Kartläggning och kvalitativ analys av möjligheter och risker med reducerad syrehalt i brandceller innehållande elektrisk utrustning

Van Hees, Patrick; Frantzich, Håkan; Nilsson, Martin

2012

Link to publication

Citation for published version (APA):
Kartläggning och kvalitativ analys av möjligheter och risker med reducerad syrehalt i brandceller innehållande elektrisk utrustning

Patrick van Hees
Håkan Frantzich
Martin Nilsson

Department of Fire Safety Engineering and System Safety
Lund University, Sweden

Brandteknik och Riskhantering
Lunds tekniska högskola
Lunds universitet

Rapport 3162, Lund 2012

Denna rapport är finansierad av NBSG
Kartläggning och kvalitativ analys av möjligheter och risker med reducerad syrehalt i brandceller innehållande elektrisk utrustning

Patrick van Hees
Håkan Frantzich
Martin Nilsson

Lund 2012
Kartläggning och kvalitativ analys av möjligheter och risker med reducerad syrehalt i brandceller innehållande elektrisk utrustning

Patrick van Hees
Håkan Frantzich
Martin Nilsson

Report 3162
ISSN: 1402-3504
ISRN: LUTVDG/TVBB--3162--SE

Number of pages: 61
Illustrations: Patrick van Hees

Keywords
Fire, nuclear power plants, hypoxic air, fire prevention

Sökord
Brand, kärnkraftverk, syrgasreducerad miljö, brandförebyggande brandskydd

Abstract
Fires can be an important hazard for the overall safe operation of nuclear power plants. Prevention of fire, fast detection and efficient extinguishment of a fire are some parameters, which are important to consider when designing the fire safety in a nuclear power plant. As an alternative to extinguishment system the use of hypoxic air or hypoxic air venting has been introduced e.g. in storage room of a museum or a historical building. This system is now being proposed for use in fire compartments in nuclear power plants containing electrical equipment such as electrical cabinets, cable trays, etc. This reports is a pre-study to investigate the risk and advantages of this system for use in these types of rooms. This report also stipulates a number of areas where more research or investigations are necessary. The results in this report are based on a literature review of scientific publications and specific technical standards available in the area in combination with the technical expertise of the authors. The report should not be seen as a final evaluation of hypoxic air venting systems.

© Copyright: Brandteknik, Lunds tekniska högskola, Lunds universitet, Lund 2012.
Brandsäkerhet är en viktig del i den allmänna driften i kärnkraftverk i Sverige. I slutet av 2011 gav NBSG (Nationella Brandsäkerhetsgruppen) ett uppdrag till LTH att kartlägga och kvalitativt analysera möjligheter och risker med reducerad syrehalt i brandceller innehållande elektrisk utrustning. Eftersom området är relativt nytt ska denna rapport ses som en första förstudie och inte som en uttömmande analys av ämnet.

Kontaktperson från NBSG har varit Ralph Nyman från Strålsäkerhetsmyndigheten.

Lund, 31 januari 2012.

Patrick van Hees
Håkan Frantzich
Martin Nilsson
Innehåll

1. INTRODUKTION .. 1

1.1. BAKGRUND .. 1
1.2. MÅL OCH SYFTE ... 1
1.3. FRÅGESTÄLLNINGAR ... 1
1.4. GENOMFÖRANDE ... 1
1.5. BEGRÄNSNINGAR ... 2
1.6. DEFINITIONER .. 2
1.7. FÖRKLARINGAR ... 2
1.8. ORGANISATIONER .. 3

2. METOD .. 5

3. LITTERATURSTUDIE .. 7

3.1. RESULTAT AV LITTERATURSÖKNINGEN .. 7
3.1.1. HYPOXIC AIR ... 7
3.1.2. MILJÖER MED FÖRHÖJT LUFTRYCK .. 7
3.2. BEFINTELIGA TEKNISKA STANDARDER ... 8
3.2.1. VDS 3527EN (2007) .. 8
3.2.2. BGR 104 BG-REGEL EXPLOSIONSSCHUTZ-REGELN (2007) 9
3.2.3. PAS 95:2011 (2011) .. 9
3.2.4. NFPA 2001: STANDARD ON CLEAN AGENT FIRE EXTINGUISHING SYSTEMS (2012) 10
3.2.5. PROVNINGSMETODER FÖR EGENSKAPER AV BRÄNSLE VID ÄNDRADE SYRGASHALTER .. 10
3.3. FÖRESKRIFTER ... 12
3.3.1. ARBETSMILJÖVERKETS FÖRFATTNINGSSAMLING AFS 1993:3 (1993) 12
3.4. SAMMANFATTNING AV VIKTIGA FÖRSKNINGSRAPPORTER OCH ARTIKLAR 12
3.4.1. EXAMENSBETE BERG OCH LINDGREN RAPPORT 5144: FIRE PREVENTION AND HEALTH ASSESSMENT IN HYPOXIC ENVIRONMENT ... 13
3.4.2. COWI RAPPORT AV JENSEN OCH HOLMBERG: HYPOXIC AIR VENTING FOR PREVENTION OF CULTURAL HERITAGE – CONTRIBUTION COST C17 PROJECT (JENSEN ET AL 2006) .. 14
3.4.3. MSC THESIS CHITI – COWI RAPPORT 01/2010: TEST METHODS FOR HYPOXIC AIR PREVENTION SYSTEMS AND OVERALL ENVIRONMENTAL IMPACT OF APPLICATIONS (CHITI 2010) 16
3.4.4. CHITI: HYPOXIC AIR TECHNOLOGY FIRE PROTECTION TURNS – INTERNATIONAL WORKSHOP ON FIRE SAFETY AND MANAGEMENT, OMAN 2011 (CHITI 2011) 16
3.4.5. ARTIKEL OM HÅLDOASPEKTER FRÅN ANGERER AND NOWAK: WORKING IN PERMANENT HYPOXIA FOR FIRE PROTECTION–IMPACT ON HEALTH (ANGERER ET AL 2003) 17
3.4.6. ARTIKEL AV BURTSCHER ET AL: SHORT-TERM EXPOSURE TO HYPOXIA FOR WORK AND LEISURE ACTIVITIES IN HEALTH AND DISEASE: WHICH LEVEL OF HYPOXIA IS SAFE? (BURTSCHER ET AL 2011) ... 18
3.4.7. KÜPPER ET AL: WORK IN HYPOXIC CONDITIONS–CONSSENSUS STATEMENT OF THE MEDICAL COMMISSION OF THE UNION INTERNATIONALE DES ASSOCIATIONS D’ALPINISME (UIAA MedCom) (KÜPPER ET AL 2011) 18
3.4.8. Artikel om brandbeteende i tunnlar med förhöjt tryck från Lamont et al: Fire tests in a compressed air tunnel at up to 3 bar (Lamont et al 1998)

3.4.10. Exemenserarbete Holmstedt och Malmberg: Explosions och brännbarhetsvillkor i en övertryckskammare (Holmstedt och Malmberg 1966)

4. SVAR TILL FRÅGORNA AV SSM .. 23

4.1. Fråga 1 .. 23
4.2. Fråga 2 .. 24
4.3. Fråga 3 .. 24
4.4. Fråga 4 .. 25
4.5. Fråga 5 .. 26
4.6. Fråga 6 .. 26
4.7. Fråga 7 .. 27
4.8. Fråga 8 .. 28
4.9. Fråga 9 .. 28
4.10. Fråga 10 ... 29
4.11. Fråga 11 ... 30
4.12. Fråga 12 ... 31
4.13. Fråga 13 ... 31
4.14. Fråga 14 ... 31
4.15. Fråga 15 ... 32
4.16. Fråga 16 ... 32
4.17. Fråga 17 ... 34
4.18. Fråga 18 ... 34

5. ÖVERSIKT AV FÖRDELAR, FARHÅGOR OCH RISKER .. 35

5.1. Fördelar .. 35
5.2. Farhågor och risker ... 35

6. SLUTSATSER ... 37

7. FORTSATT FORSKNING ... 39

8. REFERENSER ... 41

8.1. Referenser .. 41
8.2. Övrig litteratur ... 43

BILAGOR
A. Frågor SSM
B. Litteratursökningar
1. Introduktion

1.1. Bakgrund

Som alternativ till släckmedel undersöks nu möjligheten att använda tekniken med låga syrgashalter t ex 15 % för att begränsa uppkomst och spridning av brand i kärnkraftverk. Tekniken är känd och tillämpas inom områden som museer, datorrum etc. (Jensen G. et al 2006) och diskussionen har mycket varit inriktad mot vilken syrgasnivå man kan minska till för att säkerställa brandsäkerhet och ändå kunna erhålla en acceptabel arbetsmiljösäkerhet.

1.2. Mål och syfte

Målet med projektet är att presentera ett oberoende expertutlåtande om för- och nackdelar med tekniken med att reducera syrehalten i relä- och kabelutrymmen, baserat på en litteraturstudie. Vidare ska arbetet svara på frågor och farhågor som SSM inledningsvis ställt. Syftet är att öka kunskapen om tekniken med reducerat syrehalt som möjligt skyddssystem i kärnkraftverk.

1.3. Frågeställningar

Frågeställningarna som utgör grunden till projektet är sammanställda i bilaga A till denna rapport och de besvaras i kapitel 4. Frågorna skickades till LTH från NBSG genom SSM. De täcker LTHs åsikt om vad som kan vara relevanta problemställningar kring området.

1.4. Genomförande

Projektet innehöll tre moment:

1. I det första momentet har LTH utfört en genomgång av den vetenskapliga litteraturen samt eventuella internationella och nationella standarder. En vanlig sökning i vetenskapliga publikationsdatabaser och standardiseringsswebsidor genomfördes. Resultatet finns i avsnitt 3.1

2. I det andra momentet undersöktes litteraturen och en sammanställning har gjorts för att presentera resultaten på ett översiktligt sätt, avsnitt 3.2 och 3.4
3. I det sista moment har LTH med det nuvarande kunskapsläget besvarat frågorna från NBSG samt indikerat de områdena där ytterligare undersökningar behövs. Resultaten finns i kapitel 4 och 7.

1.5. Begränsningar

Rapporten har ett antal begränsningar på grund av både metod och tidsplan.

Rapporten begränsas till litteratur som hittades via klassiska vetenskapliga publikationsdatabaser och valet av rapporter och standarder som beskrivs i kapitel 3 gjordes av författaren.

Dessutom är svaren på frågorna i kapitel 4 baserade på resultatet av den litteratur som är tillgänglig inom standardiseringsvärlden samt i den vetenskapliga litteraturen. Litteratur från produksidor eller kommersiella tidningar har inte tagits med. Svaren på de tekniska ämnen baseras även på den befintliga expertisen hos författare.

Ytterligare en begränsning i studien är att några provningar inte har genomförts i denna fas av projektet.

