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Abstract

Diabetes is a disease characterized by insufficient capacity to regulate the
blood glucose level. In insulin-dependent diabetes, multiple daily injections
of insulin have to be administered. In-between scheduled visits to the care
provider, the patient has to manage the glucose control independently. Insulin
dosing is a non-trivial task and many patients find it difficult. This is reflected
in the health statistics, that indicate that a majority of patients with diabetes
have poor metabolic control with associate risks of several short and long
term complications.

In this thesis, building blocks of a defence-in-depth approach to glucose
self-management in insulin-dependent diabetes are investigated. Defence-in-
depth is a concept where technical and administrative systems work in co-
hort to divert potentially dangerous conditions and events. In the context of
insulin-dependent diabetes this amounts to avoiding low (hypoglycemia) and
high (hyperglycemia) glucose values. Data from the European DIADvisor
project and from a local trial conducted with patients from Skåne University
Hospital were used in the thesis.

A basis for improved glucose control is understanding and knowledge of
the glucose-lowering effect of insulin, the insulin action, and the correspond-
ing glucose-elevating effect produced by meal intake. Individualized models
of these impacts, and methods to improve the predictive capacity of these
models, were developed. Interesting properties, such as, time-variability and
nonlinear effects, were found. The models allow for the glucose level to be
predicted and different meal and bolus scenarios to be simulated. Using the
models, the possibility to foresee and prevent nocturnal hypoglycemia was
validated with good performance in a retrospective analysis on the collected
data.

Recent advances in sensor technology have allowed for commercial sys-
tems where the glucose level is measured with a high sampling rate in the
interstitial fluid. However, a known deficiency with this approach is the mea-
surement lag introduced by equilibrium dynamics between the blood and
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interstitial compartments. A Kalman filter based approach to resolving this
issue was developed and successfully validated in a case study.

Diabetes glucose dynamics is known to comprise both short and more
long term time-variability. Merging different diversified models may prove to
be a successful approach, as a means to improve performance and robustness
under such conditions. A novel merging algorithm based in a Bayesian setting
was developed. The suggested method admits for soft switching and interpo-
lation between the different models based on an evaluation of the different
predictors’ recent performance, using a sliding data window, and by looking
for data features identified to be correlated to switching. Different aspects of
the merging approach were investigated, using a simulated dataset, and the
concept was thereafter successfully validated, showing improved robustness
to the prediction performance in comparison to relying on the individual
prediction models.

Meal impact models were estimated for 56 different meal types, and a
clustering analysis showed that a majority of these models could be repre-
sented by three base models. Cross-validation confirmed good predictive ca-
pacity. The insulin action and meal impact models were further used to assess
whether clinical recommendations on postprandial glucose levels, issued by
international patient and professional organizations, are realistic and achiev-
able. An important finding was that the postprandial excursion of meals
with rapid postprandial response may be impossible to restrain within the
recommended boundaries for even moderate meal sizes. This difficulty is ex-
aggerated for persons with slower than normal insulin action.

The above methods and models could contribute to improving already
available technology in diabetes self-management such as, e.g., bolus dose
guides in insulin pumps, warning systems in continuous glucose monitoring
systems or in interpretation and implementation of postprandial recommen-
dations.
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Preface

The audience of this thesis are clinicians, patients and their relatives, inter-
ested in how technology can be used to improve diabetes self-management
and patient empowerment, and scientist and engineers who want to work
together with the former to transform these goals into reality. While some
more technical parts may be more inaccessible to someone lacking an engi-
neering background, most of the results, discussions and conclusions should
be readable to anyone with an interest in glucose self-management.

Several landmark technological and pharmacological achievements, pri-
marily the rapid-acting and long-acting insulin analogs, the insulin pump
and the continuous glucose sensor, are indispensable in this venture. Look-
ing back, we are moving from an inflexible therapy centred around com-
pliance, infrequent feedback and guess-work, into an agile, knowledge- and
information-oriented care with higher level of patient empowerment. Within
the research community, several groups are working on both the open- and
closed-loop approach—the artificial pancreas. The steady progress, visible
in the number of studies moving the research from the hospital bed into
real-world home free-living conditions, is encouraging. In parallel, patient-
driven groups such as Nightscout, often spearheaded by enthusiastic and
frustrated parents of children with insulin-dependent diabetes, push the en-
velope of making continuous glucose monitoring more accessible and useful,
by allowing sharing of the data over the cloud and on different platforms. All
put together, these groups can help transform diabetes care into preventive,
rather than reactive, care. This is my contribution.
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1

Introduction

1.1 Motivation

Diabetes Mellitus is a chronic metabolic disease where the affected patients
have disturbed glucose regulation which if left untreated, results in elevated
blood glucose levels. The disease is divided into two categories; type 1 dia-
betes (T1DM) and type 2 diabetes (T2DM). In T1DM, the pancreatic insulin
producing β-cell are destroyed due to an auto-immune response. T2DM is
a common diagnosis for several different underlying causes to deteriorating
glucose control, such as reduced insulin sensitivity and prolonged or deterio-
rated pancreatic insulin response. There is a strong genetic component to the
risk of both T1DM and T2DM. The etiology behind the sudden auto-immune
attack leading to type 1 is still obscured, but some evidence point to that
viral infections may play a key role in the triggering mechanism [Christen
et al., 2012]. Type 2 diabetes typically evolves over a number of years before
diagnosis, and is strongly connected to sedentary life-style and overweight,
but the incidence also increases with age.

The incidence of both types of diabetes, especially T2DM, increases at an
alarming rate on a global scale. In year 2000, WHO estimated 171 million to
be affected [Wild et al., 2004], and in 2014 the International Diabetes Fed-
eration (IDF) estimated the number to 387 million (of which 179 million are
undiagnosed) [IDF, 2014], already exceeding the 2030 forecast from WHO in
2000. By 2035, the expected number closes in on 600 million in IDF’s recent
analysis [IDF, 2014]. In Sweden, the total number is about 365.000, of which
about 40.000 are T1DM [The Swedish National Board of Health and Welfare,
2009a]. In general, about 10% of the patients are of T1DM. Along with the
increasing numbers of affected, the total costs to society increase dramati-
cally. In Sweden, the total direct cost of diabetes treatment was estimated
to 7 billion SEK in 1998, considering only T2DM patients [Henriksson et al.,
2000]. Globally, figures of 612 billion USD have been stated, amounting to
11% of the total healthcare expenditure for adults (20-79 years old) [IDF,
2014]. The main cost drivers are costs related to treatment of acute and late

11



Chapter 1. Introduction

Table 1.1 Comparison of the cost structure for an average patient and a
patient with both micro and macrovascular complications. Costs in SEK
per year (1998) [Henriksson et al., 2000].

Average Patient Patient with both micro- and
macro-vascular complications

Hospitalization 10 599 29 555
Ambulatory Care 7 719 11 053

Drugs 6 665 9 520

Total 24 983 50 128

complications resulting from poor glycemic control [Henriksson et al., 2000],
see Table 1.1, and the indirect costs, related to loss of productivity resulting
from mortality and disability from these complications—in Sweden estimated
to 5.4 billion SEK [Bolin et al., 2009].

These complications spring from either too low glucose levels, hypoglyce-
mia, or too high blood glucose concentrations, hyperglycemia. Hypoglycemia
may result in acute seizure, coma and even death in severe cases due to
insufficient energy supply to the brain. Glycated haemoglobin (HbA1c) re-
flects elevated glucose levels over a longer time period (2-3 months), and
prolonged raised HbA1c has been shown in large multi-center trials to be
linked to increased risk of micro and macro cardiovascular implications,
and result in, e.g., renal failure, amputation and blindness [DCCT Group,
1993; DCCT/EDIC Group, 2005]. Records show that almost half of the dia-
betic population in Sweden have a mean glucose level, measured as HbA1c,
above the guideline value, implying a significantly increased risk of the afore-
mentioned long-term complications [The Swedish National Board of Health
and Welfare, 2009b], and there is good reason to believe that these num-
bers translate globally. Thus, means to improve the metabolic control for
these patients are seminal to cut back the dismaying growth rate of mone-
tary and physiological costs of this disease, and to lighten the heavy burden
this implies on the healthcare programmes and institutions. For non-insulin
dependent (NIDDM) T2DM, insulin sensitivity promoting oral agent, to-
gether with changes in lifestyle, may suffice to improve the metabolic control.
In insulin-dependent diabetes mellitus (IDDM) covering T1DM and insulin-
treated T2DM patients, the conditions are very different. For IDDM, the
appropriate amount of insulin to administer is often hard to estimate and
steep changes of the glucose level may suddenly arise. An undesirable, or even
dangerous, situation may thereby quickly arise, calling for new treatment de-
cisions. In comparison to NIDDM, the variations are faster, the number of
decision points over the day more frequent and different, and the acute risks
more pronounced. The need, prerequisites and type of decision support or
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1.2 Outline of the Thesis and Summary of Contributions

automatic control is therefore very different between these two groups. For
the IDDM, continuous support to optimize the insulin regime may have a
profound effect on the possibility to maintain normal glucose levels, whereas
management of diet, exercise and other lifestyle-related changes, and long-
term follow-up thereof, is the core to improved NIDDM T2DM metabolic
control.

In order to contribute to means to improved glycemic control, this thesis
investigates methods and models that may be used in glucose self manage-
ment for persons with IDDM. Some of the fundamental questions, as well as
more practically oriented aspects of glucose control, will be addressed:

• Can the insulin action, i.e., the glucose-lowering effect, of rapid-acting
insulin be estimated for a specific individual?

• Is there time-variability in the glucose dynamics, and can changes in
insulin requirement related thereto be estimated?

• Can nocturnal hypoglycemia be predicted in advance, and if so, can
preventive actions be taken to circumvent such an event?

• How do different meal types impact the glucose level?

• What are the optimal bolus approach to different meal types?

• Are the clinical guidelines regarding postprandial response realistic and
achievable for all patients and all meal types?

• Can the sensor lag introduced by the continuous glucose monitor sys-
tems be circumvented?

The research was based on data from the European FP7 IP research
project DIAdvisor [DIAdvisor, 2012] and from data collected in a clinical
trial conducted at the Endocrinology Department at the Skåne University
Hospital.

1.2 Outline of the Thesis and Summary of Contributions

Chapter 2. Background

In this chapter a background of diabetes physiology and technology used in
diabetes therapy is given. This covers an overview of some of the most im-
portant and influential physiological and data-driven models used in diabetes
technology research. The concept of defence-in-depth, and how it relates to
diabetes management is also explained.
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Chapter 1. Introduction

Chapter 3. Data and Data Characteristics

The basis for this thesis are the empirical data collected over several trials.
Here, we present the Diadvisor and ULund trials and some data charac-
teristics that were recognized. The chapter is partly based on the following
publications:

• Ståhl F. Diabetes Mellitus Glucose Prediction by Linear and Bayesian
Ensemble Modeling. Licentiate Thesis, TFRT--3255--SE, Department
of Automatic Control, Lund University, Sweden, December 2012.

• Ståhl F and Johansson R. Diabetes Mellitus Modeling and Short-Term
Prediction Based on Blood Glucose Measurements. In Mathematical
Biosciences, 217(101-117), Jan 2009.

The first publication is the licentiate thesis by the author. Fredrik Ståhl
was the main author of the second paper. The co-author contributed with
assembling of the paper and with valuable comments and discussions regard-
ing the methods and results. Regarding the ULund trial, the author designed
the study, and wrote the application to the ethical committee together with
Mona Landin Olsson.

Chapter 4. Modeling Insulin Action

Insulin action is the glucose-lowering effect of insulin. In this chapter, a
non-parametric finite impulse response model was used to describe this phe-
nomenon and the model’s ability to reproduce overnight glucose data was
tested for the ULund Trial data. The estimated duration and total glucose-
lowering effect was compared to the patients’ pump settings. Noteworthy is
the heterogeneous properties of the model across the glucose range and the
description of changes in insulin demand during the night. The chapter is
based on the following publication:

• Ståhl F, Lindström E., Landin Olsson M and Johansson R. Kernel-
based Estimate of the Insulin Action of Rapid-Acting Insulin in Home-
Monitored Data. Accepted to 17th IFAC Symposium on System Iden-
tification (SYSID 2015), Beijing, China, Oct 19-21, 2015.

Fredrik Ståhl was the main author of the paper. The co-authors con-
tributed with valuable comments and discussions regarding the methods and
results.

Chapter 5. Nocturnal Hypoglycemia Prediction

Using the model developed in Chapter 4, the important application of de-
tecting and preventing nocturnal hypoglycemia is evaluated. Pairing the
model with a Kalman filter approach, validation on nocturnal hypoglycemic
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1.2 Outline of the Thesis and Summary of Contributions

episodes was conducted on the ULund Trial data. The chapter is based on
the following publication:

• Ståhl F, Johansson R. and Landin Olsson M. Predicting Nocturnal
Hypoglycemia Using a Non-Parametric Insulin Action Model. Accepted
to 2015 IEEE International Conference on Systems, Man, and Cyber-
netics (SMC2015), Hong Kong, China, Oct 9-12, 2015.

Fredrik Ståhl was the main author of the paper. The co-authors con-
tributed with valuable comments and discussions regarding the methods and
results.

Chapter 6. Meal Impact Identification

In this chapter we turn to the impact of the most significant disturbance to
glycemic homoeostasis—the meal intake. Continuing the outlined approach
for the insulin impact we also modeled the postprandial impact of meals with
a finite impulse response model. Recognizing that the composition of the meal
plays a key role, the meals were divided into different recipes, and each recipe
was modelled separately. The models were validated on the ULund trial data
in terms of ability to reproduce the glucose excursion following a meal in the
postprandial phase. Cluster analysis was conducted, showing that a majority
of the identified meal impact models could be represented by three different
base models. The chapter is based on the following publication:

• Ståhl, F. A novel model of the postprandial response in insulin-
dependent diabetes. Submitted to Medical & Biological Engineering
& Computing.

Chapter 7. Meal Bolus Optimization

In this chapter the models of insulin action and meal impact were com-
bined with an optimization method to determine optimal meal bolus doses
for each recipe identified in Chapter 6. Using these dosing strategies, it was
investigated whether the different recommendations on the postprandial glu-
cose response issued by international patient and professional organizations,
such as the American Diabetes Association (ADA), International Diabetes
Federation (IDF) and the American Association of Clinical Endocrinologists
(AACE) always are achievable. An important finding was that for some indi-
vidual with severe mismatch between the dynamics of the insulin action and
the meal impacts, only small meal sizes can be digested without violating
the recommendations, regardless of dosing strategy.

Chapter 8. Sensor Lag Compensation

Continuous glucose measurement in interstitial fluid is known to be lag-
ging in relation to capillary glucose measurements. This chapter presents
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Chapter 1. Introduction

an augmented model of the glucose-insulin interaction, including a model
of measurement dynamics. The concept is evaluated for reduced lagging of
the short-term prediction on one patient data set from the first trial of the
DIAdvisor project. The chapter is based on the following publications:

• Ståhl F. and Johansson R., Observer Based Plasma Glucose Prediction
in Type 1 Diabetes, In Proc. 3rd IEEE Conf. on Systems and Control,
pp. 1620-1625, Yokohama, Japan, 8-10 Sept, 2010.

Fredrik Ståhl was the main author of the paper. The co-author contributed
with valuable comments and discussions regarding the methods and results.

Chapter 9. Ensemble Prediction

Here, a novel algorithm for ensemble prediction is introduced, using several
models derived for short-term glucose prediction. The suggested method ad-
mits for soft switching and interpolation between the different models based
on an evaluation of the different predictors’ recent performance, using a slid-
ing data window, and by looking for data feature identified to be correlated
to switching. The suggested method was validated on simulated data, as well
as 12 patient data sets from the second DIAdvisor trial, showing improved
robustness to the prediction performance in comparison to relying on the
individual prediction models. The chapter is based on the following publica-
tions:

• Ståhl F and Johansson R. and Renard E. Ensemble Glucose Prediction
in Insulin-Dependent Diabetes, in Data-driven Modeling for Diabetes,
Lecture Notes in Bioengineering, Springer Verlag, 2014.

• Ståhl F, Johansson R. and Renard E. Bayesian Combination of Multiple
Plasma Glucose Predictors. In Proc. 34th Annual International IEEE
EMBS Conference (EMBC 2012), pp. 2839-2844, San Diego, CA, U.S,
Aug 28-Sept 1 2012.

• Ståhl F. and Johansson R. Receding Horizon Prediction by Bayesian
Combination of Multiple Predictors. In Proc. 51st Annual IEEE Conf.
on Decision and Control (CDC2012), pp. 5278-5285, Maui, Hawaii,
U.S, Dec. 10-13, 2012.

Fredrik Ståhl was the main author of all three publications. The co-
authors contributed with valuable comments and discussions regarding the
methods and results.

Chapter 10. Conclusions and Future Research

The most important contributions and conclusions of the thesis are summa-
rized in this chapter and some directions for future research are outlined.
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Meeting, San Francisco, U.S., Oct 30-Nov 2, 2013.
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2

Background

2.1 Diabetes Type 1 and the Glucoregulatory System

Diabetes type 1 is a chronic disease where the β-cells of the pancreas have
stopped to produce insulin. This is in most cases due to an auto-immune at-
tack, but may in rare cases also be caused by sustained injuries from accidents
or pancreatic cancer. In order to understand the disease, a brief overview of
the glucoregulatory system is presented, see, e.g., [Nussey and Whitehead,
2001] for a more extensive review.

The Glucoregulatory System

The glucoregulatory system is concerned with glucose metabolism and the
insulin/glucose mechanisms needed to maintain normoglycemia. Figure 2.1

Gut

Blood System
   (glucose)

IIT

IDT

Liver

Pancreas

Glucagon

Insulin

: flow

: affect

Figure 2.1 Overview of the glucoregulatory system describing the rela-
tionship between the flux from the gut into blood system and the interac-
tion with the insulin-dependent tissue (IDT), the insulin-independent tissue
(IIT), the pancreas and the liver.
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presents a simplified overview of the flow of glucose between the most im-
portant organs relevant for this system. Below, a short description of these
organs and their role in the so-called absorptive state and the post-absorptive
state, the two parts that make up the metabolic cycle, is given. A brief de-
scription of insulin absorption from insulin injections will also be presented.
Emphasis will be put on the digestive system and insulin absorption from
injections.

The absorptive state is the time following a meal during which the in-
gested carbohydrates are digested and absorbed. During this period, excess
glucose is absorbed and stored for later use. The post-absorptive state is the
time after a meal when the gastro-intestinal tract is empty and energy has
to be provided by the body’s own storages.

During the absorptive stage, glucose is converted and stored as the
polysaccharide glycogen, in the liver as well as directly in the muscle cells.
This process is stimulated by insulin. During the post-absorptive stage, the
liver glycogen storage is broken down to glucose and released into the blood
stream, providing energy for the body cells. This process is stimulated by
glucagon and inhibited by insulin. Apart from converting glycogen to glu-
cose, new glucose can be formed from protein and fat by gluconeogenesis.
The metabolism of consumed alcohol inhibits this process [Siler et al., 1998],
which may result in severe hypoglycemia in IDDM patients [Turner et al.,
2001].

In the pancreas, two important hormones relevant to the glucoregula-
tory system are synthesized, namely insulin and glucagon. Insulin release is
mainly stimulated by elevated blood glucose concentration. Therefore, sub-
stantial amounts are released in the absorptive stage, when the glucose level is
raised due to the absorption from the gut. Glugacon, which has the opposite
effect on the hepatic balance, is accordingly released when the blood glucose
concentration falls. These two hormones are thus in a feedback arrangement
with the blood glucose concentration—controlling the glucose metabolism.
Another hormone group of importance during the absorptive stage is the
incretine gut hormone group. Incretine is secreted during meal uptake and
stimulates pancreatic insulin release and inhibits the glucose flux from the
gut into the blood stream. Impaired incretine function is believed to play
an important role to the reduced and impaired insulin response of T2DM
patients [Nauck et al., 2004].

Insulin-dependent tissue (IDT) is dependent on insulin to utilize glucose.
This mechanism is discussed in the insulin section below. A significant por-
tion of the insulin-dependent tissue is made up of skeletal muscles. In the
absorptive state, skeletal muscle cells not only consume the glucose directly,
but also convert some to glycogen, providing an energy storage for later use
in a local depot.

Insulin independent tissue (IIT), such as the brain and the central nervous
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system, do not need insulin to utilize glucose, but use insulin-independent
glucose transporters such as, e.g., GLUT1 or GLUT3.

Insulin

Insulin is the main hormone controlling the glucose metabolism. It is a pro-
tein consisting of three peptide parts; an A-, B- and C-chain. In healthy
subjects it is produced in the β-cells in the pancreas, whereas IDDM pa-
tients depend mostly on injections of artificially produced insulin analogs.
Three categories of different types of therapeutic insulins exist; rapid-, in-
termediate and long-acting insulins. The long-acting insulins are used to
cover the basal metabolism, i.e., mainly to support the insulin-dependent
tissue in the post-absorptive state. The most recent insulin types of this cat-
egory, detemir [Levemir™, 2012] and glargine [Lantus™, 2012] type have
almost flat pharmacokinetic profiles, i.e., even and constant insulin levels
without pronounced peaks. Rapid-acting insulins, such as lispro [Humalog™,
2012], aspart [Novolog™, 2015] and glulisine [Apidra™, 2015] are designed
to handle the glucose flux following a meal in the absoptive state. There-
fore, these insulins have a short pharmacokinetic profile with a distinct peak
after about 60 minutes. Intermediate-acting insulin are a mix of both, and
are often used to support in cases when some insulin production is still left,
i.e., insulin-dependent T2DM patients or the so-called latent auto-immune
diabetes (LADA) patients [Landin-Olsson, 2002].

Insulin is normally injected in the subcutaneous tissue of the torso or
legs. Rapid-acting insulin is injected in the abdominal fat layer, whereas
long-lasting insulin is usually taken in the upper side of the thigh. From
these depots the insulin is transferred to the blood system via the capillaries.
The absorption rate depends on a series of factors. One contributing factor
is the capillary density. A higher density results in a greater diffusion area
between the depots and the capillaries. The abdominal region has the highest
capillary density and the thigh the lowest [Home, 1997]. This explains why
rapid-acting insulin is preferably infused in the abdominal fat layer and long-
lasting in the thigh.

The size of the insulin molecules is a dominant rate limiter. Large
molecules will have difficulties passing through the capillary pores. The struc-
ture of the insulin molecules are either monomer, dimer or hexamer. Insulin
will spontaneously form hexamers if the concentration is sufficiently high.
This so-called self-association can be catalyzed by zinc ions. Therefore, zinc
is added to the insulin solution in slow-acting insulins, thereby considerably
reducing the absorption rate [Home, 1997]. In the rapid-acting insulins, the
insulin molecules are mainly monomeric or dimeric. They have been modi-
fied so that hexamer formation is completely avoided [Shoelson and Halban,
1994], and are also called monomeric insulins. Another major factor affecting
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Figure 2.2 Insulin receptor and GLUT4 cycle. 1. Insulin attaches to the
insulin receptor, 2. a signal cascade is induced to translocate GLUT4 trans-
porters to the plasma membrane, 3. allowing gluocse to enter into the cell.
[Source: Wikipedia]

the absorption rate is the size of the injection dose. A large dose reduces
the ratio between the absorption area and the depot volume, thus reducing
the absorption. Several studies have been undertaken, all indicating a lin-
ear relationship between insulin dose and absorption half-time [Hildebrandt
et al., 1984] and [Plank et al., 2005]. These studies have been performed
using slow-acting or intermediate-acting insulins. However, studies indicate
that the linear relationship is not valid for monomeric insulin [Brange and
Vølund, 1999]. Finally, blood flow and temperature of the injected site have
a significant contribution to absorption rate. Raised temperature enhances
the disassociation of hexameric insulin and accelerates insulin diffusion, and
increased blood flow raises absorption rate. Thus, exercise plays a key role
for absorption, since it raises both body temperature and blood flow. After
the absorption from the depots, the insulin is circulated in the blood system
and finally interacts with a insulin receptor at the cell surface.

The insulin receptors are so-called tetramers, consisting of two α- and two
β-subunits. The α-subunits are entirely extracellular and serve as a binding
site for the insulin molecule [Taniguchi et al., 2006]. When the insulin has
attached to the α-subunits, a signal process is initiated via the β-subunits,
resulting in increased glucose transporter 4 (GLUT4) activity. The glucose
transporters facilitate glucose cell membrane crossing, thereby reducing blood
glucose concentration [Wood and Trayhurn, 2003]. The receptor/transporter
cycle can be seen in Figure 2.2. There are different types of glucose trans-
porters, but only GLUT4 require insulin to become active. Therefore, the
glucose utilization is divided into insulin-dependent and insulin-independent
utilization. It is a well-known fact that exercise enhances insulin sensitivity
and is therefore one part of common T2DM therapy. However, the underly-
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Figure 2.3 Examples of insulin pens. [Source: Private photo]

.

ing mechanism to the increased insulin sensitivity is still not well understood.
Studies indicate that the GLUT4 transporter activity is stimulated, resulting
in increased insulin-dependent glucose utilization [Kahn, 1997].

Treatment

The most common therapy for IDDM patients is the multiple daily injection
(MDI) basal-bolus regime. The patients use insulin pens (see Figure 2.3), or
perhaps the new Swedish mini pen—the DailyDose [Daily Dose, 2012]—to
administer basal insulin, once or sometimes twice a day, and rapid-acting or
regular insulin for each meal, as well as for additional corrections. An alterna-
tive therapy is to use continuous subcutaneous insulin infusion (CSII) using
an insulin pump, which, loaded with rapid-acting insulin, provides a contin-
uous infusion, corresponding to the basal need and bolus doses accordingly.
Doses are based on heuristic rules derived from the patient’s understanding
of his/her metabolism, assessment of current glucose level from glucose me-
ters and expected future evolution and estimates of carbohydrate content in
digested meals. One common measure used in this regard is the carbohydrate-
to-insulin ratio, which is an estimate of how many insulin units to administer
to match the amount of digested carbohydrates.

In order to avoid acute and long-term complications, the goal is to main-
tain normoglycemia (blood glucose (G) between 70-180 mg/dl) as far as pos-
sible, and especially to avoid insulin-induced hypoglycemia (G < 70 mg/dl)
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altogether, and to minimize time spent in hyperglycemia (G > 180 mg/dl).
An extensively used evaluation criterion of the outcome is the glycosylated
hemoglobin (HbA1c) blood measure, which provides an assessment of average
blood glucose level over a 8-12 week period [Hanas and John, 2010].

2.2 Technology

Glucose Sensors

Blood glucose is generally measured manually by the individual patient using
a personal glucose meter. A small blood sample is analysed in a test strip
by the meter using enzymatically catalyzed-based electro-chemical or photo-
metric methods [Hönes et al., 2008]. Today, there exist more than 27 different
personal glucose meters from 18 different manufacturers [Freckmann et al.,
2010]. The accuracy requirements for meters marked with the European CE
mark should comply with the DIN EN ISO 15197 standard, specifying that
the measurements may not differ more than 15 mg/dl for glucose concentra-
tion below 75 mg/dl and less than 20 % for glucose concentration above
75 mg/dl [Freckmann et al., 2010], when evaluated against a laboratory
equipment such as a Yellow Springs Instrument Analyzer [Yellow Springs
Instrument, 2012]. Other norms and regulations have similar requirements
[Tonyushkina and Nichols, 2009].

Self-monitored blood glucose (SMBG, BG or G) thus provides accurate
readings, but reveals little about the dynamics, unless sampled frequently
enough. Generally, the diabetic populations seem to measure their glucose
level far too seldom, considering, e.g., the average HbA1c level [The Swedish
National Board of Health and Welfare, 2009b]. Numerous different studies
show a definite positive correlation between increased testing frequency and
lowered HbA1c [St John et al., 2010].

Frequent automatic glucose measurements have become commercially
available over the last ten years. Today, there are three companies with com-
mercial systems, and this number will likely increase in the coming years,
e.g., Roche is researching and developing a similar system [Schmelzeisen-
Redeker et al., 2013]. These sensor systems are called Continuous Glucose
Measurement (CGM) systems and consist of a disposable sensor including a
subcutaneous probe, a radio transmitter connected to the external part of
the sensor and a receiver device to process, record and display the results.
The sensor lasts for six to seven days, depending on system, after which it
is replaced. The measurements are made in the interstitial fluid and do not
directly correspond to the blood glucose level, due to the first-order diffusion-
like relationship between the blood stream and the interstitial compartment,
see e.g., [Rebrin and Steil, 2000]. An interesting technical alternative is pre-
sented by the upcoming company Senseonics, which is about to launch an
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Figure 2.4 Examples of modern insulin pumps. Medtronic Veo 754 system
to the left and the Omnipod patch pump to the right. [Source: Private
photo]

.

implantable sensor with a 90 day life span, starting in the Scandinavian mar-
ket in 2015 [Senseonics, 2015]. The use of CGM has been shown to promote
improved glycemic control with decreased level of HbA1c [Chetty et al., 2008;
Poolsup et al., 2013].

Insulin pumps

The first commercial wearable insulin pumps became available in the late
1970s, but the bulky size limited its spread and use. Advances in technology
has allowed for more compact design and modern pumps are of the size of
a pager, see Figure 2.4. The basal dose can typically be programmed to
change throughout the day, thereby making it possible to better tailor the
basal dose to diurnal patterns in insulin requirements. Apart from normal
bolus doses, extended bolus doses, where the bolus dose is injected over a
predefined time, or combinations of the two may be administered. A few
manufacturers have integrated the receiver unit of the CGM system in the
pump, allowing the user to monitor the CGM measurements directly on the
pump display. Medtronic has taken the integration the furthest with active
suspension of the pump at low glucose values in their Veo and recent M640G
models [Medtronic, 2012].
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Smartphone Applications

The explosion of program applications for smartphones has affected the
healthcare market, and specifically the diabetes self-management market,
as well. Acceptance among both the public and the medical profession seems
high. Surveys suggest that 90% would be fine with a prescription of a mo-
bile app at the next doctor’s visit, and a third of the American clinicians
have recommended a health app to a patient in the recent year [Huckvale
et al., 2015]. However, the risks associated with malfunction or misuse need
to be carefully considered. The regulatory framework by the Food and Drug
Administration (FDA) is still fairly untested when it comes to mobile health
applications, and the agency recently issued guidelines for the industry [FDA,
2015]. The focus of the regulatory oversight will be apps that ’. . . could pose a
risk to a patient’s safety if the mobile app were not to function as intended’.
Furthermore, the guidelines also explicitly lists apps that calculate dosage
as apps that will be specifically targeted in the oversight. It remains to be
clarified which apps that can be exempted from heavier classification and
regulation. In Europe, mobile health apps are basically unregulated.

Thus so far, internal quality control assessment of the issuing companies
have provided the main safeguard for the end consumer, exemplified in 2012
when Sanofi withdrew their bolus calculating app after having found that it
was unreliable [Cortez et al., 2014]. Many of the apps are harmless in this
sense, as the content ranges over cookbooks, general health information, diet
guidelines, meal diaries and training guides. However, some also claim to
offer decision support on bolus dosing. A recent review found a total of 2633
apps for Android and iOS related to diabetes, whereof 46 were identified
to offer bolus calculators [Huckvale et al., 2015]. Several serious deficiencies
were found, such as lack of input validation (e.g. blood glucose values of
zero could be entered), or that the algorithm failed to consider previous
doses in the calculation. Only one of the apps fulfilled all quality criteria set
forward by the reviewers. However, enforced regulation can hopefully rectify
this situation.

2.3 Current Research in Systems Science

Current research is focused on improving insulin therapy along two main
directions; closed-loop control and semi-closed loop control by means of deci-
sion support systems. In this section, an overview of the modeling and control
approaches in these research directions will be presented.

Physiological Models

The development of physiological diabetic glucose modeling started with the
simple models of [Bolie, 1961] and [Ackerman et al., 1965], aiming at describ-
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ing the relationship between glucose and insulin utilization. External meal
and insulin administrations were not considered. Following these efforts, the
slightly more complex and well-established minimal model [Bergman and Co-
belli, 1980] was suggested as a means to estimate insulin sensitivity from an
intravenous glucose tolerance test (IVGTT). Detailed models of the glucose
metabolism; separating insulin and non-insulin dependent glucose utilization,
incorporating models of hepatic balance, renal clearance, and in some cases
pancreatic insulin synthesis and release, have surged since then.

A sparse fourth-order linear model, with physiological interpretation of
the state variables, was suggested in [Salzsieder et al., 1985], with six tun-
able parameters. The original model was validated on data from intravenous
experiments involving diabetic dogs. Thereafter, the model has been both
reduced, and extended to include exercise load, and to also consider oral
hyperglycaemic agents. The model order is still four, but the number of tun-
able parameters has been reduced to five, and incorporated into a decision
support system (DSS) called KADIS [Salzsieder et al., 2011].

In [Lehmann and Deutsch, 1992], a simulation model based on the in-
sulin kinetics from [Berger and Rodbard, 1989], and including hepatic bal-
ance (described by a look-up table), peripheral and insulin-independent glu-
cose utilization (Michaelis-Menten like relationship), renal clearance and the
meal digestion model from the same paper (described above), was presented.
Overall, the model contains only two tunable parameters, the rest are consid-
ered patient invariant. Later, the freely downloadable educational simulation
software AIDA [Lehmann, 1994] was developed using this model. The system
was validated on a set of 24 subjects with parameter convergence achieved
in 80% of the cases [Lehmann et al., 1994].

Another simulation model, that has been turned into an advisory system,
is the DIAS model [Hejlesen et al., 1997]. Especially noteworthy of this model
is the nonlinear model of the hepatic balance [Arleth et al., 2000], fitted
to tracer literature data, and the model extension to include the delayed
hypoglycemic effect of alcohol intake [Plougmann et al., 2003]. The model
was incorporated into a prototype eHealth tool called DiasNet [Jensen et
al., 2007], with a central server-based web service, which also communicates
over the cellular network with the user’s mobile application implemented on
a smartphone. The system has been tested in a small field trial, but was
mainly evaluated on overall data acquisition, transmission and application
usability aspects, and not on results concerning model performance.

