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Using Game Theory for Distributed Control Engineering

Anders Rantzer

Abstract— The purpose of this paper is to show how
ideas from game theory and economiecs may play an
important role for decentralized eontroller design in
complex engineering systems. The foeus is on coordi-
nation through prices and iterative price adjusiments
using a gradient method. We give a quantitative hound
on adjustment rates that is sufficient to guarantee
global convergence towards a Nash equilibrium of
control strategies. The equilibrium is an optimal so-
lution to the corresponding team decision problem,
where a distributed set of controllers cooperate to op-
timize a common objective, The method is illustrated
on control of a vehicle formation (e.g. automobiles on
the road) where the objective is to maintain desired
vehicle distances in presence of disturbances.

1. InTRODUCTION

How should control equipments distributed across
the electricity network cooperate to find new transmis-
sion routes when a power line is broken? How should
the electronic stabilization programme of an automo-
bile use measurements from wheels and suspensions
and decide how to use available brakes and engine
power to recover from a dangerous situation? How
should radio transmission power between cellphones
and base station in a telephone network be adjusted
to accommodate for a optimal use of the radio channel
when the network load is high?

These are all problems of distributed control engi-
neering, where several units need to cooperate with
access te different information and with bounds on
the communication between them. The classical engi-
neering approach to such problems is to assign one
controller for each task and minimize the interaction
between them. However, the increasing complexity of
engineering systems makes it desirable to go beyond
the traditional methods and create a systematic theory
for decentralized decision-making and policy updates
in dynamical systems. The purpose of this paper is to
show how ideas from game theory and economics may
play an important role for this purpose.

We consider systems described by differential equa-
tions or difference equations. There is a set of agents,
each equipped with some decision variables influene-
ing the dynamics of the system. Every agent tries
to optimize his own objective defined in terms of the
system dynamies. However, the decisions by one agent
will also influence the others and we seek methods to
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handle this interaction through iterative negotiations
between the agents.

Iterative processes with provable convergence to a
Nash equilibrium for general classes of games are
hard to obtain, Similar difficulties appear in general
equilibrium theory of economics when it comes to price
negotiations aiming to reach a Walras equilibrium.
However, many engineering applications can be viewed
as “team decision problems”, with an over-all design
objective that is common to all agents [6}. This is a
special class of games, which are considerably easier
to analyze. Introduction of prices makes it possible to
split the team problem into an equivalent game where
each agent has a local objective which is “lnear in
money”. A classical argument then shows that price
iterations in the gradient direction converge towards
the desired equilibrium. See {12, Example 7, page 105].
For a convex-concave funection, gradient dynamics in
continuous time were proved by Arrow, Hurwicz and
Usawa to converge globally towards the saddle-point
[1}. The gradient iteration is known as the saddle
point algorithm, or Usawa’s algorithm. The method to
decompose a team problem has been used extensively
in methods for large-scale optimization, where it is
known as dual decomposition.

Distributed control problems and the relationship to
team decision problems have recently gained renewed
attention in the engineering literature. It has been
shown that a collection of controllers with access to
different sets of measurements can be designed using
finite-dimensional convex optimization to act optimally
as a team. The study of dynamic team problems was
initiated already in 1968 by Witsenhausen {13], who
also pointed out a fundamental difficulty related to
information propagation. Some special types of team
problems were solved in the 1970% {11], [5], but the
research activity in the area remained moderate until
recenily. Distributed contrel problems with spatial
invariance was exploited in [2], [3] and conditions for
convexity were derived in [10], {9].

In our previous paper [7] a linear quadratic stochas-
tic optimal control problem was solved for a state
feedback control law with covariance constraints. The
method gives a non-conservative extension of linear
quadratic control theory to distributed problems with
bounds on the rate of information propagation. An
output feedback version of the problem was solved in
[8] and for both finite and infinite time horizons in [4],




At the same time, (p3, p}) are the Lagrange multipliers
corresponding to the two equality constraints.

Below is a formal statement of the convergence re-
sult (without the sign constraints on x; of the original
paper) [}

Theorem 1 (Arrow, Hurwicz, Usawa): Assume that
V € CY{R") is strictly convex with gradient VV, while
G and H are positive definite and R has full row rank.
Then, all solutions to

#=—-G[(VV)T —RTp]
p=—HRx
converge to the unigue saddle point (x,,p.) attaining

m}:)ixmxin [V(x) — pTRx] (5)

Proof. Let ¢{x,p) = V(x) — p¥ Rx. Then

£=GVep,n)]”  p=—H[V(p)]

Define the Lyapunov function

1
W(x,p) = 5 (Iv — %l + [p— p.Jf)
Then

= #76 (s —x.) + S"H (p—p.)

