1 C2

)

let the complements to A22 be

Ac
1 = A11 +A12(I −A22)

−1A21

Bc
1 = B1 +A12(I −A22)

−1B2

Cc
1 = C1 + C2(I −A22)

−1A21

Dc
1 = D + C2(I −A22)

−1B2

Similarly, let Ac
2, B

c
2, C

c
2 , D

c
2 be the complements to A11.

Note that inverses of I − A11 and I − A22 exist if A is a

nonnegative Schur matrix. In fact, in this case A11 and A22

are also nonnegative Schur ([10]).

II. ENERGY FUNCTIONS, HANKEL NORMS AND MODEL

REDUCTION

In this paper we focus on discrete-time positive systems,

which means that the state-space matrices A, B and C have

only nonnegative entries. However, the same techniques can

be successfully applied to continuous time models (in this
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case, all entries of B and C, and only off diagonal entries of

A are nonnegative). Let G be a scalar-valued positive system:

G =

{

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)
(1)

where A ∈ R
n×n
+ , B ∈ R

n×1
+ , and C ∈ R

1×n
+ . Let also A

be Schur stable. In classical model reduction algorithms the,

so called, energy functions are employed:

Lo(x0, l2 ) = ‖y‖l2 [0,+∞)

Lc(x0, l2 ) = min
u

‖u‖l2 (−∞,0]

where x(0) = x0, x(−∞) = 0, u(k) = 0 for all k ≥ 0. The
function Lo is called the observability energy function and

Lc the controllability one, and they can be readily computed

Lo(x0, l2 ) = 〈x0, Qx0〉
1/2 Lc(x0, l2 ) = 〈x0, P

−1x0〉
1/2

A′QA−Q+ C′C = 0 APA′ − P +BB′ = 0

These functions are also used to define the norm of the

Hankel operator induced by l2 signals (or simply the Hankel

norm, cf. [11]):

‖G‖H = max
x0, u

‖y‖l2 [0,+∞)

‖u‖l2 (−∞,0]
= max

x0

Lo(x0, l2 )

Lc(x0, l2 )

Now, for model reduction purposes one can use directly

the matrices P and Q (see, [3]), which yields a simple,

but powerful heuristic. Or one can compute an optimal

approximation in the Hankel norm ([4]).

The functions L2
o and L2

c can be used as Lyapunov

functions for the dynamical system (1). It is known that for

positive systems as (1) there are linear Lyapunov functions

in the form v′x for some nonnegative vector v (cf. [10]).

This lead the authors to an assertion of the existence of Lo

and Lc with a similar property. Unfortunately this assertion

is only partially true. The observability energy function with

such a property is easy to obtain, simply by changing the

norm of the output signal:

Lo(x0, l1 ) = ‖y‖l1 [0,+∞)

where x(0) = x0 and u(k) = 0 for all nonnegative k. Since
the model is confined to a positive orthant, x0 and CAk are

nonnegative, which entails that:

Lo(x0, l1 ) = ‖y‖l1 [0,+∞) =

∞
∑

k=0

CAkx0

Using the well-known matrix series formula (I − A)−1 =
∞
∑

k=0

Ak (see, Proposition 1 in Appendix for a simple proof),

the expression above can be computed as:

Lo(x0, l1 ) = q′x0 where q′ = C(I −A)−1

The vector q can be computed by inverting the matrix

I −A or using distributed programming methods as in [12].

Note, if A is Schur stable then the matrix (I − A)−1 is

nonnegative ([10]). This means that for stable G, the vector

q is nonnegative, as well. It is possible to introduce a “dual”

to q vector, i.e., p = (I−A)−1B. However, the controllability

functions Lc(x0, l1 ) or Lc(x0, l∞ ) do not explicitly depend

on p, which certainly complicates any reduction procedure.

However, by introducing a notion similar to the Hankel

norm, but induced by l1 and l∞ signal norms, an easy

approximation procedure can be obtained. Introduce:

‖G‖H,1,∞ = max
x0∈R

n

+
, u

‖y‖l1 [0,+∞)

‖u‖l∞ (−∞,0]

where y = Gu, x(0) = x0, x(−∞) = 0, u(k) = 0 ∀k ≥ 0.
Lemma 1: Let G be a positive model with the state x

confined to R
n
+, then

‖G‖H,1,∞ = C(I −A)−2B = q′p
Proof. First, show that ‖G‖H,1,∞ ≤ C(I − A)−2B.