A large model with 19 tunable parameters was proposed in the Sorensen
thesis [Sorensen, 1985], a model often used as a verification tool to assess dif-
ferent control approaches, e.g., [Eren-Oruklu et al., 2009a]. The web-based
educational simulation model GlucoSim [Agar et al., 2005] has been devel-
oped based on another thesis [Puckett, 1992]. Generally, these models are
difficult to fit to an individual person, and may lack structural identifiability.
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Figure 2.5 Overview of the Padova/UVa simulation model. The solid lines
represent flow and the dotted lines indicate effect. [Source: C. DallaMan]

This makes them unsuitable for predictive purposes, but synthetic subjects
may be created for simulation studies.

Currently, the most influential simulation model is the University of Vir-
ginia and Padova University (UVA/Padova) model described in [Dalla Man
et al., 2007b] and [Dalla Man et al., 2007a], which has been accepted by
the FDA to be used as a substitute for animal trials in preclinical trials of
closed-loop development [Kovatchev et al., 2008]. To this purpose, 300 artifi-
cial subjects have been derived from estimated parameters from population
studies, and used in, e.g., [Lee et al., 2009]. This model is based upon the
classical minimal model [Bergman and Cobelli, 1980], and the glucose rate-
of-appearance model in [Dalla Man et al., 2006a]. The population data for
estimating the 300 artificial subjects were derived using the triple-tracer pro-
tocol described in [Basu et al., 2003]. An outline of the model can be seen in
Figure 2.5.

In [Roy and Parker, 2006a], the minimal model was augmented with ad-
ditional states to include the dynamical interaction between free fatty acids
and the insulin and glucose compartments. The model parameters were partly
fixed, and partly identified using experimental data, and showed reasonable
resemblance to data. In [Roy and Parker, 2006b], the model was used, to-
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gether with the gastric emptying function taken from [Lehmann and Deutsch,
1992], to fit the model against data from one mixed meal consumed by normal
subjects, with good correspondence.

The limitation of the classical minimal model to provide consistent esti-
mates of insulin sensitivity, when different insulin concentrations arise dur-
ing an IVGTT, was addressed in [Prigeon et al., 1996]. Modifications to
the model were suggested to incorporate the saturation effect of insulin on
insulin-dependent glucose utilization [Rizza et al., 1981; Natali et al., 2000],
as well as a saturation effect on insulin transport from the plasma to the
interstitial compartment. Generally, the saturation effect is not pronounced
at insulin infusion levels of most insulin-dependent patients. However, the
critically ill patient may often experience reduced insulin sensitivity, and are
treated with intensive insulin treatment with abnormal insulin levels to main-
tain normoglycemia, thereby reducing mortality and morbidity outcome [Van
den Berghe et al., 2001]. Thus, for the purpose of improved glycemic con-
trol of the critically ill in Intensive Care Units (ICU), this model was picked
up in [Lonergan et al., 2006]. Thereafter, the table-based protocol SPRINT,
which acts as a decision support in the manual infusion control for the ICU
personal, was derived [Chase et al., 2007]. This approach has been success-
fully validated in a large study covering 371 subjects, achieving a very tight
glucose control [Chase et al., 2008].

Another extension of the minimal model was proposed in [Derouich and
A.Boutayeb, 2002], by incorporating effects of physical exercise by adding
parameters, which increase insulin sensitivity, insulin-independent glucose
utilization and insulin clearance during exercise, to the model. The model
has not been evaluated empirically. Also the UVA/Padova model has been
extended to cover physical activity in [Dalla Man et al., 2009], based on the
model in [Breton, 2008]. The model links elevated heart rate to increased
insulin sensitivity and insulin-independent glucose utilization. In [Breton,
2008], the model was fitted to data from a hyperinsulemic clamp test, in-
cluding a 15-minute exercise period (50% VO2max), for 21 T1DM subjects,
with a weighted mean square estimation error of 7.7 mg/dl (unclear how the
weights were chosen).

Yet another ambitious extension with 19 parameters, whereof 10 are sub-
ject to identification, and including modeling of the circadian rhythm was
given in [Fabietti et al., 2006]. In [Fabietti et al., 2007], the model was val-
idated by simulation comparisons on two datasets of six and nine T1DM
patients with excellent results (RMSE about 1 mmol/L), however, appar-
ently without cross-validation.

Before leaving the minimal model, the work in [Kanderian et al., 2009]
needs to be commented. Here, the minimal model, extended with a simple
pharmocokinetic compartment model for the insulin kinetics and a compart-
ment meal model of the same type as in [Worthington, 1997], was tested on
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closed-loop data from a trial involving ten T1DM subjects. Intraday vari-
ations of the model parameters related to the insulin sensitivity, hepatic
balance and insulin-independent glucose utilization was allowed over three
different sections of the day. Also in this case, the model was validated with-
out cross-validation, but with an impressive average simulation prediction
error (RMSE about 16 mg/dl).

A smaller model, with only five tunable parameters, is the Hovorka model
[Hovorka et al., 2002], later extended and altered for the critically ill in [Hov-
orka et al., 2008]. The former model has been validated for predictive capacity
on 15 subjects with a RMSE of 3.6 mg/dl for a prediction horizon of 15 min-
utes [Hovorka et al., 2004]. Parameter estimates were retrieved recursively
from a sliding data window using a Bayesian approach. This model is also
used extensively for MPC-oriented closed-loop validation in a simulation en-
vironment, including a cohort of 18 virtual patients [Wilinska et al., 2010].
Eight out of the eighteen parameter sets have been derived from experimen-
tal data, and the rest from so-called informed prior distributions. The model
has also been used, e.g., in the evaluation of PID control in [Farmer et al.,
2009], which also made use of the Sorensen [Sorensen, 1985] and the minimal
model [Bergman and Cobelli, 1980].

The models vary in complexity, but generally, do not explicitly consider
other hormonal metabolic effects than insulin and glucagon.

The physiological models are typically based upon balance equations over
compartments, where the rate of change of plasma glucose and insulin are
made up of the contribution or consumption by different parts of the physiol-
ogy. For the glucose metabolism, the following sinks and sources are normally
considered:

Ġ = rRa + rEGP + uiid + uid + uRE (2.1)

where rRa is the rate of glucose appearance following digestion of a meal,
rEGP is the total endogenous glucose production rate, uiid is the rate of
insulin-independent glucose utilization, uid is the rate of insulin-dependent
utilization by muscle and adipose tissue, and finally uRE is the rate of renal
excretion. Likewise, the insulin dynamics are also modeled with compart-
ments, where the plasma compartment is accompanied by additional com-
partments where the insulin has an active effect. Both the pharmacokinetics
and the compartment approach to insulin diffusion will be presented in Chap-
ter 4.

Below, the overall modeling approaches to the terms in the glucose dy-
namics are presented.

Digestion and Gut Absorption, rRa Several models have been proposed to
describe the absorption of glucose from the gut following a meal. An overview
will be presented in Chapter 6.
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Endogenous Glucose Production, rEGP The Endogenous Glucose Produc-
tion stems from the liver, the kidneys and intestines, but is dominated by
the hepatic glucose output. Generally, this output is considered to have a
constant upper limit (rEGP,0) from which it can be down-regulated by both
insulin and glucose signaling:

rEGP = rEGP,0 − kGG − kII (2.2)

where I may be the plasma insulin, or if more insulin compartments are used,
the insulin level in a relevant compartment, e.g., the liver, and kG and kI are
model parameters.

Insulin-independent Glucose Utilization, uiid The glucose utilization of the
central nervous system, the blood cells, but also the gut, is generally consid-
ered to be independent of insulin. Normally this term is kept as a constant,
but in, e.g., the Hovorka model a Michaelis-Menten relationship (see below)
is postulated.

Insulin-dependent Glucose Utilization, uid This term corresponds to the
uptake and utilization of glucose in the peripheral tissue, and is often ex-
pressed in terms of a Michalis-Menten relationship to the glucose level:

uid =
VmaxG

Km + G
(2.3)

where Vmax and Km are the Michaelis-Menten constants [Keener and Sneyd,
2009].

Renal Excretion, uRE Re-absorption of glucose in the kidneys is limited,
and to model the renal excretion, a linear threshold model is often suggested.
When the glucose level increases beyond the threshold level GRE , the clear-
ance increases proportionally.

uRE =
{

kRE(G − GRE) if G > GRE ,
0 if G ≤ GRE

(2.4)

Empirical data support that both the threshold GRE and the slope kRE may
vary significantly in-between subjects [Johansen et al., 1984; Rave, 2006].

Additionally, glucagon dynamics also play a significant role in the glucose
and insulin dynamics, specifically in the counter-regulatory mechanism to
raise the glucose level in an hypoglycemic event. In an updated version of the
Padova/UVa model, glucagon dynamics have been incorporated [Man et al.,
2014], but we omit the details here. Injection of glucagon is in current clinical
practice considered as a means to rescue a unresponsive patient from severe
hypoglycemia, and many patients with insulin-dependent diabetes have auto-
injectors readily available. It has also been suggested as a means of control in
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a bi-hormonal pump, to allow for bilateral control. This has spurred interest
in the pharmacokinetics of such injections [Lv et al., 2013].

Example of simulated postprandial data of an insulin-dependent individ-
ual generated by the Padova/UVa model can be found in Figure 2.6. From
this simulation several model features can be identified, such as the rise in
plasma insulin following the bolus injection at the meal start, the postpran-
dial response of the glucose level and the down-regulation of the hepatic
output due to increased serum levels of both these variables.

Black Box Models

Data-driven models have been investigated on CGM time-series alone, or by
considering inputs as well. The meal absorption models of [Dalla Man et al.,
2007a] and [Lehmann and Deutsch, 1992] are sometimes used as input gen-
erating components in data-driven models to approximate the glucose flux
input from the gut following a meal intake. The modeling focus has been
prediction for the purpose of early hypoglycemic detection, e.g., to be used
for alarm triggering in CGM devices, or temporary insulin pump shut-off,
as well as establishing models suitable for model-based control. In this con-
text, the Clarke Error Grid Analysis (p-CGA) [Clarke et al., 1987] is often
considered. It is a metric originally developed for evaluating blood glucose
meters, relating the measurement error to clinical implications. This metric
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Figure 2.7 The Clarke Error Grid [Clarke et al., 1987] is divided into dif-
ferent zones; the A zone corresponds to errors of little clinical significance,
the B zone represent values that deviate more than 20% from the reference,
but would lead to benign or no treatment decisions if acted upon, the C
zone error could result in overcorrection, the D zone represents failure to
detect dangerously low or high glucose values and zone E corresponds to
predictions that would lead to erroneous and dangerous treatment decisions
(e.g. administrating insulin when already hypoglycemic).

is also often used to rate CGM precision, and recently to assess prediction
performance as well. Estimated glucose is plotted against the reference mea-
surements and evaluated according to how the points fall into the different
error zones, each with a different clinical interpretation, see Figure 2.7.

Time-series analysis by auto-regressive (AR) models started with [Bre-
mer and Gough, 1999], who evaluated the basic underlying assumptions con-
cerning stationarity and auto-covariance that AR modeling is based upon.
The conclusion was that diabetic data in general is non-stationary, but
highly auto-correlated, thus recommending the models to be recurrently re-
estimated. Following this, AR and ARMA models were developed in [Ståhl,
2003] and [Ståhl and Johansson, 2009] using glucose data from a recently
diagnosed T1DM patient. In [Sparacino et al., 2007], first-order recursive
AR models were investigated for 28 subjects using a low-pass filtered CGM
signal from the GlucoDay CGM system. The results indicate that hypoglyce-
mia can be detected by the model 25 min before the CGM signal passes the
same threshold, but with unknown risk of false positives. Another example
of recursive AR and ARMA models of third order, incorporating a change
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detection feature for more rapid parameter re-estimation when large changes
in the dynamics are detected, is found in [Eren-Oruklu et al., 2009b]. The
models were evaluated for 30 healthy, 7 glucose-intolerant and 25 T2DM di-
abetic subjects, with less than 4% mean Relative Average Deviation (RAD)
and almost no values in D or E zones of the Clarke Error Grid for the 30-
minute predictions in comparison to the CGM Medtronic Gold reference
[Medtronic, 2012]. Contrary to the above, the authors of [Gani et al., 2009]
claim that a generic patient- and time-invariant AR model of order 30 can
be identified from any patient and used for glucose prediction for any other
patient. Very promising results were achieved in [Gani et al., 2010], where
the model was evaluated for three different datasets, each utilizing a differ-
ent CGM device, and the patient cohorts included both T1DM and T2DM
diabetes. The RMSE prediction error was on average less than 3.6 mg/dl for
a 30-minute prediction, with negligible delay, and with 99% of the paired
prediction-reference points in the A and B zones of the p-CGA. However,
these results were achieved by filtering the CGM signal in both training and
test data using a non-causal filter, removing the high frequency components.
In [Lu et al., 2011] the causality aspect of the input filtering was addressed.
The AR model, here reduced to order eight after model complexity consid-
erations, was reformulated as a linear model with a Kalman filter, and the
filter parameters were adjusted to account for the filtering of the CGM sig-
nal. For evaluation purposes, the reference was, however, still filtered in the
same non-causal way as before. Using this approach on the same dataset as in
[Gani et al., 2010], yielded more moderate results with an average prediction
error of 16 mg/dl, and a 9 minute lag for the 20-minute prediction.

Algorithms specifically developed for hypoglycemic detection have also
been proposed. In [Palerm et al., 2005], a Kalman filter approach was pro-
posed. The filter was used to estimate the states corresponding to the in-
terstitial glucose level, and the first and second time-derivative thereof, i.e.,
rate of glucose change and acceleration. In [Palerm and Bequette, 2007] this
method was evaluated for 13 hypoglycemic clamp datasets. Using a hypo-
glycemic threshold of 70 mg/dl, the sensitivity and specificity were 90% and
79%, respectively, with unknown alarm time. Combining three different meth-
ods for hypoglycemic detection with the ARMA model of [Eren-Oruklu et al.,
2009b], data from insulin-induced hypoglycemic tests for 54 T1DM subjects
were evaluated in [Eren-Oruklu et al., 2010]. With a hypoglycemic threhold
of 60 mg/dl, sensitivity of 89%, 88%, and 89% and specificity of 67%, 74%,
and 78% were reported for each method, respectively. Mean values for time
to detection were 30, 26, and 28 minutes. In [Dassau et al., 2010], five differ-
ent algorithms were used together in a voting based detection system called
hypoglycemic prediction algorithm (HPA). The system was developed using
21 datasets from a 24-hour Abbott Navigator CGM trial for children with
T1DM, and was validated on hypoglycemic induced studies on 22 T1DM
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patient records. With a voting scheme of 3-out-of-5, and a hypoglycemic de-
fined as 60 mg/dl, a sensitivity of 91% was achieved, and when 4-out-of-5
positive alarms were required, the sensitivity dropped to 82%.

A shortcoming of the AR models and the algorithms above is the lack of
input-output relationship, excluding them from being used in a model-based
control framework. A natural extension to the AR concept is to include ex-
ternal inputs, transforming the model to an ARX model. This type of model
has been considered in, e.g., [Finan et al., 2009], where both batch-wise and
recursively identified patient-specific ARX models have been analysed for
9 patients with a mean 30-minute prediction error RMSE of 26 mg/dl. In
[Cescon, 2011] both ARX, ARMAX and state space models were investi-
gated using different identification methods for 30-, 60-, 90- and 120-minute
prediction for nine Montpellier patients from the DIAdvisor DAQ trial. The
best performance was achieved with the ARX and the ARMAX models. The
ARX model gave a standard deviation of the prediction error of 17, 34, 46
and 56 mg/dl on average for the 30-, 60-, 90- and 120-minute prediction,
respectively. The corresponding results for the ARMAX model were 16, 30,
39 and 44 mg/dl.

Another type of transfer function model, cast in the continuous-time do-
main, was approached in [Percival et al., 2010], where it was evaluated for
nine T1DM subjects on separated meal and insulin intakes. Model parame-
ters were determined both heuristically and by least-squares estimation. The
carbohydrate and insulin impacts of the model, i.e., the steady-state rise
and drop of glucose following these intakes, were further compared to the
corresponding practically used estimates of these factors. No independent
prediction validation was given. This model was later evaluated in a control
framework in [Percival et al., 2011], where two datasets were created by the
Hovorka (four subjects) and Padova (ten subjects) simulation models. Here,
the model could approximate the simulated data very well, with a reported
three hour look-ahead prediction error of 26 mg/dl. A very similar model
structure was used in [Kirchsteiger et al., 2011], the difference being a time
delay changed into a time lag. In this paper, breakfast glucose excursion pre-
diction was addressed for ten Montpellier patients from the DAQ trial. For
each patient, model parameters were determined by constrained least-squares
estimation for two breakfast meals and validated on a third breakfast, with
an average coefficient of determination of 0.42.

Neural network (NN) models have been shown to be a competitive ap-
proach in [Daskalaki et al., 2012], where a feed-forward NN model was com-
pared against an AR and an ARX model on a 30 patient dataset, retrieved
from the Padova simulation model. Here, the NN clearly outperformed the
competing models with an average RMSE of 4.9 mg/dl versus 29 mg/dl (AR)
and 26 mg/dl (ARX) for the 45-minute prediction. Apart from meal and in-
sulin information, emotional factors, hypoglycemic/hyperglycemic symptoms
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and lifestyle/activities, were collected in an electronic diary and used as in-
puts in the NN model of [Pappada et al., 2011]. Training was performed on
a dataset from 17 patients, and performance was evaluated on ten patient
datasets not included in the training set, with a RMSE of 44 mg/dl for the
45-minute prediction.

A fully connected three-layer (5,10,1 neuron per layer) NN, with sigmoidal
transfer functions in the first two layers and a linear for the output block was
used in [Pérez-Gandía et al., 2010]. No insulin nor meal information were
used, but the concurrent and previous CGM values, up to 20 minutes back,
acted as inputs. The model was evaluated on two datasets with different
CGM devices (Abbott Freestyle and MedTronic Guardian). Three subject
datasets were used for training for each patient group and were thereafter
excluded from the validation data. For the six Guardian patients and the
three Abbott Freestyle patients the performance was 10, 18 and 27 mg/dl for
the 15, 30 and 45-minute prediction, with a delay of around 4, 9, and 14 min
for upward trends, and 5, 15, and 26 min for downward trends. In [Zecchin
et al., 2011], the linear predictor from [Sparacino et al., 2007] worked in a
cascade-like configuration with a NN model, which also used both CGM and
glucose flux from the meal model of [Dalla Man et al., 2007a] into account as
inputs. Training and validation was done using 15 patient records from the
seven day free-living conditions set of the DAQ trial. The NN was trained
and validated on 25 time series, each one of three days, selected to ensure
a wide variety of glycemic dynamics. Nine daily profiles, containing several
hypo- and hyperglycemic events, were used to test the NN with an average of
14 mg/dl and a 14 min delay for the 30-minute prediction. For an assessment
on 20 simulated subjects using the UVA/Padova model, the corresponding
metrics were 9.4 mg/dl and 5 min. Both insulin and carbohydrate digestion
were considered by incorporating input-generating sub models in the support
vector machine of [Georga et al., 2011]. Additionally, exercise-induced glucose
and insulin absorption variations were also considered as inputs by processing
a metabolic equivalent (MET) estimate, derived from a SenseWear body
monitoring system (BodyMedia Inc.) used in the study, in a model by [Roy
and Parker, 2007]. The NN was trained individually for seven T1DM patients
with RMSE of 9.5, 16, 25 and 36 mg/dl for the 15, 30, 60 and 120-minute
prediction.

Examples of other machine learning approaches that have been consid-
ered, include, e.g., support vector regression [Georga et al., 2013] and ran-
dom forests [Georga et al., 2012]. Both techniques were evaluated on the
same dataset of 27 T1DM patient records from free-living conditions collected
within the METABO project [Georga et al., 2009]. The recorded insulin in-
jections as well as the meal intakes were fed into compartment models to
provide estimated profiles of plasma insulin and glucose rate of appearance.
Furthermore, physical activity, estimated from a body monitoring system,
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and the time of the day were also added as input variables. The predictive
performance of each method was assessed for a 15-, 30-, 60- and 120-minute
ahead prediction horizon with impressive results. The reported RMSE of the
support vector regression for these predictions horizons was 5.2, 6.0, 7.1 and
7.6 mg/dl, whereas the random forest method managed slighty worse; 6.6,
8.2, 9.3 and 10.8 mg/dl.

Deeper reviews can be found in [Makroglou et al., 2006], [Balakrishnan
et al., 2011] and [Georga et al., 2011].

Identifiability

The challenges of structural identifiability in physiologically-based models
have been widely recognized [Chis et al., 2011], and specifically for the di-
abetic glucose dynamics [Docherty et al., 2011]. Optimal experimental de-
sign to facilitate parameter estimation has been addressed in [Galvanin et
al., 2009; Galvanin et al., 2011]. Empirical black-box identification problems
have received less attention, but the problems associated with identification
of ARX models of glucose dynamics have been considered in [Finan et al.,
2009].

In diabetic real world data, the problem is especially important, since the
two main inputs affecting the dynamics, meal and insulin intake, have op-
posing impact and similar dynamics, and generally act simultaneously. The
aspect is further problematic since safety concerns impose constraints on the
possibility to excite the system sufficiently (which of course does not ap-
ply to simulated data). Thus, from an identification viewpoint, the impact
from inputs may be entangled with one another, and it may be impossible
to separate the impact of each input without considering constraints to the
identification routine, incorporating prior information of the expected qual-
itative response. In [Percival et al., 2010], this was resolved by applying an
experimental protocol, where a small meal and the corresponding bolus dose
were separated by a few hours. However, such an approach yields only short
datasets and may be infeasible, e.g., if re-estimation recurrently is required
due to, e.g., shifting dynamics.

Closed-Loop Control

Closed-loop control, or as it is often referred to in the diabetes context—
the artificial pancreas—is most often suggested in the form of a regulator
controlling an insulin pump by glucose sensor feedback. The earliest closed-
loop system in this sense dates back to the ’60s and ’70s. The first com-
mercial closed-loop system, the bed-side Biostator system, was introduced
in 1977, relying on venous insulin infusion and glucose measurement [Fogt
et al., 1978]. Today, the prerequisites have changed dramatically with major
improvements in pump and sensor technology, and both academic researchers
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and biotechnology companies pursue closed-loop control using primarily the
subcutaneous route. The first step to implement an autonomous function in
a commercial outpatient system has been made in the MedTronic Veo and
640G pumps, which automatically suspend for two hours when a predefined
hypoglycemic threshold is passed [Medtronic, 2012]. Reviews of current and
historical development and of the challenges ahead can be found in [Cobelli
et al., 2011] and [Bequette, 2012].

Closed-loop control is in many aspects a promising technology, but some
concerns need to be considered when evaluating the prospects of this tech-
nology to resolve glucose control for a larger part of the IDDM population.
Firstly, using a closed autonomous system calls for a robust safe design. This
aspect needs to be considered throughout the system design, and identi-
fied hurdles, concerning, e.g., sensor accuracy and reliability, modeling and
parameter estimation errors, disturbance detection and rejection and pro-
gramming and software errors, still remain to be resolved. The second aspect
is the cost aspect, as such a system relies on many expensive components.
Thirdly, and this relates to the first aspect, regulatory and liability consider-
ations need to be worked out. Considering these obstacles, it is unlikely that
an artificial pancreas system will be the default therapy for a majority of the
IDDM population in the near future.

2.4 Decision Support and Defence-In-Depth

An alternative technology to closed-loop control is to provide the patient
with decision support, which sports some advantages in comparison to the
artificial pancreas approach. It is more flexible in underlying therapy format,
as it is not locked to the pump technology. Since no injections are made
automatically, an opportunity to detect wrongful and potentially dangerous
actions is provided. Finally, the total cost is lower, implying possible better
cost effectiveness. On the other hand, the dependency on user interaction
makes it more vulnerable in many aspects. Unless user confidence to the sys-
tem is achieved, poor compliance to the suggested decisions may prove the
system useless. Furthermore, in situations where the user is unable to re-
spond, no action can be taken. Also, the potential risk reduction, associated
with capturing dangerous actions, relies on an independent basic insight to
the glucose dynamics of the user, and a sound non-authoritarian attitude to
the system. Of course, to the extent possible, self-monitoring and evaluation
need to be implemented at a system level, to catch such errors before actions
are suggested to the user. This calls for a hybrid safety systems where some
decisions are autonomous whereas others require active participation and de-
cision making by the user. In this context, the concept of defence-in-depth is
useful to develop and assess the safety of the system. The concept originates
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from military defence tactics, but has become popularized in safety critical
engineering applications, such as nuclear engineering [IAEA, 1996], fire pre-
vention [U.S. NRC Fire Protection, 2015] and information security [National
Security Agency, 2015], even though with somewhat different interpretations
and practices. Multiple layers of administrative and technical barriers work
together to reduce the risk of unsafe events. Each layer should reduce the
possibility of an unsafe event occurring, or if it has already happened, to re-
duce the consequences thereof. If one barrier fails, the next in line should step
in. The principle is often accompanied by supporting safety design principles
and analysis tools as single failure analysis, diversification and determinis-
tic [IAEA, 2009] and probabilistic safety analysis [IAEA, 2010]. A typical
defence-in-depth approach utilizes the following barriers:

1. Prevention of abnormal operation and failures. Covers administrative
rules, regulations, guidelines, code of conduct, safety principles. By fol-
lowing and enforcing behavioural aspects of the management of the
safety critical system and how it interacts with the environment, un-
wanted and potentially dangerous events may be avoided or mitigated
before they progress further.

2. Systems for automatic detection and notification of warnings. This
technical barrier covers systems for monitoring safety critical parame-
ters and to issue alarms when predefined thresholds are broken.

3. Systems for activation of safety features to mitigate an adverse event.
These systems may be automatically or manually activated and should
forcefully reduce the risk of damage to the safety critical system due
to the adverse event.

≥4. Systems and procedures aiming at reducing the damages, and conse-
quences thereof, to the safety critical objective and the environment
if all previous barriers have failed and a damaging event could not be
avoided.

Applying the concept to diabetes glucose self-management would mean to
develop barriers and supporting principles to reduce the frequency and conse-
quences of adverse glycemic events such as severe hypo- and hyperglycemia,
e.g.:

1. Risk-mitigating self-care strategies that reduce the frequency of hypo-
and hyperglycemia. This barrier involves activities and knowledge such
as; frequent glucose testing, basic understanding of the personal glucose
dynamics, familiarity with personal health care equipment, and training
and use of best practices to determine the basal and bolus doses, and
mainly involves the patient but also requires support of the healthcare
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team. Clinical guidelines can be regarded as the underlying framework
for this barrier.

2. Continuous glucose monitoring. The recent developments in continu-
ous glucose monitoring have allowed for keeping constant track of the
glucose level. Current systems allow for alarms to be raised when pre-
defined hypo- and hyperglycemic thresholds are surpassed.

3. Active safety systems. The pump suspension feature of the Medtronic
insulin pumps is an example of an active safety system that au-
tonomously intervenes to reduce the impact of an expected adverse
event (hypoglycemia).

In this thesis, models and methods that could contribute to some of the
building blocks in such a concept will be developed, investigated and scruti-
nized.
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Data and Data

Characteristics

This chapter introduces the data used in this thesis and some analysis of
fundamental glucose data characteristics.

The DIAdvisor project [DIAdvisor, 2012] was an EU FP7 Integrated
Project (IP) running between 2008 and 2012. The aim of the project was
to develop a personal decision support system for IDDM patients using user-
provided input, minimally invasive sensors and individualized models of glu-
cose dynamics, in order to provide the user with short-term predictions of
glucose evolution, together with insulin therapy decision support.

3.1 The DIAdvisor Project

A mobile research system, incorporating these aspects, was developed and
successfully evaluated under clinical conditions at three clinical sites covering
50 patients, with a significant reduction of time spent in hypoglycemia, and
increase in time in normoglycemia [The DIAdvisor Consortium, 2012]. The
reduction of time in hyperglycemia was not statistically significant. Using
an Ultra Mobile PC (UMPC), the user could follow his/her glucose curve
together with an estimate of the near-time (2 hours) ahead projection, see
Fig. 3.1. The same information was concurrently provided to the clinician’s
laptop application by a wireless network according to the network layout in
Figure 3.2.

The project consortium consisted in total of 14 partners, both academic
institutions and commercial companies—each providing expertise in areas
relevant for the development of the system. Especially noteworthy for the
coming chapters are the three clinical partners where the data were collected;
Montpellier University Hospital, Department of Clinical and Experimental
Medicine (Montpellier), University of Padova, UNIPD (Padova) and the In-
stitute for Clinical and Experimental Medicine, IKEM (Prague).
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Figure 3.1 User Interface of the DIAdvisor system patient application im-
plemented on the UMPC. On the screen, the user can follow the present
and recent glucose values together with a projected future trajectory within
specified uncertainty limits. Other vital signs, such as heart rate (see upper
left screen corner), may also be possible to follow. User inputs, regarding,
e.g., insulin and meal intake, are provided by a menu system controlled by
the buttons at the bottom of the screen. Reproduced from [The DIAdvisor
Consortium, 2012].

3.2 The DIAdvisor Data

The clinical part of the DIAdvisor project consisted of three clinical studies;
the data acquisition (DAQ) trial (2009), the DIAdvisor I (2010) and DIAd-
visor II (2011-2012) trials. The purpose of the first trial was to collect data
in order to facilitate model and algorithmic development of the individual
modules of the DIAdvisor system. The two following trials were set up for
testing and validating the entire system in clinical settings. The results pre-
sented in this thesis are based on retrospective analysis of the data collected
in the DAQ and DIAdvisor I trials.

A total of 90 patients participated (29 Montpellier, 31 Padova, 30 Prague)
in the DAQ trial, including users of both MDI and subcutaneous pump ther-
apy. For this thesis, the data were assessed for data completeness and data
consistency. Exclusion criteria were missing bolus doses and missing meal
data in the diary, missing continuous glucose measurement (CGM) data and
large discrepancies between the CGM and the reference glucose meter data.
Data segments not fulfilling the criteria were rejected, and only data records
containing at least 48 hours of consecutive qualitative data were included in
the study. In all, 47 out of the 90 patient data records reached the quality
standards of inclusion (17 Montpellier, 19 Padova, 11 Prague). A summary
of collected population statistics can be found in Table 3.1.
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Figure 3.2 DIAdvisor system network. The UMPC communicated with
the sensors attached to the patient, and transmitted the information to the
clinician’s laptop through a wireless network. After each visit the clinical
team uploaded the data to a common FTP-server. Reproduced from [The
DIAdvisor Consortium, 2012].

The DAQ trial was divided into two main parts; a three day hospitalized
study and an ambulatory second part, where the patients were allowed to
bring the system home under normal living conditions. In this thesis, data
from the hospitalized part of the trial were used in Chapters 8 and 9.

In the second trial, the first configuration of the DIAdvisor system was
tested for some of the patients that participated in the DAQ trial, as well
as for some new patients. The trial was divided into six different sub-trials,
DIAdvisor I A-F—each with a specific evaluation purpose. Trial A was a
data collection study in order to validate that the system could retrieve data
from the external sensors as expected, the B and C trials had identical pro-
tocols but with different purposes. The intention of trial B was to test the
predictive performance, whereas trial C aimed at an assessment of the thera-
peutic advices provided by the system. In trial D, the patients underwent two
different exercise tests, and in trial E, free meals, not regulated by the stan-
dardized procedure, were allowed. In the final F trial, periods of hypo- and
hyperglycemia were induced. Trials A, B, D were conducted at the Mont-
pellier hospital, trial E at the Padova site and trial F in Prague. Trial C
was evaluated at all three sites. Data from the B and C trials were used in
Chapter 9. The third trial, DIAdvisor II, was set up to validate the final
performance against the project endpoints using an updated version of the
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Table 3.1 Population Statistics of the DAQ trial. Body Mass Index (BMI),
Total Daily Dose (TDD). Mean values and [min-max].

Parameter Montpellier Padova Prague

Male/Female 13/4 10/9 6/5
Pump/MDI 9/8 10/9 8/3
Rapid Insulin 11 Aspart 15 Aspart 4 Aspart

1 Glulisine 4 Lispro 7 Lispro
5 Lispro

Age 44 [22-68] 42 [25-67] 33 [19-65]
BMI [kg/m2] 24.2 [19.7-30.1] 24.5 [18.7-33.2] 25.0 [16.8-35.9]
HbA1c [mmol/mol] 7.7 [5.6-9.1] 8.0 [6.0-9.3] 7.8 [6.4-9.7]
TDD [IU] 47 [18-82] 44 [22-74] 22 [6-54]
Antibodies [% binding] 15.6 [0-62.1] 20.4 [0-75] 12.9 [0-53]

DIAdvisor system. Data from this trial has not been analysed in this thesis.

3.3 Equipment

During the trials, the patients were equipped with sensor devices in order to
collect vital signs of potential interest in metabolic modeling.

Glucose Sensors

The HemoCue Glucose 201+ Analyzer (Figure 3.3, [HemoCue Glucose 201+
Analyzer, 2012]) is a high-quality glucose meter of laboratory precision [Stork
et al., 2005]. This device was used as blood glucose reference in both trials.

In the DAQ trial, the patients were equipped with the Freestyle CGM
system (Figure 3.4) from Abbott [Abbott Freestyle Navigator, 2015]. The
system provided a CGM reading every 10 minutes, but the raw current signal
from the sensor was also collected on a one-minute basis at the Montpellier
and Padova sites. The sensors require initialisation during 10 hours and have
a life time of five days, after which they need to be replaced. In the DIAdvisor
I trial, the CGM system Seven Plus (Figure 3.4) from Dexcom was used
[Dexcom Seven Plus, 2012]. This sensor has an initial calibration time of 2
hours and is replaced after seven days. Both systems need to be recalibrated
every 12 hours.

3.4 Vital Signs Sensors

During the DAQ trial the patients wore the Clinical LifeShirt (Figure 3.5)
from VivoMetrics [VivoMetrics, 2012], which is specially designed for clinical
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Figure 3.3 The HemoCue 201+ Analyzer, [HemoCue Glucose 201+ Ana-
lyzer, 2012].

