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Abstract

The trade-o� between radiation e�ciency and antenna bandwidth, expres-

sed in terms of Q-factor, for small antennas is formulated as a multi-objective

optimization problem in current distributions of prede�ned support. Variants

on the problem are constructed to demonstrate the consequences of requiring

a self-resonant current as opposed to one tuned by an external reactance. The

resulting Pareto-optimal sets reveal the relative cost of valuing low radiation

Q-factor over high e�ciency, the cost in e�ciency to require a self-resonant

current, the e�ects of lossy parasitic loading, and other insights.

1 Introduction

The radiation e�ciency and bandwidth, the two of the most important antenna
performance parameters [55], are known to be strongly a�ected by the size of the
radiator. Because bandwidth can be increased arbitrarily through resistive loading,
an antenna's bandwidth-e�ciency product, Bη, is a useful metric for assessing an
antenna's bandwidth independent of loading since it is approximately inversely pro-
portional to the antenna's radiation Q-factor, expressed here as the ratio of total
Q-factor and e�ciency, Q/η. Here we pose a question about the trade-o� between
these quantities: By looking for the most e�cient antenna possible, do we sacri�ce
radiation Q-factor?

A plethora of previous approaches exist for studying the fundamental bounds
on antenna e�ciency and bandwidth [20], rare, however, are attempts to investi-
gate their mutual relationship [18]. Given the relation between Q-factor and band-
width [5, 14, 58], a majority of the works treating the principal limits of antenna
bandwidth deal with Q-factor [27], as its useful single-frequency substitute. A key
step in determining antenna Q-factor from single-frequency data is the evaluation of
the system's stored energy [44]. Pioneering work on this problem involved techniques
based on equivalent circuits [8, 48], determination of electromagnetic �elds generated
by the radiator and its analytical integration [10, 22]. Practical and direct estima-
tion of Q-factor from port quantities like input impedance [13, 32, 58] also appeared,
though these methods cannot be used to study bounds. Recently, the stored energy
of electrically small radiators was formulated as a functional of surface current den-
sity [31, 53], by which means a missing link to its matrix-form de�nition has been
traced back to Harrington, [15, 26]. Casting these energy and power functionals
as quadratic forms under a method of moments approximation makes it possible to
reformulate the optimization problem of �nding the lower bound on Q-factor into its
dual form [17], which is solvable by a parametrized eigenvalue problem [6]. Other
methods to obtain Q-factor bounds include approaches based on forward scatte-
ring [16], electrically small limits [54, 56, 57], and circuit models [50], see [20] for
an overview. In general, these methods agree for electrically small structures where
the signi�cance and importance of Q-factor bounds are highest.

Research into the bounds on radiation e�ciency is notably less proli�c. Albeit
the general understanding came already from the classical works [21, 55], rigorous
quantitative studies focus only on spherical geometries [1, 11, 12, 33]. Together
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with estimation of the bounds, there are practically-oriented contributions [34, 42],
attempting to produce realistic antennas with maximal e�ciency. A modal decom-
position was used to estimate the upper limit on e�ciency [4]. It was followed by
practically-oriented heuristic optimization and discussion [36, 37]. Other estimati-
ons are based on assumption of constant current [46], which is believed to maximize
the e�ciency, or utilization of circuit theory [40, 51]. Recently, the lower bounds
of e�ciency of self-resonant current were found using Lagrange multipliers [29] in a
similar manner as in [23, 52] for externally tuned currents. In contrast to Q-factor,
radiation e�ciency is negatively in�uenced by utilization of the matching circuit [30,
47], which should be therefore taken into account.

Here, we recast the optimization problems used to determine fundamental bounds
on antenna Q-factor [6] and e�ciency [23] into multi-objective form. By doing so,
we observe the cost incurred in each parameter under di�erent objective weights,
i.e., Pareto optimality [3]. We also study the behavior of this cost under practical
constraints previously shown to impact the fundamental bounds on e�ciency or Q-
factor individually. These constraints include a requirement of self-resonance [30,
47] and the inclusion of non-controllable parasitic bodies [9]. Further, we analyze
the frequency dependence of the trade-o� between e�ciency and Q-factor, both in
terms of limiting cases and the complete Pareto front.