1.6. Definitioner

Antändning: start av förbränning av ett material (gas, vätska eller fast material)

Hypoxic air: luft där partialtrycket är lägre än på havsnivån d v s luft med lägre volymandel än 21 %

Hypoxic air venting: system där syrgasreducerad luft förs in i ett utrymme via ventilationssystem

Effektutveckling: värmeutveckling per tidsenhet av ett material

Tändkällor: föremål som kan ledda till antändning

1.7. Förkortningar

CFD: Computational Fluid Dynamics (strömningsdynamik)

FDS: Fire Dynamic Simulator, CFD-mjukvara från NIST

PRISME: Propagation de l’incendie lors de scénarios multilocus élémentaires

PAS: Publicly Available Specification

PSA: Probabilistisk säkerhetsanalys

SAR: Safety Analysis Report
1.8. Organisationer

BSI British Standardisation Institute, National Standards Body UK.
LTH: Lunds Tekniska Högskola.
NBSG: Nationella Brandsäkerhetsgruppen
NFPA National Fire Protection Association
NIST: National Institute of Standards and Technology, USA
ISO: International Standardisation Organisation
SSM: Strålsäkerhetsmyndigheten (Swedish Radiation Safety Authority)
VdS: Organisatión som är en del av Gesamtverband der Deutschen Versicherungswirtschaft e.V. (German Insurance Association, GDV)
2. Metod

En litteraturstudie genomfördes där två vetenskapliga publikationsdatabaser användes för att täcka in de internationella vetenskapliga publikationerna. En tydlig avgränsning har gjorts för att enbart beakta artiklar och i förekommande fall rapporter som har genomgått en vetenskaplig granskning, sk peer-review. Anledningen till detta är att säkerställa att enbart underlag med en hög kvalitet används för analysen. Följande två vetenskapliga databaser användes:

- Web of Science (http://apps.webofknowledge.com)
- Google scholar (http://scholar.google.se/)

För mer allmän information om tekniken med låg syrgashalt användes den vanliga sökmotorn ”Google search” som gav information om eventuella artiklar från konferenser, workshops, etc som inte är med i de ovanstående databaserna (www.google.se).

Som sökord användes ”fire”, ”burning behaviour” i kombination med ”hypoxic air”, ”reduced oxygen”, ”hypoxic”, ”hypoxia” för sökning av ”hypoxic air”-undersökningen. På begäran av NBSG gjordes även en litteratursökning för brandbeteende vid förhöjt tryck. I detta fall användes sökorden ”fire”, ”burning behaviour” i kombination med ”increased pressure”.

Utöver användning av sökmotorerna hittades en del andra nyttiga artiklar via referenslistorna i artiklarna som kom fram via de vetenskapliga databaserna.

Resultatet av sökning redovisas i avsnitt 3.1
3. Litteraturstudie

3.1. Resultat av litteratursökningen

3.1.1. Hypoxic air

Genomgång av de två databaserna ledde till 27 artiklar (se bilaga B.1 för exempel av resultat av sökning i Web of Science). De flesta artiklarna var kopplade till medicinska aspekter kring hypoxic air. Följande artiklar hade en direkt koppling till projektet:

- Burtscher - Short-term exposure to hypoxia for work and leisure activities in health and disease: which level of hypoxia is safe? (2011)
- Küpper et al - Work in Hypoxic Conditions-Consensus Statement of the Medical Commission of the Union Internationale des Associations d'Alpinisme (UIAA MedCom) (2011)

Det kan alltså konstateras att antalet vetenskapligt granskade artiklar är relativt begränsat. Görs en sökning på ”sprinkler” och ”fire” på Web of Science erhålls drygt 300 referenser där det mesta är relevant. Därför behövde en sökning med vanliga icke-vetenskapliga sökmotorer göras för att hitta artiklar som inte är registrerade i peer-review systemet, dvs i de vetenskapliga publikationsdatabaserna. Genom denna sökning och med litteraturlistorna i artiklarna som hittades på detta sätt byggdes en litteraturlista upp som finns i kapitel 8, Referenser. Ett kort citat eller en sammanfattning av de artiklar som var viktiga för att kunna formulera svar på frågorna finns i avsnitt 3.4.

3.1.2. Miljöer med förhöjt lufttryck.

Genomgång av de befintliga vetenskapliga databaserna ledde till 20 artiklar (se bilaga B.2 som ger exempel av resultat av sökning med Web of Science). De flesta artiklarna var kopplade till miljöaspekter. Följande artiklar hade en viss koppling till projektet:

- Joutsenoja T; Saastamoinen J; Aho M; et al Effects of pressure and oxygen concentration on the combustion of different coals (1999)
- Lamont DR; Buckland I; Bettis RJ; et al Fire tests in a compressed air tunnel at up to 3 bar pressure (1998)

3.2. Befintliga tekniska standarder

Nedanstående avsnitt ger en översikt av de viktigaste standarderna. Alla standarder utom provningsstandarderna finns med som en elektronisk bilaga till denna rapport.

3.2.1. VdS 3527en (2007)

VdS 3527 är en väldigt detaljerad standard som ger information kring installation, design och driftsspecifikationer av anläggningar med inerta gaser samt reducerad syrgasnivån. Denna standard är därför användbar för system med hypoxic air och innehåller information kring gränsvärde för olika material. Dessutom anger standarden att reducerad syrgas eller hypoxic air som system ska anses som ett system för att förhindra uppkomst av brand och ej som släcksystem. Det ställs också krav på övervakning av syrgasnivå i det skyddade rummet. Dessutom finns kontrollbesiktningsskrav i standarden.

Standarden innehåller följande delar:

“1 General
1.1 Application
1.2 Targets
1.3 Definitions
1.4 Physical units.
1.5 System specification
1.6 Protection of life
1.7 Effectiveness and application
1.8 Alarm organisation and alarm schedule
2 Inerting and oxygen reduction targets and methods
3 Planning of the installation
4 Distribution pipework
5 Oxygen concentration monitoring during continuous inerting and oxygen reduction
6 Alarms and indications
7 Detection of danger parameters
8 Control and indicating equipment
9 Operation of the system
10 Maintenance
11 Documentation
12 Installation, approval and revision
Annex A 1 – Properties of inert gases
Annex A 2 – Further applicable regulations, literature
Annex A 3 – Approval of installation firm, components and system
Annex A 4 – Oxygen threshold concentrations for explosion protection inerting
Annex A 5 – Ignition thresholds for oxygen reduction in fire protection
Annex A 6 – Pressure relief openings for the enclosure of rooms protected by inert gas

Annex A 7 – Example control diagram oxygen reduction. ” (VdS 2007)

3.2.2. BGR 104 BG-Regel Explosionsschutz-Regeln (2007)

Dokumentet refereras till i VdS 3527 och innehåller gränsvärden och regler för explosionsskydd. Dokument är främst lämpligt för användning om det skulle uppträda risker för explosion i utrymme där man vill använda tekniken med sänkt syrgashalt.

3.2.3. PAS 95:2011 (2011)

Denna skrift är relativt nyligen publicerad och är ett arbete inom brittisk standardisering och betecknas som ”Publicly Available Specification (PAS)”.

Målsättningen med standarden eller specifikationen är att:

”This Publicly Available Specification (PAS) specifies requirements for the design, installation, testing and maintenance of hypoxic fire prevention systems in occupiable spaces. This PAS defines the limits of use of such systems. This PAS is not applicable for fire-extinguishing systems covered by the BS EN 15004 series.

This PAS does not specify for full fire risk assessment” (BSI 2011)

Specifikationen är fokuserad på hypoxic air system och beskriver följande detaljer (innehållsförteckning):

1 Scope
2 Terms and definitions
3 Use and limitations
4 System design
4.1 Planning
4.2 Provisions
4.3 System specification
4.4 Control panel
4.5 Design oxygen concentration level
4.6 Indoor air climate
4.7 Flushing
4.8 Monitoring
4.9 Data retention
5 Installation, testing and maintenance
5.1 Installation
5.2 Testing
5.3 Documentation
5.4 Operation, maintenance and servicing instructions

Annexes

Annex A (informative) Hypoxic fire prevention concept

Annex B (normative) Ignition-limiting oxygen threshold testing

Annex C (informative) System specification: graphical representations

Annex D (informative) Health and safety: working in hypoxic environments

Annex E (informative) Servicing

Bibliography (BSI 2011)

Denna specifikation är framtagen av BSI med hjälp av industriella aktörer (listan finns i standarden). En PSA är inte en brittisk standard men en specifikation som behövs inom industrin och när man har för avsikt att senare publicera en BS eller europeisk eller internationell standard.

Specifikationen innehåller det mesta av informationen för att göra en design av ett system.

NFPA 2001 har följande målsättning:

Scope: This standard contains minimum requirements for total flooding and local application clean agent fire extinguishing systems. It does not cover fire extinguishing systems that use carbon dioxide or water as the primary extinguishing media, which are addressed by other NFPA documents. (NFPA 2012)

3.2.5. Provningsmetoder för egenskaper av bränsle vid ändrade syrgashalter

Detta avsnitt sammanfattar ett antal metoder som nämns i de olika tekniska standarderna för att bestämma gränsvärdena för antändning vid reducerade syrgasalter.

För gaser finns ett antal bra uppslagsverk för att få en indikation av gränsvärden och metoder som t ex US Bureau of Mines utrustning som nämns t ex i Fire Dynamics (Drysdale 1998) och som illustreras nedan i Figur 1.
Figur 1 Utrustning från US Bureau of Mines (anpassad efter Drysdale 2008)

För fasta material som cellulosabaserade material (papper, wellpapp, trä, etc) och plaster (termoplaster och härdplaster) finns följande alternativ utöver de metoder som även nämns i Annex B av PAS 95:2011 (BSI 2011) och annex A5.2 av VdS 3527 (VdS 2007). Anledningen att lista fler metoder är på grund att man även ska undersöka antändningsegenskaper vid olika strålningsnivåer och dessutom behöver man få information om värmeutveckling, rökproduktion och innehållet av rök i de fallet man väljer syrgasnivåer som ändå kan leda till antändning av ett material.

- Konkalorimeter enligt ISO 5660 del 1 (ISO 2002) inbyggd i ett skåp eller box där man kan styra syrgasnivån, se Figur 2
Figur 2 ISO 5560 part 1 utan inbyggt skäp rundt kon kalorimeter (bild FTT, med tillstånd av FTT)

Figur 3 Tewarsonapparaten (bild FTT, med tillstånd av FTT)

- Material som är UL-listat enligt NFPA 2001 (UL 2127 eller UL 2166) (NFPA 2012)

3.3. Föreskrifter

3.3.1. Arbetsmiljöverkets författningssamling AFS 1993:3 (1993)

Citat från AFS 1993:3 kring regler av arbete i slutna utrymen:

"3.1 Bedömning av farosituationen

Halten av syre i luften på arbetsplassen bör vara mellan 20 och 22 volymprocent."