Figure 3.4 CGM systems used in the DIAdvisor project; the Abbott
Freestyle CGM system, [Abbott Freestyle Navigator, 2015] (left), and the
Dexcom Seven Plus CGM system [Dexcom Seven Plus, 2012] (right).

trials. This non-invasive monitoring system continuously collects, records and
analyses several vital signs. To measure respiratory function, sensors are wo-
ven into the shirt around the wearer’s chest and abdomen. A single-channel
ECG measures heart rate, a three-axis accelerometer records posture and
activity level, and a thermometer measures the skin temperature.

In the DIAdvisor trial, the LifeShirt was replaced by the Sensium Life
Pebble sensors (Figure 3.5) developed by Toumaz [Toumaz, 2012]. These
continuously monitor ECG, heart rate, physical activity (3-axis accelerom-
eter) and skin temperature, and stream the data using a wireless datalink
over a short range (5 m).
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Figure 3.5 Vital signs sensor systems used in the DIAdvisor project; the
VivoMetrics’ LifeShirt system [VivoMetrics, 2012] (left), and the Sensium
Life Pebble sensors by Toumaz [Toumaz, 2012] (right).

3.5 Experimental Protocols and Conditions

The DAQ and the DIAdvisor I trials followed the same basic protocol. Stan-
dardized meals were served for breakfast (08:00), lunch (13:00) and dinner
(19:00), according to the protocol. The amount of carbohydrates included in
each meal was about 40 (45 in DAQ), 70 and 70 grams, respectively. Addi-
tional snacks, in some cases related to counter-act hypoglycemia, were also
digested. No specific intervention on the usual diabetes treatment was un-
dertaken during the studies, since a truthful picture of normal blood glucose
fluctuation and insulin-glucose interaction was pursued. Meal and insulin ad-
ministration were noted in a logbook, glucose was monitored by the Contin-
uous Glucose Measurement system and by frequent blood glucose measure-
ments in the DAQ trial (37 measurements daily according to the protocol).
On average, the outcome was that 39, 37 and 7 measurements (Montpellier,
Padova and Prague) were made every day. In the DIAdvisor B and C tri-
als, even more reference measurements were collected, making the average
43 measurements a day.

3.6 Graphical Data Evaluation Tool

The trial data was continuously uploaded into an Oracle database on a com-
mon FTP-server, from which the model developers could download data as
they became available. In order to facilitate data overview and management,
a stand-alone Graphical User Interface (GUI), see Figure 3.6, was developed
in Matlab code [MathWorks, 2012]. Using this GUI, different data channels
and time periods could be selected for any individual patient in order to
evaluate the data for completeness and correctness, before extracting and
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Figure 3.6 The Graphical User Interface (GUI) to manage the DAQ data. Different data sections from both the
clinical and the home-monitored part of the DAQ trial can be analysed. The upper plot always shows the linearly
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used to display any of the recorded signals. In this example, the three days data from the clinical part of the trial
has been selected. The second plot from the top shows timing and amount of ingested carbohydrates, the third
plot depicts bolus and correction insulin doses, and in the bottom window the pump basal curve has been chosen
for investigation.47



Chapter 3. Data and Data Characteristics

Table 3.2 Summary of statistics for the patients that finalized the study.
[min–max]

Parameter Animas/Dexcom Medtronic

Number of patients 15 14
Gender 6F/9M 8F/6M
Age 32[23-53] 37[19–68]
Years since diagnosis 15[6–30] 22[10–55]
BMI [kg/m2] 26[21.6–46.7] 25[19.6–29.1]
HbA1c before 63[45–84] 62[42–89]
the study [mmol/mol]
Pump Animas Vibe Medtronic Veo
CGM Sensor Dexcom G4 Medtronic Sof (6)

and Enlite (8)
Nr of days in study 39 [11–43] 33 [25–39]
Nr of days in study 109 [0–290] 236 [51–433]
Nr of CGM measurements 10477 [3154–11919] 10477 [3154–11919]
Nr of meals reported 157 [30–268] 147 [22–255]

exporting them into a single Matlab data file. The evaluation described in
Section 3.2 was performed using this tool.

3.7 The Lund University (ULund) Trial

The study was a non-randomized trial conducted under free-living conditions.
After review and approval of the study protocol by the [Regional Ethical
Review Board in Lund, 2014], Sweden, 32 T1DM patients on Continuous
Subcutaneous Insulin Infusion therapy (CSII), enrolled at the Endocrinology
Department, were recruited. The patients used two different insulin pump
systems and were divided into two groups based on this. The Animas Vibe
pump ([Animas Vibe, 2015]) was used by 15 patients and 17 patients used
the Medtronic Veo pump ([Medtronic, 2012]). In total, 29 of the patients
finished the study (15 from the Animas and 14 from the Medtronic cohort).
Exclusion criteria were manifested retinopathy, nephropathy, neuropathy or
hypertonia and cognitive difficulties. The total study duration was 42 days
for the Animas Vibe patients and 36 days for the Medtronic patients. Weight
and height were recorded and blood samples for HbA1c analysis were drawn
at the start-up visit at the clinic. The baseline characteristics of the patients
that completed the study are found in Table 3.2.

The patients were provided information about the study and instructed
on the use of the Continuous Glucose Measurement system (CGM), and writ-
ten consent of participation was collected. Specifically, the patient received
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3.8 Glucose Data Characteristics

information about the delayed glucose readings of the CGM in comparison
to venous blood samples. The Animas Vibe patients were equipped with a
Dexcom G4 CGM sensor and a total of four sensors for the entire study pe-
riod. Each sensor was supposed to be used for two weeks, i.e., one week more
than the nominal lifespan of this sensor type. Thereby, the fourth sensor was
to be considered as a back-up in case any of the previous sensors failed. The
Medtronic patients were randomly equipped with two sensor types; Enlite
(eight patients) and Sof sensor (six patients). Each patient received a total
of six sensors, each to be used for six days. The Medtronic patients were
provided with a Bayer Contour Link glucose meter which automatically and
wirelessly transfers the glucose reading to the pump. The Animas patient
used their own glucose meters. Calibration was to be conducted at least as
often as prescribed by the CGM manufacturer, and to be performed when
the glucose level was stable in order to reduce the risk of calibration errors
related to the sensor delay. The patients were asked to carefully register all
meals, including alcohol intake, and physical exercise using a web service
provided by the company Linkura [Linkura AB, 2015], see Figure 3.7. This
logbook enabled the users to predefine recipes, such that entry of a meal in-
stance of a recipe that had been noted at a previous occasion was simplified.
Finally, the patients were instructed to treat their bolus doses at their own
discretion. Data from this trial were used in Chapters 4-7.

3.8 Glucose Data Characteristics

Before digging into modeling and prediction of glucose dynamics, some in-
teresting features of the glucose data are worthwhile to explore a little more
in-depth.

Optimal sampling frequency

An interesting question is how often sampling is needed in order to recon-
struct the most important features of the glucose signal, and thus how im-
portant CGM measurements may be, and whether interpolation of frequent
BG measurements can be used to reconstruct the glucose curve. According
to [Worthington, 1990], at least 8 samples per day are needed to get the
lowest essential dynamics of the system, namely the rise and fall of the blood
glucose level due to the carbohydrate intake and the associated insulin in-
jections. This is a rigid assumption, relying on that the meal-related period
is about 6 hours, and that the subject follows a strict schedule. In reality,
people tend to have more irregular routines. This is generally overcome by
non-equidistant sampling, collecting data on an event-driven basis, rather
than a time-scheduled ditto.
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Figure 3.7 Example of the week overview in the Linkura web service GUI. Each green box corresponds to a meal
instance where the user can fill in the timing of the meal intake and the content of what has been consumed from
personal predefined recipes.
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Figure 3.8 Periodogram of the SMBG, the original and the down-sampled
CGM signals. Average for the Montpellier patients.

Method In order to evaluate how much information is lost as the sampling
rate decreases, the CGM data collected at the Montpellier hospital 3-day
visit of the DAQ trial were used. The data were down-sampled to a sampling
period of 20, 40, 60 min and then interpolated by piecewise splining (pchip in
Matlab [MathWorks, 2012]). Likewise, the frequent BG measurements were
also interpolated by the same method. Error analysis of the down-sampled
signals in comparison to the original signal was done by frequency domain
analysis, see [Johansson, 2009], and statistical analysis of the time-domain
data.

Results Obviously, the frequency content diminished with increased sam-
pling period, as seen in Figure 3.8, where the periodogram of the original
signal and the interpolated signals can be seen.

The spectrum of the blood glucose signal is very similar to that of the
CGM signal. For the down-sampled CGM signals, the energy decreases for the
higher frequencies as expected. However, frequency assessment does not easily
translate to clinically relevant information. Turning to the time-domain, the
difference between the signals deteriorates as depicted in Table 3.3. Already
at a reduced sampling period of 60 min, the maximum average error amounts
to more than 30 mg/dl. This is not surprising, as the glucose rise/drop over

Table 3.3 Comparison between the original and the resampled CGM sig-
nals in terms of Root Mean Square Error (RMSE) and maximum error.
Average over the DAQ population.

Criteria Sampling period [min]
20 40 60 80 100

RMSE [mg/dl] 1.4 4.0 7.0 10.4 12.7
maximum error [mg/dl] 8 18 30 45 51
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Figure 3.9 95 % confidence bounds of the deviation distribution over dif-
ferent time horizons. Average for all three clinical sites.

an hour can be in the magnitude of -35 mg/dl to +60 mg/dl (95 % conf.
bound) at glucose levels of 100 mg/dl, and with an even wider spread for
higher glucose levels, see Figure 3.9.

Discussion It should be borne in mind that these values are under-estimated
considering the low-pass character of the relationship between interstitial and
blood glucose value (see discussion about the sensor lag later on in this chap-
ter). This aspect also inhibits the possibility for direct comparison between
these signals. However, the frequency response shows that the interpolated
BG curve incorporates the same frequency content as the original CGM sig-
nal and should thus be a reasonable approximation of the true blood glucose
evolution. Thus, even though only 37 samples were collected a day, mak-
ing the average sample period about 40 min, the applied sampling schedule
made it possible to capture the dynamical changes. In general, glucose self-
monitoring does not follow a strict sampling schedule. Rapid changes in the
blood glucose can be recognized by persons with normal hypoglycemic sen-
sitivity as hypoglycemia, changes into hypoglycemia or hyperglycemia are
often detected, and these circumstances call for unscheduled measurement
to establish glycemic status. Therefore, the high and low peaks are, for many
instances, represented in home-monitored data, but as the hypoglycemic sen-
sitivity decreases over the years since diagnosis, the risk of undetected hypo-
glycemia increases [Mokan et al., 1994].

Distribution

In order to investigate the range of excitation in the data in terms of glucose
level, and to determine if there are any systematic differences in this aspect
between the different sites, the distribution of the CGM data was analysed.

Method The distribution of the CGM data from the DAQ trial was assessed
by standard statistical methods for all three clinical sites.
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Figure 3.10 Total distribution of glucose level G(t) and the 20 minute
glucose deviation, G(t + 20) − G(t). Montpellier patients, the DIAdvisor
DAQ trial.
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Figure 3.11 Total distribution of glucose level G(t) and the 20 minute
glucose deviation, G(t + 20) − G(t). Padova patients, the DIAdvisor DAQ
trial.
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Figure 3.12 Total distribution of glucose level G(t) and the 20 minute
glucose deviation, G(t + 20) − G(t). Prague patients, the DIAdvisor DAQ
trial.
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Table 3.4 Likelihood of each glycemic zone [%], and average mean glucose
[mg/dl] for the patient data from each clinical site.

Glycemic Zone Zone Limits Montpellier Padova Prague
[mg/dl]

Severe Hypoglycemia G ≤ 50 0 0 0
Hypoglycemia 50 < G ≤ 75 3 2 4
Lower Euglycemia 75 < G ≤ 125 32 23 37
Upper Euglycemia 125 < G ≤ 175 31 30 34
Lower Hyperglycemia 175 < G ≤ 225 20 27 15
Hyperglycemia 225 < G ≤ 275 14 18 10
Upper Hyperglycemia G > 275 0 0 0
Mean Glucose [mg/dl] - 153 169 142

Results The dynamical total distribution of glucose level G(t) and glucose
deviations over 20 minutes, G(t+20)−G(t) can be seen in Figures 3.10, 3.11
and 3.12. There is a clear difference in distribution between the clinical sites.
The glucose range can be divided into 7 different zones of different clinical
importance, and the likelihoods of each zone are found in Table 3.4.

The glucose data are clearly non-Gaussian, as seen from Figure 3.13, de-
picting the total distribution of the accumulated CGM readings collected at
all three site. The samples fluctuate around an average of about 160 mg/dl,
but the deviations are not normally scattered around this mean. This phe-
nomenon has been noted in [Kovatchev et al., 1997] as well, where the follow-
ing data transformation was suggested to transform the data into a Gaussian
distributed variable with zero mean.

f(G, α, β) = (log G)α − β (3.1)

The parameters α and β should be 1.084 and 5.381 when using the
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Figure 3.13 Total distribution of CGM glucose level. All DAQ patients.
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Figure 3.14 Risk function using Kovatchev’s transformation.

milligram-per-dl scale. The accumulated data from each site was transformed
in this manner and the distributions can be seen in Figures 3.15, 3.16 and
3.17. The data from Padova do not fit the normal distribution very well,
but the data from the other sites show better resemblance. However, the
normal hypothesis was rejected in every case using the Kolmogorov-Smirnov
test [Johansson, 2009], contrary to the results in [Kovatchev et al., 1997].
From Figures 3.15, 3.16 and 3.17 it can be seen that the upper tail of the
normal distribution is missing or deformed, which is due to the low incidence
of hyperglycemia, see Table 3.4.

Discussion The Prague patients have the most aggressive glucose control,
with fewer high values and more time spent in hypoglycemia. The Padova
patients have more hyperglycemic events, but also half as much time spent
in hypoglycemia compared to the Prague patients. This is also reflected in
the average mean glucose values, which are statistically significantly different
from each other (p<0.01 for all possible comparisons).

The total distribution was found to be non-Gaussian, but the log-normal
like distribution suggested by [Kovatchev et al., 1997] could not be con-
firmed. Under free-living conditions, the hyperglycemia tendency is gener-
ally higher than for the DIAdvisor DAQ data evaluated here, which may
explain why [Kovatchev et al., 1997] found that 203 out of 205 transformed
home-monitored SMBG datasets confirmed the normal hypothesis.

The data transformation stems from an intention to create a risk value
describing the increased clinical risk associated with hypoglycemia and hy-
perglycemia. By taking the square of the transformated glucose level and
multiplying by 10, the risk function of [Kovatchev et al., 2000] is retrieved,
see Figure 3.14. This function forms the basis for the cost function used in
Chapter 9.
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Figure 3.15 Empirical and Approximated Distribution of transformed
CGM data. Montpellier patients.
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Figure 3.16 Empirical and Approximated Distribution of transformed
CGM data. Padova patients.
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Figure 3.17 Empirical and Approximated Distribution of transformed
CGM data. Prague patients.
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Time-variability

Another important aspect of diabetic glucose data is the question of time-
variability. The circadian rhythm may have a significant impact on insulin
sensitivity over the course of the day [Van Cauter et al., 1997], especially
in the early morning, when counter-regulatory hormones (primarily growth
hormone, cortisol and adrenalin) are released—triggering increased hepatic
production [Perriello et al., 1991].

Variability over longer time horizons has not been thoroughly investigated
in the literature, which may be explained by the scarcity and difficulty of ob-
taining qualitative longer data records. Very few longitudinal datasets longer
than a few days, or weeks at best, seem to be available for T1DM in the
research community. The dataset used in [Ståhl and Johansson, 2009] is thus
quite unique in this aspect. This dataset was collected during the first months
of a newly diagnosed T1DM patient (the author). This period of time is gen-
erally referred to as the ’honey-moon period’, during which the pancreatic
β-cells recover somewhat, resulting in temporary remission with consider-
ably varying insulin doses and glycemic response [Abdul-Rasoul et al., 2006].
Mathematically, this translates into time-varying model parameters.

Method The honey-moon data were analysed. In order to estimate and val-
idate different models, data segments with constant parameter values are
needed. To find such segments, the data were investigated using the Adap-
tive Forgetting Multiple Model change detection algorithm (AFMM), imple-
mented in the Matlab command "SEGMENT" [MathWorks, 2012].

Results In Figure 3.18, the variations of the estimated ARMAX parameter
over the time period can be seen.

Discussion The model parameters shifted a number of times during the
honey-moon period, giving an indication of both more stable and unstable
data sections, and this behavoir is expected during this remission phase. The
last stable parameter section is more than a month in length, signalling the
end of the honey-moon period. It may also be noted that the parameter values
end up close to the original values, which may be another indication that the
temporary β-cell recovery has ended. Longer time-variability in non-newly-
diagnosed patients is generally less dramatic, but should not be overlooked,
especially for the so-called ’brittle’ patients [Voulgari et al., 2012]. Time-
variability will be further investigated in Chapter 4.

Blood-to-Interstitial Glucose Lag

The diffusion-like relationship between the blood and interstitial compart-
ments implies a low-pass character in the response to glucose changes, which
means lagging glucose levels in the CGM sensor in comparison to the refer-
ence SMBG.
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Figure 3.18 Data segmentation using the Matlab command SEGMENT.
Variability of the parameters of the recursive ARMAX model over approx-
imately 200 days.

Methods The CGM signal and the blood glucose reference measurements
from the DAQ trial were analysed as follows. To retrieve an initial non-
parametric estimate of the magnitude of the lagging between the blood
glucose reference BG(t) and the CGM signal, the lag was approximated
to a delay, and was found by finding the delay ∆ which minimized the
Root Mean Square Error (RMSE) between the blood glucose measurements
BG(tBG) and the corresponding backward-translated CGM measurements
CGM(tBG + ∆) for the time point tBG, corresponding to time points when
the blood glucose reference measurements were sampled. The measurement
error was also assessed by RMSE between the untranslated CGM signal and
the blood glucose reference, and a possible correlation between sensor delay
and Body Mass Index (BMI) was investigated.

Results In Tables 3.5, 3.6 and 3.7 the estimated delay and RMSE between
the CGM signal CGM(t) and the HemoCue reference G(t) is given for every
included patient. The BG-CGM delay was statistically larger for the Prague
patients than for the Montpellier patients (p<0.05) and for the Padova pa-
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Figure 3.19 Delay between blood glucose reference measurement and the
corresponding CGM measurement vs. BMI for the DAQ data from the three
clinical sites.

tients (p<0.001), and the BG-CGM delay of the Montpellier patients was
larger than that of the Padova patients (p<0.02). In terms of BG-CGM
measurement error, the Prague patients had a significantly larger BG-CGM
RMSE than the Padova patients (p<0.002) and the Montpellier patients
(p<0.003). No correlation between BMI and BG-CGM delay was found, see
Figure 3.19.

Discussion The differences between the Prague data and the other sites
could be explained by the significantly lower number of reference measure-
ments at the Prague site (7 measurements) compared to the Padova (37
measurements) and the Montpellier (39 measurements) patients, and the sim-
plified assumption of estimating the delay and not the lag. The low number
of samples, mainly collected during periods of substantial glucose changes,
where the low-pass filter relationship causes long delays and mismatches, re-
sult in that the delay estimate is biased. Thus, the estimates for the Prague
patients should be disregarded.

Intuitively, a correlation was expected between high BMI, often indicating
a thicker abdominal layer, and longer BG-CGM time delay, as a possible
explanation for the large interpersonal differences. However, the diffusion
may be more dependent on other factors than mere amount of abdominal
fat, such as capillary density and blood turn-over rate.

A model of the interstitial lag and how it can be used to compensate to
get more timely estimates of the capillary glucose value will be presented in
Chapter 8.
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Table 3.5 Glucose Data Statistics Montpellier.

Patient ID BG-CGM BG-CGM
Delay [min] RMSE [mg/dl]

102 15 19.8
103 6 11.8
104 5 22.1
105 7 14.7
106 12 27.7
107 22 28.1
108 8 15.3
111 9 19.6
112 18 23.9
115 8 15.4
117 20 27.6
118 11 23.7
120 16 24.9
122 7 17.9
126 12 21.5
127 8 14.4
130 1 34.3

Mean (std) 10.9(5.7) 21.3(6.0)

Table 3.6 Glucose Data Statistics Padova.

Patient ID BG-CGM BG-CGM
Delay [min] RMSE [mg/dl]

201 1 22.8
202 10 14.5
203 5 27.2
205 10 30.1
209 1 21.5
211 12 24.6
212 6 21.9
213 10 20.6
214 1 16.2
215 5 15.6
216 3 24.0
217 8 14.8
219 13 25.6
220 13 19.8
221 15 23.3
222 4 30.0
226 10 28.4
227 9 24.2
231 1 18.3

Mean (std) 7.2(4.6) 22.3(4.9)
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Table 3.7 Glucose Data Statistics Prague.

Patient ID BG-CGM BG-CGM
Delay [min] RMSE [mg/dl]

301 20 30.7
310 20 22.0
313 15 41.0
316 17 36.2
317 30 50.3
318 17 16.8
322 12 34.5
324 15 28.9
325 1 17.7
326 30 44.5
328 2 23.3

Mean (std) 16.3(9.2) 31.4(11.6)
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4

Modeling Insulin Action

4.1 Introduction

Understanding how insulin affects the glucose level is perhaps the most
fundamental part of modeling and identifying glucose dynamics. In insulin-
dependent diabetes, external administered insulin is constantly required to
control the balance between hepatic output and peripheral glucose utiliza-
tion and clearance. As described in Chapter 2, several different insulin types
exist, used in different combinations to achieve proper glucose control. In this
thesis, focus will be on rapid-acting insulin used in insulin pump therapy and
as bolus insulin in multiple daily injection therapy.

Pharmacokinetics and Pharmacodynamics

Empirical methods The golden standard of estimating the glucose-lowering
effect of insulin is the intravenous euglycaemic glucose clamp technique [De-
Fronzo et al., 1979]. Following an overnight fast, the test subject is given a
bolus shot of insulin and subjected to a continuous intravenous infusion of
glucose, which is varied during the test period to keep the frequently mon-
itored glucose level constant. At such a glucose steady state, the glucose
infusion profile matches the net clearance of glucose, and is thus used as
a description of the glucose-lowering effect of the investigated insulin. This
test is normally performed on healthy subjects, which may lead to overes-
timation of the insulin action due to insufficient suppression of endogenous
insulin release. The test is non-physiological with an artificially maintained
euglycemia. Thus, any heterogeneous effects on insulin effectiveness over the
glucose range cannot be evaluated. The protocol further stipulates that the
test is to be performed in the morning following a fast, implying that possible
diurnal patterns in insulin action cannot be discovered and thus may have
been missed.

Physiological Models The transport of rapid-acting insulin from the subcu-
taneous injection site to the blood stream has been described in quite a few
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Figure 4.1 The compartment model of [Dalla Man et al., 2007b] and [Dalla
Man et al., 2007a].

models of insulin pharmacokinetics. Most of these are linear compartment
models, and reviews can be found in [Nucci and Cobelli, 2000] and [Wilinska
et al., 2005]. This phenomenon has generally been considered independent
to the metabolic interaction, and thus separated as a stand-alone model.
In [Wilinska et al., 2005], eleven different models (ten compartment mod-
els and the model from [Berger and Rodbard, 1989] were fitted to empirical
meal test data from seven T1DM patients using rapid-acting bolus insulin.
A third-order compartment model, with local degradation of insulin at the
injection site (modeled as a Michaelis-Menten relationship), turned out to be
the best choice, according to the Akaike criterion [Johansson, 2009]. A similar
model, the compartment model in [Dalla Man et al., 2007b] and [Dalla Man
et al., 2007a] (see Fig. 4.1), has been selected as a representative example of
the modeling approaches in this field. The model equations are:

İsc1(t) = −(ka1 + kd) · Isc1(t) + D(t)

İsc2(t) = kd · Isc1(t) − ka2 · Isc2(t)

İp(t) = ka1 · Isc1(t) + ka2 · Isc2(t) − (m2 + m4) · Ip(t) + m1 · Il(t)

İl(t) = m2 · Ip(t) − (m1 + m3) · Il(t)

(4.1)

Following the notation in [Dalla Man et al., 2007b] and [Dalla Man et al.,
2007a], Isc1 is the amount of non-monomeric insulin in the subcutaneous
space, Isc2 is the amount of monomeric insulin in the subcutaneous space, kd

is the rate constant of insulin dissociation, ka1 and ka2 are the rate constants
of non-monomeric and monomeric insulin absorption, respectively, D(t) is the
insulin infusion rate, Ip is the level of plasma insulin, Il the level of insulin
in the liver, m3 is the rate of hepatic clearance, and m1, m2, m4 are rate
parameters. The relationships defining rate parameters m1 − m3 are based
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on reasoning on the hepatic insulin clearance, see [Dalla Man et al., 2007c]
for further details.

Current Decision Support—Bolus Guides

Many modern insulin pumps, as well as some glucose meters, offer decision
support systems (DSS) for insulin therapy to the user in the form of so-called
bolus guides. Several studies have shown the usefulness of these bolus guides
in terms of reducing postprandial excursions for both CSII, see e.g. [Zisser et
al., 2008; Shashaj et al., 2008], and MDI therapy, see e.g. [Ziegler et al., 2013]
and reduced incidence of hypoglycemia in a pediatric cohort in [Ramotowska
and Szypowska, 2014], or see [Schmidt and Nørgaard, 2014] for a comprehen-
sive review. These systems rely on assumptions on the glucose-lowering effect
of insulin—insulin action—and the dynamics thereof. The duration of the in-
sulin action may usually be selected by the user from anywhere in-between 2
and 8 hours. The shape of the insulin action profile is sometimes linear, i.e.,
the glucose-lowering effect is considered constant over the active period, and
in some cases nonlinear curves are used to better reflect the pharmacokinetic
shape, see [Zisser et al., 2008].

In terms of how to determine the total glucose-lowering effect—the in-
sulin sensitivity factor (ISF)—different formulas exist. The most widely used
is the so-called 100-rule (or 1800-rule if the mg/dl scale is used). This rule
suggests that the ISF can be calculated by dividing 100 by the amount of
the total daily insulin dose (TDD). Recently these rules were revised by the
originators in [Walsh et al., 2010; Davidson et al., 2008] with slight adjust-
ments to the 100-rule (one author suggests using 109 and the other to use
95). Additionally, many patients complement this rule by estimating the ISF
from personal experience, e.g., from occasional correction boluses. Determin-
ing the duration and the shape of the insulin action is more difficult, and in
our experience the patients most often resort to the default values for insulin
action duration given by the DSS. The underlying assumption of the 100-rule
is that there is a static and generic relationship between the amount of daily
insulin and the glucose-lowering effect of insulin. While this may be true in a
population sense, adopting it to a specific individual may produce poor esti-
mates. Likewise, personal heuristic estimates may give very poor estimates,
as confounding aspects such as meals and the duration of the current and
previous bolus doses are not fully appreciated or understood. In addition,
the generic estimates of the profile of the insulin action also contribute to a
large uncertainty in the assessment of the insulin action. These factors may
lead to poor glycemic control related to insulin stacking from one meal to
the next (due to the true insulin action duration being longer than what
the generic assumption indicates), over/underbolusing (due to the effect of
the insulin being less/more rapid than the generic profile) and unexpected
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hypo/hyperglycemia as pointed out by [Walsh et al., 2014].

Identification of the glucose dynamics

Approaches to estimation of input-output models of the glucose dynamics,
including the insulin action, span, e.g., ARX families [Finan et al., 2009],
continuous-time transfer functions [Kirchsteiger et al., 2011], state-space
models [Ståhl, 2012] or [Cescon, 2013], and Volterra kernel networks [Mitsis
and Marmerelis, 2014].

However, these approaches do not explicitly consider potential heteroge-
neous effects of the insulin action across the glucose range, i.e., higher or lower
glucose-lowering effect depending on the current glucose level, as indicated in
[Chan et al., 2010], and may be poor approximations to nonlinear dynamics.
Furthermore, we believe it is important to recognize the day-to-day variabil-
ity in glucose metabolism and insulin action. Whereas, this variability may
partly be due to pharmacokinetic and pharmacodynamic properties of the
insulin [Heinemann, 2002], time variability in insulin sensitivity may also be
an important factor.

To address the aspect of nonlinear glucose dynamics and time-variability,
we suggest individualized estimates of the insulin action using a kernel-based
approach, which may incorporate heterogeneous effects across the glucose
level as well as a nonlinear temporal response.

4.2 Data and Methods

Data selection

In this chapter data from the ULund trial has been used. To perform the anal-
ysis, data records where insulin intake alone affected the glucose level were
needed. To this purpose, CGM glucose traces for the overnight periods (from
midnight until breakfast) together with the corresponding insulin dosage data
were extracted from the data material for each patient. These datasets were
thereafter assessed for completeness and relevance. Data containing reports
of meals were discarded, as were data periods where the glucose trace showed
clear indications of digested meals (sudden spontaneous and dramatic rises
in glucose shortly after bolus doses) but where this information was missing
in the meal data record. To reduce the effect of previously digested meals,
the data records were truncated, when necessary, to allow for at least three
hours in-between the last evening meal intake and the beginning of the data
period. Furthermore, data where the CGM showed large deviations to the
reference glucose meter were also discarded as unreliable. Finally, in the event
of a hypoglycemic event, the data record was truncated after the point where
the glucose dropped into the hypoglycemic region. The reason for this was
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to avoid interference from the counter-regulatory response following such an
event. On average, data from 65% of the nights could be used.

Model

There is reason to believe that the insulin action is nonlinear across the glu-
cose range. That chronic or temporary hyperglycemia reduces insulin sen-
sitivity is well-known and affects both T1DM and T2DM [Yki-Järvinen,
1990]. Also hypoglycemia may affect the insulin sensitivity by increasing
the metabolic effect of insulin [Chan et al., 2010]. To estimate the dynamical
glucose-lowering effect of rapid-acting insulin and the nonlinear effects de-
scribed above, a nonlinear black-box Finite Impulse Response (FIR) model
was considered to describe the insulin action. However, the fasting glucose
dynamics depends on internal dynamics related to the hepatic glucose pro-
duction and fasting metabolism as well as the externally provided insulin. In
this approach, this was summarized into a total net basal endogenous glucose
balance Gb in fasting state. In total, the glucose dynamics during fasting at
time point tk after may then be described as

y(tk)(j) = y(tk−1)(j) +
n

∑

i=0

ai(y(tk)(j))I(tk−i)

+ G
(j)
b (tk) + v(tk), tk ∈ Tj (4.2)

where I(tk) represents the insulin infusion and y(tk) is the glucose level at
time sample tk and v(tk) ∼ N(0, σv) corresponds to a process noise pertur-
bation, with variance σ2

v . Each dataset j covers the time instances Tj , and
the impulse-response model parameters a = [a1, a2 . . . an] have a glucose de-
pendence.The sampling time is equivalent to the measurement frequency (5
min).

The net basal endogenous glucose balance (EGB) Gb(tk) changes both
in-between datasets, and over the course of each overnight dataset. The diur-
nal pattern of the short-term changes occurring over each dataset is assumed
to be the same in every dataset. The Gb corresponds to a basal insulin re-
quirement Ib convolved with the insulin action. In stationarity, with fixed
I(tk) = Ib and y = yb, this implies that:

n
∑

i=1

ai(yb) · Ib = KISR(yb)Ib = −Gb (4.3)

where KISR(yb) is the Insulin Sensitivity Ratio, i.e., the total glucose-
lowering effect of one unit of insulin, at glucose level yb.

To estimate the model, a number of different steps are required as outlined
in the text box on the next page. These steps will be described in more details
in the following sections.
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Summary of the Estimation Process

1. Determine the prior G0 of the EGB. Here, the pump settings of
each patient were used. The average overnight basal rate was
multiplied with the insulin sensitivity factor setting in the insulin
pump bolus guide to get G0 (see Eq. (4.3)).

2. The next step is to estimate the duration of the insulin action.
Run Eq. (4.4) assuming G

(j)
b to be constant in each dataset j (i.e.

without diurnal pattern) and with n set to a large value (here we
choose 8 hours). The resulting maximum length of non-zero a
parameters determines the length n to use for this variable.

3. Thereafter, Eq. (4.4) is rerun with the updated n, and without
1-norm regularization of a. Hereby, an estimate of the insulin
action a, as well as the mean endogenous glucose balance over
each dataset G

(j)
b,0, is retrieved.

4. Finally, find the overnight pattern of the Gb by running Eq. (4.7)
with the estimated parameters from step 3.

Kernel-based Estimation Method

To estimate the model, locally-weighted least-squares estimation, see e.g.
[Hastie and Tibshirani, 1990], using a quadratic Epaneichnikov kernel
([Epanechnikov, 1969]) was employed. In order to keep the estimate smooth,
second-order regularization was also considered, and we utilized a Gaussian
prior for Gb. To reduce the model size, the parameters were regularized by
the 1-norm. To fulfil the physiological requirements of glucose-lowering re-
sponse to insulin, the parameters were constrained to non-positive numbers,
and the start and end of the insulin action were enforced to zero. For each
glucose level G of interest, the following optimization problem was solved to
retrieve the parameter estimates; a = [a0, . . . an] and Gb = [G(1)

b , . . . , G
(N)
b ]

using N nights of data, where the glucose index of a has been dropped for
notational convenience.