The optimization task itself relies on several crucial steps, e.g., expressing all
parameters as quadratic forms of underlying matrix operators and determining a
region in which all the operators are positive semide�nite [17]. However all these
tasks can be executed quickly and, importantly, the entire process is strictly deter-
ministic (no heuristic algorithms are needed). In all cases considered in this paper,
the optimization problems are transformed into convex form, implying their solu-
tion is global and e�ciently found using convex optimization algorithms [3]. In fact,
many of the optimization problems discussed in this paper are solvable in closed
form via eigenvalue problems. The main outputs of these routines are not only
the bounds themselves, but also the optimal current densities associated with the
bounds. Thus the results from this paper provide quantitative and physical insight
into the question posed above, as well as its complement.

The rest of the paper is organized as follows: the method-of-moments forms
required to calculate the e�ciency and Q-factors of arbitrary current distributions
are introduced in Section 2. The multi-objective optimization problems are expres-
sed and solved in Section 3. The properties of the Pareto fronts are discussion in
Section 4, and compared with already known limiting cases in Section 5. Limiting
cases in the low-frequency limit are discussed in Sec. 6. A practical example in which
only part of the structure is controllable by the designer is shown in Section 7. The
paper is concluded in Section 8.
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2 Quadratic Forms For Optimized Quantities

A standard method-of-moments (MoM) implementation of the electric �eld integral
equation (EFIE) is used to compute the impedance matrix of an object [25]

Z = R + jX = Rr + RΩ + j(Xm −Xe). (2.1)

Here, vector functions on the object under consideration are approximated and ex-
panded using a suitable set of basis functions {ψm(r)}. The time-harmonic domain
with ω as the angular frequency is used throughout the paper. The MoM approxi-
mation of the stored magnetic and electric energies are [17, 26, 53]

Wm ≈
1

8
IH

(
∂X

∂ω
+

X

ω

)
I =

1

4ω
IHXmI (2.2)

and

We ≈
1

8
IH

(
∂X

∂ω
− X

ω

)
I =

1

4ω
IHXeI, (2.3)

respectively, where I denotes the column matrix of MoM expansion coe�cients [25]
and H denotes Hermitian conjugate. The Q-factor of the current represented by I
reads [28]

Q =
2ωmax {Wm,We}

Pr + PΩ

≈ η
max

{
IHXmI, IHXeI

}
IHRrI

, (2.4)

where η denotes the radiation e�ciency

η =
Pr

Pr + PΩ

=
1

1 + δ
≈ IHRrI

IH(Rr + RΩ)I
, (2.5)

Pr the radiated power, PΩ the power dissipated from ohmic losses, and δ = PΩ/Pr the
dissipation factor [24]. The radiation Q-factor Qrad = Q/η represents the Q-factor
of the current independent of losses.

The dissipated power due to these ohmic losses on an object with surface resis-
tance Rs(r) is

PΩ ≈
1

2
IHRΩI (2.6)

where

RΩ,mn =

∫
Ω

ψm(r) ·ψn(r)Rs(r) dS. (2.7)

In the special case when the surface resistance is uniform over the entire object, i.e.,
Rs(r) = Rs, calculation of the dissipated power reduces to

PΩ ≈
Rs

2
IHΨI, (2.8)

where Ψ is the Gram matrix of the basis-functions

Ψmn =

∫
Ω

ψm(r) ·ψn(r) dS. (2.9)
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The resistance Rs is commonly modeled with resistive sheets and surface resistance
as [45]

Rs =
1

σd
and Rs =

√
ωµ0

2σ
, (2.10)

respectively, where σ is the conductivity, d sheet thickness, and µ0 free space perme-
ability. The corresponding reactance in the skin depth model can be incorporated
in the reactance matrix X but is not considered in this paper.