I AFS finns inga speciella föreskrifter för s.k. hypoxic miljö. I normalfallet förutsätts att lokaler med lägre syrenivåer kan normaliseras innan personer går in i dessa.

3.4. Sammanfattning av viktiga forskningsrapporter och artiklar

I detta avsnitt sammanfattas kort en del viktiga rapporter och artiklar.

Examensarbete genomfördes på uppdrag av Buro Happold Fedra och sammanfattningen av examensarbete är:

Det huvudsakliga syftet är att undersöka om konstant reducerad syrekoncentration är en genomförbar brandförebyggande metod i utrymmen där människor vistas. Syftet är också att undersöka vilka risker som finns med tekniken och vilka utrymmen som är bäst lämpade för denna teknik.

Management är väldigt viktigt i ett utrymme med reducerad syrekoncentration och därför är det nödvändigt att detta diskuteras. Om reducerad syrekoncentration ska fungera så optimalt som möjligt så kan det vara nödvändigt att förbjuda inträde av vissa brännbara ämnen, minimera antändningskällor etc. Säkerhetsrisker studeras och analyseras för att förstå vikten av en säker och tillförlitlig teknik.

Scenarios har skapats och analyserats, vilket har gjort det möjligt att förstå problemen och möjligheterna med reducerad syrekoncentration i ett utrymme. Olika objekt och verksamheter behandlas för att förstå vilka utrymmen och populationer som kan är vara lämpliga för reducerad syrekoncentration. En lämplighetsmodell har utvecklats som ska underlätta beslutet och illustrera komplexiteten av lämpligheten hos olika objekt.

en plats där hälsostatusen hos individerna är okänd. Eftersom det är omöjligt att kontrollera människors hälsa i dessa utrymmen, så är det inte möjligt att reducera syrekoncentrationen tillräckligt mycket för att förebygga bränder. Reducerad syrekoncentration är också möjlig för icke-publika utrymmen om vissa restriktioner följs med hänsyn till hälsospekterna.

Arbetet presenterar en uttömmande lista med referenser och litteratur inom området och ge en bra översikt av för- och nackdelar med tekniken samt har en riskbaserad jämförelse mellan lösningar med olika syrgashalter. Systemets effektivitet vid glödbränder diskuteras och det konstateras att normalt kan glödbränder förekomma vid syrehaltnivåer där bränder med öppen låga inte kan förekomma.

3.4.2. COWI rapport av Jensen och Holmberg: Hypoxic air venting for prevention of cultural heritage – contribution cost C17 project (Jensen et al. 2006).

Fördelarna anges i nedanstående citat (Tabell 1).
3. Litteraturstudie

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beskrivning</th>
<th>Utmaningar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prevents ignition (\text{in contrast to gas extinguishing systems})</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Prevents smoke release prior to fire extinguishing (\text{in contrast to gas extinguishing systems})</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Prevents backdraught (\text{in contrast to gas extinguishing systems})</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Fully benign to environment (\text{in contrast to halon and other gas extinguishing systems})</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Not toxic, no residue, no added risk of corrosion</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>Allows considerable room air leakage (\text{in contrast to gas extinguishing systems})</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Allows open doors for rescue of artefacts, manual intervention, evacuation (\text{in contrast to gas extinguishing systems})</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>Do not have limited extinguishing reservoirs (\text{in contrast to gas extinguishing systems})</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No refilling, transport or resetting issues following incidents</td>
<td>Yes</td>
</tr>
<tr>
<td>10</td>
<td>Applicable to small vital rooms and vaults</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>Applicable to very large room volumes (\text{galleries or multi-storey, multi-room historic buildings})</td>
<td>Yes</td>
</tr>
<tr>
<td>12</td>
<td>Applicable to moderately leaky historic rooms where fixed permanent seals are not acceptable</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>Applicable to protection of artefacts which are extremely sensitive to smoke, particles, water, corrosive gas or mechanical impact</td>
<td>Yes</td>
</tr>
<tr>
<td>14</td>
<td>The inherent simplicity promises high reliability.</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>No installation of nozzles, pipes etc in protected room (when inert air generators are integrated in new or existing air conditioning systems)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Tabell 1 Fördelar av tekniken (citerad tabell från Jensen et al 2006)

Utmaningar listas i Tabell 2:
Challenges posed by inert air systems

A Health risk for predisposed individuals in public spaces

Yes

Yet, inert air public applications found acceptable when visitors are informed and access controlled as for catering aircrafts.

B Some fuels in special spaces like laboratories may require suppression mode and evacuation.

Yes

C Secondary effects of continuous high concentration of nitrogen on fungus or other biological processes thriving by nitrogen.

No evidence

No substantial research to neither support nor discount.

D Nitrogen feed systems may cause uneven oxygen levels and require more complex systems to ensure inert mix, especially in multi-room applications.

Yes

E Power consumption may cause high energy costs.

Yes

Especially if room is very leaky in the normal state. Imminent next generation membrane separators are expected to be more energy-efficient.

Tabell 2 Utmaningar för system (citerad tabell från Jensen et al 2006)

3.4.3. MSc thesis Chiti – COWI rapport 01/2010: Test methods for hypoxic air prevention systems and overall environmental impact of applications (Chiti 2010)

Denna artikel är ett nyligen publicerat bidrag till en workshop om arbete och statusläget för den tekniska utvecklingen av metoden. Slutsatserna sammanfattar innehållet av artikeln och återges nedan:

"Hypoxic air technology is based on a continuous reduction of the oxygen in the protected enclosure in order to limit the oxygen availability to the combustion process: typically a small amount of the oxygen in the air is replaced with nitrogen. Hypoxic air is safe to breathe in rooms for extended occupation, but prevents fire ignition.

Hypoxic air technology has demonstrated to be suitable especially for enclosures where a fire would cause unacceptable damages or for enclosures where the installation of a traditional firefighting system would pose problems. It is investigated the effect of low oxygen concentrations on the combustion process by a
literature survey of the existing pertinent resources. It is explored borderline performances of hypoxic air systems by means of a test series which included reference tests of known ignitable specimens as well as new materials, configurations and applications.

An overview on hypoxic air functions, operations, applications and its combined use in buildings for fire prevention, preservation of objects, food conservation, training and health is given.

A life cycle assessment analysis is made on hypoxic air systems versus conventional gas extinguishing systems to explore hypoxic air as “environmentally friendly” (Chiti 2011)

Artikeln refereras till i flera publikationer bl a PAS 95:2011 (BSI 2011) och är en litteraturstudie av ämnet i medicinska peer review-databaser med syfte att identifiera och kartlägga korttidseffekter och hälsoeffekter för personer som arbetar i utrymmen med hypoxic air.

Resultaten av studien kan sammanfattas i följande citat:

“Oxygen reduced to 15% and 13% in normobaric atmospheres is equivalent to the hypobaric atmospheres found at 2,700 and 3,850-m altitudes. When acutely exposed, a healthy person responds within minutes to hours with increased ventilation, stimulation of the sympathetic system, increased heart rate, increased pulmonary-circulation resistance, reduced plasma volume, and stimulation of erythropoiesis. Acute mountain sickness occurs frequently at these oxygen partial pressures, but the full syndrome is rare if continuous exposure is limited to 6 h. Mood, cognitive, and psychomotor functions may be mildly impaired in these conditions, but data are inconclusive. Persons suffering from cardiac, pulmonary, or hematological diseases should consult a specialist in order for their individual risk to be assessed, and medical screening for any of these diseases is strongly recommended prior to exposure” (Angerer et al 2003)

I slutsatserna konkluderar de att en arbetsmiljö ner till 13% syrgas innebär en liten hälsorisk efter akuta symptom som är övergående. Referensen rekommenderar att personer som ska vistas i miljö med reducerad syrehalt genomgår en hälsoundersökning då risken för hälsoeffekter är större för personer med t ex hjärtsjukdomar. Dock påpekar de att informationen är begränsad när personerna har vissa sjukdomar eller utför krävande eller påfrestande uppgifter som kan läsas in nedanstående citat:

“Preliminary evidence suggests that working environments with low oxygen concentrations to a minimum of 13% and normal barometric pressure do not impose a health hazard, provided that precautions are observed, comprising medical examinations and limitation of exposure time. However, evidence is limited, particularly with regard to workers performing strenuous tasks or having various diseases. Therefore, close monitoring of the health problems of people working in low oxygen atmospheres is necessary” (Angerer et al 2003)
3.4.6. Artikel av Burtscher et al: Short-term exposure to hypoxia for work and leisure activities in health and disease: which level of hypoxia is safe? (Burtscher et al 2011)

Burtscher et al drar följande slutsatser i sin studie som påpekar riskerna med att det finns stora variationer i effekterna:

"Available data from peer-reviewed literature report adaptive responses even to altitudes below 2,000 m or corresponding normobaric hypoxia (FiO2>16.4%), but they also suggest that most of exposed subjects without severe preexisting diseases can tolerate altitudes up to 3,000 m (FiO2>14.5%) well. However, physical activity and unusual environmental conditions may increase the risk to get sick. Large interindividual variations of responses to hypoxia have to be expected, especially in persons with preexisting diseases. Thus, the assessment of those responses by hypoxic challenge testing may be helpful whenever possible." (Burtscher et al 2011)

Följande citat refererar till arbete i rum med hypoxic air:

"In some special circumstances, there are some employees exposed to equivalent altitudes between 2700 and 3800 m in rooms for fire protection. This situation is limited by the duration of exposure to a maximum of a few hours, often for, 60 min. As for any room equipped with hypoxia systems for fire protection, these employees can leave immediately at any time and with plenty of time (see Table 1) if they do not feel well. Nevertheless, any break should be spent outside of the hypoxic area (e.g. lunch)." (Küpper et al 2011)

Tabell 1 och 2 från deras artikel finns nedan som Tabell 3 och Tabell 4.
3. Litteraturstudie

3.4.8. Artikel om brandbeteende i tunnlar med förhöjt tryck från Lamont et al: Fire tests in a compressed air tunnel at up to 3 bar (Lamont et al 1998)

Den fullständiga artikeln fanns inte tillgänglig vid sökning men sammanfattningen från Web of Science är följande:

"Standardised test fires and fires involving materials commonly found in tunnels under construction were carried out at pressures of up to 3 bar gauge. The results confirmed that flame temperature, maximum heat release and flame spread rate all increased with pressure. The proportion of carbon monoxide in the smoke reduced with increased pressure." (Lamont et al 1998)

Artikel behandlar resultat av brandförsök med ett antal material i en tryckkammare. För vissa material finns en tydlig ökning av flamspridningshastigheten men effekten är inte entydig och det finns en variation i beteendet mellan olika material. Artikeln redovisar även mängden av gaser som produceras som funktion av trycket. För t ex ulltyg är ökningen av HCN väsentlig, se Figur 4 och Figur 5.