Since x0 =
∞
∑

m=0
AmBu(−m), then

‖y‖l1 =
∞
∑

k=0

CAkx0 = C(I − A)−1
∞
∑

m=0

AmBu(−m)

Now using the Hölder’s inequality we get:

∞
∑

m=0

C(I−A)−1AmBu(−m) ≤ ‖C(I−A)−1AmB‖l1 ‖u‖l∞

It can be verified that ‖C(I−A)−1AmB‖l1 = C(I−A)−2B
and finally:

‖G‖H,1,∞ = max
x0, u

‖y‖l1 [0,+∞)

‖u‖l∞ (−∞,0]
≤

C(I −A)−2B‖u‖l∞ (−∞,0]

‖u‖l∞ (−∞,0]
= C(I −A)−2B

To prove the converse, let p = (I −A)−1B. If we choose

u(−k) equal to one for all k, then the state x0 is equal to
∞
∑

k=0

AkB and therefore x0 = p. This gives us that

‖y‖l1 [0,+∞) =

∞
∑

k=0

CAk(I −A)−1B = C(I −A)−2B

‖u‖l∞ (−∞,0] = 1

and ‖G‖H,∞,1 ≥ C(I −A)−2B.

Remark 1: The norm ‖·‖H,1,∞ does not change by adding

the constraint u(−k) ≥ 0, since the maximizing sequence

u(−k) is nonnegative as shown above.

Remark 2: In the multivariable case (for the matrix-valued

G with m2 outputs and m1 inputs)

‖G‖H,1,∞ = C̄(I −A)−2B̄

where C̄ =
m2
∑

i=1

Ci, B̄ =
m1
∑

i=1

Bi and Bi denotes the individual

columns of B, Ci denotes the individual rows of C.

Remark 3: It can be verified using similar techniques that:

1) ‖G‖H,1,1 = C(I −A)−1B = q′(I −A)p
2) ‖G‖H,∞,∞ = C(I −A)−1B = q′(I −A)p
3) ‖G‖H,∞,1 = max

k≥0
|CAkB|
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Note that ‖G‖H,1,1 = ‖G‖H,∞,∞ = C(I − A)−1B. Recall

that for scalar-valued G with D = 0 the H∞ norm is also

equal to C(I − A)−1B. Moreover, all induced norms are

equal (cf. [12]). Which gives us an unexpected result that

for r = 1 and r = ∞:

‖G‖H,r,r = max
x0∈R

n

+
,u

{

‖y‖lr [0,+∞)

‖u‖lr (−∞,0]

∣

∣

∣

x(0) = x0,
x(−∞) = 0

}

=

max
u

‖y‖lr [−∞,+∞)

‖u‖lr (−∞,+∞]
= ‖G‖r−ind

Note, the relation ‖G‖H,2,2 6= ‖G‖2−ind does not generally

hold, where ‖G‖H,2,2 is the Hankel norm and ‖G‖2−ind is

the H∞ norm. This fact becomes clear in light of results in

[13]. Based on [13] it can be shown that for scalar-valued

positive systems the sum of the Hankel singular values of G
is equal to ‖G‖2−ind/2. At the same time, ‖G‖H,2,2 is equal

to the maximal Hankel singular value of G.

The vectors p and q are not classical Gramians, however, one

of their properties can be very useful:

Lemma 2: If an entry of the vector p (the vector q) is equal
to zero, then the corresponding state is not controllable (not

observable).