{a(G), Gb} = arg, min
a,Gb

N
∑

j=1

‖y(j) − ŷ(j)‖WG

+ ‖
Gb

G0
b

‖Γ + α‖a‖R + ‖a‖1 (4.4)
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subject to a0 = 0, ai ≤ 0, i = [1 . . . n − 1] and an = 0, and where the second-
order regularization matrix R is populated as follows:

R(j, j − 1 : j + 1) =
[

1 −2 1
]

, j = [1, . . . , n] (4.5)

and

‖x‖Γk,θ
= (k − 1)

N
∑

i=1

ln xi −
1
θ

N
∑

i=1

xi (4.6)

corresponds to the data-dependent terms in the likelihood function of a
gamma distribution with shape parameter k (set to 3) and scale parameter
θ (set to 0.5). A gamma distribution was chosen as prior for the normalized
EGB because it guarantees positive values. The quadratic kernel matrix WG

defines the weight of each glucose measurement according to the euclidean
distance to the glucose level G, G0

b is the prior expected value estimate of Gb,
and α determines the smoothness of a. The problem can be considered as a
maximum-likelihood estimation if the kernel weight and the smoothness cri-
teria are given adequate probabilistic interpretations. The optimization was
solved using the CVX toolbox in Matlab, see [Grant and Boyd, 2014]. The
duration of the insulin action may be different from patient to patient. To
determine the number of parameters n to use, an initial run was conducted,
from which the number of non-zero parameters could be assessed thanks to
the 1-norm term. Thereafter, the optimization was updated with the new n
for the final estimation run.

Finding the overnight Gb pattern

So far, we have assumed that the Gb stays fixed throughout the night. How-
ever, this may be a too limiting constraint for some patients. Changes in basal
requirement may occur, e.g., in transition between the active awake state and
the passive sleep state. Furthermore, some patients also have a pronounced
dawn phenomenon in the morning hours. To capture these effects, we in-
vestigate the possibility to improve the predictive capacity by considering
the following. Let a and Gb be fixed to the estimates retrieved from (4.4).
Define a multiplier vector ρ of length nρ, where each entry corresponds to
a different multiplier value for each half hour in the overnight period. Find
these multipliers by

ρ = arg, min
ρ

N
∑

j=1

(‖y(j) − ŷ(j)‖ + ‖ρ − 1nρ
‖ (4.7)
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where ŷ(j) = {ŷ(j)(tk) : tk ∈ Tj} , 1nρ
is a vector of ones of the same size as

ρ, and

ŷ(j)(tk) = ŷ(j)(tk−1) +
n

∑

i=0

aiI(tk−i) + ρ(Π(tk−i))G
(j)
b (4.8)

where Π(t) is a function determining which half hour the time t belongs to.

4.3 Results

The insulin action was successfully estimated for all patients for a glucose
range between 4 and 16 mmol/l with a 0.5 mmol/l increment. The patients
demonstrated a large variability in both shape and magnitude of the insulin
action dynamics as indicated in Figure 4.2 where the insulin action estimated
at the 10 mmol/L glucose level is depicted. The default shape and duration
found in the Animas pump setting are also included in the figure.

The individualized action profiles had an average glucose-lowering effect
of 2.4 mmol/(L·IU) [1.1-3.7] and half of the effect was achieved after 135
minutes [105-165]. It is noteworthy that all estimated profiles have a slower
onset and a longer time to peak than the profile suggested by the pump
(half effect after 100 min). The total duration was also longer; 90% of the
insulin action took effect after 250 min [200-350] in comparison to the 195 min
suggested by the Animas pump. There were no observed differences between
the two insulin types used, in line with previous clamp studies in [Plank et
al., 2002].
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Figure 4.2 The insulin action profile used in the Animas pump (red curve)
plotted together with the variability of insulin action estimates when G =
10mmol/l (the grey area). The dotted black line represents the estimated
mean population insulin action.
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Figure 4.3 Example of the insulin action across the glucose range. Patient
nr 1 from the Dexcom cohort.

Another important aspect of insulin action, which may have severe impli-
cations for glucose control, is whether the glucose-lowering effect is invariant
to the present glucose value, i.e., whether an insulin injection produces the
same response regardless of the glucose level. Our model estimates suggest
that there are differences in insulin action depending on the glucose level.
Generally, the peak was somewhat delayed and the total glucose-lowering
effect diminished for higher glucose levels, see Figure 4.3 for an example.
The latter aspect was significant and exhibited a sigmoidal or Hill shaped
([Keener and Sneyd, 2009]) type of relationship to the glucose level, see Fig-
ure 4.4. The relative gain is statistically different (p < 0.05) for all glucose
values at least 4 mmol/l apart.

The EGB estimate changes over the night for most patients. Typically
it drops quite a lot the first hours of the night, after which it stabilises.
In the morning, normally around 6 a.m., the EGB rises again—the dawn
phenomenon. The normalized EGB can be seen in Figure 4.5. The mean
estimated EGB in the early morning hours (4-7 a.m.) is significantly higher
than the mean night EGB (2-4 a.m.) for the entire population (p < 10−10).

To validate the insulin action models, cross-validation of the predictive
performance of overnight glucose traces was assessed. Using the insulin data
from the pump together with information about the basal insulin require-
ment estimate and model parameters estimated from data not present in the
validation data, glucose traces from bedtime until morning were simulated
and compared to the reference CGM. Corresponding traces were simulated
using a third-order continuous-time transfer function M(s) with an integrat-

70



4.3 Results

0.8

0.85

0.9

0.95

1

1.05

1.1

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16

M
ul

tip
lie

r 
G

ai
n 

of
 in

su
lin

 a
ct

io
n 

[−
]

Glucose Value [mmol/L]

Figure 4.4 The relative total glucose-lowering effect of insulin over the
glucose range. The glucose-lowering effect is elevated at low glucose values
and reduced at glucose values above 10 mmol/L.

ing pole as outlined in [Kirchsteiger et al., 2011]:

M(s) =
K

s(T1s + 1)(T2s + 1)
(4.9)

subject to

0 ≤ K ≤ 5 (4.10)

0 ≤ Ti ≤ 100 (4.11)

which fulfils the physiological requirement of persistent glucose-lowering ef-
fect (K [mmol/(L· IU)] corresponds to KISR), and where the dynamics are
governed by time constants T1 and T2 ([min]). The model was estimated
using the System Identification Toolbox in Matlab. The prediction error in
terms of RMSE can be found in Table 4.1. Our proposed model has an over-
all better predictive performance, which is pronounced in the low and high
glucose ranges. The low interpersonal variability in prediction results also
indicates that the method is robust across the population.
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Figure 4.5 Changing EGB throughout the night. Normalized by the min-
imum value during the night.
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Table 4.1 Prediction evaluation in terms of root mean square error (RMSE)
for the kernel and transfer function models evaluated over different glucose
(G) ranges.

RMSE (%)
Model G < 5 G > 10 All G

TF model 47 12.2 22.2
Kernel model 18 7.4 11.6
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Figure 4.6 The total distribution of the prediction error.

There was a difference (p = 0.067) in predictive performance between
the Animas/Dexcom (10.1%) and Medtronic (13.2%) groups, which may be
explained by that the Medtronic sensors had a significantly larger deviation
to the glucose reference (13.8 vs 10.7% MARD, p < 0.05), which may also
imply higher noise for these sensor types. Finally, the standard deviation
for the prediction results in the same subject averages around 8% and this
suggests that the intrapersonal variability in insulin action is manageable,
and in line with previous estimates in [Heinemann et al., 1998]. The error
is symmetrically distributed around a small positive bias (0.07 mmol/l), see
Figure 4.6. Despite the correction factor to reflect the temporal changes in
EGB, the bias increases somewhat over the night (Figure 4.7). In Figure 4.8
the Clarke Error Grid is given, with 87% of the values are in zone A, 12% in
zone B and 1% in zone D, indicating the clinical usefulness of the results.

4.4 Discussion

Insulin pump settings

Insulin action duration, or as it is generally referred to—Insulin On Board
(IOB)—is a very important, but also difficult, aspect of insulin therapy for
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Figure 4.7 The distribution of the prediction error over the night period. In
the upper plot the distribution of errors of the model without the temporal
correction factors ρ is given, and in the lower plot the errors of the full
model can be seen.

the patient to determine. Relying on poor estimates of the duration of the
insulin action is potentially very misleading and dangerous. However, there
are no clear guidelines for how to determine this parameter. For patients
who look for guidance in online material provided by healthcare professional
organizations often encounter quite short suggested duration of the insulin
action. This stand in contrast to numerous clamp studies that suggest that
the duration may be up to 8 hours, see e.g. [Mudaliar et al., 1999; Morrow
et al., 2013; Rave et al., 2005].

The American Diabetes Association (ADA) online patient information
advices that the rapid acting insulins peak in about an hour and that the
total duration is 2-4 hours [American Diabetes Association. Living with dia-
betes., 2014]. National Institutes of Health (NIH) suggests a peak somewhere
between 30 and 90 minutes and a total duration of 3 to 5 hours [NIH online,
2015]. Group HealthCare, a non-profit member-owned healthcare organiza-
tion based in Seattle, claims that the peak is at 90 minutes and a total dura-
tion of 3 hours [GroupHealth, 2015]. Joslin Diabetes Center informs about a
30 min - 3 hour peak and a total duration of 3-5 hours [Joslin Diabetes Cen-
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Figure 4.8 The Clarke error grid.

ter, 2015]. Similar information is provided by NovoNordisk; maximum effect
in-between 1 and 3 hours and a total duration of 3-5 hours [Novo Nordisk,
2014]. The suggestions have been summarized in Table 4.2.

Based on this, the 4 hour default duration in the Animas pump bolus
guide may seem reasonable. However, looking at our population results and

Table 4.2 Suggestions on insulin action characteristics by different inter-
national organisations.

Organisation Peak Duration

ADA 60 min 2–4 h
NIH 30–90 min 3–5 h
GroupHealth 90 min 3 h
Joslin 30–180 min 3–5 h
NovoNordisk 60–180 min 3–5 h
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the estimated insulin action profiles, and summarizing the remaining esti-
mated glucose-lowering effect left after 4 hours show that on average 10% of
the total effect remain. For a few patients with long durations (7 hours or
more) as much as 25% is left. This may seem as small amounts, but for large
meal bolus doses the unexpended remainder may be quite potent. Underes-
timating the duration has many detrimental effects, especially at bedtime.
A too short duration implies that the effect of previous bolus doses, e.g. late
meal bolus doses, are underestimated or even disregarded, which may lead
to early-night nocturnal hypoglycemia or to overcompensation by heavily
reduced basal doses, which in turn may lead to rising glucose levels in the
early morning similar to the effect of hormonally induced dawn phenomenon
and poor morning control. Likewise, the slower onset and the longer time
to peak of the profile in comparison to what is suggested by the pump may
also imply several potential dangerous situations, such as overdosing due to
that the patient take additional correction doses since the short-term insulin
effect is lower than expected from the pump curve.

Almost all of the patients had a IOB duration setting of 4 hours, see the
histogram in Figure 4.9. A few of the Medtronic patients had a duration
setting of 6 hours, which is the default for that pump. For the Animas pump,
4 hours is the default. The corresponding distribution of the duration for the
estimated models is a bit more diverse. The clustering of the IOB settings
seem to indicate that the patients feel uncertain about this variable.

The model has shifting insulin sensitivity factors depending on the glu-
cose level. However, to allow comparison to the pump setting as well as the
factor retrieved using the 100 rule, we use the average K̄ISR. In Figure 4.10,
K̄ISR can be seen together with the 100 rule estimate and the patients’ pump
settings. Also for this setting, some patients resort to the default provided by
the pump. Among the Dexcom/Animas patients, six had the default setting
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Figure 4.9 Upper plot: Distribution of the IOB duration setting in the
patients’ pumps. Lower plot: Distribution of the IOB duration estimates.
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Figure 4.10 Insulin sensitivity factor (ISF) plotted against total daily dose
(TDD). The black line represents ISF according to the 100 rule, the red dots
are the patients’ pump settings, and the squares correspond to the model
estimates.

of 2.8 mmol/l, and two of the Medtronic patients did not have any setting
for this parameter at all. Similar clustering of pump settings to specific val-
ues have been noted in [Walsh et al., 2010]. Generally, our estimates are
somewhat lower than the user setting (−10 ± 40%), whereas the 100 rule
was slightly higher (2 ± 26%). Comparing patients where the model estimate
was higher than the setting (14 patients) to the patients where the opposite
was true (13 patients), show that time in severe hypoglycemia was signifi-
cantly higher (p < 0.006). The corresponding test on time in hypoglycemia
was almost significant (p = 0.07). This indicates that the patients under-
estimate the potency of the glucose-lowering effect with higher incidence of
hypoglycemia as result.

Heterogeneous Insulin Action

The heterogeneous response across the glucose range may have multiple and
different root causes. In normal healthy subjects an elevation of the glucose
level rapidly decreases the hepatic output. In T2DM, this autoregulation may
be impaired and contributes to insulin resistance. Also in T1DM the apparent
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reduced effect of insulin at elevated glucose levels may be due to disturbances
related to hepatic down-regulation. In T1DM, the lack of pancreatic insulin
release implies lower portal vein insulin concentrations and loss of first-pass
insulin release to the liver. Thereby, the operating point of the dose response
curve for hepatic regulation is shifted and the hepatic regulation may also
be disturbed with reduced response to elevated glucose levels as result. This
nonlinear effect has a destabilizing effect on glucose control, especially when
combined with a long duration of insulin action. For individuals with an ex-
aggerated multiplier effect of insulin action across the glucose range and long
insulin action, a correction dose to come out of a temporary hyperglycemia
may well result in a subsequent hypoglycemia. Further studies are needed to
see if high glucose variability is associated with this phenotype.

Confounding factors

There are a number of potential confounding factors that need to be consid-
ered.

The models are estimated only from overnight data. There may exist
reoccurring hormonal and other metabolic temporal patterns, specific to the
sleep state or night period, which systematically bias the results. Further
studies where the models are tested and validated on day time data are
needed to clarify this aspect.

Another aspect is that the models rely on CGM data, and errors in these
measurements may thus also bias the estimate. Such errors are related to
sensor drift, calibration bias, sensor noise and the plasma-to-interstitial delay,
see e.g. [Vaddiraju et al., 2010] for in-depth information about these sensor
types. Of these, the last one clearly contributes with a bias in terms of a delay
in the insulin action estimate. Due to the low-pass filter character of this
physiological delay, the bias is most exaggerated for the steepest changes in
the insulin action, which occur around the peak. It is therefore likely that our
model has overestimated the timing of the peak somewhat (in the magnitude
of 5-15 minutes), whereas the estimate of the total duration of the insulin
action probably is correct.

Potential nonlinear effects related to the bolus size have not been ad-
dressed. Previous studies in [Becker et al., 2007] have indicated that larger
bolus doses may imply longer insulin action. Such an effect has not been
possible to investigate in this data material, as most of the insulin doses are
small and of similar size—in general basal doses and some occasional small
correction bolus doses. Also this aspect needs to be further investigated, with,
e.g., dedicated study protocols stipulating large bolus doses.

The data was collected under free-living conditions, and external factors
such as unregistered meals, physical activity and alcohol intake may play a
significant role. Here, the size of the data material together with safe-guard
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measures such as the data quality assessment reduces the risk of systematic
errors from these disturbances.

Finally, the necessity of sufficient excitation in the data is also an impor-
tant aspect that may contribute to poor results. Consider especially the case
with a static basal dose I0 and no bolus doses giving rise to a static change
of glucose ∆G. Given the model, all combination of Gb + KISRI0 = ∆G are
now equally plausible. Thankfully, the datasets do contain information on
bolus doses as well as changes in the basal regime, giving rise to dynamic
responses in the measured output.

Comparison to Physiological Models

In the physiological models, the pharmacokinetics and the pharmacody-
namics are normally modeled separately. Typically a linear pharmacokinetic
model provides a basis for the dynamic effect, and the pharmacodynamics
thereafter adds lags, nonlinear effects and the magnitude. In the model sug-
gested here, these effects have been lumped together, and it is not possible to
get an estimate of the plasma insulin level. Another important difference is
how the insulin-glucose interaction is modeled. In the physiological models,
the insulin action, defined as dG/duI = ∂G/∂Ip · ∂Ip/∂uI (where uI is the
insulin dose and Ip is the plasma insulin level), normally increases as the glu-
cose level increase in a Michaelis-Menten like relationship, due to modeling
of the the regulation of the hepatic output and the insulin-dependent glucose
utilization. To capture interaction between the insulin action and the glucose
level, the model described here allows for different insulin action across the
glucose range, however without stipulating the character of this relationship.
The parameters of the impulse response are merely coupled by smoothness
constraints. The net endogenous balance is made out of several contribution
factors in the physiological models. Apart from the hepatic output and the
glucose utilization, renal excretion has an important contribution in hyper-
glycemic range. This is not captured in the presented model. In order to
limit model and identification complexity, Gb was not allowed to vary with
the glucose level. Finally, whereas the physiological models have clear phys-
iological interpretations and the different effects of meal and insulin intake
may be followed throughout the different modeled compartments of the body,
the proposed model does not. However, the clinical interpretation of insulin
action and net endogenous glucose balance are meaningful and useful to both
the clinician and the patient.

Comparison to other Black Box Approaches

In comparison to alternative black box modeling approaches, the method
outlined here incorporates several key properties, see Table 4.3. The non-
parametric approach allows for better tailoring to the nonlinear dynamics.
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Table 4.3 Comparison of model features

Nonlinear Guar. Physiol. Heter.
Model Temp. Dyn. Correct Resp. Dynamics

ARX ✖ ✖ ✖

State-space ✖ ✖ ✖
Transfer function ✖ ✔ ✖

Volterra Kernel ✔ ✖ ✖
Kernel-based ✔ ✔ ✔

Obviously none of the linear models can exhibit this. Whereas a nonlinear
response may be possible for the interesting Volterra kernel model, it lacks
guarantees of a qualitatively correct static gain and is therefore not able to ac-
curately represent the long-term effect of insulin bolusing. The novel feature
of considering heterogenic dynamics across the glucose range seems to capture
significant physiological characteristics and to improve the predictive perfor-
mance in the important hypoglycemic range as well as in the hyperglycemic
region. Apart from improving the predictive capacity, the recognition and
quantification of this interesting physiological aspect may potentially shed
light on why some subjects exhibit high glucose variability and more difficul-
ties in glucose control. On the other hand, the number of parameters is quite
large in this model. However, the high degree of smoothing (see Figure 4.3)
reduces the number of effective parameters and the cross-validation indicates
that there is no apparent risk of overfitting.

The impact of EGB variability

Quite a few of the patients have a substantial day-to-day variability in the
EGB estimate. A large variability in insulin requirement could spill over into
difficulties in maintaining a sound glucose control, and could be reflected in
increased glucose variability. Indeed, when investigating the data, we found
a positive relationship between the variance of the EGB estimate and the
variance of the CGM glucose (p < 0.036), and also to time-in-range (4-
12 mmol/l) (p < 0.046). The correlation analysis further showed that the
estimated EGB was significantly lower than the average for dates where noc-
turnal hypoglycemia occurred (p < 0.001). The hypothesis that variability
in the glucose metabolism may play a key role in developing hypoglycemia
was supported by a study where severe hypoglycemia could be linked to glu-
cose variability in the 24 hour period prior to the episode ([Kovatchev et al.,
2000]). Mean glucose may also be affected—correlation to mean CGM was
close to significant (p < 0.066)—but perhaps with an indirect causality. Pa-
tients experiencing high variability may deliberately target a more elevated
glucose level to avoid the risk of hypoglycemia. In the next chapter we will see
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Chapter 4. Modeling Insulin Action

how the model can be exploited to reduce the risk associated with nocturnal
hypoglycemia.

4.5 Conclusions

Improved understanding of insulin action and the associated variability is
vital to reducing the risk of adverse glucose events. In this chapter individ-
ualized finite impulse response models of insulin action have been identified
for 29 patients on CSII therapy using overnight CGM and CSII data in a
six week home-monitored study. The model is individualized, implying that
patient-specific results can be achieved and not only population parame-
ters of limited value to the individual. Apart for the insulin pump and the
continuous monitoring devices no extra equipment is required. There is no
intervention in the therapy and no requirement for hospitalization, and the
data collection may be conducted under free-living conditions. Overall, the
results show that there is a large variability in the shape of the insulin action
in-between subjects which cannot be handled by generic estimates. Further-
more, the estimates imply that the duration of action often is longer than
the 3-5 hours frequently suggested, and in some cases may be up to 7 or 8
hours. The model also incorporates the possibility of heterogeneous action
across the glucose range. Our results indicate that the metabolic effect is
improved at lower glucose levels and diminishes somewhat at glucose levels
above 10 mmol/L. These findings are in line with results from a human clamp
study specifically designed to investigate this matter. To validate the mod-
els the overnight glucose traces were compared to simulated traces retrieved
when using the models using leave-one-out cross-validation. The results were
compared to the corresponding predictions received using a linear transfer
function model. The model clearly outperformed the alternative approach,
with good performance across the population, and with manageable intra-
personal variability. The results indicate that individualized insulin action
models can be estimated from a limited dataset with useful accuracy.

Current decision support systems for bolus dosing could be potentially
better tailored to each individual using the personalized insulin action model,
thereby increasing the clinical benefit. These systems rely on generic insulin
action curves, whose shape and duration are altered by two parameter values,
KISR and IOB, selected by the user. Both the duration of the insulin action
and the total glucose-lowering effect are difficult to determine. The patients
seem especially confounded regarding the duration, where most resort to
the default value provided by the pump bolus guide decision support. With
the suggested method these parameters can be estimated individually from
overnight data records. However, further improvements would be achieved if
the decision support incorporated the entire model. Apart from personalized
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shape and duration of the insulin action, the description of the heteroge-
neous insulin action across the glucose range and the estimate of the insulin
requirement would thereby also contribute to improved glycemic control. Fur-
thermore, the insulin action model is a critical component in other potential
building blocks of a defence in depth concept for glucose management, as will
be described in the following chapters.
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5

Nocturnal Hypoglycemia

Prediction

5.1 Introduction

Hypoglycemia is one of the major barriers to successful intensive insulin ther-
apy. The DCCT trial found that the incidence of severe hypoglycemia was
inversely correlated to the HbA1c [DCCT Group, 1997]. The same study
also indicated that a majority of these events occur during the night [DCCT
Group, 1991]. The overall incidence of nocturnal hypoglycemia ranges from
13% to 56% of the nights in insulin-dependent diabetes in reported studies
[Yale, 2004]. Among children and adolescents, the frequency is even greater,
with increased risk at lower age. In [Beregszaszg et al., 1997], an overnight
study conducted on 150 children and adolescents (age 2 to 15), an inverse
relationship between the age and the frequency of nocturnal hypoglycemia
was found. Overall, nocturnal hypoglycemia occurred in 47% of the nights. In
a large study [Davis E, 1997], covering 657 children and adolescents, 75% of
the severe hypoglycemic episodes, defined as an event leading to seizures or
coma, occurred during the night. Many of these episodes are asymptomatic
due to impaired hypoglycemic awareness. The counter-regulatory response to
hypoglycemia may be blunted during sleep [Jones et al., 1998]. Furthermore,
recurrent hypoglycemia induces hypoglycemic unawareness [Veneman et al.,
1993], leading to a vicious circle. Apart from the acute risks of seizures, coma,
and in very severe cases, death, reoccurring hypoglycemia may have implica-
tions for cognitive functionality [Warren and Frier, 2005]. These aspects are
especially worrisome for the developing brain in children and adolescents. The
fear of (nocturnal) hypoglycemia is in itself an important aspect to consider
in terms of its contribution to reduced quality of life, but may also result in
patients reducing the insulin dosage in order to reduce the hypoglycemic risk
[Edelman and Blose, 2014].
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5.1 Introduction

Current technology

Some of the current CGM systems allow for predictive threshold alarms
based on extrapolating the current glucose trend by numerical differentiation
[Vashist, 2013]. Generally, the use of real-time CGM and the hypoglycemic
alarms have implied reduced incidence and time spent in hypoglycemia [Bode
et al., 2008; Davey et al., 2010; New et al., 2015]. In 2008, Medtronic intro-
duced the Medtronic Veo insulin pump in Europe, which coupled with their
CGM system, featured automatic insulin delivery suspension for two hours
if a predefined low glucose level was reached. Studies show that the system
could further reduce the duration and frequency of nocturnal hypoglycemia
[Bergenstal et al., 2013]. Despite these encouraging results, the predictive
capacity is still low and the incidence of (nocturnal) hypoglycemia is still
unacceptably high. Several algorithms have been suggested in recent years
to improve the predictive capability. In [Palerm et al., 2005], a Kalman filter
approach was proposed, estimating the interstitial glucose level, and the first
and second time-derivative thereof, i.e., the rate of glucose change and accel-
eration. Combining three different methods for hypoglycemic detection with
the ARMA model has also been suggested [Eren-Oruklu et al., 2009b]. In
[Dassau et al., 2010], five different algorithms were used together in a voting-
based detection system called hypoglycemic prediction algorithm (HPA). An
overview of these and related methods can be found in [Bequette, 2014].

The approaches above rely on time-series analysis and lack input-to-
output relationship and thereby do not fully exploit the data available from
the insulin pump. Approaches to estimation of input-output models of the
glucose dynamics, including the insulin action, span, e.g., ARX families see
e.g. [Finan et al., 2009], continuous-time transfer functions, see e.g. [Kirch-
steiger et al., 2011], state-space models, see e.g. [Ståhl, 2012; Cescon, 2013;
Turksoy et al., 2013], and Volterra kernel networks, in [Mitsis and Marmerelis,
2014]. However, these approaches do not explicitly consider any potential het-
erogeneous effects of the insulin action across the glucose range, i.e., higher or
lower glucose-lowering effect depending on the current glucose level, as indi-
cated in [Chan et al., 2010], and may be poor approximations of the nonlinear
dynamics. Furthermore, we believe it is important to recognize the day-to-day
variability in glucose metabolism and insulin action. Whereas, this variability
may partly be due to pharmacokinetic and pharmacodynamic properties of
the insulin [Heinemann, 2002], time variability in insulin sensitivity may also
be an important factor. To address the aspect of nonlinear glucose dynamics
and time-variability, we suggest individualized estimates of the insulin action
using the model developed in Chapter 4. Utilizing this model, the possibility
to predict nocturnal hypoglycemic events in advance is investigated for data
records from 29 patients on sensor-augmented insulin pump therapy.
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Chapter 5. Nocturnal Hypoglycemia Prediction

5.2 Data and Methods

Data selection

To perform the analysis, data records where insulin intake alone affected
the glucose level were needed. To this purpose, CGM glucose traces for the
overnight periods (from midnight until breakfast) together with the corre-
sponding insulin dosage data were extracted from the ULund trial data ma-
terial for each patient. Thereafter, these datasets were assessed for complete-
ness and relevance. Data containing reports of meals were discarded, as were
data periods where the glucose trace showed clear indications of digested
meals (sudden spontaneous and dramatic rises in glucose shortly after bolus
doses) but where this information was missing in the meal data record. To
reduce the effect of previously digested meals, the data records were trun-
cated, when necessary, to allow for at least three hours in-between the last
evening meal intake and the beginning of the data period. Furthermore, data
where the CGM showed large deviations to the reference glucose meter were
also discarded as unreliable. Finally, in the event of a hypoglycemic event,
the data record was truncated after the point where the glucose dropped
into the hypoglycemic region. The reason for this was to avoid interference
from the counter-regulatory response following such an event. The trunca-
tion leads to short data records in some cases. A minimum of three hours
duration was therefore also considered as a necessary criterion. On average,
data from 65% of the nights could be used. The distribution of hypoglycemic
events was quite even over the night period, see Figure 5.1.
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Figure 5.1 Distribution of the hypoglycemic episodes (G < 4 mmol/l) over
the night/morning period.
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5.3 Results

Predicting the nocturnal glucose level

The prediction was based on the model developed in Chapter 4. To predict
the nocturnal glucose level p minutes ahead at time tk, a one-dimensional
Kalman filter with filter constant α was used with measurement update using
the CGM reading ytk

ŷtk|tk
= (1 − α)ŷtk|tk−1

+ αytk
(5.1)

and time update

ŷtk+1|tk
= ŷtk|tk

+
n

∑

i=0

ai(y(tk))I(tk−i) + Ĝb,tk
(5.2)

and prediction

ŷtk+j+1|tk+j
= ŷtk+j|tk+j−1

+

n
∑

i=0

ai(ŷtk+j |tk+j−1
)I(tk+j−i)

+
ρ(Π(tk+j+1))

ρ(Π(tk))
Ĝb,tk

, 1 ≤ j ≤ p (5.3)

and where Ĝb,tk
is the recursive estimate of the endogenous glucose pro-

duction for this night at time tk. The overnight basal multiplier ρ was
evaluated both at the time of prediction and at the future time point, us-
ing Π(t) to determine which half hour the time t belongs to. The day in-
dex has been dropped for notational convenience. Using the collected data
Ytk

= [y0, . . . , ytk
] up to this time point, the posterior estimate of Ĝb,tk

is
given by the locally weighted (quadratic kernel) maximum likelihood esti-
mate given a prior distribution p0 of the EGB.

Pump suspension simulation

As a second line of defence, this method could also prove useful for the insulin
pump low glucose suspension feature. The longer warning times will allow for
even earlier intervention in the basal delivery, thereby further reducing the
time spent in hypoglycemia. To investigate this aspect, simulations of pump
shutoff, similar to the current pump suspension feature of the Medtronic Veo
pump, were carried out for the collected data. When the 60 minute ahead
prediction passed the hypoglycemic trigger level (3.8 mmol/l), the insulin
delivery was turned off for two hours. Applying the reduced insulin delivery,
a new prediction was calculated and compared to the true outcome.

5.3 Results

The individual model estimates from Chapter 4 were used together with a
prior p0 for the EGB to make predictions of the nocturnal glucose values.
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Figure 5.2 Example of the day-to-day variability in estimated EGB. Pa-
tient nr 6 from the Dexcom cohort.

To find a suitable prior, an attempt to find a dynamic model explaining the
day-to-day shifts in EGB was made using an ARMA model. Due to the data
quality constraints, missing estimates of Gb can be expected for some days.
In Figure 5.2, an example of the variation for one of the Dexcom patients can
be seen. To identify the model under these conditions, the missing data were
considered as latent variables and co-estimated together with the model pa-
rameters using the expectation-maximization algorithm [Bishop, 2006]. The
ARMA model was rewritten in innovation state-space form and a Kalman
smoother was used to estimate the states in the estimation step. Using the
updated state estimates, including the missing data points, the joint negative
log-likelihood, of both the states and the output, was maximized to find new
parameter estimates in the expectation maximization step. The procedure is
outlined in [Shumway and Stoffer, 1982]. However, the limited length of the
data records constrained the model size and no model of sufficient explana-
tory value could be retrieved. Instead, a Gaussian prior was based upon the
statistics of the estimated EGB values for each patient.

In total, 721 nights, whereof 219 (7.6/patient) with nocturnal hypo-
glycemic episodes were assessed. Since the definition of hypoglycemia differs
somewhat across the academic field, we tested two different settings: hypo-
glycemia defined as glucose values below 4.0 mmol/l, and the alarm threshold
set to 4.2 mmol/l, and a lower hypoglycemic limit (3.3 mmol/l) and corre-
sponding threshold (3.8 mmol/l). In total, 129 of the hypoglycemic events
also covered this lower limit. Both settings were evaluated with different pre-
diction horizons (PH), see Table 5.1. An alarm was considered true positive
(TP) if it managed to flag an event before it occurred. Many users of CGM
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5.4 Discussion

Table 5.1 Summary of prediction results using different prediction horizons
and simulation (S) when the hypo level is 3.3 (4.0) mmol/l. Prediction
Horizon (PH), Warning Time (WT), Sensitivity (SE), False Alarm Rate
(FAR).

PH (min) WT (min) SE (%) FAR (%)

30 32 (24) 96 (95) 12 (4)
60 51 (44) 96 (94) 16 (8)
90 77 (72) 83 (75) 19 (11)
120 108 (101) 74 (65) 21 (12)
S N/A 65 (64) 19 (14)

sleep through the hypoglycemic alarms, as indicated in [Buckingham et al.,
2005; Revital and Moshe, 2014]. For this reason, we also tested the poten-
tial to predict the risk of hypoglycemia before bedtime (assumed to be at
midnight). The data records were extended to start two hour prior to this
time point, considering the same data selection criteria as before. Using these
data, the estimation filter was allowed to make an estimate of the basal re-
quirement, and after that the rest of the night was simulated using this value.
If the simulated value dropped below the hypoglycemic threshold, hypoglyce-
mia was considered to have taken place. Thus, in the case a hypoglycemic
episode did take place any time during the night and the simulated trace also
fell below the hypoglycemic threshold, a true positive was scored regardless
of the timing of the alarm and the real event.

The larger false alarm rate for the 3.3/3.8 mmol/l setting is due to that
many of the events with a minimum value below 4.0 mmol/l also fall below
3.3 mmol/l in the prediction. These event are thus classified as hypoglycemia,
which is also reflected in the average glucose value for the misclassified events
(3.7-4.2 mmol/l for all prediction horizons).

The pump suspension simulations indicate that up to 46% of the hypo-
glycemic events (3.3 mmol/l) could be avoided all together and for the hypo-
glycemic episodes that still occurred, the time spent in the hypoglycemia was
reduced by 68%. No subsequent hyperglycemia was noted. A demonstrating
example can be found in Figure 5.3.

5.4 Discussion

To evaluate the performance in terms of predictive capacity it is relevant
to compare our results to those of previous publications also conducted in
a retrospective manner. In [Palerm and Bequette, 2007], a Kalman filter
based approach was evaluated for 13 hypoglycemic clamp datasets. Using a
hypoglycemic threshold of 70 mg/dl (4 mmol/l), the sensitivity and speci-
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Figure 5.3 Example of the effect of full two-hour pump suspension at pre-
dicted hypoglycemia 60 minutes ahead. The black solid line represents the
CGM reference, the dotted blue line the prediction considering the pump
suspension and the solid vertical black line marks the time point when the
hypoglycemic alarm was triggered and the pump was turned off.

ficity were 90 and 79%, respectively, with a 30 minutes alarm time. Three
different algorithms, based on a recursive ARMA model, were suggested in
[Eren-Oruklu et al., 2010], and evaluated on data from insulin-induced hypo-
glycemic tests from 54 T1DM subjects. With a hypoglycemic threshold of 60
mg/dl (3.3 mmol/l), sensitivity of 89, 88, and 89% and specificity of 67, 74,
and 78% were reported for each method, respectively. Mean values for time
to detection were 30, 26, and 28 minutes. A combined approach merging up
to five different models was used in [Dassau et al., 2010]. The system was
developed using 21 datasets from a 24-hour Abbott Navigator CGM trial
for children with T1DM, and was validated on hypoglycemic induced stud-
ies on 22 T1DM patient records. With a voting scheme of 3-out-of-5, and a
hypoglycemic level defined as below 60 mg/dl (3.3 mmol/l) and a prediction
horizon of 35 minutes, a sensitivity of 91% was achieved, and when 4 out of
5 positive alarms were required, the sensitivity dropped to 82%.