Figure 2. Average flame spread velocity as a function of air pressure in the test chamber. 1 Plywood, 2 Wool fabric, 3 Metaplex.

Figur 4 Flamspridningshastighet för olika tryckförhållande och material (reproducerad från Trzeszcynski et al 1987)
3.4.10. Examensarbete Holmstedt och Malmberg: Explosions och brännbarhetsvillkor i en övertryckskammare (Holmstedt och Malmberg 1966)

I ett examensarbete genomfördes en serie med försök vid temperaturer mellan 10 °C och 40 °C och från 1 bar upp till 15 bar. Syftet var bl a att klargöra brandrisken i den miljö som förekommer i övertryckskammare för kliniskt bruk. Även här finns information kring brandbeteende vid förhöjt tryck.
4. Svar till frågor SSM

4.1. Fråga 1

SSM fråga 1 avseende: Vid icke homogen blandning av syre och kväve (ej inom rekommenderade syrehalten 15 +0,5%), ska då;
- Normal syrenivå antas i säkerhetsanalyser
- Rummet förklaras icke driftklart
- Krav på mätning av syre och kvävehalter
- Vilken bör tätetheten på instrument vara
- Krav på ombländning i större utrymmen
- Trenduppföljning med data från instrument i syrereducerade rum
- Riskbilder detta kan ge.

Svar:

Det är viktigt att nämnna att reduceringen av syrehalten till 15% ger en förbättrad situation med tanke på antändning och eventuell flamspridning dock är det inte jämförbart med ett inertierande gassläckssystem. Vidare finns det lite information kring sot och rökutveckling vid lägre syrgasalter. Det finns fortfarande en möjlighet att brand både uppstå och utvecklas även om denna möjlighet är reducerad i jämförelse med en miljö med normal syrehalt.

Dessutom måste man beakta fallet då en sänkt syrgashalt inte kan uppfyllas t ex vid underhåll av systemet eller oönskat bortfall av systemet. I det läget kommer rummet inte att ha något skydd om inte tanken med redundanta system finns. Dessa situationer måste ingå som en del i den riskanalys som ska göras med hänsyn till brand. Faktorer som kan ingå i ett redundant system är back-up-funktioner och tydliga organisatoriska åtgärder som ska vara beskrivna i en
brandskyddsdocumentation och i de rutiner för brandskydd som finns på anläggningen.

4.2. Fråga 2

SSM fråga 2 avseende: Tändkällor eller brandstiftare i relärum och kabelrum
- De mest troliga
- eller transienta källor

Svar:

Som tändkällor inkluderas i detta svar enbart de s.k. primära tändkällorna dvs de som utgör första orsak till att en komponent brinner. Som tändkälla listas inte de föremål som sedan antänds och brinner och kan leda till en utveckling av branden, t ex papperskorgar (sekundära tändkällor).

Tändkällor i relärum och kabelrum beror väldigt mycket på vilka material och system det finns i rummen och hur dessa är placerade. Förekomsten av tändkällor måste tas fram från fall till fall för de utrymmen där man vill använda tekniken och då som en del i riskanalysen och genom inventeringen. Mest troligt är att tändkällan är relaterad till elektriska orsaker såsom varmeutveckling i kablar och komponenter eller elektriska överslag i kablar eller komponenter. Viktiga faktorer för att avgöra möjligheten för antändning är bl a vilka spänningar (läg, medel, högspänning), vilka typer av kablar, elektroniska komponenter, fläktar för kylning, etc som finns i lokalen. Kortslutning, överbelastning, statisk elektricitet är ytterligare exempel på orsaker som kan leda till brand. Möjliga andra tändkällor kan ha mekaniska orsaker (överhettning av röriga delar och gnistbildning) t ex vid användning av skärande maskiner. Mer information kring tändkällor och hur man tar hand om dem i en riskanalys finns i utkast till NUREG/CR-7114 (Nowlen et al 2011).

I samband med vissa reparationer kan heta arbeten förekomma där s k varma verktyg (lödverktyg, svetsar och liknande) används vilka, om de används ovarsamt, kan leda till brand.

Transienta tändkällor kan i värsta fall uppstå genom att någon medvetet använder tändstickor eller liknande för något ändamål eller i värsta fall kan anlagd brand i samband med antagonistiska hotbilder utgöra en tändkälla.

4.3. Fråga 3

SSM fråga 3 avseende: Bränslen (materialen) i relärum, kabelrum

- Kartbild av brännbara material i relärum, kabelrum
- Kritiska mängder av dessa
- Sortering av material i materialklasser (fasta, flambara fasta och vätskeformiga, flambara gaser)
Svar:

Bränslen i relärum, kabelrum ska genom riskidentifiering kartläggas både avseende plats och mängd. Mängden bränsle är kanske inte så viktigt för själva antändningsrisken vid lägre syrgashalter men kan dock vara avgörande för en eventuell brandspridning om en syrgashalt högre än släckgränsen används (Xin och Khan 2007 b).

Material ska i kärntekniska sammanhang klassas i materialklasser d.v.s. fasta (i huvudsak brännbara) material, vätskor, gaser och elektronisk utrustning enligt följande:

- brandklass A (vanligt förekommande brännbara organiska material)
- brandklass B (brännbara vätskor, gaser, mm)
- brandklass C (spänningsatt el- och elektronikutrustning)

Material som är vanligt närvarande i utrymmet ska listas, men även de eventuella transienta bränsle som tas med vid underhåll och besök av utrymmet ska listas.

Själva riskidentifieringen kommer att ge en komplett lista men som exempel av brännbara material kan följande typiska produkter nämnas:

- Kabelmaterial (isolering, mantel, fyllnadsmaterial som används för kablar)
- Material som används i elektroniska komponenter (kretskort, kontakter, etc.)
- Material som används för elskåp (isoleringsmaterial).
- Material i belysning (plastkomponenter, kondensatorer)
- Material i filter
- Tillfälligt förekommande (transienta) bränslen som papper, skräp, elutrustning för underhåll, kläder, etc

Brännbara vätskor kan vara olja, smörjmedel, lösningsmedel som både kan förekomma permanent och transient.

Gasformiga bränslen kan förekomma men är beroende på riskbilden och det är svårt ge ett generellt svar på frågan.

Elektronisk utrustning är bl a kontakter, kondensatorer, kretskort, motorer, etc.

4.4. Fråga 4

SSM fråga 4 avseende: Antändningsförlopp (oxidationsförlopp) i olika bränslen i relä- och kabelrum, vid olika syrehalter

- 14-16%
- 16-18%
- 18-21%
Svar:
Data finns för vissa material. För kritiska värdena för material vid olika syrgashalter är dock informationen väldigt material- och produktberoende och är inte del av de vanliga klassificeringarna. Data är tillgänglig i litteraturen för generiska material som olika sorts plast, t ex polypropen, PVC (t ex via oxygen index metoden (Isaacs 1969) eller (Xin, Khan 2007a)) men inte för specifika kablar eller elkomponenter. Mycket information om brandbeteende finns tillgänglig via t ex Euorklasser, UL-metoder, FM-metoder etc. men de är alla vid rumstemperatur och vanliga syrgashalter. Här behövs mer underlag för att generalisera och ge rekommendationer vid val av produkter.

4.5. Fråga 5

SSM fråga 5 avseende: Traditionella redundanta konstruktionslösningar som kan/bör krävas, då syrereducering i rum är huvudlösningen
- Vid läget ”driftsatt” och läget ”ej driftsatt”.
- Vid Ej driftsatt, görs bl.a. tester och prover.

Svar:

Själva hypoxic air kan användas som ett släcksystem genom att tillföra extra kväve eller ytterligare minskning av syrgashalten genom det befintliga systemet (beroende på tekniska lösningen). Sådana åtgärder kräver dock skyddsåtgärder för personsäkerheten dvs så att ingen personal är kvar i utrymmet när man slår på släcksystemet för ytterligare intering och riskanalys får avgöra om behov av redundans är tillräcklig.

Extra krav på detektion och övervakning kan vara nödvändigt. Bara för att syrhalten minskas till 15% vilket generellt sett minskar risken för antändning innebär det inte att alla material uppvisar denna gynnsamma effekt (se t ex VdS 3527). För dessa fall behövs extra skydds system.

Även redundans för själva systemet för hypoxic air är viktigt speciellt om man använder ett system som tar bort syrgas ur luften. Om detta system ej fungerar kommer vanlig luft att ledas in i rummet i stället för hypoxic air.

4.6. Fråga 6

SSM fråga 6 avseende: Kartläggning av inträffade bränder (erfarenheter) och brandrisker i syrereducerade utrymmen
4. Svar till frågor SSM

- Dominerande brandtyper för material x, y, z
- Värmestrålning från olika material och kritiska avstånd till närliggande komponenter
- Brandspridning och barriärbrott
- Påverkan av rök och sot på känslig utrustning

Svar:
Information om och kartläggning av inträffade bränder och brandrisker i syregasreducerade miljöer är nästan obevänt i litteraturen och skulle behöva en mer omfattande litteraturstudie än vad som är möjlig i detta projekt. Eftersom systemen är ovanliga finns det relativt lite information t ex om tillförlitlighet. Men generellt sett hanteras brandrisker i syrereducerade utrymmen på samma sätt som i en traditionell riskanalys. Då underlaget är knapphändigt kan det finnas skäl att göra en mer omfattande undersökning kring erfarenheter av systemen med reducerad syrehalt samt brandbeteende av material/produkter (rök, sot, farliga gaser, antändning, effektutveckling) vid lägre syrehalt.

4.7. Fråga 7

SSM fråga 7 avseende: Hur kan nya Kvalitetsmanualen tillämpas praktiskt i denna sakgranskning:
- Kvalitativt och kvantitativt
- Vilka steg bör krävas bli redovisade
- Definition av eventuell/-a CFD beräkningar

Svar:
Kvalitetsmanualen beskriver generellt hur en brandskyddsteknisk analys i kärntekniska anläggningar kan utföras och är inte begränsad till specifika utformningar eller metoder. Den är vidare inriktad mot verifieringskrav i samband med modellering. Kvalitetsmanualen kan därför med fördel användas vid beräkningar även med fall som involverar system med lägre syrehalt. CFD-beräkningar kan användas för att bestämma hur jämn fördelningen av syre och andra gaser i utrymmen är utan brand. Ett grundläggande krav i redovisning är här att demonstrera att alla ventilationssystem och detaljer såsom dolda utrymmen som kan påverka ventilationen inkluderas i beräkningarna. Detta kan leda till att det ställs höga krav på att CFD-beräkningarnas beskrivning av geometrin och data för ventilationssystemet är tillgängliga och korrekt representerade i modelleringen.
4.8. Fråga 8

SSM fråga 8 avseende: LTH:s rekommenderade sak- och kravfrågor bör lyftas upp till diskussion i denna applikation

Svar:

För svaret till denna fråga refereras till kapitel 5 vilket i princip betyder att alla nämnda risker och farhågor som nämns ska behandlas.