3 Pareto-Optimal Set for Q-Factor and Radiation

E�ciency

It is generally desired to construct an antenna with high e�ciency (maximizing (2.5))
and low Q-factor (minimizing (2.4)). By considering the radiation Q-factor Qrad,
we remove the ability to lower Q-factor via a drop in e�ciency. Bounds on these
quantities for antennas of a certain form-factor can be cast as optimization problems
in terms of currents representable in the vector I, where discretization is carried out
over the entire design region [17].

3.1 Formulation of the Optimization Problems

Taking the reciprocal of (2.4), the task of minimizing radiation Q-factor Qrad can be
rewritten as one of maximizing radiated power while maintaining reactive electric
and magnetic power below a certain threshold P̄w. Adding the constraint that losses
must also be below a threshold P̄Ω yields the optimization problem

maximize IHRrI

subject to IHXmI ≤ 2P̄w

IHXeI ≤ 2P̄w

IHRΩI ≤ 2P̄Ω.

(3.1)

Self-resonance can be enforced by only allowing solutions with equal electric and
magnetic stored energies. This amounts to simply changing the inequalities in the
energy constraints in the above problem to equalities as

maximize IHRrI

subject to IHXmI = 2P̄w

IHXeI = 2P̄w

IHRΩI ≤ 2P̄Ω.

(3.2)

3.2 Relaxation of the Optimization Problems Into Dual Forms

The optimization problems (3.1) and (3.2) are not convex and hence not directly sol-
vable. These problems are, however, indirectly solvable via dual problems [3]. Here,
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we present a computationally e�cient dual formulation using linear combinations
between the constraints in (3.1) and (3.2), i.e.,

maximizeI IHRrI

subject to IHXανI ≤ 1,
(3.3)

where
Xαν = ανXe + α(1− ν)Xm + (1− α)RΩ (3.4)

with the right-hand side normalized to unity. In (3.4), the parameter α ∈ (0, 1) is
the weight used to sweep the relative priority given to minimizing stored energy or
ohmic losses. The boundary value α = 0 reduces the problem to an optimization
of e�ciency and α = 1 represents the minimization of radiation Q-factor presented
in [6]. These limiting cases are discussed further in Sec. 5. The Pareto front1

arising from (3.3) represents the optimal trade-o� between radiation e�ciency and
radiation Q-factor.

The domain of the dual parameter ν is [0, 1] for (3.1) where the solution cur-
rent may be tuned by an external reactance. However this domain is extended to a
potentially larger subset of R in (3.2) where the solution current is explicitly con-
strained to be self-resonant. This di�erence arises from the equalities in (3.2) that
are preserved for arbitrary weights whereas the inequalities in (3.1) are only pre-
served for non-negative weights. The maximum value IHRrI in (3.3) is greater or
equal to the corresponding values in (3.1) and (3.2). Hence, (3.3) produces bounds
for (3.1) and (3.2) and its minimization over ν gives the physical bound.

In the following section, we discuss the solution of (3.3). It is important to
stress again that, although (3.3) is an optimization problem, its solution is obtained
via deterministic methods based on eigenvalue techniques and simple line search
maximization of a function in one variable.

3.3 Solution of the Optimization Problems

The problem (3.3) for a �xed parameter α is convex [3] in ν and its minimization
can be rewritten as maximization of the minimum generalized eigenvalue [6]

maximizeν min eig(Xαν ,Rr), (3.5)

where eig denotes the set of eigenvalues {γn} which solves

XανIn = γnRrIn. (3.6)

The eigenvalues γn are all non-negative if Xαν � 0. Thus the maximization of
(3.5) must occur within the range of ν within R to [ν1, ν2] for which Xαν � 0.
The max-min problem (3.5) is easily solved by a line search such as the bisection
algorithm [3]. Note the formal similarity between (3.6) and the eigenvalue problem
for characteristic modes [26]. The additional maximization over the scalar parameter

1The set of solutions produced by sweeping the parameter α over the interval [0, 1].
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ν in (3.5) is solved with a computational cost of a few (order of 10) characteristic
mode evaluations.