Finally, the last method we benchmarked against is also a recursive model.
In [Turksoy et al., 2013], a recursive state-space model incorporating the ef-
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5.4 Discussion

Table 5.2 Summary of results from previous studies. Prediction Horizon
(PH), Warning Time (WT), Sensitivity (SE), False Alarm Rate (FAR) and
Hypoglycemic Threshold (HT).

Study PH [min] WT [min] SE [%] FAR [%] HT [mmol/l]

26 30 30 90 21 4.0
27 30 30 89 33 3.3
27 30 26 88 26 3.3
27 30 28 89 22 3.3
11 35 35 91 9 3.3
11 55 55 82 N/A 3.3
17 30 29 81 34 4.0
17 60 38 96 48 4.0

fect of insulin was used for retrospective analysis of 14 datasets, covering in
total 201 hypoglycemic (70 mg/dl, 4 mmol/l) episodes. The authors report
many different prediction horizons, and here we extract the 6 and 12 step
ahead predictions. With these settings, the 6-step prediction had a sensitivity
of 81% with a false alarm rate of 34 % and an average warning time of 29
minutes. All competing methods are summarized in Table 5.2. In compari-
son to the presented methods, our approach, with the preferred setting of a
hypoglycemic trigger level at 4.2 mmol/l and a 60 minute prediction horizon,
allows for longer warning times while maintaining a high sensitivity (94%)
and keeping the false alarm rate at an acceptable level (8%).

From the results of the estimated EGB we could see that the level changed
from day to day. Unfortunately, the data records were too short to allow for
an ARMA model to be estimated. A dynamic model of the EGB, providing
improved priors, could potentially vastly improve the predictive performance,
especially in the early time of the night where the recursive update still has
not contributed very much to the estimate. The day-to-day variability may be
due to normal variations in the insulin sensitivity, but external factors such as
glycemic loading and physical activity may also play significant parts. Further
studies are required to investigate the mechanisms to glucose variability in
this regard.

The evaluation shows that the model is capable of predicting almost two
out of three nocturnal hypoglycemic episodes even before bedtime. About ev-
ery sixth time, it will be a false alarm. For persons suffering from reoccurring
nocturnal hypoglycemia, this may be an acceptable shortcoming.

Outpatient validation of prediction-based pump suspension of an algo-
rithm based upon the Kalman filter approach of [Palerm et al., 2005] was
conducted for both children [Buckingham et al., 2015] (82 individuals) and
adults/adolescents [Maahs et al., 2014] (45 individuals). In both studies, the
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pump was shut off when the glucose was predicted to go below 80 mg/dl
in the coming 30 minutes. The pump studies had somewhat different pri-
mary outcomes. For the adult study, the number of nights with a glucose
reading below 60 mg/dl was reduced by about 36%, and for the children the
authors reported that the time spent below 70 mg/dl was reduced by 54%
(children 11-14 years old) and 50% (children 4-10 years old), both in compar-
ison to the control nights with the suspension system deactivated. For both
our simulation study and the outpatient experiments, the results indicate
that not all hypoglycemic episodes may be avoided by pump suspension. As
pointed out by the authors of [Buckingham et al., 2015], this may be due to
too heavy bolus doses previous in the night, from which a mere reduction
of subsequent insulin delivery is insufficient to avoid hypoglycemia. On the
other hand, in cases where the glucose-lowering amount of insulin on-board
is low, full pump shut-off may even be unnecessary, and the long warning
time provided by our method may allow for more flexible down-regulation
of the insulin pump. This is beneficial, since a smoother insulin delivery re-
duces the risk of unwanted subsequent hyperglycemic episodes following a
hypoglycemic prevention action.

5.5 Conclusions

Prediction, detection and prevention of nocturnal hypoglycemia are major
challenges in insulin-based therapy. Recent advances in sensor and pump
technology and algorithmic development have provided tools for reducing
the detrimental effects of this potentially very dangerous aspect of living
with diabetes.

In this chapter, a novel method for prediction has been presented based
on a non-parametric model of the insulin action and by considering day-to-
day time-variability in the glucose metabolism. The suggested approach was
successfully tested on 29 patients on sensor augmented insulin pump therapy,
covering in total 223 nocturnal episodes. The results show that the method
has a useful sensitivity and acceptable false alarm rate and that the warning
time is sufficiently long for adjustments of the insulin delivery to be under-
taken to reduce time spent in hypoglycemia. The method may be employed
to all three layers of the defence in depth. The first barrier, avoiding adverse
events, is addressed by simulating the overnight period before going to bed.
The results indicate that 64% of the nocturnal hypoglycemic episodes may be
detected in such a simulation. This allows for the user to instigate counter-
measures to avoid the event, such as digesting a small snack or temporarily
reducing the basal delivery. However, the implications of the false alarm rate
(14%) have to be investigated. An analysis of suitable actions to take in the
event of an alarm have to be analysed and the consequences highlighted for
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both the true positive as the false positive case. The second line of defence
is to allow for alarms to be set off when a hypoglycemic event is imminent.
Different prediction horizons were investigated with diminishing sensitivity
and increasing false alarm rate as the prediction horizon increases. The op-
timal setting is probably given by personal preferences regarding sensitivity
to hypoglycemia and acceptance for false alarms. However, even the shortest
prediction horizons seem to be able to give the user sufficient amount of time
for a snack to be digested in order to avoid the event. Finally, also the third
function level of active safety systems may be relevant. Autonomous suspen-
sion of the insulin pump based on an algorithm relying on trend extrapolating
prediction is already a reality. With the improved prediction horizon offered
by the suggested method, more efficient, and with lower risk of subsequent
hyperglycemia, means to reduce the insulin suspension may be possible.
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6

Meal Impact Identification

6.1 Introduction

Several external factors affect the glucose dynamics, but no disturbance has a
more profound effect than meal intake. Characterization of this disturbance,
combined with an insulin action model, would allow for better tailoring of
meal boluses to achieve a sound postprandial glucose level. Carbohydrates
have generally been considered as the main driver of postprandial hyper-
glycemia, and carbohydrate content is often used as the sole explanatory
variable of expected total glucose elevating impact [Gillespie et al., 1998].
However, meals are heterogeneous in many dimensions, e.g., in terms of car-
bohydrate complexity, macro-nutrient composition, fibre content and food
preparation techniques, all contributing to the digestion and absorption ki-
netics [Wolpert et al., 2013; García-López et al., 2013], and possible also to
the degree of postprandial hepatic down-regulation [Lam et al., 2003]. Fur-
thermore, specific ingredients, such as cinnamon, which cannot be identified
by merely looking at the nutritional composition, may significantly delay
gastric emptying [Hlebowicz et al., 2007]. For these reasons, carbohydrate
counting alone will not suffice. The glycemic index (GI) is a measure used
to characterize the effect on blood glucose following a meal intake [Jenkins
et al., 1981]. A standardized portion size, to the equivalent of 50 grams of
carbohydrates content, is digested and the postprandial response (PPG) is
recorded. By summarizing the area under the curve (AUC) of the PPG, sub-
tracting the initial glucose level, a measure is obtained. This is compared
to the corresponding value from a reference meal, usually white bread or
glucose, eaten by the same individual. The ratio between the AUC of the ref-
erence and the AUC of the digested meal makes out the GI. Determination
of GI has been conducted in both healthy, NIDDM and IDDM individuals
with similar results [Brouns et al., 2005]. However, while providing a means
to get an approximate ranking of the total glucose impact of different meals,
neither the dynamic properties nor the absolute magnitude of the PPG are
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Figure 6.1 Rate of appearance retrieved from tracer experiments. Blue
line with stars: Glucose [Dinneen et al., 1995], Green line with circles: 45%
Carbohydrates, 15% Protein, 40% Fat [Dalla Man et al., 2006b], Red line
with crosses: Glucose, Light blue line with pentagrams: 55% Carbohydrates,
15% Protein, 30% Fat [Livesey et al., 1998], Violet line with hexagrams:
High glycemic index meal 65% Carbohydrates, 19% Protein, 16% Fat [Basu
et al., 2006], Brown line with plus signs: 60% Carbohydrates, 19% Protein,
21% Fat [Vella et al., 2007].

characterized. In this chapter, a finite impulse response model approach is
used to describe the postprandial response of different meal types.

6.2 Current Research

Experimental methods

Tracer experiments are used to estimate the rate of appearance of glucose
and endogenous glucose production in the postprandial phase following a
meal intake. The methodology has later been revised, e.g., with a use of a
triple tracer protocol [Basu et al., 2003]. Estimates of the rate of glucose
appearance from the gut from some different studies can be seen in Fig. 6.1.
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Figure 6.2 The gastric compartment model by Dalla Man describing the
digestion and rate of appearance, Ra following a meal.

Physiological models

Several models have been developed to describe the initial stages of glucose
metabolism, covering the digestive process and the flux of glucose from the
intestines. There is evidence that gastric emptying, to some extent, is de-
pendent on current glucose level, see, e.g., [Schvarcz et al., 1997], but this
relationship has not been incorporated in any model so far. Thus, the diges-
tive process is also considered as a stand-alone model, without dependencies
to the glucose metabolism. Two models have been widely used; the models
by [Lehmann and Deutsch, 1992] and [Dalla Man et al., 2007a]. In [Lehmann
and Deutsch, 1992], the model consists of a single compartment with fixed
limited gastric emptying rate constant, and with a duration dependent on
the meal size. Earlier work on models of glucose rate of appearance during an
oral glucoe tolerance test (OGTT) [Dalla Man et al., 2002] and mixed meal
test [Dalla Man et al., 2006a] formed the basis for the model in [Dalla Man
et al., 2007a]. Here, a third-order nonlinear compartment model was used,
and also in this case, the gastric emptying rate was limited dependent upon
the amount of ingested carbohydrates. This model, see Fig. 6.2, is described
below.

qsto(t) = qsto1(t) + qsto2(t)

q̇sto1(t) = −kgri · qsto1(t) + D(t)

q̇sto2(t) = kgri · qsto1(t) − kempt(qsto(t)) · qsto2(t)

q̇gut(t) = −kabs · qgut(t) + kempt(qsto(t)) · qsto2(t)

Ra(t) =
f · kabs · qgut(t)

MBW

(6.1)
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Figure 6.3 The dependence of gastric emptying kempt on the amount of
food in the stomach left from the digested amount D.

Following the notation in [Dalla Man et al., 2006a], qsto is the amount of
glucose in the stomach (qsto1 solid, and qsto2 liquid phase) and qgut is the
glucose mass in the intestine. The rate parameters determine the flux between
the compartments. Here, kgri is the rate of grinding, kempt is the rate constant
of gastric emptying and kabs is the rate constant of intestinal absorption. The
fraction of intestinal absorption f is a measure of the absorption efficiency
and determines the fraction of glucose that actually appears in the blood
stream. The rate of appearance of glucose in the blood Ra(t) from the amount
of ingested carbohydrates D(t) is normalized by the body weight MBW . The
parameter kempt is a non-linear function of qsto and D(t):

kempt(qsto) = kmin + k · {tanh[α(qsto − b · G(t))]

− tanh[β(qsto − d · G(t))] + 2} (6.2)

with k = (kmax − kmin)/2, α = 5/2D(1 − b), β = 5/2D, with parameters
kmax, kmin, b, and d. The gastric emptying is biphasic with a maximum rate
kmax when the stomach is full or empty and reduced to a minimum kmin

in-between, see Fig. 6.3. An example of rate of appearance using this model
can be seen in Figure 6.4. Notice the second peak due to the increased gastric
emptying rate as the stomach compartment begins to empty.

Data-driven approaches

Based on fixing all parameters but the insulin sensitivity in the minimal
model (see Chapter 2), an approach to estimating the rate of appearance
based on measurements of plasma glucose and insulin was presented in [Her-
rero et al., 2012]. The concept was successfully validated on data from both
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Figure 6.4 Example of rate of appearance using the simulation model from
[Dalla Man et al., 2006a].

simulation and empirical trials. However, the need for insulin assays limits
its use.

Several of the blackbox models described in Chapter 2 utilized meal infor-
mation when present in the data. Meal intake has been considered as input
in, e.g., ARMAX [Cescon, 2013], state-space models [Ståhl, 2012], support
vector machines [Georga et al., 2011] and continuous-time transfer function
models [Cescon, 2013; Kirchsteiger et al., 2014]. In both [Cescon, 2013] and
[Kirchsteiger et al., 2014], the continuous-time models were applied to break-
fast meals. It was recognized that applied to another meal type with an
alternative composition of macro-nutrients, different meal parameters may
result. However, none of the models above explicitly discriminate between
different recipes, and all rely on the assumption that the postprandial re-
sponse can be described by the carbohydrate content alone. Additionally,
the linearity assumption may prove restrictive in order to characterize the
temporal response of the meal impact. To resolve these issues, a finite im-
pulse response model is employed with parameters sets uniquely identified
for each meal type considered.

6.3 Data

To estimate the meal impact, data from the ULund trial were used. During
this trial the patients were living at home as usual, following their normal
eating patterns. Meals were registered in an electronic logbook as described
in Chapter 3. Even though several features of the logbook simplified meal
logging, for many of the patients the number of reported meals dropped as
the study progressed, see Figure 6.5. In total, 2112 recipes and 5312 meal
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Figure 6.5 Number of reported meal instances over the trial period.

instances were included, averaging about five meals a day. The estimation
was based on individual data records from each meal instance. The nominal
time length of each record was 4.5 hours. This length was chosen with the
maximum expected length of postprandial response in mind, based on the
tracer experiments presented above. Practical concerns in home-monitored
data, related to the duration between meals, also set a hard constraint on
the length of the data record.

In order to circumvent interference in the estimation process from other
sources than the intended meal, the following data inclusion criteria were
enforced. No previous meal was allowed within two hours of the meal start.
To avoid the effects associated with the counter-regulatory response, hypo-
glycemia was not allowed during this time window nor during the rest of
the data. Extreme hyperglycemia (>25 mmol/l) was not accepted. datasets
where the CGM showed large deviations (> 15%) to the glucose meter ref-
erence were also discarded as unreliable. If these conditions were violated,
the data record was prematurely terminated. Furthermore, an assessment
was made regarding the time stamp of the meal. Data with obvious errors in
timing (e.g., where the glucose level started rising before the meal, despite
a simultaneous bolus dose) and meal content (e.g., energy content>10.000
kcal) were discarded. Finally, at least five meal instances of the same recipe
was required for estimation to be pursued.
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6.4 Variability in Endogenous Glucose Balance and Insulin

Action

Before describing the full model we need to revisit the aspect of variability in
EGB. So far, the day-to-day variability in insulin demand has been explained
solely by the endogenous balance. However, there is reason to believe that
not only the EGB varies, but also the peripheral sensitivity to the metabolic
effect of insulin is subject to variations. To investigate this possibility, a
insulin action multiplier λ = [λ1, . . . λN ] was introduced into the model. The
revised model becomes

y(tk)(j) = y(tk−1)(j) + λj

n
∑

i=0

ai(y(tk)(j))I(tk−i)

+ G
(j)
b + v(tk), tk ∈ Tj (6.3)

with the same notation as in Chapter 4. Using this model, estimates of λ
and re-estimates of Gb and a can be retrieved. Assuming a marginal gamma
distribution for both the insulin multiplier and the EGB, these variables can
be estimated given the current insulin action by maximum likelihood (ML).
The choice of the gamma distribution is motivated by that it only has positive
support, just as these variables. The ML estimate is

{λ, Gb} = arg, min
λ,Gb

‖Y − Ŷ‖2
2 + (k − 1)

N
∑

i=1

(ln λi + ln G
(i)
b )

−
1

θ

N
∑

j=1

(λj + G
(j)
b ) (6.4)

where Y = [y1 . . . yN]T , yj = [yj
1 . . . yj

nj
]T , j = [1 . . . N ] is the concate-

nated glucose reference for all days in the data, and Ŷ is the correspond-
ing estimate retrieved from using Eq. 6.3 using the current impulse-response
model parameters a, and k and θ are the shape and scale parameters of the
gamma distribution. In order to get updated estimates of the insulin action
as well, this variable can be considered as a latent variable in the estimation,
which thereby would constitute the maximization step in the expectation-
maximization (EM) algorithm. The expectation step would mean to take the
expected value of the the entire a matrix. This could be done using, e.g., a
Gibbs sampler [Bishop, 2006]. However, the total size of the a variable makes
this impractical. Instead, the following approach is considered. Using the new
estimates of λ and Gb, the insulin action a(G) for each glucose level G was
re-estimated from

a(G) = arg, min
a

‖Y − Ŷ‖WG + α‖a‖R (6.5)
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Figure 6.6 Example of the distribution of EGB/insulin multiplier esti-
mates. Patient M1. The blue curve is a level curve for the corresponding
log-normal distribution and the grey curve is a Gaussian approximation.

which is recognized from Chapter 4, Eq. 4.4, but without the regularization
of the EGB since this is considered fixed in this step. The two steps (Eqs.
(6.4) and (6.5)) were iterated until the relative norm ‖ak+1 − ak‖/‖ak‖ of
two subsequent insulin action estimates (ak and ak+1) was less than a given
threshold (0.05).

As it turns out, running the estimation results in that the estimated EGB
EGB and insulin multiplier λ exhibit a relationship similar to

EGB =
C

λα
(6.6)

where C and α are constants, as can be seen from the example plot in Figure
6.6, effectively coupling the peripheral and hepatic insulin sensitivity. Log-
transforming both variables results in a joint Gaussian distribution.

6.5 Meal Impact Model

To represent the pharmacokinetics/pharmacodynamics of insulin, the same
principle insulin action model was used as outlined in Chapter 4. This model
was extended with another finite impulse response model, which represents
the glucose flux into the blood stream following a meal. Incorporating the
insulin gain λ as described above, the glucose dynamics at time point tk,
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during meal instance j, may then be described as

y(tk)(j) = y(tk−1)(j) + λj

n
∑

i=0

ai(y(tk)(j))I(tk−i)

+

R
∑

r=1

m
∑

i=0

br
i M (j)

r (tk−i) + G
(j)
b + v(tk), tk ∈ Tj (6.7)

where notation as in Chapter 4, except Mr(tk), which is the meal intake
in grams of carbohydrates in recipe r, and the meal impact parameters
br = [br,1, br,2 . . . br,m], which are fixed for each recipe. A recipe is a unique
combination of ingredients, and may denote a single ingredient. Also note
that the recipes are specific to an individual (i.e., two persons eating a ba-
nana constitutes two different recipes). During estimation, only one recipe
is allowed at a time (R = 1). The order m of the meal impact model was
chosen to correspond to 270 minutes. The net basal endogenous glucose pro-
duction Gb and the insulin multipliers are allowed to vary between different
meal instances to capture variations in insulin sensitivity. To estimate br,
Gb = [G

(1)
b . . . G

(N)
b ] and λ = [λ(1) . . . λ(N)] for N number of meal instances,

a maximum-likelihood approach is considered. The total likelihood for the
entire dataset from all the meal instances is

p(Y, I, Mr, Gb, λ, b) ∝ p(Y|Gb, λ, b) · p(Gb, λ) · p(b) (6.8)

where Y = [y
(1)
1 . . . y

(1)
n y

(N)
1 . . . y

(N)
n ] is the concatenated glucose reference for

all meal instances. We would like to maximize this in order to retrieve our pa-
rameter estimates. Unfortunately, the joint lognormal distribution p(Gb, λ)
makes the problem non-convex. A possible work-around is to use a Gibbs
sampler where samples are drawn in an iterative scheme from the conditional
distributions [Bishop, 2006]:

(Gb, λ)(k) ∼ p(Gb, λ|Y, b(k−1))

b
(k)
i ∼ p(bi|Y, b

(k)
¬i , (Gb, λ)(k)), ∀bi ∈ b

(6.9)

where k is the sampling index and b
(k)
¬i is the meal impact vector without term

bi. When a sufficient number of samples have been collected the expected
values can be retrieved. A suitable number of iterations is 5000 [Raftery and
Lewis, 1992]. The samples were restricted to positive numbers to fulfil the
physiological constraints.

EGB and insulin gain variability revisited

The variability in insulin requirement, divided into variability in both EGB
and peripheral insulin sensitivity was investigated for the overnight data
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above. However, the EGB/insulin gain range experienced during night time
is only a limited frame of the total variability that may occur over an entire
day. Patient basal programs where the minimum to maximum basal dose
ratio is larger than 1.5-2 are not uncommon. The lowest basal dose is typically
found during the night (compare with the results in Chapter 4 indicating that
the minimum EGB occurred around 4-6 a.m.). Therefore, the prior provided
by the overnight data may prove insufficient, with too limited support. In
order to make the concept work for meals digested during every possible
time throughout the day, we need to extrapolate the EGB-to-insulin gain
relationship beyond the values found in the night data. A first pass is made
assuming marginal gamma distributions for both the insulin gain and the
EGB for all meals and all meal instances for each patient. These parameters
are estimated together with the meal impact parameters. The set of EGB
and insulin gain points ({Gb

0, λ0}) retrieved are then used together with the
night data to form a new joint posterior distribution for Gb and λ. Together
with the initial estimate of the meal impact br,0, they are used as a starting
point for the Gibbs sampler. The following optimization problem is solved.

{br,0, Gb, 0, λ0} = arg, min
br,Gb,λ

N
∑

j=1

(‖y(j) − ŷ(j)‖

+ ‖Gb‖Γk,θ
+ ‖λ‖Γk,θ

+ ‖b‖R (6.10)

subject to bk ≥ 0, k = [1, . . . , n − 1], and where the estimated glucose
excursion ŷ(j) is calculated using (6.7). The different steps of the estimation
procedure have been summarized in the text box on the next page.

6.6 Meal Impact Diversity Analysis

As described above, it is common in the literature to treat all meals as hav-
ing the same kind of meal impact. To investigate the amount of diversity
between the estimated glucose impacts (one for each recipe) retrieved using
the outlined method, the following approach was considered. Principal com-
ponent analysis is a statistical method used to extract the subspace of main
variability in a multi-dimensional dataset [Bishop, 2006]. In this context, we
will employ the method to the collected meal impact parameter set derived
from the estimation procedure described above. Thereby, a minimum set of
principal meal parameters can be retrieved, from which all meal impacts can
be formed by linear combination. All the meal impacts are collected in a
common matrix, where each row correspond to a meal impact vector. The
principal components are simply the eigenvectors of the covariance of this
matrix.
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Summary of the Estimation Process

1. We need a prior for the EGB-insulin multiplier distribution.
Starting with the overnight data, we retrieve an estimated
dataset {λ, Gb} using (6.4).

2. Re-estimate the insulin action parameters a using Eq. (6.5) and
the estimated values from Step 1.

3. Re-iterate between Steps 1 and 2 until the difference between two
subsequent insulin action parameter sets (ak and ak+1) is less
than a given threshold (0.05).

4. Complement the estimates from Step 1 with estimates from the
meal data records, using (6.10). An initial estimate of the meal
impact b is also retrieved.

5. Run the Gibbs sampler (6.9) to get the final posterior estimates
of the meal impact and the EGB and insulin multipliers. Initial
values for the iterative process are given by step 4.

Having reduced the dimension of complexity, the next step is to deter-
mine whether the meal impact are grouped together in this subspace. Here,
Gaussian Mixture Modeling (GMM) may be employed [Bishop, 2006]. The
underlying assumption in GMM is that the data cloud is grouped together
in separate Gaussian distributions. The gmm library in the Matlab Statistics
and Machine Learning Toolbox was used [MathWorks, 2012], which utilizes
the EM algorithm. The method does not guarantee a global minimum, and
the number of clusters is often chosen in a heuristic manner. To resolve these
issues, the algorithm was run multiple times and with different number of
clusters.

6.7 Results

All in all, 56 different recipes fulfilled the inclusion criteria and were estimated
for meal impact, see Appendix 6.9. Most patients had some recipe that could
be estimated, but for a few patients none could be found, the reason being
too few meal instance and in some cases due to recurrent timing issues in the
meal reporting.

In Figure 6.7, the estimated glucose elevating effect of two different recipes
are depicted. Generally, the meal impacts were less than 3 hours long with a
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Figure 6.7 Example of meal impact using carbohydrates as input. Blue
curve: Breakfast, Patient M1. Red curve: Banana. Patient D3.

peak around 30-40 minutes after the meal started, similar to the impact of
the banana seen in the figure (red curve). However, some recipes had double
peaks, with a very delayed major peak. Without tracer experiments, or other
means to get a fuller picture of the digestion and absorption processes, it is
difficult to know the mechanism behind such a behavior. However, double
peaks are supported by tracer experiments, and this has been modeled in
the Padova digestion model, see above.

A vast majority of the meal impact peak around 35-40 minutes, see Figure
6.8. This is well in accordance with the rate of appearance estimates retrieved
using the tracer experiments. The distribution of the duration is more spread
out (180 ± 63 min), with a local minor peak at 270 minutes. This represents
the meal instances where the duration was longer than the maximum length
of the meal impact vector. The Glucose Elevating Magnitude (GEM) of the
meal impact is the area under the curve of a meal with 10 grams of carbohy-
drates. This parameter changes a lot between the different recipes (2 ± 0.67
mmol/l after removing the high outliers).

The possibility to reproduce the reference glucose traces was tested by
leave-one-out cross-validation where the impulse-response parameters were
fixed for the validation data, according to the values estimated from the
training data. Prediction performance was assessed using MARD, and was
calculated using the data record from the time of digestion up to one to
four hours afterwards. The mean values of these metrics were only calcu-
lated when at least four meal instances were available. The mean prediction
MARD results were 7.7%, 11.5%, 13.8% and 13.2% for the evaluated time
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Figure 6.8 Distribution of estimated peak, duration and Glucose Elevating
Magnitude (GEM) of the meal impacts. For recipes with a duration esti-
mated to be longer than 270 min were marked as having a duration of 270
min in this diagram.

horizons. Summarized meal data and estimation parameter characteristics
can be found in Appendix A. A prediction example can be seen in Figure
6.9. For comparative purposes, validation was also conducted using a Gaus-
sian approximation of the EGB/insulin multiplier distribution, allowing for
a convex direct solution of maximum likelihood, but with reduced predictive
performance.

The principal components of the normalized meal impacts were derived.
The top five components explain 91% of the variability among the meal
impacts, see Figure 6.10. The cluster analysis successfully identified three
main clusters (I, II, III) of the carbohydrate models, corresponding to 67%
(30%, 19% and 18%) of the meal parameter sets. The recipes belonging to
each of the three clusters are found in Table 6.1.

The meal impacts (bI, bII and bIII) calculated from the cluster centers
represent the mean meal impact within each cluster, see Figure 6.11. Cluster
I represent the fastest meals with an early peak and short duration. Recipes
with a somewhat slower, and a more prolonged duration, belongs to cluster
III. Cluster II can be characterized as meals with a less pronounced peak and
long duration.
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Figure 6.9 Example of validation of meal impact. CGM reference (black
line) and prediction (solid light blue line), including standard error interval
(dotted light blue lines). Recipe number 8 (Modifast, Patient D3).

Table 6.1 Recipes with similar normalized glucose impacts. Recipe num-
bers according to Appendix A.

Cluster Fraction Recipes

I 30% 1,4,6,7,8,10,17,19,26,31,32,43,44,45,46,53,55
II 19% 5,11,12,18,22,23,25,30,36,40,52
III 18% 2,9,15,16,20,28,35,41,42,50

To determine how well these match the individual meal impacts, the
cumulative glucose response Σr(k) was used

Σr(k) =

k
∑

i=1

bi (6.11)
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Figure 6.10 The variance explained by each principal component.
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Figure 6.11 The normalized cluster center models. Cluster I (black curve),
II (red curve) and III (light blue curve)

which describes the gradual glucose elevating impact of the meal, see Figure
6.12. Comparing the relative euclidean norm between the cumulative glucose
response of the cluster means to the corresponding cumulative responses of
each member (e.g. ‖Σr − ΣI‖/‖Σr‖) showed that the differences were small
(11±9%, 14±6% and 10±8%). This indicates that up to 67% of the recipes
can be represented by the cluster means scaled with an individual factor to
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Figure 6.12 Example of normalized cumulative meal impacts(solid lines)
and meal impacts (dashed lines). Blue curves: Breakfast, Patient M1. Red
curves: Banana. Patient D3.
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Table 6.2 Macro-nutrient composition in the clusters [mean±std].

Cluster Protein [%] Carbohydrates [%] Fat [%]

I 15 ± 11 70 ± 22 15 ± 15
II 23 ± 9 53 ± 13 24 ± 10
III 20 ± 15 65 ± 22 15 ± 11

capture the absolute magnitude of the impact. The magnitude of the meal
impact changes significantly within each cluster (CV 46%, 45%, 47%). Run-
ning the scaled cluster mean models for the three clusters on the data, yielded
very similar prediction performance as retrieved from the individual models
belonging to each cluster (MARD increased by 1%). The meal composition in
terms of macro-nutrients (see Table 6.2) was significantly different between
clusters I and II in all three macro-nutrients. The fat percentage was also
significantly different between cluster II and III.

Finally, when comparing the predictive performance of the clusters, clus-
ter I was significantly better than the two others, as well as the unclustered
models.

6.8 Discussion

Predictive quality

The predictive performance was generally good in terms RMSE for the eval-
uated prediction horizons in the cross-validation. However, to determine the
clinical value, a specific purpose of the prediction has to be considered. Two
possible applications would be hypoglycemia detection and meal bolus opti-
mization. Since the data were cleansed from hypoglycemic episodes for iden-
tification purposes, the possibility to utilize the models for hypoglycemic
prediction cannot be assessed. However, the possibility of determining meal
boluses using this model will be investigated in Chapter 9.

There is a negative bias in the prediction, which grows to 0.7 mmol/l
around two hour into the postprandial phase, and then gradually reduces
again, see Figure 6.13. The variance is also largest at this point with a max-
imum of 2.0 mmol/l. This peak in variance may be the cause of natural
variability in the digestion process, shifting the absorption rate and efficiency
somewhat in-between the different meal instances, but a sensor induced error
cannot be ruled out, see discussions in Chapters 3 and 4 about CGM sensor
errors. This may have different implications for the use of the model when de-
termining meal bolus doses. On one hand, the undershoot of the peak means
that the hyperglycemic peak may be underestimated. On the other hand,
the more accurate description of the tail of the postprandial response, where
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Figure 6.13 Distribution of the prediction error over the postprandial time
period. Mean (Red line), 25%–75% quartiles (blue area), maximum and
minimum values (whiskers).

hyoglycemia is more likely to occur, means that this aspect is well covered.
The longer time horizon is generally of more interest when determining the
bolus dose to achieve a stable glucose value within the normoglycemic region
after the meal.

Other possible sources to variability include errors in meal reporting and
estimation of meal sizes. A few studies describe the accuracy (bias) and pre-
cision of carbohydrate counting and meal size estimation, and the results
differ somewhat. One study on 15 IDDM subjects reported in [Kildegaard
et al., 2007], found the intrapersonal variation in carbohydrate counting to
be 30%. Another study, covering 102 children and adolescents and 110 care-
givers, found a majority of the estimates to be within a 10 gram error and less
than 7% of the participants to have an error larger than 30% [Smart et al.,
2010]. Less promising results were achieved in [Bishop et al., 2009], where
only eleven of the 48 adolescent participants managed to estimate the carbo-
hydrate content to within 10 grams. Also in [Shapira et al., 2010], where 60
patients estimated the carbohydrate content of different meals, the coefficient
of variation was high (range 28%–45% for the different meals). However, in
the data used here, several factors contribute to keeping the variability down.
The high degree of repeatability for the reported meals also implies low varia-
bility in meal size. Thus, bias in the estimate may exist, but variability is
probably low. Furthermore, the fact that the aggregated total meal size was
calculated by the Linkura web service, and that the ingredients were collected
from the digital database, also contribute to reducing both variability and
bias.

The scarcity of repetitive data has been an issue, and the prediction re-
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sults for an individual recipe with a low number of meal instances should
be considered with caution. While individual estimates may be poor, the to-
tal amount of data analysed offers credibility to the main results. In total,
56 recipes and 475 number of meal instances were included. However, com-
pared to the total number of recipes and meal instances this highlights the
difficulties in finding qualitative postprandial data, sufficiently set apart, in
free-living data records.

Glucose Elevating Magnitude (GEM) and the 500 rule

Similar to the 100 rule used for determining the insulin sensitivity ratio,
the 500 rule is commonly used to determine the so called Carbohydrate-to-
Insulin Ratio (CIR), see e.g. [BD Patient Information, 2015]. This generic
rule teaches that every unit of rapid-acting insulin covers 500/TDD grams
of digested carbohydrates, where TDD is the total daily dose. In practice,
it is common that the patients and treating physician alter this parameter
based on assessment of empirical data, and many bolus wizards allow for
different parameter settings throughout the day. In comparison to what can
be expected from this rule, the total glucose elevating magnitude (GEM)
fitted well on average. Values close to 2.0 was expected considering the 500
rule and the 100 rule combined, and this is actually the mean of the estimated
GEM. However, looking at the distribution, curios values are found both in
the low and high ranges. Especially strange is the outlier with an estimated
impact larger than 5 mmol/l. The recipe affected, coffee and milk (nr 34),
has quite a low amount of carbohydrates. Apart from the risk of missed meal
entries in the diary as a possible explanation, coffee alone has previously been
shown to have a glucose elevating effect in diabetes [Lane et al., 2008]. At
the other end of the range, the low GEM values could be caused by a mix
up in the identification between the meal impact and the combined insulin
gain/EGB estimate. All three terms contribute to changes in the glucose
level, though the insulin gain does so through the insulin dynamics and the
EGB is considered constant. To ensure that the mix up effect is negligible, the
low magnitude meals were re-estimated incorporating one hour of data prior
to the meal. Thereby, data unaffected by the meal was added, putting more
emphasis on forcing the EGB/insulin gain to be able to predict the glucose
level even when no meal is present. However, no significant differences in the
parameter estimates were noticed.