4.9. Fråga 9

SSM fråga 9 avseende: LTH:s syn på behövliga framtidiga prover, tester, analyser, av t.ex. elskåpsutrustning, kablage, annat som ska verka i syre reducerade miljöer

- brandresistenta material
- brandinverkan på spänningsatt utrustning
- obefrogad syretillförsel
- inblanding av andra gaser
- inverkan av externa risker till syreducerade rum

Svar:

Dessutom finns det ytterligare mindre mängder data tillgängliga om hur system fungerar i verklig skala, t.ex i mer komplexa rumsscenarier (Chiti 2009, Chiti 2011).

4.10. Fråga 10

SSM fråga 10 avseende: Effekter av brand vid olika koncentrationer syre-kväve i ventilationsreglerade utrymmen, kärl och vid olika tryckförhållanden i dessa utrymmen, andra frågeställningar som:
- väsentligheter att beakta i en tillämpning som denna
- kartläggning av försvärande och förvärrande brandförhållanden med reducerad syrehalt och varierande tryckförhållanden i olika utrymmen t.ex. risker vid brand utan låga (pyrolys) och pyrbrand (smouldering)
- brandbelastningar (brännbara material) som inte får föras in i berörda elrum
- minimering av antändningskällor
- effekter vid provtryckning av reaktorinneslutning med tex 3 bar luft på brandantändning, brandförlopp och brandmaterial (är provtryckning med kväve eller annan gas att förorda)

Svar:
Användning av syrgasreducerad miljö vid 15% tar inte bort möjligheten till antändning och vid dessa förhållanden kommer branden antingen att bli underventilerad eller så kommer den att bete sig som en pyrbrand. Vid dessa bränder kommer t.ex produktionen av sot att öka, se Figur 7.
Figur 7 Syre tillgångens inverkan på sotbildning. (anpassad från Karlson et al (1999).)

4.11. Fråga 11

SSM fråga 11 avseende: Omvärldsbekavning rörande teknik och installationer med reducerad syrehalt i elutrymmen, kabelvägar med reducerad syrehalt och varierande tryckförhållanden i olika utrymmen

Svar:
4.12. Fråga 12

SSM fråga 12 avseende: Osäkerheter kring nya tekniken och brandrisker med reducerad syrehalt och varierande tryckförhållanden i olika utrymmen t.ex. ökade tryckets inverkan på ökade risker för ljusbåge, kortslutning i elektrisk utrustning

Svar:

Osäkerheten är främst att tekniken är ny och man har begränsad kunskap om t ex tillförlitligheten. Risken för brands uppkomst minskar men är inte helt utesluten när man använder 15% syrgas och ytterligare skyddssystem blir därför nödvändiga. Ytterligare sänkning av syrehalten minskar risken för antändning.

Information om hur t ex ökande trycks inverkan ökar risken för ljusbågar, kortslutning i elektrisk utrustning mm har inte hittats i litteraturen.

4.13. Fråga 13

SSM fråga 13 avseende: Osäkerheter och konsekvenser med nya tekniken och påverkan på personal i utrymmen med reducerad syrehalt och tryckförhållanden – risker för brand utan låga (pyrolys), pyrbrand (smoulder) om barriärer öppnas ofta och länge.

Svar:

4.14. Fråga 14

SSM fråga 14 avseende: Behov av administrativ- och instruktionsstyrning i samband med införande av nämnda teknik

Svar:

Med tanke på hälsorisker, förändringar av syrehalt vid arbeten och behov av redundanssystem är det nödvändigt att tydligt dokumentera olika administrativ- och

4.15. Fråga 15

SSM fråga 15 avseende: Förutsättningar för att kunna beskriva den deterministiska och probabilistiska modellen för att visa den valda designgränsen för syrgas- och kvävgasblandning i vissa el-utrymmen, vid jämförelser av skadliga koncentrationer syrgas för hälsan och att brandskyddet felar vid normalt lufttryck (vid vilka sannolikhetsnivåer är risken som lägst att skadlig koncentration syrgas råder och att brandskyddet felar) – se kapitel 3.5 i LTH rapport 5144 ”Fire Prevention and Health Assessment in hypoxic Environment” (Berg och Lindgren 2004)

Svar:

4.16. Fråga 16

SSM fråga 16 avseende: Vilka typer av bränder kan inte släckas i utrymmen med en syrehalt mellan 14 - 21% syre, andra intressanta syrehalter.

Svar:

4. Svar till frågor SSM

<table>
<thead>
<tr>
<th>Heat flux (kW/m²)</th>
<th>Oxygen 21%</th>
<th>Oxygen 18%</th>
<th>Oxygen 15%</th>
<th>Thermal depth, x = δ/√2F₀cm</th>
<th>F₁, Eq. (3b)</th>
<th>F₂, Eq. (4b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>124,106,118</td>
<td>113,113,114</td>
<td>126,127,130</td>
<td>3.78</td>
<td>1.058</td>
<td>1.148</td>
</tr>
<tr>
<td>Av. = 116 s</td>
<td>Av. = 113 s</td>
<td>Av. = 128 s</td>
<td></td>
<td>(119 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>50,49,64</td>
<td>62,53,57</td>
<td>70,52,58</td>
<td>2.6</td>
<td>1.529</td>
<td>1.027</td>
</tr>
<tr>
<td>Av. = 54 s</td>
<td>Av. = 57 s</td>
<td>Av. = 59 s</td>
<td></td>
<td>(57 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>19,11,18 s</td>
<td>22,18,19 s</td>
<td>41,27,20 s</td>
<td>1.62</td>
<td>2.46</td>
<td>1</td>
</tr>
<tr>
<td>Av. = 16 s</td>
<td>Av. = 20 s</td>
<td>Av. = 29 s</td>
<td></td>
<td>(22 s)</td>
<td></td>
<td>2.77</td>
</tr>
</tbody>
</table>

Tabell 5 Tabell 1 citerad från Delichatsios (2005)

Enligt t ex en artikel från Rashbash et al (1968) uppträder släckning mellan koncentration 13.2 och 18 % för cellulosabaserade material och flammspridning minskas med ungefär 50% för trä från 21 till 13%. (se Tabell 6)

<table>
<thead>
<tr>
<th>Single stick specimen</th>
<th>Triple stick specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen concentration, per cent</td>
<td>Speed, cm/s of trailing edge of flame</td>
</tr>
<tr>
<td>20.9</td>
<td>0.82</td>
</tr>
<tr>
<td>18.5</td>
<td>0.68</td>
</tr>
<tr>
<td>17.7</td>
<td>0.54</td>
</tr>
<tr>
<td>16.1</td>
<td>0.43</td>
</tr>
<tr>
<td>15.7</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Tabell 6 Tabell 1 och 2 citerad från Rashbash (1968)

Samma observation görs i artikel av Xin och Khan (Xin och Khan 2007a) där effektutveckling av PMMA minskas från 300 kW/m² till 150 kW/m² när man minskar syrgashalten från 21 % till 15%.
4.17. Fråga 17

SSM fråga 17 avseende: Hälsoaspekter som kan påverka reaktorsäkerheten

Svar:

4.18. Fråga 18

SSM fråga 18 avseende: Brand i utrymme med olika tryck, övertryck eller undertryck och hur syrehalten kan antas variera i olika situationer.
- Inverkan på brandförlopp och förbränningsförlopp
- Flarmspridningsförlopp vid olika över- och undertryckstryckförhållanden
- Möjliga konsekvenser av sot- och rökproduktion vid olika fukthalter i luften

Svar:

Den mest informationen som är tillgänglig förutsätter dock vanliga syrgasnivåer. Information hur snabbt t ex den reducerade miljön försvinner när nya läckage uppstår (naturlig eller olycksbaserad) behöver dokumenteras.

Data kring material (antändning och flamspridning) togs upp i ett tidigare svar.
5. Översikt av fördelar, farhågor och risker

5.1. Fördelar

Den främsta fördelen med sänkning av syrehalten till t ex 15% är den minskade risken för uppkomst av brand genom minskad risk för antändning. Vid uppkomst av brand begränsas även effektutveckling, bl a på grund av minskad flamspridningshastighet. Den långsammare utvecklingen minskar därmed också brandspridning från föremål till föremål.

Eftersom den syrgasreducerade miljön är kontinuerligt på plats krävs inte brandinducerad aktivering.

Systemet är relativt enkelt att introducera om man kan använda det befintliga ventilationssystemet.

Vid vissa koncentrationer är det enligt PAS 95:2011 (BSI 2011) möjligt att vara närvarande i utrymmen med lägre syrgashalt utan att det finns några hälsorisker som särskilt behöver beaktas.

5.2. Farhågor och risker

Det är viktigt att beakta att systemet minskar risken för uppkomst av brand och ska ej anses som ett alternativ släcksystem om man har syrgasnivåer som t ex 15% (se VdS 3529). Systemen förhindrar inte bränder såvida inte syrenivån sänks betydligt lägre än 15%.

En sänkning av syrehalten minskar självklart flamspridningshastigheten men information om t ex sot- och rökproduktion (såväl bedövande, irriterande och korrosiva gaser) är begränsad. Allmänt brukar t ex produktionen av sot öka vid minskad ventilation vilket i sin tur kan få konsekvenser för funktionsbetande av komponenter, något som är oerhört viktigt inom brandsäkerhet av kärnkraftverk.

Saneringsbehovet efter en brand bedöms som fortsatt högt även med systemet installerat och aktivt.

Redundans behövs både för själva reduceringen av syrgashalten och för släckning av branden.

Antändlighet av många generiska material är kända men dock är det nödvändigt att data för elektriska komponenter som t ex kablar bestående av flera material tas fram.

Effektiviteten beror på vilken syrgasnivå som systemet använder och hur jämnt syrgasblandningen är fördelad i utrymme. Detta ställer krav på typ och placering av övervakningsinstrumenten och don för distribution av luften med lägre syrehalt.

Lokalt högre syrgasnivåer i rummet får inte förekomma.

Systemet är i dagsläget mest använt för skydd av historiska föremål och vissa industriella processer t ex datarum. Erfarenheter från dessa verksamheter kan utnyttjas men systemen är därmed inte direkt överförbara.

Data om det nya systemets tillförlitlighet är begränsad på grund av att data och information om inträffade bränder inte är tillgängligt. Effekter av latent fel som
realiseras när syrehalten ökas till normalnivån är inte heller tillräckligt tydligt belyst
vilket kan vara orsakat av tidigare områden för systemens tillämpning.