Solution of (3.5) yields the value νopt which maximizes the minimum eigenvalue
γ = γ1 to γ1,opt. In solving (3.2) where a self-resonant solution current is required,
the solution current I1 is given directly as the eigenvector corresponding to γ1,opt

when ν = νopt is used in (3.6). If instead the relaxed problem (3.1) is solved (i.e.,
externally tuned solutions are allowed), the constraint ν ∈ [0, 1] must be applied.
In this case the solution current Ĩ1 and its associated eigenvalue γ̃1 are obtained via
(3.6) using ν = ν̃opt, where

ν̃opt =


νopt 0 ≤ νopt ≤ 1,
0 νopt < 0,
1 νopt > 1.

(3.7)

The eigenvalue solving (3.5) may be degenerate [6]. Consider �rst the case with
non-degenerate eigenvalues, a scenario nearly guaranteed for general objects with
no represented geometric symmetries [43]. Under this condition, the derivative of
any eigenvalue (3.6) with respect to the parameter ν is [35]

γ′ =
dγ

dν
=

IHX′ανI

IHRrI
= −α IHXI

IHRrI
, (3.8)

where I is the associated eigenvector. This shows that the eigenvalue γ is increasing
and decreasing if the solution is capacitive (IHXI ≤ 0) and inductive (IHXI ≥ 0),
respectively. In particular, it implies that the solution is self-resonant (IHXI = 0)
when γ′ = 0. Thus, the solution to (3.5) is self-resonant when γ is locally maximized.
Note that the restriction on the parameter ν in the case where external tuning is
allowed breaks this condition, as ν may be limited via (3.7) to a value of 0 or
1 where γ′ 6= 0. This con�rms the analysis in [6], where it is shown that the
solution is self-resonant if the optimal value is in the inner region 0 < ν < 1.
The self-resonant case with degenerate eigenvalues is identical to [6] where a self-
resonant linear combination between the eigenvectors is constructed. However, it is
technically more involved, and is left to Appendix A.

4 Demonstration of the Optimization Procedure

4.1 Pareto-optimality of Q-factor and Radiation E�ciency

The Pareto front is determined by sweeping the parameter α in (3.5) over the inter-
val 0 < α < 1 and computing the Q-factor and e�ciency from the obtained eigenvec-
tor. This produces a curve that is interpreted as the optimal trade-o� between the
minimum Q-factor and maximum e�ciency η. A Pareto front for a planar L-shaped
metallic structure constructed by a rectangle with one quarter removed is depicted in
Fig. 1. The structure has side lengths `× `/2, surface resistance Rs = 1 Ω, electrical
size ka = 1/2, with k being the wavenumber and a being the radius of the smallest
sphere circumscribing the radiator, and is discretized with RWG basis functions [41].
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Figure 1: Pareto fronts for externally tuned and self-resonant constraints, (3.1)
and (3.2), respectively, calculated via (3.3) for an L-shaped metallic plate, Rs = 1 Ω,
ka = 1/2, discretized with 1515 RWG basis functions. An additional marker is added
at α = 0.34 for comparison with Fig. 2. The single-criteria asymptotes (5.1), (5.4),
and (5.5) are added as black dashed lines.

Here, the Q-factor is normalized with the e�ciency as Qrad = Q/η in order to remove
the reduction of Q-factor with decreasing e�ciency.

The red curve in Fig. 1, representing the Pareto front for a self-resonant current,
shows the strict upper bound on self-resonant e�ciency, ηres

ub (discussed in Section 5).
The Pareto front for the externally tuned case, represented by the blue curve, has
a more involved shape. After slightly increasing around the point marked with
α = 0.34, the Q-factor is rather �at with Qrad ≈ 45 up to η ≈ 0.85 where it starts
to increase rapidly, reaching Qrad ≈ 115 at η = 0.86. It is also observed from Fig. 2
that very small increments in the parameter α are required to span the Pareto front
in this region near α = 0. The vertical asymptote at η = 0.86 is approached with
Qrad →∞ as α is taken closer to zero in �ner steps.