Recipe clustering

The low number of principal components seems promising regarding the to-
tal variability in meal impact, and the clustering analysis indicates that a
majority of recipes can be described by scaled versions of as few as three
basic meal impact models. Furthermore, the analysis also point to that the
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postprandial response of the fast meals with early peak and short duration,
represented by cluster I, can be more accurately predicted by the model than
slower meals belonging to the other clusters. Several studies have indicated
that both protein and fat may contribute to the postprandial response [Bell
et al., 2015; García-López et al., 2013; Wolpert et al., 2013], and fat is known
to delay gastric emptying, see e.g. [Gentilcore et al., 2006]. Both clusters I
and III have significantly lower relative fat content than the slower cluster II,
and also the protein content is different between clusters I and II. Looking
at the recipe list of each cluster also gives some hint to what kind of meals
that can be expected in each group. Clusters I and II are similar, containing
mainly fruits and sandwiches. In cluster III, yoghurt-based meals seem to
belong. However, even though the results are encouraging, it important to
consider that the diversity in meal complexity in the evaluated dataset is
quite low. Many of the recipes are variants of breakfast or snack meals such
as fruits. Unfortunately, few dinner recipes could be included. This was due
to a combined effect of few meal instances of each recipe in this category
and difficulties in obtaining sufficiently clean data records for this meal type
without interference from other meals. It remains to see whether more prin-
cipal components will be revealed if a larger and more diverse recipe dataset
is analysed, and if the number of significant clusters will increase.

Comparison to physiological models

In the physiological models, a complex interaction between the rate of ap-
pearance of glucose from the gut, hepatic down-regulation due to increased
insulin and glucose levels, and peripheral glucose utilization form the post-
prandial response, see Figure 2.6 in Chapter 2. All these dynamic effects are
lumped together in the impact parameters of the insulin action and the meal
impact models. As noted in Chapter 4, this does not allow for a estima-
tion of the glucose or insulin concentrations in different compartments of the
body, but delivers a input-output characteristic with intuitive parameters.
The gastric model described previously exhibits an interesting property of
nonlinear gastric emptying, which is partly supported by tracer experiments.
This property may be more exaggerated for larger meals, thus making the
duration of the rate of appearance a function of the meal size. Generally the
meal sizes in the trial was quite small (mean 317 kCal), and with moder-
ate variability (CV 30%), with a few recipes (breakfast meals) repeating the
same meal size for all meal instances, see Figure 6.14. A more systematic
approach to ensure larger meal sizes, as well as larger variability, may be
needed to investigate whether this effect is of clinical significance.
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Figure 6.14 Average meal size and variation.

6.9 Conclusions

The understanding of how different meals affect the glucose level is yet at an
early stage. Numerous studies have been conducted to establish the glycemic
index of meals in healthy individuals and in NIDDM diabetes. In contrast,
very few studies have systematically investigated the dynamic response of
different meals in IDDM patients. Due to the lack of descriptive research
in this area, and the shortage of better means, the concept of carbohydrate
counting, and the underlying assumption of carbohydrates as the sole driver
of glucose excursions, prevails. This is reflected in the bolus guides available
in many insulin pumps, where carbohydrate to insulin ratios (CIR) may be
used to calculate bolus doses. While different settings may be used at dif-
ferent times of the day, no discrimination is made between different meal
types. However, interest in the matter grows, and several recent studies have
indicated that the meal composition has a profound effect on the postpran-
dial response, and that both fat and protein needs to be considered when
determining bolus doses.

In this chapter, models of the glucose elevating impact of different meal
recipes have been developed. The amount of carbohydrates in the meal is still
used as an input, but since the effect is allowed to be different in-between
recipes, no fixed CIR exists. Cross-validation shows that the models are able
to reproduce the postprandial response with acceptable accuracy. The diver-
sity in impact was sufficiently low for a low number of principal components
to be identified, and clustering of the meal impacts showed that a major-
ity of the recipes could be represented by as few as three clusters. While
this may be an artefact of the low number of recipes investigated, the result
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is encouraging as the impact of previously unseen recipes thereby could be
reproduced from these components. More data, covering more recipes, are
needed to investigate these interesting properties.

The outlined framework may be used in several ways to support the
different layers of defence in depth in glucose management. The meal impacts
can be used to rank different meals in terms of the extracted parameters of
peak, duration and GEM, which may be useful in meal planning for both
IDDM and NIDDM. Closed-loop systems, effectively covering all three layers,
may benefit from the concept both in terms of meal models to incorporate
into the algorithm, but also in a simulation environment. Here, new recipes
may be created from the principal components, forming a test bed to test the
closed-loop system disturbance rejection performance. Simulation may also
prove useful as a educational tool for both clinicians and patients to help
them better understand how different meals may effect the glucose level,
and how different bolus schemes can be used to cover the impact. It may
also be applied in a decision support for meal bolus dosing, allowing for
the user to simulate the expected effect of a meal intake, and to receive
suggestions on adequate bolus doses to reach, or maintain, normoglycemia in
the postprandial phase. This aspect will be investigated in the next chapter.
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6.A Summary of Estimated Meal Impact Data

Table 6.3 Summary of meal identification results. Recipe number (R#), Patient number (P#), Carbohydrates
(C) [%], Protein (P) [%], Fat (F) [%], Calories (C) [kCal] Number of instances (NOI), Average record length
(ARL), Peak Time (PT)[min], Duration (DT) [min], Glucose Elevating Magnitude (GEM) [mmol/(l·10 g)], Mean
Absolute Relative Deviation, n hours (γnh) [%], Medtronic (M) and Dexcom (D).

R# Recipe Name P# P C F Cal NOI ARL PT DT GEM γ1h γ2h γ3h γ4h

1 Breakfast D1 19 55 26 422 5 184 40 125 1.7 9.5 9.4 N/A N/A
2 Bread with pastry D2 20 54 25 312 16 195 35 130 2.7 11.0 13.2 15.2 N/A
3 Candy D2 3 93 4 362 8 133 170 > 270 2.3 12.4 11.9 N/A N/A
4 Chocolate D2 10 52 38 303 5 238 40 110 3.9 9.7 12.0 17.8 N/A
5 Wheat bread D2 21 61 18 273 8 204 35 150 2.0 11.9 16.1 22.2 N/A
6 Pretzels D2 12 80 7 159 5 225 40 235 2.0 9.1 12.6 11.1 N/A
7 Banana D3 4 94 2 111 5 173 30 75 1.4 11.9 N/A N/A N/A
8 Modifast D3 29 60 11 214 52 232 40 85 2.8 7.0 8.9 11.3 11.0
9 Cottage Cheese and

fruit
D4 44 53 2 115 8 179 45 180 2.9 8.5 14.3 N/A N/A

10 Milk D4 37 51 12 72 5 215 40 125 3.4 14.9 18.1 N/A N/A
11 Breakfast 1 D5 27 49 24 615 5 231 135 245 2.2 13.8 21.3 21.6 N/A
12 Breakfast 2 D5 29 47 24 560 13 246 35 185 2.6 8.2 14.7 18.7 26.7
13 Sandwich D6 14 82 4 151 7 272 65 240 2.1 10.1 10.1 12.1 12.9
14 Pasta Bolognese D7 27 58 15 621 5 180 45 85 0.5 5.5 N/A N/A N/A
15 Apple D7 1 98 1 61 5 194 50 135 2.9 11.7 13.6 N/A N/A
16 Banana D7 4 94 2 95 6 159 50 130 2.2 12.1 15.1 N/A N/A
17 Beer D7 16 82 15 171 5 165 40 95 1.4 6.1 7.1 N/A N/A
18 Coffee and chocolate D11 15 51 33 143 6 205 40 195 3.9 10.5 15.8 N/A N/A
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Table 6.3 (continued)

R# Recipe Name P# P C F Cal NOI ARL PT DT GEM γ1h γ2h γ3h γ4h

19 Nougat paste D11 6 52 42 200 7 165 40 190 2.3 12.2 15.7 N/A N/A
20 Sandwich D11 30 38 31 196 6 163 40 165 3.8 4.5 6.8 N/A N/A
21 Yoghurt and fruit D11 19 43 38 321 18 162 40 250 2.4 7.4 12.3 12.3 11.8
22 Yoghurt, Fruit and

sandwich
D11 28 33 39 535 7 195 85 215 4.3 11.1 12.1 12.9 N/A

23 Chocolate D12 6 67 27 177 7 225 30 220 2.2 9.7 12.2 11.7 13.7
24 Yoghurt and Granula D12 20 65 15 467 5 159 270 > 270 2.5 6.6 14.8 N/A N/A
25 Breakfast M1 43 29 28 392 13 257 100 220 2.4 10.2 16.1 16.5 16.6
26 Banana M2 4 94 2 106 5 252 35 140 2.7 14.4 13.9 14.8 17.7
27 Breakfast M2 20 48 31 534 7 248 130 260 2.0 10.2 15.6 20.1 25.6
28 Cottage Cheese and

Fruit
M2 41 38 21 197 5 250 45 135 3.0 12.0 18.3 22.0 30.7

29 Oatmeal Porridge M2 11 83 6 262 10 171 40 180 1.9 11.6 15.3 N/A N/A
30 Sandwich and milk M3 30 57 13 395 11 201 35 > 270 1.1 8.8 15.8 15.7 12.7
31 Omelette M4 32 27 41 533 14 254 35 155 2.4 5.7 9.7 13.2 15.8
32 Breakfast M4 24 42 34 267 11 264 30 185 2.0 7.3 10.6 14.4 16.6
33 Yoghurt and almonds M4 27 29 44 947 5 275 75 245 1.9 8.4 13.0 14.1 14.5
34 Coffee with milk M5 38 50 13 41 10 159 65 160 5.8 10.1 14.6 18.3 N/A
35 Sandwich M5 26 58 17 236 9 168 55 170 1.4 14.1 21.1 N/A N/A
36 Yoghurt and Granula M5 21 72 7 330 5 263 25 250 1.5 16.1 19.1 19.2 16.4
37 Lentil Peanut Stew M6 23 39 38 1186 5 197 175 >270 1.3 8.4 N/A N/A N/A
38 Oatmeal porridge and

sandwich
M6 21 58 20 475 5 234 65 255 1.7 9.9 16.9 22.7 N/A
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Table 6.3 (continued)

R# Recipe Name P# P C F Cal NOI ARL PT DT GEM γ1h γ2h γ3h γ4h

39 Pasta and soy based
sauce

M6 20 54 25 782 5 215 145 250 1.1 11.9 14.6 18.3 N/A

40 Sandwich M6 15 52 33 282 5 211 115 255 2.9 11.5 16.9 N/A N/A
41 Twix chocolate bar M6 6 71 23 194 8 142 50 160 1.4 11.2 9.2 N/A N/A
42 Sandwich M7 27 52 21 311 16 209 50 140 2.0 8.0 11.6 13.9 18.4
43 Apple M8 2 97 1 68 6 117 35 165 1.3 7.5 N/A N/A N/A
44 Oatmeal porridge M8 15 77 8 151 8 195 35 90 1.8 13.0 16.5 16.1 N/A
45 Sandwich M8 30 45 25 155 5 212 40 100 1.7 5.5 8.1 8.3 N/A
46 Candy M9 4 93 3 220 5 208 35 180 1.2 13.0 16.5 15.8 N/A
47 Clementine M9 6 92 2 82 9 242 40 210 2.5 15.1 24.2 27.4 N/A
48 Breakfast and

Cortisone
M12 22 53 25 432 11 198 270 >270 1.2 7.1 12.6 14.8 N/A

49 Crisp bread M13 28 24 48 560 6 223 95 >270 4.3 6.1 10.0 N/A N/A
50 Banana M13 4 94 2 106 5 140 45 135 1.8 8.7 N/A N/A N/A
51 Rye Bread M13 24 58 18 331 6 227 40 180 0.8 9.6 11.0 12.9 N/A
52 Pasta with Tuna

Sauce
M14 21 67 12 704 5 267 35 265 0.6 9.2 15.7 18.1 18.6

53 Apple M14 1 98 1 79 10 221 35 85 1.3 7.1 9.0 9.1 10.3
54 Crisp bread M14 6 85 9 375 7 237 35 > 270 0.9 15.3 18.0 24.8 25.5
55 Orange M14 7 92 1 115 7 179 35 115 1.3 11.7 13.8 N/A N/A
56 Sunflower bread M14 17 58 24 283 17 213 170 255 1.6 6.9 11.3 14.7 15.4
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7

Meal Bolus Optimization

7.1 Introduction

Every time a person with diabetes eats a meal, he/she is faced with the
challenge of how much insulin to bolus. Meal bolusing is notoriously diffi-
cult, due to the complexity in assessing the contributing factors which may
influence the postprandial response. Recognizing the effect of the meal at
hand and determining the amount of food on the plate is just the beginning.
While the postprandial response to the largest extent is determined by the
glucose-elevating impact of the meal, the choice of basal and bolus insulin
settings also contribute significantly to the ability to shape the glucose excur-
sion. Additionally, changes in insulin efficacy and insulin basal requirement,
together with recent basal, bolus and meal history have to be taken into
account when determining an appropriate meal dose. Several studies have
indicated the significant contribution of postprandial excursions to HbA1c
and long-term complications [IDF, 2011]. This emphasizes the need to re-
duce any postprandial hyperglycemia, which is reflected in several of the
postprandial recommendations found in the clinical guidelines. However, too
strenuous efforts in this regard may prove counter-productive. Excessive lim-
itations on postprandial hyperglycemia may result in overbolusing, which is
a gateway to post-absorptive hypoglycemia, with subsequent hyperglycemia
due to the counter-regulatory rebound response, and high glucose variability.
Considering the above, in this chapter we address two questions;

1. What is the optimal combination of meal bolus and basal settings to
counter the postprandial excursion produced by meal intake of a specific
recipe?

2. Are the postprandial glucose targets, provided in recommendations by
the leading diabetes organizations and medical associations, always
achievable?
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7.2 Current Technology and Research

Insulin Pumps and bolus alternatives

In most insulin pumps, the usual bolus dose is supplemented with dosing
alternatives which involve temporary changes to the basal level as well. Tem-
porary elevated basal level for a predefined period of time may be used instead
(called square wave bolus or extended bolus), or together (dual wave, combo
bolus), with a instantaneous bolus injection.

Bolus guides

The bolus guides available in many modern insulin pumps, glucose meters
and smart-phone apps provide meal dose suggestions based on variants of
the following calculation

D =
G − GR

KISR
+

MC

KCIR
(7.1)

where D is the suggested amount of insulin, G is the current glucose level,
GR is the target glucose level and MC is the amount of carbohydrates in
the meal. The Insulin Sensitivity Ratio KISR is recognized from Chapter 4,
and the Carbohydrate-to-Insulin Ratio KCIR describes how many grams of
carbohydrates each unit of insulin is expected to cover, and was introduced
in Chapter 6. So, the first term in Eq. (7.1) represents the correction boluses
needed to correct an offset glucose level, and the second term the insulin
required to cover the postprandial response of the meal. This is the simplest
version, but sometimes the amount of remaining insulin from previous doses
is subtracted before providing the suggested dose. The 100 rule, often used
to determine KISR, has already been described in Chapter 4, and the cor-
responding 500 rule for KCIR in Chapter 6. Usually, no distinction is made
between different meal compositions, and the same KCIR is used for all meal
types, but sometimes different parameter settings are used in different time
blocks of the day. No suggestions on changes to the basal level are provided.
The clinical usefulness of bolus guides was reviewed in Chapter 4.

Research on optimal meal bolus dosing

Some clinical studies have investigated what type of bolus that is optimal
to use for different meal types. In [Chase et al., 2002], a small study was
conducted where participants on CSSI therapy digested a meal rich in car-
bohydrates, fat and calories (pizza, tiramisu and cola, 11% protein, 53% car-
bohydrates, 36% fat, 829 kCal) at four separate occasions. At each occasion,
the same amount of insulin was administered, but using different methods;
a single bolus, two separate bolus doses of equal size (the second after 90
minutes), an extended two hour bolus, or as a combination bolus (70% as
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a bolus, 30% over two hours). The result favoured the combination bolus,
which yielded significantly lower postprandial glucose values in comparison
to the other bolus alternatives. Combination bolus (50% as bolus, 50% over
two hours) was also successfully used for meals with low glycemic index in
[O’Connell and Gilbertson, 2008]. Both the area under the glucose curve
of the postprandial response and the risk of developing hypoglycemia were
significantly lower when compared to normal bolus doses.

Few experimental studies can be found on open-loop bolus dosing using
novel algorithms. Attempts to provide bolus suggestions based on a computer
algorithm have been validated in [Rossetti et al., 2012], using a concept pre-
viously tested in simulation using the UVa/Padova simulator, see [Revert
et al., 2011]. The study included 12 subjects on CSSI, who underwent four
meal test over a period of six weeks. The algorithm is based on an interval
method which can suggest different combinations of bolus doses and basal
adjustments. A model with ten tunable parameters, put together by combin-
ing elements from different physiological models, was fitted to each patient
[Laguna et al., 2010]. The parameters were re-estimated after half of the tests
using three days of data. Compared to determining the bolus doses using fixed
CIR, no significant improvement could be found. The Diabetes Insulin Guid-
ance System (DIGS), using an non-disclosed heuristic algorithm, was shown
to be able to significantly reduce mean glucose level in a trial with 38 patient
with both T1DM and T2DM over a time period of 12 weeks [Bergenstal et
al., 2012].

A scheme based on run-to-run control, was suggested in Owens and was
later refined in [Palerm et al., 2007]. The concept is based on the assumption
that the same meal type is digested every day and that conditions affecting,
e.g., insulin sensitivity, remain unchanged or change gradually. The CIR is
iteratively updated each day based on a performance metric derived from
two postprandial SMBG measurements. In [Zisser et al., 2009], nine T1DM
followed the protocol for six weeks, and after convergence of the meal doses,
the one hour postprandial glucose value was significantly lower than before
the trial. Data on increased or decreased incidence of hypoglycemia were not
reported. While the assumption on static meal plans from day to day seem
unrealistic, it may prove relevant to the breakfast meal for some people.

Previous simulation studies to investigate optimal open-loop meal bolus
dosing have been conducted in [Roy and Parker, 2006c] and [Srinivasan et al.,
2014]. In [Roy and Parker, 2006c], the extended minimal model incorporating
free fatty acids dynamics from [Roy and Parker, 2006a], was used together
with two variants of a rate of appearance model. Two artificial subjects were
simulated, each eating a mixed meal (70 g carbohydrates, 18 g protein and
20 g fat). Each subject represented one of the two gastric models. Using
a closed-loop MPC controller, optimal dosing was determined with insulin
delivery profiles very similar to extended boluses with about 50 minutes
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duration. Based on published data on glucose rate of appearance for different
meals in healthy subjects, a library of parameters sets for the gastric model
in [Dalla Man et al., 2006a] was identified in [Herrero et al., 2008]. This
library was used in [Dassau et al., 2008], where it was combined with the
full UVA/Padova simulation model to investigate different closed-loop set-
ups in a small simulation study. The same modeling approach was used in
[Srinivasan et al., 2014], where both closed- and open-loop bolus dosing were
optimized for high, medium and low fat meals for an in-silico trial of ten adult
subject. Each meal type was digested in three different quantities (equivalent
to 50, 75 and 100 g of carbohydrates). For the open-loop dosing, which is
of interest here, the following conclusions were drawn. For the small and
medium sized low fat meals, a normal bolus administered 30 minutes before
the meal is optimal. For the largest meal (100 g), an extended bolus for 15
minutes was the best choice. For the medium fat meals, a two hour extended
bolus worked best for the small meal, whereas a divided dosing was suggested
for the larger meals. Here, a combined bolus is dosed at the meal start with a
short duration (10-30 min), and later another combined bolus is administered
after 30-45 minutes. The same concept, with even a third combination bolus,
was the suggested dosing strategy for high fat meals. Obviously, for practical
concerns, such delivery patterns would have to be incorporated as possible
dosing choices in a insulin pump to be practically feasible.

Pre- and postprandial glucose targets

To assist both clinicians and the patients directly, several non-governmental
(NGO) and governmental organizations have issued guidelines on suitable
targets for glycemic control. Here, we will specifically look at the targets
for pre- and postmeal glucose. Mainly the large international organisations
will be considered. However, national and local guidelines are probably more
important when treatment targets are implemented. For this reason, some
national and local guidelines were also considered in the review.

The International Diabetes Federation (IDF) states that the postpran-
dial glucose level should seldom rise above 7.8 mmol/l (140 mg/dl). The
recommendation is based on evidence that healthy individuals rarely have
a postmeal glucose level above this limit. However, the guideline recognizes
that this limit may be too low for insulin-treated diabetes due to the hypo-
glycemic risk. Based on this, a suitable upper limit was defined as 9 mmol/l
(160 mg/dl), to be assessed by SMBG 1-2 hours after the meal [IDF, 2011].

The American Diabetes Association (ADA), suggests preprandial glucose
levels between 3.9-7.2 mmol/l (70-130 mg/dl) and postprandial levels below
10 mmol/l (180 mg/dl)[American Diabetes Association, 2013]. (For pregnant
women with T1DM the boundaries are extremely tight; preprandial 3.3-5-
4 mmol/l (60-99 mg/dl) and postprandial 5.4-7.1 mmol/l (100-129 mg/dl).
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Table 7.1 Premeal (PreM) and Postprandial (PPG) targets from different
guidelines. Time since meal intake (∆T ).

Organization PreM target [mmol/l] PPG target [mmol/l] ∆T

ADA 3.9-7.2 10 N/A
IDF N/A 9 1-2 h

AACE 6.1 7.8 2 h
NICE 4-7 5-9 >1.5 h
SKL 4-6 6-8 2 h

(Pregnancy is a very specific condition, where extra-ordinary measures need
to be taken, and will not be considered further in this thesis.) The guideline
states that these goals may have to be altered on an individual basis de-
pending on duration of diabetes, age/life expectancy, co-morbid conditions,
known cardiovascular complications, hypoglycemic unawareness and other
personal considerations.

The American Association of Clinical Endocrinologists (AACE) defines
the premeal goal to 6.1 mmol/l (110 mg/dl) and the two hour postprandial
level to below 7.8 mmol/l (140 mg/dl) [Handelsman et al., 2015].

In England, the National Institute for Health and Care Excellence (NICE)
provides national guidance and advice to improve healthcare. In the guide-
line regarding blood glucose targets, the advises are a premeal level of 4-7
mmol/l (72-126 mg/dl), and a >90 min postprandial glucose level between
5-9 mmol/l [NICE guideline, 2015]. In Sweden, the Swedish Association of
Local Authorities and Regions, a membership organization of the municipali-
ties and county councils, have issued principals of care for T1DM [Nationella
Programrådet Diabetes, 2014]. The pre- and postmeal targets are 4-6 mmol/l
(72-108 mg/dl) and 6-8 mmol/l (108-145 mg/dl).

As can be seen from this review, there is somewhat of disparity among
the recommendations, see Table 7.1, in terms of both pre- and postprandial
levels, as well as when the upper postprandial limit should be enforced. While
ADA has the highest level, no slack is given for any early but short hyper-
glycemic episodes. At the other end, the regional recommendations have the
lowest target levels, but just like IDF and AACE, are more flexible during
the first and second hour of the postprandial response. In the following, the
PPG limits put forward by the ADA, IDF and AACE will be used as repre-
sentatives of the various levels of conservatism in the recommendations. For
the analysis, a strict interpretation of the boundary conditions according to
Table 7.2 were employed and the premeal glucose level was set to 6 mmol/l.
Additionally, an interpretation of that the premeal target should be fulfilled
in the long run was also included. The function TGth,tth

(t) defines a gradually
decreasing upper threshold after two hours to ensure that the glucose level
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Table 7.2 Boundary conditions Ω(·)(G(t)) used in the analysis of the PPG
recommendations. Glucose level at time t (G(t)) [mmol/l], meal time (t0)
[hours].

Organization PPG target

ADA ΩADA(G(t)) : 4 < G(t) < T10,0(t), t > t0

IDF ΩIDF (G(t)) :

{

G(t) > 4, t < t0 + 1,
4 < G(t) < T9,1(t), t ≥ t0 + 1

AACE ΩAACE(G(t)) :

{

G(t) > 4, t < t0 + 2,
4 < G(t) < T8.7,2(t), t ≥ t0 + 2

stabilizes at an acceptable level no later than six hours after the meal start:

TGth,tth
(t) =







Gth, t0 + 1 ≤ t < t0 + 2
Gth − (Gth − 7) · (t − t0 − 2)/4, t0 + 2 ≤ t ≤ t0 + 6
7, t ≥ t0 + 6

(7.2)
where Gth is the upper threshold given at tth by each organisation.

7.3 PPG Constraint Analysis

To investigate the feasibility of the postprandial constraints, the following
procedure was used. For every recipe listed in Appendix 6.9, the limiting
meal size that could be digested without violating the constraints, using an
optimized bolus dose, was calculated. The procedure to calculate the doses
is described below.
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Figure 7.1 The effect of a superbolus. The reduced basal dose increases the
glucose elevating effect that the bolus dose has to counter after the meal
impact peak. Effect of bolus dose (green line), basal dose (blue line), EGB
(turquoise line), meal impact (red line), combined effect of meal impact +
EGB - basal dose (purple line).
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In [Goodwin et al., 2015], an analysis of the limitations in fulfilling output
constraints in linear positive systems, where the effect of both the distur-
bance and the control signal are modeled as finite impulse response model,
is given. Specifically, modeling of glucose dynamics and the question of suit-
able meal bolus doses to achieve postprandial excursions within predefined
boundaries is presented as a possible application. However, the insulin model
suggested here has glucose-dependent impulse parameters, thereby violating
the necessary prerequisites for the results to be applicable. Instead, a con-
straint analysis was conducted using optimization, with constraint on G(t)
according to Table 7.2. Premeal glucose was assumed to be 6 mmol/l. A
lower premeal value can neither be considered realistic nor desirable. Hav-
ing a premeal value close, or even on the border, to hypoglycemia, puts the
patient at unnecessary risk. The bolus is administered at the meal time us-
ing a combined bolus. A combined bolus consists of a meal bolus given at
the meal start, and a temporary constantly elevated or reduced basal dose
for a predefined time period. This concept includes the extended bolus and
the superbolus as two extreme cases, and the normal bolus as the nominal
case (keeping the basal level as is). The extended bolus is a combined bolus
where the meal bolus has been eliminated, but with a temporary elevated
basal dose for a predefined time period, starting at the time of the meal.
This is useful for meals with a very prolonged and peakless meal impact.
Contrary, the superbolus idea is to shut off the basal dose at the same time
as the bolus dose is given [Walsh and Roberts, 2012]. The basal is thereafter
kept off for a predefined period of time. The superbolus effectively adds bulk
to the meal impact, with maximum contribution some time after the basal
dose is restarted. Most meal impacts have a peak much earlier (around 40
minutes, see Chapter 6) than the insulin action (around 110 minutes, see
Chapter 4). The added glucose elevating effect of the absent basal dose has
softening effect on post-peak glucose drop, when the insulin action dominates
the meal impact, and reduces the tendency to hypoglycemia, see Figure 7.1.
Thereby, larger bolus doses may be administered to trim the peak of the re-
sponse. Three different time periods will be investigated (one, two and three
hours). The endogenous balance EGB was set to the average value retrieved
from the estimation in Chapter 6 and the basal level was selected to match
this in stationarity.

The doses and meal size are given by the following optimization problem
where the maximum meal size (and associated insulin dosage) is sought that
will generate a postprandial response during the next Tdur hours that will
not violate predefined constraints:

{IB, IL} = arg, min
IB ,IL

−Mr (7.3)
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subject to
− IB ≤ 0

− IL ≤ 0

Ω(·)(G(t)), t ≥ t0

(7.4)

where IB is the meal bolus dose, IL,T is the temporary basal dose for T
hours, and Mr is the meal size of recipe r digested at time t0, and where the
postprandial response of G(t) is given by

G(tk) = G(tk−1) +

n
∑

i=0

ai(y(tk)I(tk−i)

+

m
∑

i=0

br
k−i+1Mr + Gb, G(t0) = 6.0, t0 ≤ tk ≤ t0 + Tdur (7.5)

which is recognized from Eq. (6.7) in Chapter 6, but with the insulin action
multiplier fixed to 1. The problem is non-convex due to the glucose depen-
dence of the insulin action parameters. However, a convex solution may be
obtained by using the average insulin action parameters. This solution can
thereafter be used as a starting point in the above optimization. Results
where IL,T is practically zero will be reported as superboluses.

The possibility to achieve a good postprandial response thus depends on
three factors; the shape of the meal impact, the shape of the insulin action
and the EGB level that the basal insulin needs to cover. The better the meal
impact and the insulin action curves matches, the flatter the postprandial
response. A large EGB, requiring a high level of basal dose, implies increased
possibility to ’shape’ the meal impact of rapid meals in a favourable manner
to better correspond to the insulin impact. In the analysis above, the combi-
nations of these effects depends on what recipes each patient has been eating.
However, from the results in Chapter 6, we learnt that the base meals de-
fined by the cluster centres corresponds to more than 67% of the recipes, and
covers both fast and more slowly digested meals. Therefore, to get a fuller
picture, the limiting meal size for the cluster mean meals was also calculated
for each patient assuming a glucose elevating magnitude of 2 mmol/l per 10
grams of carbohydrates.

7.4 Results

The three sets of postprandial constraints were evaluated for every recipe
listed in Appendix 6.9 using one, two and three hours time period for tem-
porarily manipulated basal dose. The three hour duration gave the best re-
sults and is reported below.
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Figure 7.2 Distribution of maximum meal sizes for the recipes from Ap-
pendix 6.A enforcing the different sets of constraints. First plot: ADA, Sec-
ond plot: IDF, Third plot: AACE, Fourth plot: ADA/AACE. Number of
recipes on the y-axis.

The maximum meal size allowed without violating the boundaries differed
a lot between the different recipes, see Figure 7.2. The different constraint
sets also produced somewhat different outcomes, with the IDF requirements
being the strictest (medians: ΩADA 57 g, ΩIDF 46 g and ΩAACE 62 g). For
almost all recipes, the optimization resulted in superboluses, with a few ex-
ception for recipes which have extremely long durations. Most of these had
about half the dose in the form of an elevated basal level, but noteworthy
is number 39 (Pasta and soy-based sauce) with a combination dose almost
equivalent to a normal bolus dose with untouched basal dose. All the inves-
tigated requirements resulted in extremely low meal sizes for some recipes,
due to the very low acceptance for even the slightest hyperglycemia in the
strict interpretation of the constraints.

Combining the ADA guideline setpoint of 10 mmol/l and the two hour
mark of the AACE guideline, a somewhat more realistic hyperglycemic con-
straint set (ADA/AACE) can be defined. Rerunning the optimization with
these constraints yielded somewhat more moderate results (median 78 g), see
bottom plot in Figure 7.2, but still with low meal sizes for rapidly absorbed
meals (see Figure 7.3 for an example). The base meal impact models retrieved
from the cluster analysis in Chapter 6 were tested on every patient against
this new set of constraints. The two fastest base meal impacts (bI and bIII)
gave very similar results, and only results for bI will be presented (see Fig-
ure 7.4). Also here, the spread in results was large, due to the inter-personal
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Figure 7.3 Example of the effect of an optimized bolus dose. The post-
prandial response of the true dose (grey dashed line) chosen by the patient
clearly violates the upper threshold for this meal instance. The model is
able to reproduce the outcome with a slight bias (light blue dashed line).
With the optimized dose, the modified ADA/AACE thresholds (red lines)
are barely cleared at the two and five hour marks (light blue solid line). The
meal size is slightly lower than the estimated maximum. The star indicates
the meal time, the grey bar the bolus dose and the solid black line the basal
level. Recipe nr 2, Patient D2.

differences in the shape of the insulin action. Unfortunately, the number of
patients is too low for clustering analysis, but results for representative slow,
medium and fast insulin action are found in Table 7.3.

Table 7.3 Maximum meal size (gram) possible to digest without violating
the relaxed ADA/AACE postprandial recommendations.

Type of Insulin Action Fast Meal (bI) Slow Meal (bII)

Fast 80 200
Medium 60 140
Slow 40 70
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Figure 7.4 Distribution of maximum meal sizes for the fast base meal bI

(upper plot), and the slow base meal bII (lower plot).

7.5 Discussion

For almost all recipes investigated, including the base recipes, the superbo-
lus was most successful in maximizing the meal size without breaking any of
the constraints. For a few recipes, a combination bolus was a better choice.
These recipes did not belong to any of the identified clusters, which stresses
that more meal data, with a wider selection of recipes, are required to get
a fuller picture of the diversity in meal impact. Comparing the calculated
maximum meal sizes to the actual meal sizes shows that many estimated
maximum meal sizes lie very close to the actual meal sizes. Indeed, this is
supported by the fact that most meal instance do not fulfil the postprandial
constraints (less than 19%, 13%, 14% and 23% for the ADA, IDF, AACE
and the ADA/AACE constraints). However, for four recipes, the actual meal
size, that still fulfilled the constraints, was larger than the estimated maxi-
mum. It is relevant to consider that the records were truncated after at most
4.5 hours, and thus that hypoglycemic threshold may have been breached
beyond this time point. Additionally, residual insulin from earlier meal or
correction may have contributed to reducing the peak of the postprandial
response, and differences in basal dose and EGB may contribute. Further-
more, the identification of the meal impacts in Chapter 6 revealed that the
variability in postprandial response was large close to the two hour mark,
which may also explain why some meal instances managed to slip under the
threshold. Bearing this in mind, the estimated meal sizes should not be re-
garded as absolute bounds, but rather as indicators of the magnitude. Still, it
is clear that these constraints are too conservative for many rapidly absorbed
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meals. This is especially exaggerated when the insulin action is slower than
normal, as the analysis of the base meal impacts on the entire patient cohort
confirmed.

