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Abstract: Cylinder pressure sensors provide detailed information on the diesel engine com-
bustion process. This paper presents a method to use cylinder-pressure data for prediction
of engine emissions by exploiting data-mining techniques. The proposed method uses principal
component analysis to reduce the dimension of the cylinder-pressure data, and a neural network
to model the nonlinear relationship between the cylinder pressure and emissions. An algorithm
is presented for training the neural network to predict cylinder-individual emissions even though
the training data only provides cylinder-averaged target data. The algorithm was applied to an
experimental data set from a six-cylinder heavy-duty engine, and it is verified that trends in
emissions during transient engine operation are captured successfully by the model.

1. INTRODUCTION

Engine manufacturers are constantly forced by legislators
and the market to make engines cleaner and more fuel
efficient. To comply with these demands, engines become
more complex with more actuators and thus more degrees
of freedom to be calibrated. Since the time required for
calibration increases exponentially with the number of
variables, engine calibration and control design is becom-
ing a bottleneck in the development process. To remain
competitive and comply with legislation, engines must
make optimal use of their complex and expensive set of
actuators. Another issue is that as the emission targets are
reduced, a larger part of the total drive-cycle emissions are
due to spikes during transients. While it was previously
sufficient to calibrate the engine at steady-state, more
attention needs to be paid to the transient behavior in
the future.

One way to approach the calibration challenge is to add
more sensors to the engine. With more on-line sensor
information, focus may be moved from off-line calibration
to on-line closed-loop control. Instead of detailed pre-
calibrated maps, fine-tuning of actuator settings to opti-
mize engine behavior could be performed on-line. To that
purpose, sensors that provide information on the high-level
engine performance objectives such as emissions and fuel
consumption are needed. Today, on-line feedback control of
the engine is based mainly on indirect measurements such
as air flow or inlet manifold pressure. Sensors for NOx have
been added to engines for SCR control. However, these
sensors are normally placed downstream of the turbine
where the pressure and temperature is lower, and there-
fore they only provide low-pass-filtered, cylinder-averaged
information. Particulate matter sensors have also recently
been announced, targeted at on-board-diagnostics of diesel
particulate filter performance but speed and accuracy of
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these sensors are so far insufficient for on-line feedback
control.

A large number of methods to model emissions based
on other engine variables have been presented in the lit-
erature, see for example (Hirsch et al. [2008], Westlund
and Ångström [2009], Aithal [2010], Mrosek et al. [2010],
Tschanz et al. [2010], Sequenz and Isermann [2011], Shi
et al. [2011], Grahn et al. [2012]) and references therein.
The complexity of these models range from extremely de-
tailed computational fluid dynamics models, to very simple
empirical input-output maps. In order to use models for
on-line feedback control, the computational complexity
must be sufficiently low, and the input to the model
must be available from sensors with sufficient speed and
accuracy.

Cylinder pressure sensors provide information with high
temporal resolution on the combustion process in individ-
ual cylinders. These sensors have long been common-place
in engine research labs, and some announcements indicate
that they may eventually be a realistic option also for
production engines (Birch [2008], Pudenz [2007], General
Motors [2007], Shahroudi [2008]). To evaluate the market
potential of cylinder pressure sensors, it is important to
understand the potential benefits and limitations in the
kind of combustion information they provide. In this pa-
per, we assume that pressure sensor signals are available
for each individual cylinder, and investigate the quality of
information they can provide on engine emissions.

A method is proposed to use the detailed information on
the combustion process provided by the cylinder pressure
to predict engine emissions. The idea of using cylinder
pressure to predict other engine outputs such as emissions
has been exploited in many contexts before, both using
empirical data-based models, and physical models. For
example, Seykens et al. [2009] proposed a physical model
for predicting NOx and soot where cylinder pressure was
used as one out of several inputs. Wilhelmsson et al. [2009]



proposed a physical two-zone model for NOx prediction
based on cylinder pressure data. Traver et al. [1999]
defined a set of physical quantities extracted from the
cylinder pressure trace (such as ignition delay, combustion
duration, peak pressure) and trained a neural network
to predict HC, CO, CO2 and NOx emissions from these
physical quantities. Çebi et al. [2011] also used a set of
physical quantities extracted from the cylinder pressure
trace, and a parametric empirical model to predict PM
emissions.