From a qualitative point of view, the self-resonant case can be understood as a
subset of the externally tuned case. This is con�rmed in Fig. 2, as it can be seen
there that the Pareto front valid for externally tuned currents is, in fact, (advantage-
ously) self-resonant for α ∈ [0.34, 1) where 0 < νopt < 1. The changes in optimized
quantities (Q, η) are mostly visible on the left of α = 0.34, i.e., just before the
transition from the self-resonant to the externally tuned region. The price to be
paid in the externally tuned region is also seen from Fig. 2 in the blue and red
curves for α < 0.34. The immediate increase in e�ciency implies a question about
the practical feasibility of such a high e�ciency utilizing external tuning elements
because an external compensation of lacking electric/magnetic energy introduces
in�nitely large losses even for in�nitesimally small surface resistivity of that lumped
element. Figures 1 and 2 also suggest that as far as the self-resonant current is con-
cerned, Q-factor and radiation e�ciency in this example are almost non-con�icting
parameters.
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Figure 2: Parameters as functions of the Pareto sweep parameter α from externally
tuned solution (blue curve) shown in Fig. 1. Values of α near 0 emphasize high
e�ciency η while values of α near 1 prioritize low radiation Q-factor Qrad, cf. (3.4).

In order to provide a broader picture of the optimization procedure, the optimi-
zed parameters are depicted in Fig. 3 together with the dual parameter ν for the
particular choice of position on the Pareto front at α = 0.09, i.e., for a position in
which the self-resonant solution cannot be attained inside the ν ∈ [0, 1] interval.

4.2 Scalability of the Pareto Front with Surface Resistivity Rs

Di�erentiation of the Rayleigh quotient given by the parameter γ with respect to
the Pareto sweep parameter α reads

dγ

dα

∣∣∣∣∣ν=νopt
α=α0

= Qrad (α0)− δ (α0) , (4.1)

which re�ects that the trade-o� is, in fact, primarily determined by dissipation fac-
tor δ and radiation quality factor Qrad, i.e., proportionally by the di�erence between
stored energy and ohmic losses, cf. (3.4). The formula (4.1) also clari�es a fact visi-
ble in (3.4), that the Pareto fronts are scalable with respect to the surface resistance
since

δ1

Rs1

=
δ2

Rs2

, (4.2)

thus, the e�ciency η2 for the Pareto front with resistivity Rs2 can be obtained from
the Pareto front for resistivity Rs1 and the e�ciency η1 with the transformation

1

η2

=
Rs2

Rs1

(
1

η1

− 1

)
+ 1. (4.3)
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Figure 3: Optimization procedure for a particular choice of α = 0.09, both for the
externally tuned case (3.1) and for the self-resonant case (3.2), Rs = 1 Ω, ka = 1/2.
The parameter α has been chosen so that the current is self-resonant (γ is maximi-
zed) outside ν ∈ [0, 1] region. In order to generate the curves, 251 equidistantly spa-
ced points between νmin = −3.56 · 10−4 and νmax = 1.61, i.e., in region with positive
semide�nite operator Xαν has been used. Notice from Fig. 2 that the self-resonant
case is within ν ∈ [0, 1] only for α > 0.34.

To demonstrate the e�ect of the normalization (4.2)�(4.3), the Pareto front from
Fig. 1 is redrawn in Fig. 4 as a function of the dissipation factor δ, normalized2 by
used surface resistivity Rs, and radiation Q-factor Qrad. The insets depict Pareto
optimal surface current densities for four distinct positions on the Pareto fronts. The
minimum dissipation factor for the externally tuned case A is realized by a constant
current density as predicted by [46]. The solution D for minimum radiation Q-factor
is common for both self- and externally tuned currents and consists of a mixture of
dominant capacitive and inductive modes [6, 7]. The self-resonant solution C with
minimum dissipation factor is realized by a loop current with smoothly varying
amplitude, which is in contrast with case D, where the current is predominantly
distributed along the boundary edges. The last depicted inset B shows the current
density in the transition region between low and high Q-factor and it resembles
a sine current on a dipole-type antenna. To remove the dependence on electrical
size, the x- and y- axes can further be normalized by (ka)4 and (ka)3, respectively,
which makes it possible to compare electrically small antennas irrespective of their
electrical size and surface resistivity.