[Vid(x,p)] (= — x.) — [Voolx, p)] (2~ p.)

= [¢(3'sp) - ¢(xg,p)] - [¢(“’sp) - ¢(x:P$)]

= [¢(.'c,p*) - ¢(:c*,p*)] - [¢(x$,p) - 9(1‘*’}’*)] <0

with equality if and only if x = «,.. Hence, by LaSalie’s
theorem, (x(#), p(¢)) tends towards M, the largest in-
variant set in the subspace x = x,. Invariance means
that # = 0, hence VV(x)¥ = RTp, so the only point in
M is (x.,p.). This completes the proof. m]

=
]

To concretize the result for the vehicle formation,
the response to a brief disturbance in v is plotted in
Figure 2, using gradient dynamics when (1)-(3) are
given by

6(x11 — )2 + pran
3(x12 — %22)% ~ p1%1a -+ paxen
2(x3 — %33)% + 2(x33)% — paeas

Notice that the cost of the first vehicle quickly recovers,
but there is a poorly damped oscillation in the response
of the second and third vehicle. This reflects the fact
that only the stationary equilibriwm is optimized, not
the transient dynamies. Hence it is natural to ask: Can
the same idea of dual decomposition be used to get a
distributed scheme for design of dynamic controllers?
To address this question, a more abstract version of
the theory will be introduced in the next few sections,
before returning to the vehicle formation problem.
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Fig. 2. The dynamics of the three cost functions when the reference
value for the first vehicle is subject to a transient disturbance. The
cost of the first agent quickly recovers, but there is a poorly damped
oseillation in the response of the second and third vehicle.

ITI. Basic NOTIONS OF GAME THEOQRY

A (strategic) game is defined by a map

=Gty ta) o (K@, Vo)) (6)

where u; is the strategy of player j and V(1) € R is
the payoff for player j. The notation (g}, [i_;) is used to
denote set of strategies that is equal to 7 in all entries
except i;. A Nosh equilibrium of the game is a set of
strategies I = ({i1,...,His) such that

VR) = V) (5, ) for all gy (7)

Given € > 0, a Nuash ¢-equilibrium of the game is a
set of strategies [I = (ff1,...,}is) such that

V(@) +e> Vi ) forall g (8)

A potential game is a game for which there exists a
potential function @ : 4 — R such that

sgn [V; () — V(1)) = sgn [@(7) — @ (1)]

whenever y; = ff; for i # j.

For the purpeses of this paper, we also introduce
the following slightly more general concept: A minmax
potential game is a game for which there exists a
potential function ® : y — R and a partitioning
{1,...,J} = 51 U % such that

oy e _ s @) —ew)]  ifje
s (10) ) = {F SO 2] e

whenever y; = [i; for i # j. The players in % maximize
the potential, while the players in % minimize the
potential.

A team problem with team payoff V is a game where
Vi=- =% =Y. V() = max, V(y), then [ is
called an optimal set of strategies for the team problem.
(Moreover, I is a Nash equilibrium of every potential
game with potential function 9.)




Theorem 3: Given H,..., V5, W,..., Wk as in (13)-(14),
the corresponding game is a minmax potential game with
potential ®(u,x, A} defined by (15). If (4,%,1) is a Nash
equilibrium of this game, then [I is & Nash equilibrium for
the team problem defined by (11)-(12).

Moreover, suppose miny max, . ®(g,x,4) is attained in
a point (J1,¥,4) satisfying the following (local) conditions:
There exists ¢ > 0 such that for A in a neighborhood of A

max B (g, %,4) > (%, 2) + el A— A (16)
X

and argmax, ., ®{u,x,A) — (#,%) as A — 1. Then, the
sequence {(u(c), 2(r), (7))}, defined by

(b (7 + 1) 25(r + 1))

= arg max (Vf(xf:#j) + 2 (Aman(x)) + D (A kil 1))

fy=j Je=F

Ar(t + 1) = Au(z) — %?fz [ak(xik (o)) + belx, (7). 45, (T))]

converges (globally) towards the Nash equilibrivm (i, %, 2)
as T — co, provided that the numbers yy,...,7x > 0 are
small enough to make max, . ®(,x,4) — 3, [|[4:]2/ne &
concave function of A for some i > ;.