The approach of this paper is based on data-mining tech-
niques. Cylinder pressure is normally sampled at a rate
of several kHz, and efficient information-processing tech-
niques are needed to extract the useful information from
this data in a systematic way. Most research publications
that use cylinder pressure data focus on a few parameters
with a physical interpretation that are derived from the
cylinder pressure, such as combustion phasing or IMEP.
However, a large number of different such parameters may
be defined, many of which may be redundant. Selecting a
subset of such parameters to characterize the combustion
process becomes somewhat heuristic. Principal component
analysis (PCA) is a systematic method to reduce dimen-
sionality of data, and has been used in the combustion
engine context for ion-current signals, see (Rizzoni [1997]),
and recently for cylinder pressure signals (Stadlbauer et al.
[2012], Henningsson et al. [2012]). In (Henningsson et al.
[2012]), principal component analysis was suggested as a
systematic approach to characterizing the cylinder pres-
sure with a reduced set of variables, and a neural network
was introduced to model emissions from this reduced set
of variables. In this paper, we extend this method with a
modified cost function for training the neural network that
is shown to result in realistic cylinder-individual emissions
predictions. Also, a larger data set is used to test the
method.

The paper is organized as follows. Section 2 introduces the
proposed model for dimensionality reduction using princi-
pal component analysis, and emissions prediction using a
neural network. The algorithm to train the neural network
is also presented. Section 3 describes the experimental data
used to evaluate the algorithm. Section 4 shows results for
using the virtual sensor scheme for cylinder-individual pre-
diction of λ, NOx, and opacity. Finally, some concluding
remarks are given.

2. MODEL

The scheme for predicting emissions from cylinder pressure
data consists of two steps. In the first step, the dimension
of the cylinder-pressure data is reduced, and in the second
step, a nonlinear model is introduced from the reduced-
dimension variable to the target variable.

In this section, the method is presented in general terms.
In Section 4, where the algorithm is evaluated on a
specific data set, the exact input- and output variables
are specified. Depending on the application, the method
could be used with other sets of inputs and outputs.

We will distinguish between five different sets of variables:

• Cylinder pressure p: The measured pressure, high-
dimensional data.
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Fig. 1. Overview of of information flow.

• Reduced-dimension cylinder pressure representation
w: Reduced-dimension representation of p.

• Input to nonlinear model q: w combined with other
measured engine variables v such as engine speed,
injection timing, etc.

• Target variables ζ: The target variables for prediction,
i.e., the cylinder-individual instantaneous cylinder-
out emissions (not available for measurement).

• Measured variables y: The measured emissions used
for inference of model parameters. These differ from ζ
in that they are averaged over cylinders and corrupted
by the dynamics in the exhaust manifold and the
sensors.

The relationship between the variables is illustrated in
Fig. 1.

2.1 Dimensionality reduction from p to w

Principal component analysis (PCA) is used to find
a reduced-order representation of p, as was described
in (Henningsson et al. [2012]). From a large set of cylinder
pressure data collected at a variety of operating condi-
tions, principal component analysis may be used to find
an optimized orthonormal set of basis functions {φ}Ll=1 to
approximate the data. For details on PCA, see for example
(Bishop [2006]).

Once the optimal basis functions have been determined,
each observation pn of the cylinder pressure p ∈ R

P can
be approximated by a weighted sum of the basis functions

pn = φ0 +

D∑

i=1

wnlφi + en (1)

where the approximation error en decreases as the number
of basis functions L increases.

Because the basis functions {φ}Di=1 are orthonormal, the
weights wn ∈ R

D can be computed from pn through a
straight-forward matrix multiplication

wn = Φ(pn − φ0) (2)

The weights wn is a D-dimensional representation of
the P -dimensional cylinder pressure data pn. With a
sampling interval of 0.2 CAD, P = 3600. In (Henningsson
et al. [2012]) it was shown that the approximation error
decreases rapidly with increasing D, and that D < 10
may be sufficient to approximate the cylinder pressure



Fig. 2. Structure of neural network for cylinder-individual
prediction of emissions. Note that the functions
fNN (·) and parameters θ are the same for all cylin-
ders.

N number of data
K dimension of ζn (number of network outputs)
L dimension of qn (number of network inputs)
M dimension of zn (number of hidden nodes)
C number of cylinders

Table 1. Summary of notation for the neural
network model.

data. There is consequently a significant dimensionality
reduction in going from p to w.

2.2 Neural network model from q to ζ

A neural network is proposed to predict the target variable
ζ from the set of reduced variables q. We assume that
q is available for each cylinder individually, whereas the
training data only provide y measured in the exhaust flow
common to all cylinder. We wish to train a neural network
model fNN(qc, θ) that predicts ζc individually for each
cylinder by assuming that the network parameters θ are
common to all cylinders, and that mixing of the exhaust
flow averages emissions over the cylinders,

ζ =
1

C

C∑

c=1

ζc =
1

C

C∑

c=1

fNN (qc, θ) (3)

The model is illustrated in Fig. 2.