Proof. Without loss of generality, we prove only the con-

trollability part. By Proposition 3 (see, Appendix), for an

arbitrary partitioning of the vector p′ =
(

p′1 p′2
)

we have

p2 = (I − Ac
2)

−1Bc
2 and p1 = (I − Ac

1)
−1Bc

1. Now let p2
be a zero vector and p1 be a positive vector, which leads to:

(I −Ac
2)

−1Bc
2 = 0

and thus

0 = Bc
2 = B2 +A21(I −A11)

−1B1

The sum of nonnegative matrices can be zero, only if

the summands (i.e., B2 and A21(I − A11)
−1B1) are zero

matrices. Now, we have

(I −Ac
22)

−1A21(I −A11)
−1B1 = 0

Due to Proposition 2 and the fact that B1 = Bc
1 (due to

B2 = 0)

(I −A22)
−1A21(I −Ac

11)
−1Bc

1 = 0

Since (I−Ac
11)

−1Bc
1 is equal to the positive vector p1, (I−

A22)
−1A21 is a zero matrix, which also proves that A21 is a

zero matrix. Finally, due to A21 and B2 being zero matrices,

the system G is not controllable.

Having a zero entry in p is a sufficient condition for uncon-

trollability. In fact, it is fairly easy to construct uncontrollable

systems with a positive vector p. But, a more interesting

question is how p related to positive controllability, which

is not addressed in this paper. To conclude the section, we

remark that vectors p and q are appearing in various norms

and have interesting properties. However, it is not entirely

clear why and how p and q measure the importance of states

in the H∞ norm, but there certainly is a connection.

III. MODEL REDUCTION METHODS

In relation to p = (I − A)−1B and q′ = C(I − A)−1,

introduce the vector σ as σ2
i = qipi for all entries i. This

vector determines the weight of each state in the input-

output relationship. The first step in the reduction procedures

presented in this section is to determine an invertible matrix

T , such that the new state-space matrices are TAT−1, TB,

CT−1. Moreover, T (I −A)−1B = (C(I −A)−1T−1)′ = σ
and σi ≥ σj if i ≥ j. Such T is the product of a permutation

and the diagonal matrix with entries
√

qi/pi on the diagonal,

which also implies that T and its inverse are nonnegative

matrices. If p and q have zero entries, these states can be

truncated, since they correspond to uncontrollable or unob-

servable states (based on Lemma 2). Based on σ partition

the state-space as:

x =

(

x1

x2

)

A =

(

A11 A12

A21 A22

)

B =

(

B1

B2

)

C′ =

(

C′
1

C′
2

)

where x2 corresponds to small entries of σ.

A. Model Reduction by Truncation of States

The simplest version of model reduction in this setting is

the state truncation, which is summarized in Algorithm 1.

Basically, we throw away the states corresponding to small

σi, which determine the weight of every state in input-output

relationship. The H∞ error of approximation in this case can

be readily computed.

Lemma 3: Assume G is positive and asymptotically sta-

ble. Let Gtr be a reduced order system obtained from

Algorithm 1, then Gtr is positive and asymptotically stable.

Moreover,

‖G−Gtr‖H∞
= G(1)−Gtr(1) = q′2(I −Ac

2)p2
Proof. It is straightforward to show that Gtr is positive

and asymptotically stable, therefore, we continue with the

proof of the error expression. The transfer function G−Gtr

can be written using impulse response as

G(z) =

∞
∑

i=0

(CAkB − C1(A11)
kB1)z

−k

Due to Proposition 4 (see, Appendix) we have

(Ak)11 ≥ (A11)
k

and therefore

CAkB ≥ C1(A11)
kB1

which means that G−Gtr has a positive impulse response.

Using the same proof as in [12] it can be shown, that

‖G−Gtr‖H∞
=

∞
∑

i=0

(CAkB − C1A
k
11B1)

and ‖G−Gtr‖H∞
= G(1) −Gtr(1). Due to Proposition 5

(see, Appendix)

C(I−A)−1B = Cc
2(I−Ac

2)
−1Bc

2+C1(I−A11)
−1B1

which entails that

G(1)−Gtr(1) = Cc
2(I −Ac

2)
−1Bc

2
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According to Proposition 3 (see, Appendix) q′2 = Cc
2(I −

Ac
2)

−1 and p2 = (I −Ac
2)

−1Bc
2, and finally:

Cc
2(I −Ac

2)
−1Bc

2 = q′2(I −Ac
2)p2

Algorithm 1 Model Reduction Based on Truncation

Perform a state-space transformation such that σi = pi =
qi and σi ≥ σj if i ≥ j
Based on σ partition the state-space as:

x =

(

x1

x2

)

A =

(

A11 A12

A21 A22

)