While these results are interesting in terms of what kind of postprandial
response that may be achieved in an ideal setting, it is important to remem-
ber that real-world meal bolusing is more complex. Here, remaining insulin
from previous doses or shifts in the basal dose level often have to be con-
sidered. Additionally, remaining meal impact from previous meals, as well
as the need for correction doses to adjust for hyperglycemia or even delayed
bolus dosing due to an impeding hypoglycemia must also be factored in. As
noted above, some of these conditions may contribute in a positive manner to
the postprandial glycemia, whereas others do not. However, it should also be
recognized that most meals are more densely spaced than for the entire post-
prandial and post-absorptive states to be fully realized without a new meal
impact. Thereby, bolus doses that would otherwise lead to late hypoglycemia
may be countered by the new meal. This implies that larger bolus doses may
be applicable, at least for breakfast and lunches, when subsequent meals can
be expected. For dinner meals it may be more important to consider the
entire response though.

Sometimes it is suggested that the bolus dose should be given 15-30 min-
utes before the meal [Cobry et al., 2010; Luijf et al., 2010; Srinivasan et al.,
2014]. This may be an aggressive strategy to deal with rapid meal types, but
carries a hypoglyceimc risk in the event of delayed or altogether absent meal
intake due to unforeseen circumstances, that should not be underestimated.

The results indicate that over-stressing the hyperglycemic peak may be
counter-productive for some patients, and possibly instigate large correction
boluses as the patient aims at achieving an unreachable target. This gen-
erates a lot of late downward pressure and may produce a hypoglycemic
event many hours later. This is especially worrisome for the dinner boluses,
with the subsequent risk of nocturnal hypoglycemia. As noted in Chapter
6, few recipes belonged to the dinner category. More data is thus needed to
understand the implications for dinner recipes.

Considering the above, it may also be appropriate to define different rec-
ommendations for the breakfast, lunch and dinner meals. However, in the
end, the fundamental limitation boils down to the mismatch between the
meal and insulin impact dynamics. Novel ultra-fast insulins under develop-
ment may hopefully resolve this issue [Heinemann and Muchmore, 2012].

7.6 Conclusions

In this chapter, the postprandial recommendations set forward by the ADA,
IDF and AACE were investigated, using the meal impact models and the base
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meal impact models estimated in Chapter 6. The maximum possible meal
size allowed without violating the postprandial constraints derived from the
recommendations were calculated. The results show that these recommen-
dations may be unrealistic for meal with rapid meal impacts, especially for
persons with slower insulin action. This makes it apparent that not all in-
dividuals can reach the postprandial goals on any diet, regardless of how
optimal their bolus doses are. For patients with delayed insulin action, the
current postprandial recommendations may prove counter-productive and
harmful. In these cases, attention to how rapid the onset of the glucose el-
evating response is for different meals is probably more important. These
meal types may need to be consumed in smaller quantities, or over a longer
time span, to avoid excessive hyperglycemia. Even though the results on the
feasibility of the postprandial constraints are based on simulations, these re-
sults could be an interesting starting point for a discussion among clinicians
regarding reasonable postprandial recommendations. The results also give an
indication on what type of bolus dose is most favourable for different types
of meals, which may be used in a bolus decision support system. Both these
aspects may thereby support the fist level of a defence in depth strategy.
Further studies, allowing for intervention with calculated bolus doses, need
to be undertaken to confirm these results.
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7.A Summary of Postprandial Constraint Analysis

Table 7.4 Results from the postprandial constraint analysis for all the
recipes where a meal impact has been identified. Actual meal size
(mean±std) Mact in the meal instances for this recipe, maximum meal size
allowed for the ADA, IDF, AACE and combined ADA/AACE requirements
MADA, MIDF , MAACE and MADA/AACE, all in grams of carbohydrates.
A star next to the meal size indicates that a combination bolus was used,
otherwise a superbolus was employed.

Recipe # Mact MADA MIDF MAACE MADA/AACE

1 44 ± 0 37 29 40 49
2 32 ± 23 27 21 24 31
3 80 ± 56 100 76 187 219
4 27 ± 24 17 13 19 24
5 33 ± 1 41 32 35 45
6 28 ± 2 43 34 46 59
7 24 ± 3 38 30 55 73
8 28 ± 0 21 16 28 36
9 14 ± 5 24 19 26 33
10 8 ± 2 18 14 18 24
11 57 ± 9 167 139 1064* 1156*
12 50 ± 9 105 83 154 186
13 28 ± 6 80 64 68 87
14 67 ± 30 106 83 122 165
15 14 ± 3 24 19 22 31
16 21 ± 5 28 22 28 37
17 13 ± 8 40 32 46 62
18 13 ± 3 47 34 41 51
19 17 ± 11 43 34 52 64
20 13 ± 3 29 23 28 35
21 23 ± 11 71 55 112* 140*
22 29 ± 8 58 48 47 60
23 22 ± 12 76 62 94 115
24 63 ± 8 73* 60* 62* 78*
25 19 ± 11 59 49 47 58
26 23 ± 0 21 16 24 31
27 46 ± 23 228 209 197 228
28 15 ± 4 22 18 21 27
29 48 ± 4 46 36 74 95
30 35 ± 5 191 148 267 317
31 24 ± 5 28 22 34 44
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Table 7.4 (continued)

Recipe # Mact MADA MIDF MAACE MADA/AACE

32 20 ± 3 34 26 48 61
33 43 ± 7 141 124 119 141
34 4 ± 2 16 13 14 17
35 28 ± 8 56 45 58 74
36 54 ± 13 146 120 121 146
37 76 ± 14 151* 139* 135* 151*
38 53 ± 5 137 110 133 173
39 80 ± 33 351* 321* 312* 351*
40 26 ± 16 143 114 229 600
41 27 ± 9 65 53 74 94
42 32 ± 10 48 38 43 56
43 15 ± 2 48 37 64 79
44 25 ± 7 32 25 38 48
45 13 ± 3 34 27 40 50
46 48 ± 25 76 60 94 118
47 17 ± 10 63 50 89 106
48 44 ± 9 152* 139* 135* 152*
49 20 ± 5 164* 154* 151* 164*
50 23 ± 0 60 49 73 90
51 39 ± 6 118 94 350 427
52 100 ± 25 361 283 404 490
53 18 ± 6 43 34 62 78
54 71 ± 27 148 118 226* 279*
55 24 ± 8 50 39 60 76
56 31 ± 17 272 225 497 532*
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8

Sensor Lag Compensation

Predicting the glucose level in a real-time setting means relying on CGM
data. In previous chapters, the delay between the blood glucose and the
measured interstitial glucose level was ignored, and the CGM signal was
used as a proxy for blood glucose. This is the most common way of glucose
modeling and prediction, and applies to all the models listed in Chapter 2.
However, in many cases there is a significant lag between the interstitial glu-
cose and the blood glucose due to physiological and sensor dynamics [Keenan
et al., 2009]. Ignoring this delay in the modeling implies corresponding de-
lays in the prediction, an aspect of special importance during falling glucose
levels and impending hypoglycemia, when an hypoglycemic alarm, based on
the prediction, could warn the patient and instigate corrective actions. For
an assessment of the delay between these signals in the data at hand, see
Chapter 3.

The capillary and sensor characteristics of the finger-stick measurement
sensors are, in this context negligible, and are generally disregarded (and the
delay is indicated to be small [Dye et al., 2010]). In this chapter, the GIIM,
M1 in Figure 8.1, and the interstitial and sensor dynamics (here treated as one
model M2, see [Boyne et al., 2003] for a brief discussion on the contribution
of each term to the delay) are identified separately, and thereafter merged
together into one single grey-box model. Using an observer, the blood glucose
evolution is predicted ahead, based on the raw sensor output.

The interstitial and CGM sensor dynamics have been investigated assum-
ing a first-order diffusion model in [Kovatchev et al., 2006] and [Facchinetti
et al., 2007]. In [Facchinetti et al., 2007], the blood glucose level was recovered
from the CGM signal using deconvolution, and in [Bequette, 2004] an early
attempt at observer-based estimation was presented. In [Leal et al., 2010] a
third order Box-Jenkins model was used to estimate the glucose level from
the raw sensor signal. However, so far (to the best of the author’s knowledge)
no attempts have been made on merging modesl of glucose-insulin interaction
and sensor dynamics together for the purpose of blood glucose prediction.
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Figure 8.1 Overview of the modeling approach. Notation: Plasma Insulin
Ip(t), Rate of glucose appearance following a meal Ra(t), Blood glucose
G(t), Capillary glucose GC(t), Interstitial Glucose GI(t), CGM raw current
signal GI,raw(t) and CGM signal GCGM (t). M1 represent the model describ-
ing the glucose-insulin interaction in the blood and inner organs (GIIM),
the M2 model represents the diffusion-like relationship between blood and
interstitial glucose and the CGM sensor dynamics, and M3 is the joint model
of M1 and M2.

8.1 Data and Methods

Data

Based on the assessment of blood-to-interstitial delay in Chapter 3 and data
completeness, one patient was chosen from the hospitalized part of the DAQ
dataset. The dataset covers three consecutive days. In order to show signifi-
cant results, a patient with large lag was chosen (patient 107 from Montpel-
lier). The HemoCue measurements were interpolated using a shape preserving
spline interpolation method (pchip in Matlab [MathWorks, 2012]) to retrieve
an equidistant sampled signal G(t) with sampling period 5 minutes.

Apart from the GCGM (t) signal (10 min sampling rate), an intermediate
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signal GI,raw(t) from the glucose sensor was collected (1 min sample rate).
The signal, corresponding to the electrical current measured by the sensor,
was normalized to the same amplitude as the blood glucose data and resam-
pled to a 5-minute basis, and was used in the identification instead of the
CGM signal GCGM (t).

Insulin and Glucose Sub Models

The Insulin Sub Model (ISM) was based on the compartment model in [Dalla
Man et al., 2007b] and [Dalla Man et al., 2007a], see Chapter 4. The parame-
ters m2, m3, m4 are determined based on steady-state assumptions—relating
them to the constants in Table 8.1 and the body weight MBW . Only rapid-
acting insulins were considered. This means that the dynamics of the basal
doses of the MDI patients were not included in the insulin signal. To repre-
sent the glucose flux following digestion, the compartment model in [Dalla
Man et al., 2006a], described in Chapter 6, was used. The model equations
are reproduced here for convenience. Please see Chapters 4 and 6 for notation
and descriptions.

İsc1(t) = −(ka1 + kd) · Isc1(t) + D(t)

İsc2(t) = kd · Isc1(t) − ka2 · Isc2(t)

İp(t) = ka1 · Isc1(t) + ka2 · Isc2(t) − (m2 + m4) · Ip(t) + m1 · Il(t)

qsto(t) = qsto1(t) + qsto2(t)

q̇sto1(t) = −kgri · qsto1(t) + C(t)

q̇sto2(t) = kgri · qsto1(t) − kempt(qsto(t)) · qsto2(t)

q̇gut(t) = −kabs · qgut(t) + kempt(qsto(t)) · qsto2(t)

Ra(t) =
f · kabs · qgut(t)

MBW

(8.1)

Both models were evaluated using generic population parameter values ac-
cording to Table 8.1.

GIIM modeling - M1

Denoting the blood glucose G(tk), at sampling time tk, with y(k), and the
raw CGM signal GI,raw(tk) with z(k):

γ(k) =

[

y(k)
z(k)

]

=

[

G(tk)
GI,raw(tk)

]

(8.2)

and the filtered inputs uk = [Ip(k) Ra(k)]T from the insulin and glucose
sub models, the GIIM is modeled with a discrete-time state space model M1.

x(k + 1) = A1x(k) + B1u(k) + ω(k)

y(k) = C1x(k) + υ(k)
(8.3)
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Table 8.1 Generic parameter values used for the GSM and ISM.

Parameter Value Unit

kgri 0.0558 [min−1]
kmax 0.0558 [min−1]
kmin 0.008 [min−1]
kabs 0.0568 [min−1]

b 0.82 [-]
d 0.01 [-]
f 0.9 [-]

Parameter Value Unit

ka1 0.004 [min−1]
ka2 0.0182 [min−1]
kd 0.0164 [min−1]
kd 0.0164 [min−1]
m1 0.1766 [min−1]
Vi 0.05 [L/kg]
CL 1.1069 [L/min]

where x(k) ∈ R
n is the state vector and ω is process noise and υ is the

finger-stick measurements noise with covariances:

E
{

(

ω
υ

) (

ω
υ

)T
}

=

[

Q1 0
0 R1

]

(8.4)

The model order was determined using the Akaike criterion [Johansson,
2009].

Interstitial and sensor model - M2

The dynamics between blood glucose y and interstitial glucose z, as measured
by the sensor, was modeled as an ARX process.

A(z) · z(k) = B(z) · y(k − d) + e(k) (8.5)

where A, B are polynomials of the zero-order-hold operator z, d is a de-
lay, and e(k) is the CGM measurement noise, with evaluated model orders
nA = [1 − 2], nB = [1 − 2] and d = [1 − 4] determined using the MDL
criterion [Johansson, 2009]. The choice of evaluated model orders covers the
compartment model suggested in [Rebrin and Steil, 2000].

Model merging - M3

Converting the sensor ARX model into a state-space model M2 :
{A2, B2, C2} with process and measurement noises Q2 and R2, the GIIM
and sensor models are merged into one model M3 : {A3, B3, C3}, with the
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augmented state vector ξ and the output γ.

A3 =

[

A1 0[nA1×nA2 ]

B2 · C1 A2

]

, B3 =

[

B1

0[nA2 ×2]

]

C3 =

[

C31

C32

]

=

[

C1 0[1×nC2 ]

0[1×nC1 ] C2

]

Q3 =

[

Q1 0[nQ1 ×nQ2 ]

0[nQ2 ×nQ1 ] Q2

]

R3 =

[

R1 0[nR1×nR2 ]

0[nR2×nR1 ] R2

]

(8.6)

State estimation and sensor fusion

Data is available at different rates from the two measurement devices, and
at least from the finger-stick measurements, in a non-equidistant manner.
Thus, combinatorially there are 3 (4) possibilities; (1) data from both, (2)
Data from HemoCue and (3) Data from the CGM sensor, ((4) No data). This
calls for a time-varying system of switched dynamics. The boolean variables
δ1 and δ2 are used to keep track of which signal is present in the feedback,
and the new system becomes:

ξ̂(k + 1) = A3ξ̂(k) + K(γ(k) − C3ξ̂(k))

γ̂(k) =

[

δ1 0
0 δ2

]

C3ξ̂(k)
(8.7)

where the time-varying Kalman gain K depends on the unknown covari-
ance of the process noise Q and measurement noises R1 and R2. The accu-
racy of the finger-stick HemoCue glucose monitor [HemoCue Glucose 201+
Analyzer, 2012] has been studied in [Stork et al., 2005], which indicated a
standard deviation in the area of 10-15 mg/dl when compared to a state
of the art laboratory device (Yellow Spring Instrument [Yellow Springs In-
strument, 2012]). The study indicates a linear relationship between noise
and glucose level, which is common for glucose meters. No information on
the measurement noise of the relatively new Abbott CGM system [Abbott
Freestyle Navigator, 2015] has been found, but a standard deviation of 20
mg/dl is not an unrealistic assumption (compare to the BG-CGM devia-
tion in Chapter 3). Also for CGM systems, a proportional increase in noise
level to the glucose level is found. Current evaluation methods to assess the
performance of CGM systems are based on comparing the CGM signal to
a blood glucose reference. As the previous discussion shows, the signal-to-
reference deviation incorporates deviation due to the time lag between the
signals and does not accurately capture the stochastic variation in the CGM
signal. Recent developments in CGM error assessment aim to quantify these
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error dynamics, but do not address the estimate of CGM variation per se
[Clarke and Kovatchev, 2009]. In this thesis, the initial guess for noise level
standard deviation was chosen to correspond to 15 mg/dl for the HemoCue
device and 20 mg/dl for Abbott CGM. The measurement errors were con-
sidered to be uncorrelated. Given the initial guesses Q̂0 and R̂0, Q and R
can be iteratively estimated by first calculating the state estimation sequence
Ξ̂N = [ξ̂1 . . . ξ̂N ] and the estimation error sequence ŴN = [ŵ1 . . . ŵN ] from
the estimation data {YN , UN , Ξ̂0} [Johansson, 2009].

Ξ̂N+1 = A Ξ̂N + B UN + K(YN − C Ξ̂N )

ŴN = C Ξ̂N − YN

(8.8)

Thereafter the covariance estimates

S = E{(ξ̂ − ξ) (ξ̂ − ξ)T }, R = E{ŵŵT } (8.9)

are determined. Given that the sequence is stationary, we get:

lim
N→∞

SN = S (8.10)

and
lim

N→∞
RN = R (8.11)

Now {A, B, C} may be re-estimated by recognizing that

ξ̂k+1 = (A − KC)ξ̂k + [B K][uT
k γT

k ]

ŵk − γk = −Cξ̂k

(8.12)

Finally,
Q̂ = SN − A SN AT − K RN KT

R̂ = C SN CT − RN

(8.13)

Note that this computation may result in sign-indefinite solutions [Johansson,
2009].

Estimation and validation

The overnight data between the first and the second day were used together
with breakfast meal data from the second day for estimation. It was decided
to use overnight data together with meal data, in order to have a dataset with
sufficient excitation. Using meal data alone is problematic, since both inputs
act simultaneously during these circumstances. An assessment of the impor-
tance of input excitation to identification using simulated diabetic datasets
was made in [Finan et al., 2009]. The first and third days’ breakfasts were used
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for cross-validation. Additionally, to challenge the predictor, all HemoCue
measurements were removed from the validation datasets. To evaluate the
predictive performance of the model, 20, 40 and 60 minute predictions were
considered. The correspondence to the reference HemoCue measurements
were assessed using the Clarke Pointwise Error Grid Analysis (p-CGA), see
Chapter 3, RMSE and maximum absolute error. The performance was com-
pared to the CGM signal’s ability to reproduce the blood glucose.

8.2 Results

First, the GIIM M1 was identified. Using the interpolated HemoCue data and
the meal and insulin sub models to retrieve the filtered inputs, a second-order
state-space model was identified using the N4SID command of the System
Identification Toolbox in Matlab [MathWorks, 2012]. The model was stable
and responded qualitatively correctly to input (not shown). The interstitial
mode M2 was thereafter identified from the interpolated blood glucose data
G and the raw CGM signal GI,raw. The model order chosen according to the
MDL criteria was nA = 2, nB = 1 and d = 1. Converting the M2 model to
state space format, the merged model M3 was retrieved.

Since only CGM data were available in the validation data (δ1 = 0), the
system became time-invariant and a stationary Kalman filter was designed.

Using the initial guess for Q and R produced noisy predictions. The at-
tempt to estimate the noise characteristics from the estimation data broke
down into non-positive definite covariance matrices. Instead, Q and R were
heuristically chosen as user parameters to strike a sound balance between
signal smoothness and responsiveness to model-to-feedback mismatch.

In Figure 8.2, the 20, 40 and 60 minutes predictions together with nor-
malized GI,raw signal and the GCGM signal can be seen, and in Figure 8.3
an example of p-CGA is given.

All performance metrics have been summarized in Table 8.2.

Table 8.2 Performance evaluation for the M3 predictor and the GCGM in
comparison to the blood glucose reference G on validation data.

Prediction p-CGA[%] RMSE max | e |
Horizon A B CDE [mg/dl] [mg/dl]

20 84.2 15.8 0 19 42
40 84.9 15.1 0 20 46
60 83.7 16.3 0 21 45

GCGM 45.9 51.6 2.5 47 90
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Figure 8.3 Example of Clarke Error Grid Diagram, 40 min prediction Day
3. Prediction versus the interpolated HemoCue blood glucose reference.
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Figure 8.4 Upper plots: Simulation error ǫz of the simulated raw CGM
signal ẑ(k) given blood glucose y(k) using the sensor model M2. Lower plots:
Distribution of the error. Estimation data (middle plot) and validation data
(left and right plots).
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Figure 8.5 Upper plots: Simulation error ǫy of blood glucose y(k) given
inputs u(k) using M1. Lower plots: Distribution of the error. Estimation
data (middle plot) and validation data (left and right plots).

8.3 Discussion

Error Analysis

To determine the source of the prediction error, the simulation errors of the
sensor model,

ǫz = z − ẑ (8.14)

and of the GIIM model
ǫy = y − ŷ (8.15)

were investigated separately. In Figure 8.4, the simulation error between the
simulated raw CGM signal ĜI,raw and the true signal can be seen. The error
distribution is clearly non-Gaussian. This could be explained by time-varying
dynamics, and in [Sparacino et al., 2007] a recursive sensor model is used to
handle such occurences. However, the evaluated time periods are short, and
applying the model over the entire data record gives a more even distribution
(Figure 8.6). Given a tolerance interval of ±20 mg/dl, corresponding to the
p-CGA A zone for a 100 mg/dl blood glucose value, the model error can be
considered acceptable.

The simulation error of the GIIM can be seen in Figure 8.5. The contribu-
tion is significantly larger. For breakfast day one, the model underestimates
the glucose drop after the peak. On day three on the other hand, the model
overestimates the same drop. Given that these are infinite-horizon prediction
without any measurement feedback, a maximum error in the magnitude of
40 mg/dl should be considered to be a very good result. In fact, the error is
almost within the p-CGA A zone at all times.

Looking at the predictions in Figure 8.2, the behavior of the prediction
error can be understood from the error contribution from the sensor model,
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Figure 8.6 Distribution of the simulation error of the sensor model over
the entire data record.

sensor errors and the GIIM. As the prediction horizon increases, the GIIM
error becomes more and more dominant.

The corresponding prediction error for the model without the sensor
model and with CGM as feedback signal, in terms of RMSE, can be found in
Table 8.3. Compared to the results in Table 8.2, an improvement can be seen
for every evaluated prediction horizon, with a relatively larger improvement
as the prediction horizon increases, when the full model is utilized.

Table 8.3 Prediction error assessment for the model without incorporated
sensor model in terms of RMSE.

Prediction RMSE [mg/dl]
Horizon [min] vs GCGM vs G

20 8.0 25.0
40 16.3 31.4
60 24.4 37.6

Glucose and Insulin Sub Models

Major sources of uncertainty are the intermediate inputs Ra and Ip and
the assumptions made to retrieve them. Unfortunately, these obstacles are
hard to overcome in the applied modeling framework. Neither the rate of
glucose appearance following a meal nor the plasma insulin level are normally
available for measurement. Estimates of Ra have been made in [Dalla Man et
al., 2006a] and require a tracer based experiment. Ip can be obtained from lab
assays of blood samples. Obviously, such arrangements cannot be expected in
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Chapter 8. Sensor Lag Compensation

a normal day setting. Further work to assess the intra- and inter-individual
variations of these processes, and on mitigations to handle these principle
obstacles, is needed.

Plasma-to-Interstitial Dynamics

These dynamics were assumed to be time invariant, and homogeneous in
direction and magnitude of glucose change and glucose level. The assump-
tion of independence of the sign of the glucose change has been shown to
be questionable, see [Kovatchev et al., 2009], where statistically significant
differences in response time, depending on the direction of glucose change,
are presented. However, in this study no such differences could be observed.

8.4 Conclusions

In this chapter a method for sensor-delay compensation was presented. Com-
parison of the merged prediction to the interpolated SMBG reference clearly
showed that the augmented model manages to significantly reduce the delay,
that otherwise is present when only relying on the CGM signal to estimate the
blood glucose. Furthermore, the results indicate that the underlying GIIM
model seems to, with acceptable accuracy, describe the combined impact of
a breakfast and the subsequent insulin injection. Further research is needed
to evaluate the concept on more patient data to investigate whether generic
sensor models can be utilized. In terms of defence in depth, the concept is
especially useful in the second layer, since timely measurements are extra
important when monitoring for alarm purposes.
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9

Ensemble Prediction

9.1 Introduction

Diabetic glucose dynamics are known to be subject to time-shifting dynam-
ics, as indicated in Chapters 3 and 4. Considering this, and the vast number
of models developed in the literature, as described in Chapter 2, it is un-
clear if a single model can be determined to be optimal under every possible
situation. Such different circumstances may be, e.g., physical activity versus
resting, periods with differences in insulin sensitivity or meal intake resulting
in different postprandial responses, see Chapter 6. This raises the question
whether it is more useful to use one of the models solely, or if it is possible to
gain additional prediction accuracy by combining their outcomes. Accuracy
may be gained from merging, due to mismodeling or to changing dynam-
ics in the underlying data creating process, where a single model capturing
the system behavior may be infeasible, e.g., for practical identification con-
cerns. Thus, by an ensemble approach, robustness and performance may be
improved. In this chapter, a novel merging approach—combining elements
from both switching and averaging techniques, forming a ‘soft’ switcher in a
Bayesian framework—is presented for the glucose prediction application.

9.2 Related Research

Merging models for the purpose of prediction has been developed in different
research communities. In the meteorological and econometric communities,
regression-oriented ensemble prediction has been a vivid research area since
the late ’60s, see, e.g., [Raftery et al., 2005] and [Elliott et al., 2006].

Also in the machine learning community, the question of how different
predictors or classifiers can be used together for increased performance has
been investigated, and different algorithms have been developed, such as the
bagging, boosting [Breiman, 1996] and weighted majority [Littlestone and
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Warmuth, 1994] algorithms, and online versions of these [Oza, 2005; Kolter
and Maloof, 2003].

In most approaches the merged prediction ŷe
k at time k is formed by a

linear weighted average of m individual predictors ŷk = [ŷ1 . . . ŷm].

ŷe
k = wT

k ŷk (9.1)

It is also common to restrict the weights wk to [0, 1]. The possible reasons
for this are several, where the interpretation of the weights as probabilities,
or rather Bayesian beliefs, is the dominating. Such restrictions are however
not always applicable, e.g. in the related optimal portfolio selection problem,
where negative weight (short selling) can reduce the portfolio risk [Elton et
al., 1976].

A special case, considering distinct switches between different linear sys-
tem dynamics, has been studied mainly in the control community. The data
stream and the underlying dynamic system are modelled by pure switching
between different filters derived from these models, i.e., the weights wk can
only take value 1 or 0. A lot of attention has been given to reconstructing the
switching sequence, see, e.g., [Gustafsson, 2000; Ohlsson et al., 2010]. From a
prediction viewpoint, the current dynamic mode is of primary interest, and it
may suffice to reconstruct the dynamic mode for a limited section of the most
recent time points in a receding horizon fashion [Alessandri et al., 2005].

Combinations of specifically adaptive filters has also stirred some interest
in the signal processing community. Typically, filters with different update
pace are merged, to benefit from each filter’s specific change responsiveness,
respectively steady state behaviour [Arenas-Garcia et al., 2006].

Finally, in fuzzy modeling, soft switching between multiple models is of-
fered using fuzzy membership rules in the Takagi-Sugeno systems [Takagi
and Sugeno, 1985].

Merging of predictions in the glucose prediction context have previously
been investigated in terms of hypo- or hyperglycemic warning systems. In
[Daskalaki et al., 2013], the glucose prediction from a so-called output cor-
rected ARX predictor (see the reference for method details) was linearly com-
bined with the prediction from an adaptive recurrent neural network model.
The balancing factor for the linear combination was determined offline by
optimizing a trade-off between hypo- and hyperglycemic sensitivity, effective
prediction horizon and the false alarm rate. This factor was determined in-
dividually for each patient and the balance may be different for hypo- and
hyperglycemia. A different mechanism was used in [Dassau et al., 2010]. Here,
five different predictors were running simultaneously, and the hypoglycemic
alarm was based upon a voting scheme between the individual predictors. If a
number of the five predictors exceeded the predefined hypoglycemic thresh-
old value an alarm was raised. Both studies indicated an improvement in
alarm sensitivity compared to the individual predictors.
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Figure 9.1 Example of when merging between different predictors may be
beneficial. Initially the model corresponding to the red dash-dotted pre-
diction resembles the true reference (black solid curve) best, but as the
conditions change the prediction given by the other prediction model (blue
dashed curve) gradually takes the lead.

9.3 Problem Formulation

As seen from the review above, many different approaches to glucose model-
ing and predicting have been established. These methods may each be more
suitable to specific conditions for the glucose dynamics, and improvements in
robustness and prediction performance may be achieved by combining their
outcomes, as indicated from the studies from the hypo-/hyperglycemic alarm
systems. Such a situation is depicted in Figure 9.1, where two prediction mod-
els try to capture the true glucose level. In different situations, each predictor
is clearly outperforming the other and is capable of providing good estimates
of the true glucose level. However, as the conditions change the performance
deteriorates, and instead the other predictor is more suitable to rely upon.
Given this informal background, a more formal problem formulation is now
outlined.

A non-stationary data stream zk : {yk, uk} arrives with a fixed sample
rate, set to 1 for notational convenience, at time tk ∈ {1, 2, ...}. The data
stream contains a variable of primary interest called yk ∈ R and additional
variables uk. The data stream can be divided into different episodes TSi

of
similar dynamics Si ∈ S = [1...n], and where sk ∈ S indicates the current
dynamic mode at time tk. The system changes between these different modes
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according to some unknown dynamics.
Given m number of expert q-steps-ahead predictions, ŷj

k+q|k, j ∈ {1, ..m}

of the variable of interest at time tk, each utilizing different methods, and/or
different training sets; how is an optimal q-steps-ahead prediction ŷe

k+q|k

of the primary variable, using a predefined norm and under time-varying
conditions, determined?

9.4 Sliding Window Bayesian Model Averaging

Apart from conceptual differences between the different approaches to ensem-
ble prediction, the most important difference is how the weights are deter-
mined. Numerous different methods exist, ranging from heuristic algorithms
[Takagi and Sugeno, 1985; Arenas-Garcia et al., 2006] to theory-based ap-
proaches, e.g., [Hoeting et al., 1999]. Specifically, in a Bayesian Model Aver-
aging framework [Hoeting et al., 1999], which will be adopted in this chapter,
the weights are interpreted as partial beliefs in each predictor Mi, and the
merging is formulated as:

p(yk+q|Dk) =
∑

i

p(yk+q|Mi, Dk)p(Mi|Dk) (9.2)

where p(yk+q |Dk) is the conditional probability of y at time tk+q given the
data, Dk : {z1:k} received up until time k. If only point-estimates are avail-
able, one can, e.g., use:

ŷe
k+q|k = E(yk+q|Dk) =

∑

i

E(Mi|Dk)E(yk+q |Mi, Dk) = w̄T
k ŷk

w̄
(i)
k = E(Mi|Dk)

p(w
(i)
k ) = p(Mi|Dk)

(9.3)

where ŷe
k+q is the combined prediction of yk+q using information available at

time k, and w
(i)
k indicates position i in the weight vector. The conditional

probability of predictor Mi can be further expanded by introducing the latent
variable θk ∈ Θ = [1...p].

p(Mi|Dk) =
∑

j

p(Mi|θk = j, Dk)p(θk = j|Dk) (9.4)

or in matrix notation

p(wk) =
[

p(wk|θk = 1) . . . p(wk|θk = p)
]

[p(θk = 1|Dk) . . . p(θk = p|Dk)]T

(9.5)
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9.4 Sliding Window Bayesian Model Averaging

Here, Θ represents a predictor mode in a similar sense to the dynamic mode
S, and likewise θk represents the prediction mode at time k. p(wk|θk = j) is
a column vector of the joint prior distribution of the conditional weights of
each predictor model given the predictor mode θk = j. Generally, there is a
one-to-one relationship between the predictor modes and the corresponding
dynamic modes, i.e., p = n.

Data for estimating the distribution for p(wk|θk = i) is given based upon
using a constrained optimization on the training data. In cases of labelled
training datasets, the following applies:

{wk|θk=i}TSi
= arg, min

k+N/2
∑

m=k−N/2

L (y(tm), wT
k|θk=iŷi), k ∈ TSi

(9.6)

subject to
∑

j w
(j)
k|θk=i = 1, and where TSi

represents the time points cor-
responding to dynamic mode Si, the tunable parameter N determines the
size of the evaluation window and L (y, ŷ) is a cost function. From these
datasets, the prior distributions can be estimated by the Parzen window
method [Bishop, 2006], giving mean w0|θk=i and covariance matrix Rθk=i.
An alternative to the Parzen approximation is of course to estimate a more
parsimoniously parametrized probability density function (pdf) (e.g., Gaus-
sian) for the extracted data points. For unlabelled training data, with time
points T , the corresponding datasets {wk|θk = i}T are found by cluster anal-
ysis, e.g., using the k-means algorithm or a Gaussian Mixture Model (GMM)
[Bishop, 2006]. A conceptual visualisation is given in Figure 9.2. Now, in each
time step k, the wk|θk−1 is determined from the sliding window optimization
below, using the current active mode θk−1. For reasons soon explained, only
wk|θk−1 is thus calculated:

wk|θk−1
= arg min

k−1
∑

j=k−N

µk−j
L (yj , wT

k|θk−1
ŷj)

+ (wk|θk−1
− w0|θk−1

)Λθk−1
(wk|θk−1

− w0|θk−1
)T (9.7)

subject to
∑

j w
(j)
k|θk−1

= 1. Here, µj is a forgetting factor, and Λθk=i is a reg-
ularization matrix. To infer the posterior p(θk|Dk) in (9.5), it would normally
be natural to set this probability function equal to the corresponding poste-
rior pdf for the dynamic mode p(S|Dk). However, problems arise if p(S|Dk)
is not directly possible to estimate from the dataset Dk. This is circumvented
by using the information provided by the p(wk|θk

) estimated from the data
retrieved from equation (9.6) above. The p(wk|θk

) prior density functions
can be seen as defining the region of validity for each predictor mode. If the
wk|θk−1

estimate leaves the current active mode region θk−1 (in a sense that
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Figure 9.2 Principle of finding the predictor modes for unlabelled data
over the training dataset time period T . For every time point tk ∈ T ,
the optimal wk is determined by Eq. (9.6), where the optimal prediction
wkŷ (light green dash-dotted curve) formed from the individual predictions
ŷ (the blue dashed and the red dash-triple-dotted curves) is evaluating
against the reference (black solid curve) using the cost function L over a
sliding data window between t = k − N/2 and t = k + N/2. The aggregated
set {wk}T is thereafter subjected to clustering to find the different mode
centers w0|θ=i, i = [1..p].

p(wk|θk−1
) is very low), it can thus be seen as an indication of that a mode

switch has taken place. A logical test is used to determine if a mode switch
has occurred. The predictor mode is switched to mode θk = i, if:

p(θk = i|wk, Dk) > λ (9.8)

where

p(θk = i|wk, Dk) =
p(wk|θk = i, Dk)p(θk = i|Dk)

∑

j p(wk|θk = j, Dk)p(θk = j|Dk)
(9.9)

A λ somewhat larger than 0.5 gives a hysteresis effect to avoid chattering
between modes. Unless otherwise estimated from data, the conditional prob-
ability of each prediction mode p(θk = i|Dk) is set equal for all possible
modes, and thus cancels in (9.9). The logical test is evaluated using the pri-
ors received from the pdf estimate and the wk|θk

received from (9.7). If a
mode switch is considered to have occurred, (9.7) is rerun using the new
predictor mode.
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Figure 9.3 Predictor mode switching for an example with three individ-
ual predictor models. Step I: At time instance tk the new wk|θk−1

is de-
termined from Eq. (9.7) In this case, the data forces the optimal weight
away from the active prediction mode center. Step II: The likelihood values
p(wk|θk = i), i = [1..p] are calculated and if the condition according to Eq.
(9.8) is fulfilled, a predictor mode switch occurs. Step III: Based on the new
predictor mode, Eq. (9.7) is rerun and the weight vector now gravitates
towards the new mode center.