Define:

• ζnk: output k at time n, measured or estimated from
sensor data

• ζ̂nkc: predicted output k at time n for cylinder c

•
¯̂
ζnk: predicted output k at time n, averaged over
cylinders.

Network model The neural network structure is built
from a standard feedforward network with a single hidden
layer and sigmoidal basis functions (Hastie et al. [2009]),
and the model for averaging over cylinders (3). The no-
tation for indices used in this section is summarized in
Table 1.

The neural network model is given by

ξnmc = αm0 +

L∑

l=1

αmlqnlc (4)

znmc = σ(ξnmc) (5)

z̄nm =
1

C

C∑

c=1

znmc (6)

ζ̂nkc = βk0 +

M∑

m=1

βkmznmc (7)

¯̂
ζnk =

1

C

C∑

c=1

ζ̂nkc = βk0 +

M∑

m=1

βkmz̄nm (8)

Here, z represent the hidden layer variables, and α0, α, β0,
β are the network parameters.

Cost function For training of the network, a cost func-
tion R built from a prediction error term Rpe and a
regularization term Rreg is defined

R = Rpe + γRreg, (9)

where γ is constant weight. The prediction error cost is
given by

Rpe =
1

2

N∑

n=1

K∑

k=1

(ζnk −
¯̂
ζnk)

2 (10)

and the regularization cost by

Rreg =
1

2C

N∑

n=1

K∑

k=1

C∑

c=1

(ζ̂nkc −
¯̂
ζnk)

2. (11)

The regularization term is included to avoid overfitting
by penalizing the difference between the predicted output

of the individual cylinders ζ̂nkc and the predicted average
¯̂
ζnk.

Network training Optimization of R with respect to
θ = {β0, β, α0, α} can be performed through a gradient
descent method

θ(τ+1) = θ(τ) − η(τ)
dR

dθ
(θ(τ)). (12)

Algebraic expressions for the derivative of R with respect
to θ are found in Appendix A. The step size ητ is chosen
iteratively such that R is decreased in each iteration τ .
The training scheme is summarized in Algorithm 1.

3. EXPERIMENTAL DATA

Experimental data was collected on a six-cylinder heavy-
duty Volvo D13 engine. The engine was equipped with
a low-pressure EGR loop, a VGT, and cylinder-individual
water-cooled pressure sensors. A data set of approximately
30,000 engine cycles was collected in transient operation
at three different engine speeds and a range of loads
at each speed. The load-speed map is shown in Fig. 3.
At each operating point, the fuel injection duration, the
injection timing, and the EGR and VGT actuators were
manipulated in open loop.

A Siemens VDO/NGK Smart NOx sensor (Siemens VDO
[2005]) was used to measure NOx and λ. An opacimeter
was used to measure PM emissions. Piezo-electrical, water-
cooled pressure transducers of type Kistler 7061B were
used to measure the cylinder pressure.



Algorithm 1 Scheme for training neural network from
measured variables q to target variables ζ.

1: Rescale each input qk to zero mean and unit sample
variance.

2: Draw 20 initial estimates θ
(0)
1:20 ∈ N (0, 1).

3: Compute R(θ) for each θ(0) and select the one that
gives the smallest cost.

4: Let η(0) = 1.
5: for τ = 0 to τmax do
6: Compute the gradient of R with respect to θ for

θ = θ(τ),

∇R(τ) =
dR

dθ
(θ(τ))

according to Appendix A.
7: Compute θ∗ = θ(τ) − η(τ)∇R(τ)

8: while R(θ∗) > R(θτ ) do
9: η(τ) := η(τ)/2

10: θ∗ = θ(τ) − η(τ)∇R(τ)dR/dθ(θτ )
11: end while
12: θ(τ+1) = θ∗

13: η(τ+1) = 2η(τ)

14: end for
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Fig. 3. Engine torque and speed for data set used for
network training.

3.1 Pre-processing of the cylinder pressure p

The cylinder pressure sensor offset was computed by
simultaneously estimating the polytropic exponent and
pressure offset for a range of crank angle degrees in the
compression stroke prior to combustion, as described in
Tunest̊al [2009].

3.2 Pre-processing of measured emissions data y

The exhaust flow- and sensor dynamics were modeled
as first-order low-pass filters with a time delay, and an
optimal non-causal Wiener filter was used to estimate ζ̄
from y to obtain neural network training data. For details
of this procedure, see (Henningsson et al. [2012]). The

measured output y and Wiener filter estimates ζ̂wiener for
a step increase in load is illustrated in Fig. 4.
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Fig. 4. Measurements y of NOx, λ, and opacity (blue) when

load is increased, and Wiener filter output ζ̂wiener

(green). Note that the time delay of the measurements
has been removed without increasing the visual noise
levels.