A closer look at (4.1) reveals two notable properties. First, integrating (4.1) and

2Notice that dealing with the normalization (4.2)�(4.3), one should take care with units as the
dissipation factor δ is dimensionless and surface resistivity Rs has units of Ohms (Ω). Two remedies
are possible: either multiply the product δ/Rs by 1 Ω to preserve the dimensionless nature, or to
leave δ/Rs with its units, Ω−1 ≡ S, keeping in the mind that Rs is used as a scaling parameter
only. The later option is used throughout this paper.
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Figure 4: Pareto fronts from Fig. 1, expressed in terms of normalized dissipation
factor and radiation Q-factor. Pareto-optimal current distributions are subsampled
using 258 RWG basis functions and shown at four noteworthy values of the parame-
ter α, from left to right: α = {10−5, 0.09, 1} for externally tuned solutions denoted
by A, B, and D, respectively, and α = 10−5 for the self-resonant case denoted by C.

substituting the limiting values of Pareto sweeping parameter α yields∫ 1

0

dγ

dα

∣∣∣∣∣
νopt

dα = Qrad
lb − δlb (4.4)

i.e., the di�erence between the solutions of individual single-criteria problems. Se-
cond, the di�erentiation of (4.1) readily con�rms that all non-dominated solutions
(members of the Pareto front) have negative second derivatives of γ (α). Notice, ho-
wever, that the contrary (all solutions with second derivative negative are members
of the Pareto front) is not supported.

5 Comparison With Limiting Cases

The Pareto fronts are compared with their limiting cases where some of the con-
straints in (3.1) and (3.2) are removed.

5.1 General Cases

The upper bound on the radiation e�ciency η is determined from the minimum
dissipation factor that results in the eigenvalue problem [24, 29]

(ηub)−1 − 1 = δlb = min eig(RΩ,Rr). (5.1)

In comparison, the upper bound on e�ciency ηres
ub attainable by a self-resonant

current follows from (3.2) by adding the redundant constraint of self-resonance,
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IHXI = 0, and then removing the constraints on the actual values of electric and
magnetic powers, i.e., [29]

maximize IHRrI

subject to IHRΩI = 1

IHXI = 0.

(5.2)

This reformulation represents the boundary value of α = 0 for the Pareto analysis
of (3.2) and can be relaxed to the dual problem

minimizeνmaximizeI IHRrI

subject to IH(νX + RΩ)I = 1
(5.3)

analogously to the analysis of (3.3). The solution is

(ηres
ub )−1 − 1 = δres

lb = max
ν∈R

min eig(νX + RΩ,Rr) (5.4)

while (3.8) shows that the constraints in (5.2) are satis�ed at the optimal value
for non-degenerate eigenvalues. A self-resonant solution is constructed [6] for the
corresponding degenerate case showing that (5.4) solves (5.2). This formulation (5.4)
for the lower bound on the dissipation factor δ is concave and hence easily solvable.
With RΩ = RsΨ, we have the solution for all values of surface resistance according
to (4.3) and it is hence su�cient to solve (5.4) for Rs = 1 Ω. The �nal limiting case,
the lower bound on the radiation Q-factor, is determined as [6]

Qrad
lb = max

0≤ν≤1
min eig (νXe + (1− ν)Xm,Rr) . (5.5)