Now, since only one prediction mode θk is active; (9.5) reduces to p(wk) =
p(wk|θk

). The predictor mode switching concept is visualised in Figure 9.3.

Parameter choice

The length N of the evaluation period is, together with the forgetting factor
µ, a crucial parameter determining how fast the ensemble prediction reacts
to sudden changes in dynamics. A small forgetting factor will put much
emphasis on recent data, making it more agile to sudden changes. However,
the drawback is of course that the noise sensitivity increases.

The quantity Λθk=i should also be chosen, such that a sound balance
between flexibility and robustness is found, i.e., a too small ||Λθk=i||2 may
result in over-switching, whereas a too large ||Λθk=i||2 will give an inflexi-
ble predictor. Furthermore, Λθk=i should force the weights to move within
the perimeter defined by p(w|θk = i). This is approximately accomplished
by setting Λθk=i equal to the inverse of the covariance matrix Rθk=i, thus
representing the pdf as a Gaussian distribution in the regularization.

Optimal values for N and µ can be found by evaluating different choices
for some test data. However, from our experience we have seen that N =
10 − 20 and µ = 0.8 are suitable choices for this application.
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Summary of algorithm

1. Estimate m numbers of predictors according to best practice.

2. Run the predictors and the constrained estimation (9.6) on
labelled training data and retrieve the sequence of
{wk|Θ=i}TSi

, ∀i ∈ {1, .., n}.

3. Classify different predictor modes, and determine density
functions p(wk|Θ=i) for each mode Θ = i from the training
results by supervised learning. If possible; estimate p(Θ = i|D).

4. Initialize mode to the nominal mode.

5. For each time step; calculate wk according to (9.7).

6. Test if switching should take place by evaluating (9.8) and (9.9),
and switch predictor mode if necessary and recalculate new wk

according to (9.7).

7. Go to 5.

Nominal mode

Apart from the estimated prediction mode centres, an additional predictor
mode can be added, corresponding to a heuristic fall-back mode. In the case
of sensor failure, or other situations where loss of confidence in the estimated
predictor modes arises, each predictor may seem equally valid. In this case,
a fall-back mode to resort to may be the equal weighting. This is also a
natural start for the algorithm. For these reasons, a nominal mode θk = 0 :
p(wk|θk = 0) ∈ N(1/m, Σ) is added to the set of predictor modes (where
Σ) is a predefined covariance matrix, e.g., the identity matrix of size m). The
outlined ensemble engine (see text box above for a summary) will hereafter
be referred to as Sliding Window Bayesian Model Averaging (SW-BMA)
Predictor.

9.5 Choice of Cost Function L

The cost function L should be chosen with the specific application in mind.
A natural choice for interpolation is the 2-norm, but in certain situations
asymmetric cost functions are more appropriate. For the glucose prediction
application, a suitable candidate for determining appropriate weights should
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Figure 9.4 Cost function of relative prediction error.

take into account that the consequences of acting on too high glucose predic-
tions in the lower blood glucose (G) region (<90 mg/dl) could possibly be
life threatening. The margins to low blood glucose levels, that may result in
coma and death, are small, and blood glucose levels may fall rapidly. Hence,
emphasis should be put on securing small positive predictive errors and suf-
ficient time margins for alarms to be raised in due time in this region. In the
normoglycemic region (here defined as 90-200 mg/dl), the predictive quality
is of less importance. This is the glucose range that healthy subjects normally
experience, and thus can be considered, from a clinical viewpoint in regards
to possible complications, a safe region. However, due to the possibility of
rapid fluctuation of the glucose into unsafe regions, some considerations of
predictive quality should be maintained.

Based on the cost function in [Kovatchev et al., 2000], the selected func-
tion incorporates these features; asymmetrically increasing cost of the pre-
diction error depending on the absolute glucose value and the sign of the
prediction error.

In Figure 9.4 the cost function can be seen, plotted against relative pre-
diction error and absolute blood glucose value.

Correspondence to the Clarke Error Grid Plot

A de facto accepted standardized metric of measuring the performance of
CGM signals in relation to reference measurements, and often used to eval-
uate glucose predictors, is the Clarke Grid Plot [Clarke et al., 1987]. This
metric meets the minimum criteria raised earlier. However, other aspects
makes it less suitable; no distinction between prediction errors within error
zones is made, switches in evaluation score are instantaneous, etc.

In Figure 9.5, the isometric contours of the chosen function for different
prediction errors at different G values has been plotted together with the
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Figure 9.5 Isometric cost in comparison to the Clarke Grid.

Clarke Grid Plot. The boundaries of the A/B/C/D/E areas of the Clarke
Grid can be regarded as lines of isometric cost according to the Clarke metric.
In the figure, the isometric value of the cost function has been chosen to
correspond to the lower edge, defined by the intersection of the A and B
Clarke areas at 70 mg/dl. Thus, the area enveloped by the isometric border
can be regarded as the corresponding A area of this cost function. Apparently,
much tougher demands are imposed both in the lower and upper glucose
regions in comparison to the Clarke Plot.

9.6 Example I: The UVA/Padova Simulation Model

Data

Data were generated using the non-linear metabolic simulation model, jointly
developed by the University of Padova, Italy and University of Virginia, U.S.
(UVa) and described in [Dalla Man et al., 2007a], with parameter values
obtained from the authors. The model consists of three parts that can be
separated from each other. Two submodels are related the influx of insulin
following an insulin injection and the rate of appearance of glucose from
the gastro-intestinal tract following meal intake, respectively, and have been
described in Chapters 4 and 6. Both models were evaluated using generic
population parameter values according to Table 8.1 in Chapter 8.
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Table 9.1 Meal amount and timing randomization. Standard deviation in
parenthesis.

Meal Time Amount carbohydrates (g)

Breakfast 08:00 (30 min) 45 (5)
Lunch 12:30 (30 min) 70 (10)
Dinner 19:00 (30 min) 80 (10)

The final part of the total model is concerned with the interaction of
glucose and insulin in the blood stream, organs and tissue, including renal
extraction, endogenous glucose production and insulin and non-insulin de-
pendent glucose utilization. The model equations are partly nonlinear and
are found in [Dalla Man et al., 2007a].

Using a parameter set corresponding to a subject with T1DM, twenty
datasets, each eight days long, were generated. The timing and size of meals
were randomized for each dataset, according to Table 9.1. The amount of
insulin administered for each meal was based on a fixed carbohydrate-to-
insulin ratio, perturbed by normally distributed noise, with a 20% standard
deviation.

Process noise was added by perturbing some crucial model parameters
pi in each simulation step; pi(t) = (1 + δ(t))p0

i , where p0
i represent nominal

value and δ(t) ∈ N(0, 0.2). The affected parameters were (again following the
notation in [Dalla Man et al., 2007a])) k1, k2, p2u, ki, m1, m30, m2, ksc, and
represent natural intra-personal variability in the underlying physiological
processes.

Two dynamic modes A and B were simulated by, after 4 days, changing
four model parameters (following the notation in [Dalla Man et al., 2007a])
k1, ki, kp3 and p2u, related to the endogenous glucose production and insulin
and glucose utilization. This represents an example of shift in the underlying
patient dynamics, which may occur due to, e.g., sudden changes in physical
or mental stress levels.

A section of four days of a dataset, including the period when the dynamic
change took place, can be seen in Figure 9.6. One of the twenty datasets was
used for training and the others were considered test data.

Predictors

For prediction modeling purposes, the system was considered to consist of
three main parts in a similar sense as the simulation model was constructed.
The absorption models of glucose and insulin were adopted and considered
known. The outputs Ip(tk) and Ra(tk) from these models were fed into a
linear state-space model of the Glucose-Insulin Interaction (GIIM), with sys-
tem matrices A, B and C, generating the final output, i.e., the blood glucose
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Figure 9.6 The training dataset. The upper plot represents four days of
dynamic mode A data and the lower plot the corresponding last four days
of dynamic mode B, where four model parameters have been modified.
Example I: UVA/Padova Model.

G(k) at time tk ∈ (5, 10, . . .) min. Short-term predictions, p steps ahead, were
evaluated using the Kalman filter with gain K:

x̂(k + 1) = Ax̂(k) + Bu(k) + K(y(k) − Cx̂(k))

x̂(k + p) = Ax̂(k + p − 1) + Bu(k + p − 1)

Ĝ(k + p) = Cx̂(k + p)

(9.10)

where meal and insulin announcements were assumed at least TP H minutes
ahead, implying that u(k + l) was known for all 0 ≤ l ≤ p.

Three models were identified using the subspace-based technique with the
N4SID algorithm of the Matlab System Identification Toolbox. The model
order [2−4] was determined by the Akaike information criterion [Johansson,
2009]. The first model I was estimated using data from dynamic mode A in
the training data, and the second II from the mode B data, and the final
model III from the entire training dataset. Thus, model I and II are each
specialized, whereas III is an average of the two dynamic modes. Evaluation
was performed for a prediction horizon of 60 min.

Results

Training the Mode Switcher The three predictors were used to create three
sets of 60-minute-ahead predictions for the training data. Using (9.6) with
N = 10, the weights wk were determined. The mode centers were found by
k-means clustering, and the corresponding probability distribution for each
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Figure 9.7 Estimated probability density functions for the weights in the
training data, including nominal mode. Example I: UVA/Padova model.

mode, projected onto the (w1, w2)-plane, was thereafter estimated by Parzen
window technique [Bishop, 2006]. The densities are well concentrated to the
corners [1, 0, 0] and [0, 0, 1], with means w0|1 = [0.96, 0.03, 0.01] and w0|2 =
[0.03, 0.96, 0.01] defining the expected weights for each predictor mode. The
nominal mode probability density function was set to N(1

3
1
3

1
3

, 0.1I) where
I is the identity matrix. In Figure 9.7 all density functions, including the
nominal mode, projected onto the (w1, w2)-plane, can be seen together.

Ensemble Prediction vs. Individual Predictions Using the estimated proba-
bility density functions and the expected weights w of the identified predictor
modes, the ensemble machine was run on the test data. An example of the
distribution of the weights for the two dynamic modes A and B can be seen in
Figure 9.8. An example of how switching between the different modes occurs
over the test period can be found in Fig 9.9.

For evaluation purposes, all predictors were run individually. In Table
9.2, a comparative summary of the predictive performance of the different
approaches over the test batches, in terms of mean RMSE, is given. It was
also noted that the merged prediction did not introduce any extra prediction
delay in comparison to the best individual prediction (not shown).

9.7 Example II: The DIAdvisor Data

Data

Data from the clinical part of the DAQ trial and the DIAdvisor I B and C
trials, conducted within the DIAdvisor project [DIAdvisor, 2012], were used.
A number of patients participated in all three trials. Based on data complete-
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Figure 9.8 Example of the distribution of weights in the test data using the
estimated pdf:s and expected weights. Blue dots: Dynamic Mode A (days
1-4). Red dots: Dynamic Model B (days 5-8). Example I: UVA/Padova
model.

Table 9.2 Performance evaluation by RMSE for the 60 minute predictors
using different approaches.

RMSE [mg/dl]
Predictor Type Section A Section B A+B

Predictor I 8.0 16.1 12.6
Predictor II 15.3 7.2 12.1
Predictor III 9.8 9.9 9.9

Merged prediction 8.4 7.6 8.1

ness, six of these (namely patients 3, 7, 8, 18, 25 and 30 from the Montpellier
clinic) were selected for this study with population characteristics according
to Table 9.3. Each trial ran over three days. The patients received standard-
ized meals where the amount of carbohydrates included in each meal was

Table 9.3 Population Statistics of data. Mean values and [min-max].

Parameter Value

Gender 3 Men /3 Women
Therapy 3 Pump / 3 Multi-Dose Injection
Age 54 [32-68]
HbA1c 7.9 [5.7-9.1]
BMI 25.8 [23.7-29.4]
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Figure 9.9 Example of switching between different predictor modes in the
test data. The transition from dynamic mode B to mode A takes place at
6000 min (c:a 4 days). Mode 3 represents the nominal mode. The late switch
to predictor mode 2 in comparison to when the dynamic mode switch takes
place is due to that the excitation for the first hours of the fifth day is low
until the breakfast meal takes place, i.e., there is little incitament to switch
predictor mode before that point. Example I: UVA/Padova model.

about 40 (45 in DAQ), 70 and 70 grams, respectively. Additional snacks, in
some cases related to counter-act hypoglycemia, were also digested. Further
details of the trials can be found in Chapter 3.

The first trial data (DAQ) were used to train the individual predictor
models. The second and third trial data (DIAdvisor I.B and C) were used to
train and cross-validate the SW-BMA, i.e., the SW-BMA was trained on B
data and validated on C data, and vice versa.

Predictors

Three different predictors of different structure were developed within the
DIAdvisor project, and used in this study; a state-space-based model (SS)
[Ståhl, 2012], a recursive ARX model [Estrada et al., 2010] and a kernel-
based predictor [Naumova et al., 2012]. For all three models, the CGM signal
GCGM (t) was considered a proxy for the blood glucose G(t), i.e., the lag be-
tween the interstitial glucose and the blood glucose, described in e.g. [Rebrin
and Steil, 2000], was ignored.

The state-space model and the ARX model used the modeling approach
described in Chapter 8, with insulin and glucose sub models according to
(8.1), and without interstitial and sensor dynamics modeling (M2). The state-
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Figure 9.10 A Graphical User Interface (GUI) developed in order to facilitate manual model identification. Patient
specific data can be loaded from each of the DIAdvisor trials and displayed in three different columns of data
windows. The top windows depict glucose data, where the blue circles correspond to blood glucose reference values,
the blue line represents the splined interpolation of these values (G) and the dark green line is the interpolated
Continuous Glucose Measurements (GCGM ). The light green bar corresponds the hypoglycemic threshold, 4 mmol/l
(72 mg/dl). The middle plots show the plasma insulin level Ip, given by the Insulin Sub Model (ISM), derived from
basal and bolus doses. The lower plots describe the corresponding results from the Glucose Sub Model (GSM),
yielding the rate of appearance of glucose Ra following meal intakes. Different types of models can be evaluated by
changing in the scroll-down menu in the header of the GUI, and previous developed models can also be imported
for comparative purposes. Model evaluation plots can be requested using the push buttons in the upper right
corner of the GUI header.
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Figure 9.11 Example of distribution of weights in the training data by (9.6)
and clusters given by the k-means algorithm. The red ellipses represent the
fitted Gaussian covariances of each cluster (patient 0103, Trial B). Example
II: DIAdvisor Data.

space model equations are found in Eq. (9.10). The ARX predictor was re-
cursively updated at each time step with an adaptive update gain dependent
upon the glucose level according to [Estrada et al., 2010]. The state-space
model was identified using the graphical user interface in Figure 9.10.

The kernel-based predictor did not directly utilize the insulin or meal
data channels. Instead, the linear trend and offset parameters given by linear
regression of recent CGM data were used as meta features to switch between
different predefined kernel-based prediction functions, see [Naumova et al.,
2012] for a full explanation. Furthermore, this predictor was only trained on
one patient dataset and was thus considered patient invariant.

Evaluation Criteria

The prediction results were compared to the interpolated blood glucose G in
terms of Clarke Grid Analysis [Clarke et al., 1987] and the complementary
Root Mean Square Error (RMSE).

Results

Training the Mode Switcher

Cluster Analysis - Finding the Modes The three predictors were used to
create 40 minute ahead predictions for both training datasets DTB(C)

. Using
(9.6) with N = 20, the weights {wk}TB(C)

were obtained; example depicted
in the (w1, w2) plane in Figure 9.11. The weights received from the training
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Figure 9.12 Example of estimated probability density functions for the
different predictor mode clusters in the training data (patient 103, Trial B).
Example II: DIAdvisor Data.

are easily visually recognized as belonging to different groups (true for all
patients, not shown). Attempts were made to find clusters using a Gaussian
Mixture Model (GMM) by the EM algorithm, but without viable outcome.
This is not totally surprising, considering, e.g., the constraints 0 ≥ wi ≥ 1
and

∑

w = 1. A more suitable distribution, often used as a prior for the
weights in a GMM, is the Dirichlet distribution, but instead the simpler k-
means algorithm was applied using four clusters (number of clusters given
by visual inspection of the distribution of {wk}TB(C)

), providing the cluster
centers w0|Θi

.
The corresponding probability distribution for each mode p(w|Θi), pro-

jected onto the (w1, w2)-plane, was estimated by Parzen window technique,
and an example can be seen in Figure 9.12. Gaussian distributions were fitted
to give the covariance matrices RΘi

used in (9.7).

Feature Selection The posterior mode probability p(θk|Dk) is likely not de-
pendent on the entire data Dk, but only a few relevant data features, possible
to extract from Dk. Features related to the performance of a glucose predictor
may include meal information, insulin administration, level of physical ac-
tivity, measures of the glucose dynamics, etc. By plotting the training CGM
data, colored according to the best mode at the prediction horizon retrieved
by the training, interesting correlations become apparent (Figure 9.13). The
binary features in Table 9.4 were selected. When extracting the features,
meal timing and content were considered to be known 30 minutes before the
meal.

From the training data, the posterior mode probabilities p(θk = i|fj),
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features at the moment the prediction was made (patient 0103, Trial B). Example II: DIAdvisor Data.
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given each feature fj , were determined by the ratio of active time for each
mode over the time periods when each feature was present. Additionally, the
overall prior p(θk = i) was determined by the total ratio of active time per
cluster over the entire test period.

The different features are overlapping, and the combinations thereof could
be regarded as features by themselves. However, the data support for each
such new feature would be small and could potentially disrupt, rather than
improve, the switching performance. To resolve this issue, the features were
not combined (apart from concurrent rising glucose and meal intake, which
formed a new feature), and each feature was given different priority—only
allowing the feature of highest priority, f∗

k to be present at each time step
tk. The priority rank was chosen to allow the more specific features to take
presidence over the more general features. At each cycle, p(θk = i|Dk) =
p(θk = i|f∗

k ) was determined, and if no feature was active, p(θk = i|Dk) was
approximated by the p(θk = i) estimate.

Prediction Performance on Test Data

Using the estimated mode clusters {w0|i, R0|i}, i = [1 . . . M ], and the esti-
mated posteriors p(Θi|f

∗) from Trial B (C), the ensemble machine was run
on the Trial C (B) data. The parameter µ was set to 0.8 and N to 20 minutes.
An example of the distribution of the weights wk for the three predictors can
be seen in Figure 9.14. Table 9.5 summarizes a comparison of predictive per-
formance over the different patient test datasets for the RMSE evaluation
criteria, and in Table 9.6 the evaluation in terms of Clarke Grid Analysis is
given. The optimal switching approach, here defined as using the non-causal
fitting by Eq. (9.6), is used as a measure of optimal performance of a linear

Table 9.4 Selected features. Here, ǫ corresponds to the maximum am-
plitude of glucose rate-of-appearance, Ra after digesting 10 g CHO, and
∆G = Gk − Gk−5.

Feature Threshold Priority

Meal max(Rak, .., Rak+30) > ǫ 1

Rising mean (∆Gk−10, . . . , ∆Gk) 2
G > 30 mg/(dl· h)

Falling mean (∆Gk−10, . . . , ∆Gk) 3
G < −18 mg/(dl· h)

Meal and See above. 4
rising G

Meal max Ra(k − 30, ..., k) < ǫ and 5
Onset max Ra(k, ..., k + 30) > ǫ
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Figure 9.14 Example of the distribution of weights in the test data us-
ing the estimated clusters and feature correlations (patient 0108, Trial B).
Example II: DIAdvisor Data.

combination of the different predictors.

Table 9.5 Performance evaluation for the 40 minute SW-BMA prediction
compared to the optimal switching and the individual predictors. The met-
ric is the Root Mean Square Error (RMSE), normalized against the best
individual predictor M1 − M3 for each patient.

median RMSE/RMSEbest [min-max]
Merging Strategy Trial B Trial C

SW-BMA 1.03 [0.75-1.04] 1.03 [0.94-1.05]
Optimal switching 0.97 [0.54-1.0] 0.94 [0.73-1.0]

2:nd best individual pred. 1.16 [1.09-1.27] 1.21 [1.04-1.37]
Worst individual pred. 1.44 [1.25-1.73] 1.45 [1.18-1.83]

9.8 Discussion

Example I outlined how the technique may be applied to the specific exam-
ple of diabetes glucose prediction under sudden changes in the underlying
physiological dynamics. In this example, the merged prediction turned out
to be the best choice. In Example II, applying the algorithm to real-world
data, the SW-BMA has, for most patients, the same RMSE and Clarke Grid
performance as the best individual predictor. In one case, the merged predic-
tion clearly outperformed also the best predictor (RMSE/RMSEbest = 0.75).
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Table 9.6 Performance evaluation for the 40 minute SW-BMA prediction
compared to the optimal switching and the best individual predictor by the
amount of data (%) in the acceptable A/B zones vs. the dangerous D and
E zones.

Merging Strategy Trial B Trial C
A/B D E A/B D E

SW-BMA 95.5 2.2 0 95.3 3.0 0.1
Optimal switching 96.2 1.7 0 96.9 1.3 0

Best individual pred. 94.8 2.6 0 95.0 3.4 0

However, comparison to the optimal switcher indicates that there is still
further room for improvement. To fill this gap, timely switching is most im-
portant.

The prediction models in Example II were not specifically designed for
specialisation, but are diversified in terms of modeling and parameter identi-
fication methods in relation to each other. The state-space model is patient-
specific, with fixed parameter values after traning—making it agile to in-
terpersonal differences but more sensititive to time-variability. The model is
invariant to the absolute glucose level. The ARX model, on the other hand,
is recursively updated to capture time-variability, but the approach may be
vulnerable to fluctuating system excitation conditions. Both models utilize
the insulin and meal data inputs. The kernel-based predictor is generic over
the patient cohort, and considers the dynamics to be related to the glucose
level rather than directly to the inputs’ effects. Overall, the three models
thereby complement each other in these aspects. The posterior mode proba-
bilities, conditioned on each selected feature, show that some specialisation
exists. For example, when feature 5 (meal onset) was active, cluster 3, domi-
nated by the SS predictor, was clearly favoured an average (61 %). Exploiting
these correlations may enhance timely switching, and further specialisation
and diversification amongst the prediction models can thus be expected to
improve the added value of prediction merging additionally.

The evaluation indicates that the proposed algorithm is robust to sudden
changes and in reducing the impact of modeling errors. Apart from that, in
many applications, transition between different dynamic modes is a gradual
process rather than an abrupt switch, making the pure switching assumption
inappropriate. The proposed algorithm can handle such smooth transitions
by slowly sliding along a trajectory in the weight plane of the different predic-
tors, perhaps with a weaker Λ if such properties are expected. Furthermore,
any type of predictor may be used, not restricting the user to a priori as-
sumptions of the underlying process structure.

The Tagaki-Sugeno (TS) system also gives soft switching. The underlying
assumption is that the switching dynamics can be observed directly from the
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data. This assumption has been relaxed for the proposed algorithm, extend-
ing the applicability beyond that of TS systems.

In [Raftery et al., 2010], another interesting approach to online Bayesian
Model Averaging is suggested for changing dynamics. In this approach, the
assumed transition dynamics between the different modes are based on a
Markov chain. However, in our approach no such assumptions on the un-
derlying switching dynamics are postulated. Instead, switching is based on
recent performance in regards to the applicable norm, and possibly on esti-
mated correlations between predictor modes and features of the data stream
P (θk = i|Dk), see Eq. (9.9).

9.9 Conclusions

In this chapter, a novel merging mechanism for multiple glucose predictors
has been proposed for time-varying and uncertain conditions. The approach
was evaluated on both artificial and real-world datasets, incorporating mod-
eling errors in the individual predictors and time-shifting dynamics.

The results show that the merged prediction has a predictive performance
in comparison with the best individual predictor in each case, and indicates
that the concept may prove useful when dealing with several individual (glu-
cose) predictors of uncertain reliability—reducing the risk associated with
definite a priori model selection—or as a means to improve predictive qual-
ity if the predictions are diverse enough.

Further research will be undertaken to investigate how interesting features
correlated to expected predictor mode changes should be extracted, and in
regards to the possibility of making the algorithm unsupervised.

The concept can support several prediction-based features at different
levels of a defence in depth concept, such as level 2 hypo- and hyperglycemic
alarms or level 3 autonomous pump suspension, where the improved robust-
ness may reduce false-alarm rates and improper safety function activation.

166



10

Conclusions and Future

Research

10.1 Conclusions

This thesis has investigated means to improve self-care in insulin-dependent
diabetes. The focus has primarily been CSSI therapy for IDDM patients. The
underlying philosophy in the modeling approach has been that the models
should be possible to identify from input-output data, preferably from home-
monitored data, and that it should reflect real-world situations, i.e., to avoid
cumbersome and expensive protocols with, e.g., tracers requiring hospital-
ization and non-physiological conditions.

A cornerstone in successful insulin therapy is understanding the insulin
action, i.e., the magnitude and dynamics of the glucose-lowering effect of
insulin. This was investigated in Chapter 4 using overnight data from data
collected at home from 29 patients during six weeks. The overnight period
was chosen to avoid interference from glucose changes due to meal intake,
thereby allowing the insulin action to be studied in isolation. Using a Bayesian
procedure, finite impulse response models of the insulin action could be esti-
mated. Interesting properties, previously reported from tracer experiments,
of glucose dependence of the insulin action, were reconfirmed and quanti-
fied. The models were personalized with individual estimates of the insulin
action, showing that large interpersonal differences in both magnitude and
peak and duration exist. The analysis also revealed time-variability in insulin
requirements, in between days, as well as diurnal patterns. These models were
used in Chapter 5 to predict the glucose level in order to assess the risk of
nocturnal hypoglycemia. The analysis indicate that these events can be pre-
dicted with good accuracy and acceptable false alarm rate, well in advance
for counter-measures to be undertaken. One possible application is to use
the approach in an insulin pump, where the insulin delivery is suspended at
impeding hypoglycemia. Such a feature is already available in one commer-
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cial insulin pump, where the concept has been successfully proven. With the
suggested method here, further improved performance can be expected. An-
other possible scenario is to use the model to warn for suspected nocturnal
hypoglycemia already at bedtime. Combining these two approaches could
drastically reduce the risk of nocturnal hypoglycemia, which is one of the
major hurdles in diabetes glucose management.

Next to understanding the effect of insulin, getting to grips with how dif-
ferent meals affect the glucose is fundamental in diabetes management. Using
data from the same trial as were used to establish the insulin response, post-
prandial data records were extracted for 56 different recipes covering 475 meal
instances in total. Again, a finite impulse response model was chosen, allowing
the glucose elevating impact of the different recipes to be estimated. Cluster
analysis demonstrated that many recipes indeed had very similar shape of
their glucose elevating impact, and that a majority of the recipes could be as-
signed to just three groups. The macro nutrient composition was significantly
different between these clusters, confirming, e.g., that relatively increased fat
content delays the glucose excursion. The cross-validation showed that the
models may be of sufficient quality to be used for calculation of meal boluses.

Thereafter, the issue of how to determine such bolus doses was addressed,
together with the related question whether the postprandial recommenda-
tions issued by the leading professional medical associations are realistic and
achievable for all patients and for all types of meals. Modern insulin pumps
allow for immediate bolus doses as well as manipulation of the basal level
to temporarily adjust the level up or down. Thereby, different combination
effects can be created, ranging from the superbolus (a bolus dose followed by
complete shutoff of the basal delivery for a predefined time) to extended bo-
luses (no bolus dose but elevated basal dose for a predefined time). In chapter
7, an optimization routine was used to evaluate what type of bolus is most
suitable for the different recipes estimated previously, in order to contain the
postprandial constraints. These constraints were based on interpretations of
the postprandial recommendations. The analysis showed that for almost all
recipes, the superbolus with three hours basal elimination was the best op-
tion. However, for a few recipes with meal impacts with long durations and
delayed peaks, a combination bolus with about 50%/50% division between
the instantaneous bolus and the three hours elevated basal dose was the pre-
ferred choice. Another important finding was that for some patients with
longer than normal insulin action, the postprandial recommendations can
only be upheld for small meals (less than about 40 grams of carbohydrates).

Diabetes glucose dynamics is known to comprise both short- and more
long-term time-variability, as the analysis of the insulin action demonstrated.
Merging different diversified models may prove to be a successful approach,
as a means to improve performance and robustness under such conditions.
In Chapter 9, a novel merging algorithm based in a Bayesian setting was
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developed. The suggested method admits for soft switching and interpola-
tion between the different models based on an evaluation of the different
predictors’ recent performance, using a sliding data window, and by looking
for data feature identified to be correlated to switching. Different aspects of
the merging approach were investigated, using a simulated dataset, and the
concept was thereafter successfully validated using 12 datasets from the DI-
Advisor project, showing improved robustness to the prediction performance
in comparison to relying on the individual prediction models.

Another problematic aspect to glucose dynamic modeling and identifi-
cation was tackled in Chapter 8. The glucose measurements that can be
retrieved in a frequent and automatic fashion, i.e., the CGM measurements,
are sampled in the interstitial compartment—a tissue that has a diffusion-like
relationship to the compartment of primary interest—the circulatory blood
system. This aspect is often overlooked in glucose modeling, but significant
lagging of the glucose prediction of those models may result, as indicated by
the evaluation of the lagging between the CGM signal and the corresponding
reference blood glucose measurements in Chapter 3. This is unacceptable, as
hypoglycaemia may quickly arise due to rapid glucose drops (see Chapter 3),
and these models will, unless perfectly matched, in many cases be unable to
capture these potentially dangerous situations. To overcome this deficiency,
a modeling approach where a subspace identified state-space model was aug-
mented, to incorporate the dynamics responsible for the sensor delay, was
developed. To prove the concept, an individual dataset with significant sen-
sor lag was used for validation, and short-term postprandial prediction was
evaluated. The results show that the lag of the glucose estimate and predic-
tion were successfully reduced.

The results listed above are encouraging, but have been developed from
small datasets with limited diversity. Larger and more diverse studies are
needed to scrutinize and validate these ideas. Some directions for future re-
search are listed below. Regardless, as more knowledge is gathered, better
models and algorithms will emerge. Together with the recent advances in
sensor technology, insulin formulations, insulin pumps and information tech-
nology, more and stronger building blocks are added for development of the
different layers in a defence in depth concept. Such a concept would poten-
tially allow for reduced risks of short- and long-term complications, increased
patient empowerment, and in the end, improved quality of life for persons
with (insulin-dependent) diabetes.
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10.2 Future Research

Below some directions for future research are outlined.

Finite impulse response model simplification It would be possible to
parametrize the finite impulse response models by splines. Such an approach
may prove beneficial in terms of making it more easy to find common dy-
namics among different patients.

Interpersonal variability in insulin action Larger studies are needed to char-
acterize the variability of duration and magnitude of the insulin action. Can
the patient group be stratified by cluster analysis?

Glucose-dependent insulin action The results regarding the heterogeneous
aspects of insulin action across the glucose range needs to be further investi-
gated, validated and characterized. Trials specifically designed to collect data
in the critical hyperglycemic and hypoglycemic regions are needed to get a
fuller picture of this effect.

Intra-personal variability in insulin requirements This important property
needs to be investigated thoroughly both in terms of diurnal patterns but
also over longer time horizons. Specifically interesting is how this affect glu-
cose variability, as indicated by the results in Chapter 4. Can patterns be
identified, and linked to e.g. physical activity?

Meal impact models The recipes investigated had low diversity. Larger
studies covering a broader class of meals and macro nutritional composition
are needed. Will more meal impact clusters be revealed?

Meal Bolusing Intervention studies where patients are given recommenda-
tion on meal bolus doses, calculated using the described models, would be of
interest to validate the clinical usefulness of such a bolus advising system.

Population Stratification The diabetic population may be possible to strat-
ify into smaller patient cohorts. Finding such classifications could potentially
simplify parametrization of previously unmodelled patients, if model behavior
could be linked to directly available, or easily measured, biomarkers. Deeper
classification analysis of identified models may indicate such relationships.

Ensemble Predictor In order to detect the optimal switching point as soon
as possible, the feature monitoring of the SW-BMA ensemble engine is an
interesting functionality. However, finding and extracting relevant features
was non-trivial and no systematic approach is utilized.

Sensor delay The concept of augmenting the model with a sensor model,
describing the sensor lag, needs to be further validated by more data exam-
ples. Additionally, alternative, more complex models of the sensor dynamics,
e.g., incorporating sensor drift, should be addressed.
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