4. RESULTS

4.1 Network structure

The scheme was tested on prediction of λ, NOx, and
opacity

ζ = (λ XNOx Xop)
T

(13)

Opacity was chosen rather than particulate matter mass or
particle number, as this signal was available for transient
measurements in the laboratory setup. The purpose was to
illustrate to what extent the cylinder pressure can provide
information on soot emissions.

Input to the network was the first eight principal com-
ponent weights w1:8, as well as injection duration uFD,
injection timing uSOI , and engine speed Nengine

q = (w1:8 uFD uSOI Nengine)
T

(14)

The choice of the number of principal component weights
to include was made considering computational complexity
for training the network, and it was also concluded that
the higher-order components mostly represent combustion
noise. The additional inputs uFD, uSOI , and Nengine were
chosen because they are available on a cycle-to-cycle,
cylinder-individual basis, and they have a direct effect on
the in-cylinder combustion process. Other control variables
such as EGR valve and VGT actuator positions would not
be appropriate since they only have an indirect, dynamic
effect on combustion through the gas flows.

The number of hidden nodes was chosen as M = 10, and
the regularization weight to γ = 0.5.

From the total data set of 30,000 cycles, a subset was
chosen for network training. The subset was selected by



considering the distribution of the target variables ζ. The
desired size Ntrain of the training data was determined.
For each of the outputs ζk, a subset Zk of size 2Ntrain was
selected such that the estimated probability distribution
p(ζi) would be approximately uniform in Zi. The training
subset D was finally selected as Ntrain random samples
over the union of Zk over the outputs. The purpose was
to include more samples from transients with large peaks
in emissions.

The network training algorithm was implemented in
Python.

4.2 Validation

For network training, 10% of the data was used, and
the gradient descent network training algorithm was run
for 5,000 iterations (corresponding to approximately 5
minutes on a standard PC). Figure 5 shows neural network

prediction ζ̂NN of the target variables ζ over the entire
data set. Note that the targets ζ were obtained through
the non-causal Wiener filter from the measured variables
y, and should therefore not be interpreted as the ’truth’.
The R2 and root mean square error statistics for prediction
over the entire data set were

R2
λ = 0.92 RMSEλ = 0.074

R2
NOx = 0.90 RMSENOx = 74 ppm
R2

op = 0.74 RMSEop = 1.9%
(15)

4.3 Example: EBP transient

To exemplify the performance of the prediction scheme,
we look closer at a segment of the data. This data set
consists of 1000 consecutive cycles from an experiment
at load IMEPn = 7 bar and speed Nengine = 1700 rpm.
All actuators were kept constant except for the exhaust
back pressure (EBP) valve that controls the low-pressure
EGR flow. This valve was varied as shown in Fig. 6, which
caused λ to vary between approximately 1.4 to 2.1. Also
shown in Fig. 6 is the cylinder pressure from cylinder
2 during this transient. In Fig. 8, the cylinder pressure
for all six cylinders is shown at cycle 300 and 500 to
illustrate the cylinder-to-cylinder variability. During the
transient, the principal component weights w computed
from the cylinder pressure are the only variables in the
neural network input q that vary. We can therefore see how
well emissions are predicted using cylinder pressure data
only. Figure 7 shows how the principal component weights
w1 to w8 for the six cylinders vary during the transient.

Figure 9 shows the neural network predictions. The pre-
dictions are fairly good; notably the trends are captured
rather well. Cylinder-to-cylinder variations are significant.
However, the differences appear to be systematic; as an
example we can see that cylinder 3 (red) appears to have
slightly higher λ compared to the other cylinders and at
the same time higher NOx and lower opacity. This is in
line with what would be expected from physical insight.

In some parts of the data, the cycle-to-cycle noise is
significant. There are a number of possible explanations
for this,

• The number of nodes in the neural network was too
small to provide good models at all operating points.
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• The gradient descent algorithm converged to a local
minimum.

• The training data did not provide sufficient informa-
tion to train a successful model.

• The inputs to the neural network do not provide
enough information to predict NOx, regardless of
model.

• The true cycle-to-cycle variations in NOx are large.
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5. CONCLUSIONS

A virtual sensor that predicts emissions based on cylin-
der pressure data was presented. The PCA approach was
used to find a reduced-dimension approximative represen-
tation of the cylinder pressure data that minimized the
approximation error. It was shown that a neural network
could be trained to predict emissions from the reduced set
of variables. Cylinder-to-cylinder differences in predicted
emissions were rather substantial. However, the differences
were systematic and agreed with physical intuition.