Hälsorisker är dokumenterade och är beroende på vilken syrgasnivån man väljer. En
introduktion av tekniken kräver dock en anpassning av regler och en noggrann
utveckling och uppföljning av procedurer. Risk för felhandlande av t ex
underhållspersonal, på grund av effekterna på kroppen av den reducerade syrehalten,
måste kunna hanteras.
6. Slutsatser

Användningen av syrgasreducerad miljö i utrymmen ("Hypoxic air" eller "Hypoxic air venting") är relativt ovanligt som brandskyddsåtgärd. Tekniken introducerades först för att skydda historiska föremål i t ex museer men har sedan använts även för t ex skydd av datorutrymmen. I denna studie har det via en litteraturstudie visats att systemet har vissa fördelar som t ex en minskning av sannolikheten för uppkomst och utveckling av brand men att nyttan eller effekten beror på vilken nivå av syrgashalten man väljer. Det är exempelvis viktigt att konstatera att system med t ex 15% syrehalt inte kan anses som ett alternativ till ett släcksystem (VdS 3527).

Valet av syrgasnivå styrs även av möjligheten att kunna vistas i utrymmet utan extra personskydd vilket därför leder till att nivån blir sådan att bränder fortfarande kan uppstå.

Inför valet av system och syrgasnivå måste också redundansen av systemet beaktas och det bör övervägas om systemet måste kompletteras med andra släcksystem. Detta eftersom man enbart kan se systemet som ett släcksystem om syrgashalterna går ner till samma nivå som de krav som finns för andra gasformiga släckmedel d v s med en syrenivå runt 10 %. Vid dessa nivåer är hälsoriskerna uppenbara vilket leder till större svårigheter för exempelvis underhållsarbeten.

Data om brandbeteende och beteende i övrigt av elektriska komponenter och produkter vid lägre syrgashaltnivåer är begränsad både för enstaka komponenter och för hela kompletta rum med olika tekniska installationer.

I litteraturstudien studerades även brandbeteende vid högre tryck än atmosfärtrycket. Datat är begränsad men pekar på att branden kan få högre effekt vid högre tryck för vissa material. Dock behövs mer experimentella data med flera material för att bekräfta detta.

Rapporten svarar även på ett antal frågor från NBSG som togs upp vid början av projektet.
7. Fortsatt forskning

Ifrån denna studie kan man identifiera minst följande forskningsområden för framtidens:

1. Antändningsegenskaper för material och produkter med olika provningsmetoder vid olika syrgashalter, temperatur och tryck och val av mest effektiva metoden för att bestämma gränsvärden vid användning av bl a hypoxic air-teknik.

2. Effektutveckling vid brand i material och produkter med olika provningsmetoder vid olika syrgashalter, temperatur och tryck och val av mest effektiva metoden för att bestämma gränsvärden vid användning av bl a hypoxic air-teknik.

3. Rökproduktion vid brand i material och produkter med olika provningsmetoder vid olika syrgashalter, temperatur och tryck och val av mest effektiva metoden för att bestämma gränsvärden vid användning av bl a hypoxic air-teknik.

4. Innehållet av olika ämnen i rök vid brand i material och produkter med olika provningsmetoder vid olika syrgashalter, temperatur och tryck och val av mest effektiva metoden för att bestämma gränsvärden vid användning av bl a hypoxic air-teknik.

5. Sotproduktion vid brand i material och produkter med olika provningsmetoder vid olika syrgashalter, temperatur och tryck och val av mest effektiva metoden för att bestämma gränsvärden vid användning av bl a hypoxic air-teknik.

8. Undersökning av vilken tändenergi som krävs för antändning vid syrgasnivåer angivna i standarder.

9. Framtagande av data och kunskap om hur systemet fungerar i verklig skala.

10. Kunskap om hur man kan bedöma hur jämnt fördelningen av syre i utrymmet säkerställs och hur man kan kontrollera det via antigen beräkningar eller mätningar.

11. För att kunna göra brandskyddstekniska beräkningar behövs en vidareutveckling av CFD-modeller så att de kan räkna vid underventilerade bränder.

12. Metoder för att bedöma riskbildens och jämföra riskbildens med eller utan systemet.

15. Kunskap om brandbeteende av material vid högre tryck (effektruteckling, rök, sot, innehållet av rök)
8. Referenser

8.1. Referenser

Angerer, P. et al. (2003), Working in permanent hypoxia for fire protection – impact on health, Int. Arch Occup Environ Health, 76, pp. 87-102

Chiti, S. (2009), Test Methods for Hypoxic air fire prevention systems and overall environmental impact of applications, MSc thesis University of Modena.

Lamont, DR., Buckland I., Bettis RJ. et al., (1998), Fire tests in a compressed air tunnel at up to 3 bar pressure, World Tunnel Congress 98 on Tunnels and Metropolises Location: Sao Paulo, Brazil, Tunnels and Metroploses, Vol 1 and 2, Pages: 445-449.

Mikkola, E. (1993), Effects of oxygen concentration on cone calorimeter results, Interflam 1993, VTT Fire Technology Laboratory, Espoo

UL 2127, Inert Gas Clean Agent Extinguishing System Units, Underwriters Laboratories, USA.

UL 2166, Halocarbon Clean Agent Extinguishing System Units, Underwriters Laboratories, USA.

8.2. Övrig litteratur

Cargo Compartment alternative MPS testing using Low Pressure Dual Fluid Water Mist and Hypoxic Air, International Aero Inc., 5-6 November 2003, Published on internet: www.pyrogen.com/IAI_Cargo_MPS.pdf , 23rd April 2004

Särdqvist, S. (2002) Vatten och andra släckmedel, Räddningsverket, Karlstad

Carhart, H. W. et al. (1972) Applications of gaseous fire extinguishants in submarines, Symposium on an Appraisal of Halogenated Fire Extinguishing Agents, April 11-12, National Academy of Sciences Proc., p. 239

Hietaniemi, J., Kallonen, R., Mikkola, E. (1997) Fires at chemical warehouses, A cone calorimeter study on the burning characteristics and fire effluent composition of selected chemical compounds, VTT Technical Research Centre of Finland, Espoo

Limiting Oxygen Concentration Required to Inert Jet Fuel Vapors Existing at Reduced Fuel Tank Pressures, Federal Aviation Administration (FAA), Report DOT/FAA/ARTN-02/79, August 2003

Measurement of limiting oxygen concentration in sewage sludge drying plants, Health & Safety Executive (HSE), 2003

ARAC FTIHWG 2001 Final Report, Fuel Tank Inerting Harmonization Working Group, Aviation Rulemaking Advisory Committee (ARAC), June 2001

Onnermark, B. et al. (1994) Antändlighet hos material i ubåt vid olika syrekoncentration, Swedish Defence Research Establishment (FOA), Härstjärden

www.osha.gov/SLTC/smallbusiness/sec12.html, Occupational Safety & Health Administration (OSHA), 17th June 2004

Clean fire extinguishing agents human safety testing, White paper 1016, Ansul Inc., 2001

A review of the toxic and asphyxiating hazards of clean agent replacements for Halon 1301, Halon Alternative Group, February 2000

Chen, Q. H. et al. (1997) Exercise performance of Tibetan and Han adolescents at altitudes of 3417 and 4300 m, J Appl Physiol, 83:2, pp. 661-667

Hallagan, F. L. et al., Altitude: Acclimatization to Intermediate Altitudes, Department of Emergency medicine, George Washington University Medical Center, Washington, Published on internet: www.sportsci.org/encyc/altitaccl/prev#prev 4th May 2004

Krivoshchekov, S. G. et al. (2002) Effect of Short-Term Intermittent Normobaric Hypoxia on the Regulation of External Respiration in Humans, Human Physiology, 28:6, pp. 676-681

Levin, B. C. et al. (1987) Effects of Exposure to Single or Multiple Combinations of the Predominant Toxic Gases and Low Oxygen Atmospheres Produced in Fires, Fundamental and Applied Toxicological, 9, pp. 236-250

www.osha.gov, Occupational Safety & Health Administration, Permit-required confined spaces - 1910.146, 15th August 2004

Fire Protection – Prevention is better than cure, Aon Ltd., 2004 Published on Internet: www.aon.com/about/publications/pdf/riskalert/risk_alert3.pdf, 10th April 2004

Riskbedömning och Riskhantering inom Kemikaliekontroll, Kemikalieinspektionen, November 1995

Oxygen Reduction Systems Promising for Fire Prevention, Allianz Risk Consultants B.V., April 2002

Edward, D. W. et al. (1992) Oxygen Index: Correlations to other fire tests, Fire and materials, 16, pp. 159-167

Senecal, J. A. Flame extinguishing concentration by the cup burner method: Inert gas theory, performance & advancing the method, Kidde-Fenwal, Inc. Combustion Research center, Holliston

Baumann, I. et al, NSA Round table: high altitude training, New studies in Athletics, 9:2, pp. 23-35

Andersson, J. et al. (2002) Oxygen saturation and cognitive performance, Psychopharmacology, 162, pp. 119-128

Hirst, R et al. (1977) Measurement of Flame-Extinguishing Concentrations, Fire Technology, 5, pp. 296-315

Knight, D. R. et al. (1990) Symptomatology during hypoxic exposure to flame-retardant chamber atmospheres, Undersea Biomedical Research, 17:1, pp. 33-44

Särdqvist, S. (1996) An engineering approach to fire fighting tactics, Report 1014, Department of Fire Safety Engineering, Lund University, Lund

Bilaga A. Lista med frågor från SSM

SSM fråga 1 avseende: Vid icke homogen blandning av syre och kväve (ej inom rekommenderad syrehalten 15 +-0,5%), ska då;
- Normal syrenivå antas i säkerhetsanalyser
- Rummet förklaras icke driftklart
- Krav på mätning av syre och kvävehalter
- Vilken bör tätheten på instrument vara
- Krav på omblandning i större utrymmen
- Trenduppföljning med data från instrument i syrereducerade rum
- Riskbilder detta kan ge

SSM fråga 2 avseende: Tändkällor i relärum och kabelrum
- De mest troliga

SSM fråga 3 avseende: Bränslen (materialen) i relärum, kabelrum
- Kartbild av brännbara material i relärum, kabelrum
- Kritiska mängder av dessa
- Sortering av material i materialklasser (fästa, flambara fasta och vätskeformiga, flambara gaser)

SSM fråga 4 avseende: Antändningsförlopp (oxidationsförlopp) i olika bränslen i relä- och kabelrum, vid olika syrehalter
- 14-16%
- 16-18%
- 18-21%

SSM fråga 5 avseende: Traditionella redundanta konstruktionslösningar som kan/bör krävas, då syrereducering i rum är huvudlösningen
- Vid läget ”driftsatt” och läget ”ej driftsatt”.
- Vid Ej driftsatt, görs bl.a. tester och prover.
SSM fråga 6 avseende: Kartläggning av inträffade bränder (erfarenheter) och brandrisker i syrereducerade utrymmen
- Dominerande brandtyper för material x, y, z
- Värmestrålning från olika material och kritiska avstånd till närliggande komponenter
- Brandspridning och barriärbrott
- Påverkan av rök och sot på känslig utrustning