B =

(

B1

B2

)

C′ =

(

C′
1

C′
2

)

where x2 corresponds to small entries of σ.
Compute the reduced order model as:

Gtr =

[

A11 B1

C1 0

]

B. Model Reduction Based on Singular Perturbation

Consider the case of truncation based on singular per-

turbation as in [14]. Since for positive models the largest

value |G(eω)| occurs at ω = 0, it seems more important

to match the DC gains of the full and the reduced order

models. Truncation of the positive systems based on singular

perturbation is concluded in Algorithm 2, which possesses

the following properties:

Lemma 4: Assume G is positive and asymptotically sta-

ble. Let Gsp be obtained using Algorithm 2, then:

• The system Gsp is positive and asymptotically stable

• The H∞ norms of the models match , i.e., ‖G‖H∞
=

‖Gsp‖H∞

• The norm ‖Gsp‖H,1,∞ is equal to q′1p1 = ‖G‖H,1,∞ −
q′2p2

Proof. For the proof of stability the reader is referred to

[14]. Therein it is shown that G(1) = Gsp(1), i.e., the DC

gains match.

Let us show positivity of the reduced order model. Since

A22 is nonnegative and asymptotically stable, the matrix

(I − A22)
−1 is also nonnegative (cf. [10]). This implies

that matrices Ac
1, B

c
1 and Cc

1 are nonnegative and Gsp is

a positive system. This completes the proof of the second

bullet, since ‖Gsp‖H∞
= Gsp(1) and Gsp(1) is equal to

‖G‖H∞
= G(1).

According to Proposition 3 (see, Appendix) it is possible

to decompose q′p into the sum q′1p1 + q′2p2, where

q′1p1 = Cc
1(I −Ac

1)
−2Bc

1

Note that Ac
1, B

c
1, C

c
1 is the state-space representation of

Gsp. Therefore,

‖Gsp‖H,1,∞ = q′1p1 = ‖G‖H,1,∞ − q′2p2

Computing the H∞ approximation error for Algorithm 2 is

more demanding than for Algorithm 1, since G−Gsp does

not have a positive impulse response and Riccati equations

have to be involved. Moreover, the approximation error ‖G−
Gsp‖H∞

does not explicitly depend on σ, which seems as a

weaker theoretical result. However, numerical experiments

show that Algorithm 2 is competitive in comparison to

Algorithm 1 and many examples the former outperforms the

latter.

Algorithm 2 Model Reduction Based on Singular Perturba-

tion
Perform a state-space transformation such that σi = pi =
qi and σi ≥ σj if i ≥ j
Based on σ partition the state-space as:

x =

(

x1

x2

)

A =

(

A11 A12

A21 A22

)

B =

(

B1

B2

)

C′ =

(

C′
1

C′
2

)

where x2 corresponds to small entries of σ.
Compute the reduced order model as:

Gsp =

[

Ac
1 Bc

1

Cc
1 Dc

1

]

IV. EXAMPLES

The major interest in the numerical examples is comparing

the presented algorithms to [7], where a somewhat similar

procedure was employed. In [7] the states are truncated based

on diagonal matrices P and Q, which are the solutions to

linear matrix inequalities. Let [7]-tr be a simple truncation

method from [7], and [7]-sp be a reduction based on singular

perturbation from [7]. For brevity, we are going to use the

following notation for the state-space representations:

G =

[

A B
C D

]

Example 1: First, we are going to compare the Algo-

rithms 1 and 2 to algorithms from [7] on random examples,

which depict clearly the overall trends. Consider the positive

systems

G1 =

[

A B1

C1 0

]

and G2 =

[

A B2

C2 0

]

A =

















0.05 0.08 0.01 0.1 0.04 0.09
0.02 0.09 0.02 0.03 0.01 0.05
0.04 0.05 0.02 0.03 0.06 0.01
0.01 0.08 0.02 0.04 0.04 0.09
0.04 0.07 0.02 0.03 0.04 0.03
0.08 0 0.03 0.08 0.01 0.06

















B1 =
(

1 0 0 0 0 0
)T

C1 =
(

0 0 0 0 0 1
)

B2 =
(

7 2 10 7 5 9
)T

C2 =
(

6 0 5 8 7 6
)