In contrast to previously published work on predicting
emissions from cylinder pressure data, the method pre-
sented here has been validated on a cycle-to-cycle cylinder-
individual basis during transient operation for prediction
of both λ, NOx, and PM. None of the references mentioned
in the introduction (Traver et al. [1999], Seykens et al.
[2009], Wilhelmsson et al. [2009], Çebi et al. [2011]) present
cycle-to-cycle transient predictions. In (Wilhelmsson et al.
[2009]), a very small validation data set of 150 cycles col-
lected at steady-state in a single-cylinder engine was used.
Cycle-to-cycle variations in NO prediction were shown to
be considerable. In (Traver et al. [1999]), only two out of
eight cylinders were equipped with pressure sensors and
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−30 −20 −10 0 10 20 30
20

30

40

50

60

70

80

90

100
cycle 300

−30 −20 −10 0 10 20 30
20

30

40

50

60

70

80

90

100
cycle 500

p
[b
a
r]

CADCAD

Fig. 8. Cylinder pressure for all six cylinders at engine
cycles 300 and 500 for the transient in Fig. 6.



0 200 400 600 800 1000

1.4

1.6

1.8

2.0

2.2

0 200 400 600 800 1000

0

200

400

600

800

1000

0 200 400 600 800 1000

0

5

10

15

20

25

30

35

40

λ
N
O

x
(p
p
m
)

o
p
a
ci
ty

(%
)

cycle

Fig. 9. Target output ζ (black), predicted output averaged

over cylinders ζ̂ (grey), and cylinder-individual pre-

dicted output ζ̂c (colors) for the transient in Fig. 6.

no results on cylinder-to-cylinder differences were shown.
The cycle-to-cycle data were low-pass filtered using a five-
point moving-average filter. The model was trained at
steady-state but still proved to give qualitatively good
predictions of NOx, HC, and CO2 emissions during an
FTP transient. In (Seykens et al. [2009]), only steady-state
data was used. Cylinder-to-cylinder variations were shown
to be fairly large, but it is not clear from the paper how
large the cycle-to-cycle differences were or how the data
was averaged. In (Çebi et al. [2011]), an empirical model
for PM calibrated at steady-state proved to give very
good transient performance. However, it is unclear how
many actuators that were manipulated independently in
the training and validation data, i.e., which variables that
were varied in open loop for excitation as opposed to being
determined from other variable through the standard ECU
calibration. It is therefore difficult to estimate how well the
model would perform in general.

In light of the previous work on cylinder-pressure based
estimation of esmissions, the proposed model is rather

promising in terms of prediction accuracy. Prediction of
λ and NOx were quantitatively reasonably accurate, and
prediction of opacity qualitatively accurate. A key point
of using cylinder-pressure based estimates of emissions
is to obtain cycle-to-cycle cylinder-individual estimates
that could be used for feedback control, for example on-
line tuning of start of injection to the optimal NOx–PM
trade-off for each cylinder individually. It is then essential
that the emissions estimates are sufficiently accurate for
each individual cycle and cylinder, so that no extensive
low-pass filtering that decreases the bandwidth of the
sensor is required. It should be noted that the validation
results presented in the theses are based on an entirely
static model. To predict emissions at any given cycle,
no information from measurements in previous cycles is
used. This leads to fast but noisy measurements. The
results could likely be significantly improved by cycle-to-
cycle filtering at the expense of a slower response. To
avoid steady-state error, a sensor fusion scheme could
be introduced where the fast cylinder-individual virtual
sensor output is combined with slower sensors that are
placed downstreams of the turbine.

All empirical models are sensitive to the data set used
for training, and extrapolation performance is generally
poor. For future work, it would be of interest to study the
robustness of the model to disturbances in the operating
mode due to e.g. different intake air temperature or
humidity, or aging of engine components. Also, using
the virtual sensor for feedback emissions control will be
considered.
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Appendix A. COST FUNCTION GRADIENTS

Algebraic expressions for the gradients of the two cost
functions Rpe and Rreg used for neural network training
are presented here. The input q is a three-dimensional
tensor, with the dimensions representing sample index,
input index, and cylinder index, respectively.

The derivatives with respect to α0 ∈ R
M , α ∈ R

M×L,
β0 ∈ R

K , β ∈ R
K×M are derived element-wise to avoid

introducing notation for tensor operations. Note that
computations can be implemented efficiently using multi-
dimensional arrays and tensor multiplication.
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