Proof. When (;,5;) = (i, %;) for i # j, we have
V(E,%,2) — ¥y (i,%,4) = ®(B, %, 1) — ®(u,x,2)
Similarly, when A; = 2, for I £ £
Wh(f, %, 2) — Wi, %, A) = ®(,x,4) - ®(4,%,7)

Hence the conditions for a minmax potential game hold. If
{(#i,%,A} is a Nash equilibrium of this game, then

V{u) < sup inf®(i,x, A)
(n A

3757

< sup P(u,x, Ay = B(F,5,1) = V(i)
(CIET)

The first inequality follows directly from the definition of
7 (1), while the two equalities follow from the assumption
that gi, %,4) is a Nash equilibrium, Altogether, this proves
that i/ is a Nash equilibrium for the team problem,

To prove convergence towards the Nash equilibrium, in-
troduce

ml [ 3r(enaa () + biey ), (7))
h=11]= :
Pl | drx (on oo (2)) + b (g (7), 032 ()

(an 2) = D7 (A Aa)/me
k
We also use the notation At = A(r + 1), x* = x(r + 1) and
ut = pl{r + 1), Let U(A) = max, . ®(u,x,A). Then
U(A)— U(2) = o, x*,4) — max (i, 2, 7)

< Bt xt,A) — B(ut 5", 7)
= (2 - Z,a(x*) + b(x*, 1))
= {4 —1,2y"'R)

The condition {16} can be written

U(A) = U(Z) +¢l|d — A2

(17)

for A close to 4. However, U is convex by construction, so
U(2) = U2+ A - Al min{el|4 — Al 1}

must hold globally for sufficiently small 4 > 0. Combining
this with (17) gives

I — Al min{e|lA — 2|, u} < (2 — Z,207'h)
thus
min{el|l2 — A, #} < 2y~

To prove that lim, ., A(r) = %, it therefore remains to prove
that lim..,., [[A(z}|| = 0. Concavity of U(4) — {1,77'1) gives

UA+h) — (A + k7 (A + 1))

) +UA—R)~ (A—h (A —h))

<2U(A)—2(A,n7"A)
for k # 0. Hence
UA*y=U{A —~h)
S2U(A) - UA+h)+2(h, 1 R)
<2U(A) — @(ut,x*, A +h) +2(h, 1 'R)
= U(A) =~ (hya(x*) + b, 4*)) + 2(h, 777 'R)
=U@)+20" =y H|alf
In particular
U(A) < UAMT))

T—1

=3 [U@Ar + 1) - UAD)] + U(A(0))
<20 — ) S [R@IP + U(A(0)

=0

50 Forg IB(r)[* is bounded and lim, . ||R(z)]] = O. This
proves that Iim, ., A{7) = A. By assumption, this also gives
lim;.,o(22(7), (%)) = (i, %), so the proof is complete. o

VI. VEHICLE FORMATIONS RECONSIDERED

For optimization of dynamie controllers in the vehicle
formation, it is useful to quantify the resulting stationary
dynamics when v is a given diserete time stochastic process.
For an example of stable (but sub-optimal} dynamics, one
could let each vehicle optimize its position based on prices
determined by the following discrete time version of the
gradient dynamics studied before:

pi(t+ 1) = pr(8) + ha [0 () — 212(8)]
D2 (t + 1) = Py (t) + ha {.’L‘Qg (t) — 1‘23(0]

For small adjustment rates, the discrete time dynamics
is similar to the continuous time behavior, hence stable.
Suppose the disturbance v(¢) is a Gaussian discrete time
stationary stochastic process given by

vt + 1) = av(f) + w(t)

where w(t) is zero mean white noise with unit variance.
Figure 8 shows a simulation with & = 0.9 and gy, = g3 =
Qo2 = 923 = gas = gy = k1 = 0.1 . Due to the structure of the
gradient dynamics, the effect of w(#) will propagate through
the vehicle formation, affecting the first vehicle position xq;
at time £ -+ 1, the price p; and the second vehicle position
at time ¢ + 2 and finally the price p, and the third vehicle
at time £+ 3. We will now consider iterative improvement of

(18)