SSM fråga 7 avseende: Hur kan nya Kvalitetsmanualen tillämpas praktiskt i denna sakgranskning
- Kvalitativt och kvantitativt
- Vilka steg bör krävas bli redovisade
- definition av eventuell/-a CFD beräkningar

SSM fråga 8 avseende: LTH:s rekommenderade sak- och kravfrågor bör lyftas upp till diskussion i denna applikation

SSM fråga 9 avseende: LTH:s syn på behövliga framtida prover, tester, analyser, av t.ex. elskäpsutrustning, kablage, annat som ska verka i syre reducerade miljöer
- brandresistenta material
- brandinverkan på spänningssatt utrustning
- obefogad syretillförsel
- inblandning av andra gaser
- inverkan av externa risker till syrereducerade rum

SSM fråga 10 avseende: Effekter av brand vid olika koncentrationer syre-kväve i ventilationsreglerade utrymmen, kärl och vid olika tryckförhållanden i dessa utrymmen, andra frågeställningar som
- väsentligheter att beakta i en tillämpning som denna
- kartläggning av försvärande och förvärrande brandförhållanden med reducerad syrehalt och varierande tryckförhållanden i olika utrymmen
t.ex. risker vid brand utan låga (pyrolys) och pyrbrand (smoulder)
- brandbelastningar (brännbara material) som inte får föras in i berörda elrum
- minimering av antändningskällor
- effekter vid provtryckning av reaktorinneslutning med tex 3 bar luft på brandantändning, brandförlopp och brandmaterial (är provtryckning med kväve eller annan gas att förorda)

SSM fråga 11 avseende: Omvärldsbekäckning rörande teknik och installationer med reducerad syrehalt i elutrymmen, kabelvägar med reducerad syrehalt och varierande tryckförhållanden i olika utrymmen

SSM fråga 12 avseende: Osäkerheter kring nya tekniken och brandrisken med reducerad syrehalt och varierande tryckförhållanden i olika utrymmen
- t.ex. ökade tryckets inverkan på ökade risker för ljusbåge, kortslutning i elektrisk utrustning

SSM fråga 13 avseende: Osäkerheter och konsekvenser med nya tekniken och påverkan på personal i utrymmen med reducerad syrehalt och tryckförhållanden – risker för brand utan låga (pyrolys), pyrbrand (smoulder) om barriärer öppnas ofta och länge

SSM fråga 14 avseende: Behov av administrativ- och instruktionsstyrning i samband med införande av nämnda teknik

SSM fråga 15 avseende: Förutsättningar för att kunna beskriva den deterministiska och probabilistiska modellen för att visa den valda designgränsen för syrgas- och kvävgasblandning i
vissa el-utrymmen, vid jämförelser av skadliga koncentrationer syrgas för hälsan och att brandskyddet felar vid normalt lufttryck (vid vilka sannolikhetsnivåer är risken som lägst att skadlig koncentration syrgas råder och att brandskyddet felar) – se kapitel 3.5 i LTH rapport 5144 ”Fire Prevention and Health Assessment in hypoxic Environment”

SSM fråga 16 avseende: Vilka typer av bränder kan inte släckas i utrymmen med en syrehalt mellan 14 - 21% syre, andra intressanta syrehalter

SSM fråga 17 avseende: Hälsoaspekter som kan påverka reaktorsäkerheten

SSM fråga 18 avseende: Brand i utrymme med olika tryck, övertryck eller undertryck och hur syrehalten kan antas variera i olika situationer.
- Inverkan på brandförlopp och förbränningsförlopp
- Flamspridningsförlopp vid olika över- och undertryckstryckförhållanden
- Möjliga konsekvenser av sot- och rökproduktion vid olika fukthalter i luften
Bilaga B. Litteratursökningar

B.1 Sökning web of science "hypoxic" and "fire"

1. **Title:** Work in Hypoxic Conditions-Consensus Statement of the Medical Commission of the Union Internationale des Associations d'Alpinisme (UIAA MedCom)

 Author(s): Kuepper Thomas; Milledge Jim S.; Hillebrandt David; et al.

 Source: ANNALS OF OCCUPATIONAL HYGIENE Volume: 55 Issue: 4 Pages: 369-386 DOI: 10.1093/annhyg/meq102 Published: MAY 2011

 Times Cited: 0 (from All Databases)

2. **Title:** DISSOLVED OXYGEN REQUIREMENTS FOR HATCHING SUCCESS OF TWO AMBYSTOMATID SALAMANDERS IN RESTORED EPHEMERAL PONDS

 Author(s): Sacerdote Allison B.; King Richard B.

 Source: WETLANDS Volume: 29 Issue: 4 Pages: 1202-1213 Published: DEC 2009

 Times Cited: 1 (from All Databases)

3. **Title:** HYPOXIC/ISCHEMIC CONDITIONS INDUCE EXPRESSION OF THE PUTATIVE PRO-DEATH GENE Clca1 VIA ACTIVATION OF EXTRASYNAPTIC N-METHYL-D-ASPARTATE RECEPTORS

 Author(s): Wahl A. -S.; Buchthal B.; Rode F.; et al.

 Source: NEUROSCIENCE Volume: 158 Issue: 1 Pages: 344-352 DOI: 10.1016/j.neuroscience.2008.06.018 Published: JAN 12 2009

 Times Cited: 14 (from All Databases)

4. **Title:** Risk assessment of physiological effects of atmospheric composition and pressure in Constellation vehicles

 Author(s): Scheuring Richard; Conkin Johnny; Jones Jeffrey A.; et al.

 Conference: 16th IAAHumans in Space Symposium Location: Beijing, PEOPLES R CHINA Date: MAY 20-24, 2007

 Sponsor(s): Int Acad Astronaut

 Source: ACTA ASTRONAUTICA Volume: 63 Issue: 7-10 Pages: 727-739 DOI: 10.1016/j.actaastro.2008.02.009 Published: OCT-NOV 2008

 Times Cited: 1 (from All Databases)

5. **Title:** Up-regulation of gastrin gene expression under hypoxic conditions occurs via hypoxia inducible factor-1 alpha within gastrointestinal carcinomas

 Author(s): Royal Eve; Grabowska Anna M.; Watson Susan A.

 Conference: Digestive Disease Weeking Meeting/ASGE Postgraduate Course Meeting Location: Washington, DC Date: MAY 19-24, 2007

 Sponsor(s): ASGE
6. Title: The role of the bronchial circulation in the acute lung injury resulting from burn and smoke inhalation

Author(s): Traber D. L.; Hawkins H. K.; Enkhbaatar P.; et al.

Conference: Annual Meeting of the Da-Vinci-Society Location: Camogli, ITALY
Date: SEP 23-25, 2005

Sponsor(s): Da Vinci Soc

Times Cited: 18 (from All Databases)

7. Title: Protective role of hydrogen peroxide in oxygen-deprived dopaminergic neurones of the rat substantia nigra

Author(s): Geracitano R; Tozzi A; Berretta N; et al.

Times Cited: 12 (from All Databases)

8. Title: Laboratory production of vouched reference charcoal from small wood samples and non-woody plant tissues

Author(s): Orvis KH; Lane CS; Horn SP

Source: PALYNOLOGY Volume: 29 Pages: 1-11 DOI: 10.2113/29.1.1 Published: 2005

Times Cited: 5 (from All Databases)

9. Title: Functional connectivity of raphe neurons and responses to peripheral and central chemoreceptor stimulation.

Author(s): Nuding S. C.; Morris K. F.; Baekey D. M.; et al.

Conference: 33rd Annual Meeting of the Society of Neuroscience Location: New Orleans, LA, USA Date: November 08-12, 2003

Sponsor(s): Society of Neuroscience

Source: Society for Neuroscience Abstract Viewer and Itinerary Planner Volume: 2003 Pages: Abstract No. 503.13 Published: 2003

Times Cited: 0 (from All Databases)

10. Title: PROGESTERONE - SENSITIVE NEURONAL RESPONSES TO CENTRAL HYPOXIA IN THE RAT NUCLEUS TRACTUS SOLITARIUS in vitro.

Author(s): Denavit-Saubie M.; Pascual O.; Morun-Surun M. P.; et al.

Conference: 32nd Annual Meeting of the Society for Neuroscience Location: Orlando, Florida, USA Date: November 02-07, 2002

Sponsor(s): Society for Neuroscience
11. Title: Barium-stimulated chemosensory activity may not reflect inhibition of background voltage-insensitive K+ channels in the rat carotid body
 Author(s): Rozanov C, Roy A, Mokashi A; et al.
 Source: BRAIN RESEARCH Volume: 897 Issue: 1-2 Pages: 1-8 DOI: 10.1016/S0006-8993(00)03310-2 Published: APR 6 2001

12. Title: Hypoxic augmentation of fast-inactivating and persistent sodium currents in rat caudal hypothalamic neurons
 Author(s): Horn EM; Waldrop TG
 Source: JOURNAL OF NEUROPHYSIOLOGY Volume: 84 Issue: 5 Pages: 2572-2581 Published: NOV 2000

13. Title: Hypoxic excitation in neurons cultured from the rostral ventrolateral medulla of the neonatal rat
 Author(s): Mazza E; Edelman NH; Neubauer JA

14. Title: Simply add oxygen - Why isn't oxygen administration taught in all resuscitation training?
 Author(s): Oxer HF
 Source: RESUSCITATION Volume: 43 Issue: 3 Pages: 163-169 DOI: 10.1016/S0300-9572(99)00146-X Published: FEB 2000

15. Title: Early effects of hypoxia on brain cell function
 Author(s): Krmjevic K
 Source: CROATIAN MEDICAL JOURNAL Volume: 40 Issue: 3 Pages: 375-380 Published: SEP 1999

16. Title: Roles of ion channels in carotid body chemotransmission of acute hypoxia
 Author(s): Shirahata M; Sham JSK
 Source: JAPANESE JOURNAL OF PHYSIOLOGY Volume: 49 Issue: 3 Pages: 213-228 DOI: 10.2170/jjphysiol.49.213 Published: JUN 1999

17. Title: Developmental aspects and mechanisms of rat caudal hypothalamic neuronal responses to hypoxia
18. Title: Effect of intraluminal thrombus thickness and bulge diameter on the oxygen diffusion in abdominal aortic aneurysm
Author(s): Vorp DA; Wang DHJ; Webster MW; et al.
Times Cited: 24 (from All Databases)

19. Title: Effects of normobaric hypoxic confinement on visual and motor performance
Author(s): Gustafsson C; Gennser M; Ornhagen H; et al.
Source: AVIATION SPACE AND ENVIRONMENTAL MEDICINE Volume: 68 Issue: 11 Pages: 985-992 Published: NOV 1997
Times Cited: 8 (from All Databases)