Both systems are controllable and observable. Tables I and II

depict the result of reduction procedures. It is noticeable that

Algorithm 1 performs similarly to [7]-tr, while Algorithm 2

performs similarly to [7]-sp. This is due the structure of trun-

cation, which is quite similar in both approaches. The only

4288



TABLE I

APPROXIMATION ERRORS 100 · ‖G1 − (G1)r‖H∞
/‖G1‖H∞

IN

EXAMPLE 1

Reduction order k 2 3 4 5

Algorithm 1 5.33 3.37 1.70 0.63
Algorithm 2 4.58 2.55 1.15 0.43
[7]-tr 5.33 3.79 1.70 0.63
[7]-sp 4.58 3.03 1.15 0.43

TABLE II

APPROXIMATION ERRORS 100 · ‖G2 − (G2)r‖H∞
/‖G2‖H∞

IN

EXAMPLE 1

Reduction order k 2 3 4 5

Algorithm 1 59.00 39.08 19.68 2.77
Algorithm 2 69.53 46.22 15.92 1.92
[7]-tr 59.00 40.69 19.68 2.77
[7]-sp 69.53 37.58 15.92 1.92

difference is the way of determining the state’s contribution

into the input-output relationship. However, in some cases the

presented algorithms perform better than their counterparts

from [7], and in some cases it is the opposite. Authors at the

present moment cannot elaborate on the reasons for such a

behavior. It can be related to properties of matrices B and

C, however, no clear connection has been established so far.

The methods from [7] are much more numerically de-

manding than the presented algorithms, since [7] require

solving linear matrix inequalities. Taking into account the

performance in terms of the approximation errors, we can

state that our approach has a few advantages over [7].

Example 2: The second example is a continuous-time

multi-input-multi-output positive system described in [6].

Even though explicit H∞ approximation errors were not

computed for the matrix valued case, we can still com-

pare the performance of the algorithms. In this example,

the Algorithms 1 and 2 have exactly the same results as

algorithms from [7]. In [6] the reduction order was set

to 2, which resulted in ‖G − Gr‖H∞
/‖G‖H∞

= 0.04
relative error. Recall, that using Algorithms 1 and 2 we can

preserve an interpretation of the states xi, when with [6] such

interpretation is lost. Moreover, the iterative semidefinite

approach [6] does not seem to be competitive for large

systems due to numerical efficiency.

G =





















−1.5 .6 1.0 0 0 0 1 0
0.3 −1.9 0.2 0 0 0 0 1
0.2 0.5 −2.7 1 0 0 0 0
0 0 0.5 −3 0.6 0.5 0 0
0 0 0 0.4 −1.6 0.3 0 0
0 0 0 0.6 0.5 −1.6 0 0
1 1 1 1 1 1 0 0




















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TABLE III

APPROXIMATION ERRORS ‖G−Gr‖H∞
/‖G‖H∞

IN EXAMPLE 2

Reduction order k 1 2 3 4 5

Algorithm 1 0.77 0.26 0.05 0.02 1.45 · 10−2

Algorithm 2 0.44 0.08 0.02 0.01 0.4 · 10−2

V. CONCLUSION

This paper presents two model reduction algorithms which

preserve stability and positivity. The algorithms are scalable

and can be applied to sparse large-scale systems, for which

inversion of matrix A can be performed efficiently. As an

alternative one can employ distributed methods to compute

the vectors p and q.
The main aspect of the algorithm is that balancing in

the classical sense is not performed, while computing the

approximation. This fact can be seen as a drawback or an

advantage depending on the view point. The methods are

conservative with respect to balanced truncation, in fact, even

first order balanced reduced order models sometimes have

a better match than all reduced order models obtained by

the presented algorithms. However, the presented algorithms

preserve the interpretation of the individual states of the

systems, which can be a good asset for analysis.
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APPENDIX

Proposition 1: Let A be a Schur matrix with A, B and

C being nonnegative matrices, then p =
∞
∑

k=0

AkB = (I −

A)−1B and q′ =
∞
∑

k=0

CAk = C(I −A)−1.

Proof. We are going to show only that
∞
∑

k=0

CAk = C(I −

A)−1, the second statement can be obtained by transposing

the relations.