20. Title: Effects of reduced oxygen partial pressure on cognitive performance in confined spaces
Author(s): Linde L; Gustafsson C; Ornhagen H
Source: MILITARY PSYCHOLOGY Volume: 9 Issue: 2 Pages: 151-168 DOI: 10.1207/s15327876mp0902_3 Published: 1997
Times Cited: 1 (from All Databases)

21. Title: Biological consequences of hypoxic stress on working dogs - Expedition "Licancabur Chiens des cimes. Chile April 1996"
Author(s): Grandjean D; Driss F; Sergeraert R; et al.
Source: RECUEIL DE MEDECINE VETERINAIRE Volume: 172 Issue: 11-12 Pages: 601-621 Published: NOV-DEC 1996
Times Cited: 0 (from All Databases)

22. Title: LONG-TERM MODULATION OF INWARD CURRENTS IN O2 CHEMORECEPTORS BY CHRONIC HYPOXIA AND CYCLIC-AMP IN-VITRO
Author(s): STEA A; JACKSON A; MACINTYRE L; et al.
Times Cited: 52 (from All Databases)

23. Title: ARE INFANTS RESISTANT TO CARBON-MONOXIDE POISONING
Author(s): GASCHE Y; UNGER PF; BERNER M; et al.
24. Title: REGULATORY INTERACTIONS AMONG AXON TERMINALS AFFECTING THE RELEASE OF DIFFERENT TRANSMITTERS FROM RAT STRIATAL SLICES UNDER HYPOXIC AND HYPOGLYCEMIC CONDITIONS
Author(s): MILUSHEVA E; DODA M; PASZTOR E; et al.
Times Cited: 40 (from All Databases)

25. Title: O-2 DEPRIVATION INDUCES A MAJOR DEPOLARIZATION IN BRAIN-STEM NEURONS IN THE ADULT BUT NOT IN THE NEONATAL RAT
Author(s): HADDAD GG; DONNELLY DF
Times Cited: 150 (from All Databases)

26. Title: SYMPTOMATOLOGY DURING HYPOXIC EXPOSURE TO FLAME-RETARDANT CHAMBER ATMOSPHERES
Author(s): KNIGHT DR; CYMERMAN A; DEVINE JA; et al.
Source: UNDERSEA BIOMEDICAL RESEARCH Volume: 17 Issue: 1 Pages: 33-44 Published: JAN 1990

27. Title: RELATIONSHIP BETWEEN TISSUE PO2 AND CHEMORECEPTOR ACTIVITY OF THE CAROTID-BODY INVITRO
Author(s): DELPIANO M; ACKER H
Source: BRAIN RESEARCH Volume: 195 Issue: 1 Pages: 85-93 DOI: 10.1016/0006-8993(80)90868-9 Published: 1980
Times Cited: 20 (from All Databases)

B.2 Sökning web of science ”increased pressure” and ”fire”

1. Title: Forest policies and programs affecting vulnerability and adaptation to climate change
Author(s): Afreen Shamama; Sharma Nitasha; Chaturvedi Rajiv K.; et al.
Source: MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE Volume: 16 Issue: 2 Special Issue: SI Pages: 177-197 DOI: 10.1007/s11027-010-9259-5 Published: FEB 2011
Times Cited: 0 (from All Databases)
2. Title: Computer Modeling of Stairwell Pressurization to Control Smoke Movement During a High-Rise Fire
Author(s): Black W. Z.
Book Group Author(s): ASHRAE
Sponsor(s): Amer Soc Heating, Refrigerating & Air-Conditioning Engineers (ASHRAE)

3. Title: Plant health and global change - some implications for landscape management
Author(s): Pautasso Marco; Dehnen-Schmutz Katharina; Holdenrieder Ottmar; et al.
Times Cited: 7 (from All Databases)

4. Title: Can Managers Bank on Seed Banks When Restoring Pinus taeda L. Plantations in Southwest Georgia?
Author(s): Andreu Michael G.; Hedman Craig W.; Friedman Melissa H.; et al.
Source: RESTORATION ECOLOGY Volume: 17 Issue: 5 Pages: 586-596 DOI: 10.1111/j.1526-100X.2008.00457.x Published: SEP 2009

5. Title: PRESSURISED OXY-COAL COMBUSTION RANKINE-CYCLE FOR FUTURE ZERO EMISSION POWER PLANTS: PROCESS DESIGN AND ENERGY ANALYSIS
Author(s): Gazzino Marco; Benelli Giancarlo
Book Group Author(s): ASME
Conference: 2nd International Conference on Energy Sustainability Location: Jacksonville, FL Date: AUG 10-14, 2008
Sponsor(s): ASME, Adv Energy Syst Div; ASME, Solar Energy Div
Source: ES2008: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2 Pages: 269-278 Published: 2009
Times Cited: 0 (from All Databases)

6. Title: Mechanoreceptors innervating the external anal sphincter of the guinea pig
Author(s): Lynn Penny; Costa Marcello; Brookes Simon
Source: GASTROENTEROLOGY Volume: 134 Issue: 4 Supplement: 1 Pages: A557-A557 Published: APR 2008
Times Cited: 0 (from All Databases)

7. Title: Reality-based practice under pressure improves handgun shooting performance of police officers
8. **Title:** Increasing turbocharged engine operating ranges through use of a booster system

Author(s): Chapman Kirby S.; Keshavar Ali; Wolfram Kyle
Book Group Author(s): ASME
Conference: Fall Technical Conference of the ASME Internal Combustion Engine Division
Location: Charleston, SC
Date: OCT 14-17, 2007
Sponsor(s): Amer Soc Mech Engineers
Source: PROCEEDINGS OF THE 2007 FALL TECHNICAL CONFERENCE OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION Pages: 473-480
Published: 2008
Times Cited: 0 (from All Databases)

9. **Title:** Moisture transport in heated concrete, as studied by NMR, and its consequences for fire spalling

Author(s): van der Heijden G. H. A.; van Bijnen R. M. W.; Pel L.; et al.
Source: CEMENT AND CONCRETE RESEARCH Volume: 37
Issue: 6
Pages: 894-901
DOI: 10.1016/j.cemconres.2007.03.004
Published: JUN 2007
Times Cited: 11 (from All Databases)

10. **Title:** Treeless vegetation of the Australian Alps

Author(s): McDougall Keith L.; Walsh Neville G.
Source: Cunninghamia Volume: 10
Issue: 1
Pages: 1-57
Published: 2007
Times Cited: 12 (from All Databases)

11. **Title:** Effect of water side deposits on the energy performance of coal fired thermal power plants

Author(s): Bhatt MS
Source: ENERGY CONVERSION AND MANAGEMENT Volume: 47
Issue: 9-10
Pages: 1247-1263
DOI: 10.1016/j.enconman.2005.07.002
Published: JUN 2006
Times Cited: 2 (from All Databases)

12. **Title:** Evaluation of hybrid fuel cell turbine system startup with compressor bleed

Author(s): Tucker David; Lawson Larry; Gernmen. Randy; et al.
Book Group Author(s): ASME
Conference: 50th ASME Turbo-Expo
Location: Reno, NV
Date: JUN 06-09, 2005
Sponsor(s): Amer Soc Mech Engineers
13. Title: Pressure (<= 4 ATA) increases membrane conductance and firing rate in the rat solitary complex

Author(s): Mulkey DK; Henderson RA; Putnam RW; et al.

Source: JOURNAL OF APPLIED PHYSIOLOGY Volume: 95 Issue: 3 Pages: 922-930 DOI: 10.1152/japplphysiol.00865.2002 Published: SEP 2003

Times Cited: 14 (from All Databases)

14. Title: Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression

Author(s): El Yacoubi M; Bouali S; Popa D; et al.

Source: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Volume: 100 Issue: 10 Pages: 6227-6232 DOI: 10.1073/pnas.1034823100 Published: MAY 13 2003

Times Cited: 106 (from All Databases)

15. Title: Proposals to reduce over-crowding, lengthy stays and improve patient care: Study of the geriatric department in Norway's largest hospital

Author(s): Martin E; Gronhaug R; Haugene K

Editor(s): Chick SE; Sanchez PJ; Ferrin D; et al.

Conference: 36th Winter Simulation Conference Location: NEW ORLEANS, LA Date: DEC 07-10, 2003

Sponsor(s): Amer Stat Assoc; IEEE Comp Soc; IEEE SMC; Inst Ind Engineers; INFORMS, Coll Simulat; NIST; Soc Modeling & Simulat Int

Source: PROCEEDINGS OF THE 2003 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2 Pages: 1876-1881 DOI: 10.1109/WSC.2003.1261647 Published: 2003

Times Cited: 1 (from All Databases)

16. Title: Peak expiratory flow at increased barometric pressure: comparison of peak flow meters and volumetric spirometer

Author(s): Thomas PS; Ng C; Bennett M

Source: CLINICAL SCIENCE Volume: 98 Issue: 1 Pages: 121-124 DOI: 10.1042/CS19990173 Published: JAN 2000

Times Cited: 1 (from All Databases)

17. Title: Effects of pressure and oxygen concentration on the combustion of different coals

Author(s): Joutsenoja T; Saastamoinen J; Aho M; et al.

Source: ENERGY & FUELS Volume: 13 Issue: 1 Pages: 130-145 DOI: 10.1021/ef980139j Published: JAN-FEB 1999

Times Cited: 12 (from All Databases)
18. Title: Fire tests in a compressed air tunnel at up to 3 bar pressure
 Author(s): Lamont DR; Buckland I; Bettis RJ; et al.
 Editor(s): Negro A; Ferreira AA
 Conference: World Tunnel Congress 98 on Tunnels and Metropolises Location: SAO PAULO, BRAZIL Date: APR 25-30, 1998
 Source: TUNNELS AND METROPOLISES, VOLS 1 AND 2 Pages: 445-449 Published: 1998
 Times Cited: 0 (from All Databases)

19. Title: Facility risk review as a means to addressing existing risks during the life cycle of a process unit, operation or facility
 Author(s): Schlechter WPG
 Conference: 3rd International Colloquium on Ageing of Materials and Methods for Assessing the Lifetime Extension of engineering Plants (CAPE 95) Location: CAPE TOWN, SOUTH AFRICA Date: MAR, 1995
 Times Cited: 4 (from All Databases)

20. Title: CAJANUS-CAJAN (L) MILLSP AS A POTENTIAL AGROFORESTRY COMPONENT IN THE EASTERN PROVINCE OF ZAMBIA
 Author(s): BOEHRINGER A; CALDWELL R
 Source: AGROFORESTRY SYSTEMS Volume: 9 Issue: 2 Pages: 127-140 DOI: 10.1007/BF00168258 Published: 1989
 Times Cited: 6 (from All Databases)