Assume
∞
∑

k=0

CAk = q′, then

q′A =

∞
∑

k=1

CAk =

∞
∑

k=0

CAk − C = q′ − C

Finally, q′ = C(I −A)−1.

Proposition 2: Let A ∈ R
n×n B ∈ R

k×n, C ∈ R
n×k

and D ∈ R
k×k. If A, D, A−BD−1C and D−CA−1B are

invertible, then:

(A−BD−1C)−1BD−1 = A−1B(D − CA−1B)−1

Proof. Assume the assertion is true.

(A−BD−1C)−1BD−1 = A−1B(D − CA−1B)−1

multiply from the left with A−BD−1C and from the right

with D − CA−1B

BD−1(D − CA−1B) = (A−BD−1C)A−1B

B −BD−1CA−1B = B −BD−1CA−1B

We arrive to identity valid for any matrices A, B, C, D
satisfying the assumptions of the proposition. This concludes

the proof.

Proposition 3: Let A be a Schur, nonnegative matrix.

Given an arbitrary partitioning of q =
(

q1 q2
)

q′1 = Cc
1(I −Ac

1)
−1

q′2 = Cc
2(I −Ac

2)
−1

Proof. The proposition is going to be proved by direct

computation. First it is required to compute the inverse of

the matrix I −A:
(

I −A11 −A12

−A21 I −A22

)−1

=

(

X11 X12

X21 X22

)

The entries X11 and X12 are computed in a straightforward

manner using the Schur’s complement:

X11 = (I −A11 −A12(I −A22)
−1A21)

−1 = (I −Ac
1)

−1

X21 = (I −A22)
−1A21(I −Ac

1)
−1

X12 = (I −Ac
1)

−1A12(I −A22)
−1

Using Proposition 2 rewrite the expression for X12 as:

X12 = (I −Ac
1)

−1A12(I −A22)
−1 =

(I −A11)
−1A21(I −Ac

2)
−1

Using the same proposition it is possible to show that:

X22 = (I −Ac
2)

−1

All is required to show now is that:

q′1 = C1X11 + C2X21 = Cc
1(I −Ac

1)
−1

q′2 = C1X12 + C2X22 = Cc
2(I −Ac

2)
−1

which follows immediately given the matrix X .

Proposition 4: For any nonnegative matrix A and any

positive integer k the following inequality is true: (Ak)11 ≥
(A11)

k

Proof. A similar statement can be found in [9] for the

continuous time systems. Let us prove the proposition by

induction. For k = 1, the assertion is obviously valid, since

A11 ≥ A11. Assume (Ak)11 ≥ (A11)
k, let us show it for

k + 1:

(Ak+1)11 = (AkA)11 =
((

(Ak)11 (Ak)12
(Ak)21 (Ak)22

)(

A11 A12

A21 A22

))

11

=

(Ak)11A11 + (Ak)12A21 ≥ (A11)
kA11 = (A11)

k+1

The last inequality is valid since matrices (Ak)12 and A21

are nonnegative and (Ak)11 ≥ (A11)
k by assumption.

Proposition 5: Let A be a Schur, nonnegative matrix, then

the following equality holds:

C(I−A)−1B = Cc
1(I−Ac

1)
−1Bc

1+C2(I−A22)
−1B2

Proof. Using the Schur’s complement it is possible to rewrite

(I −A)−1 in terms of block matrices Aij as:

(

I −A11 −A12

−A21 I −A22

)−1

=

(

I 0
(1−A22)

−1A21 I

)

·

(

(I −Ac
1)

−1 0
0 (1−A22)

−1

)(

I A12(1−A22)
−1

0 I

)

Note that

(

Cc
1 C2

)

=
(

C1 C2

)

(

I 0
(1−A22)

−1A21 I

)

(

Bc
1

B2

)

=

(

I A12(1 −A22)
−1

0 I

)(

B1

B2

)

Therefore

C(I −A)−1B =
(

Cc
1 C2

)

·
(

(I −Ac
1)

−1 0
0 (1 −A22)

−1

)(

Bc
1

B2

)

=

Cc
1(I −Ac

1)
−1Bc

1 + C2(I −A22)
−1B2
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