Here we continue studying the example given in Section 3 with the addition of
these three limiting cases. The Pareto-fronts for the tuned (3.1) and self-resonant (3.2)
cases overlap for low e�ciencies where their Q-factors are close to the lower boundQrad

lb ,
see the magni�ed part in Fig. 1. The Q-factor for the self-resonant case increases
slightly and reaches the upper bound in the e�ciency ηres

ub given by (5.4). We now
identify the vertical asymptote in the externally tuned Pareto front as the abso-
lute maximum value of e�ciency ηub given by (5.1). The upper bound ηa proposed
in [46] solely based in the surface area, resistivity, and frequency gives the same
value as the bound ηub. These bounds with their approximately constant current
distribution (see α = 10−5 point in Fig. 1) compared with the closer to cosine-shaped
optimal current distribution [19] for minimum Q-factor of electric dipole radiators
explain the rapid increase of the Qrad. Note that a cosine-shaped current distribu-
tion doubles the ohmic losses compared with the idealized constant current for a
rectangle and that the corresponding dissipation factor increases as π2/8 ≈ 1.23 for
small structures [46]. The Q-factor increases rapidly as the charge accumulates at
the edges when the approximately constant current distribution is forced to vanish
at the edge.
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5.2 Pareto Optimality for Spherical Shell

A geometry with interesting behavior in terms of these bounds is the spherical shell,
for which the optimal currents and bounds for Q-factor and e�ciency are known
analytically [8, 38, 49]. As a single current is optimal in both self-resonant radiation
Q-factor and e�ciency, the self-resonant Pareto front is represented by one point
with an optimal current consisting of a mixture of dominant TM and TE modes

I = ITM10 + ξ (ka) ITE10, (5.6)

with the coupling constant [7, 38]

ξopt =

√√√√√√√−
1− kay0 (ka)

y1 (ka)

1− ka j0 (ka)

j1 (ka)

ejϕ, (5.7)

and jn (ka), yn (ka) spherical Bessel functions of the nth order and of the �rst and
second kind [2], respectively. Currents lying on the externally tuned Pareto front
follow the form of (5.6) and sweep continuously between ξ = 0 and ξ = ξopt. The
boundary values delimit the interval between the externally tuned maximum radi-
ation e�ciency (ξ = 0) and naturally self-resonant minimum Q-factor (ξ = ξopt)
current distributions realizable on a spherical shell.

Knowledge of (5.6), the interval of ξ, and orthogonality of spherical harmonics
with respect to the operators Rr, Xm, and Xe makes it possible to determine the
Pareto front analytically. Suppose the set of spherical harmonics is normalized
to unitary radiated power, Pr,TM10 = Pr,TE10 = 1, i.e. characteristic modes of the
spherical shell. Then the radiation Q-factor is equal to

Qrad =
ωmax {Wm,TM10+TE10,We,TM10+TE10}

1 + ξ2
, (5.8)

where

Wm,TM10+TE10 = Wm,TM10 + ξ2Wm,TE10, (5.9)

We,TM10+TE10 = We,TM10 + ξ2We,TE10, (5.10)

and where the individual modal energies are evaluated in [22]. The resulting dissi-
pation factors are equal to [38]

δ =
PΩ,TM10 + ξ2PΩ,TE10

1 + ξ2
. (5.11)

The normalized Pareto fronts for a spherical shell of electrical sizes ka = {1/10, 1/2}
are depicted in Fig. 5. Solid lines are solutions to (5.8), (5.11), dashed lines repre-
sent solutions to (3.5). Since the denominators of (5.8) and (5.11) diminish in their
mutual trade-o�, it is obvious that the Pareto front is a straight line.
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a spherical shell discretized with 1215 RWG basis functions. The parameter ξ2 is
swept linearly in interval

[
0, ξ2

opt

]
with 25 points. The additional circular markers

denote the limiting cases (5.12), (5.13).

For small ka (ka� 1), the asymptotic values for the end points are known as [38,
49]

(ka)3Qrad
lb = 1 and (ka)3Qrad

TM10 =
3

2
, (5.12)

Z0

Rs

(ka)4δ = 3 and
Z0

Rs

(ka)4δlb =
9

4
(ka)2, (5.13)

respectively. Two extrema points given by (5.12) and (5.13) are depicted in Fig. 5
by circular markers.

5.3 Pareto Optimality for Layered Prolate Spheroid

Pareto curves for a layered prolate spheroid with semi axes a and 0.9a and electrical
size ka = 1/2 are depicted in Fig. 6. The layers have surface resistivity Rs and
form spheroids with axes scaled by (11 − m)/10 with m ∈ {1, ..., n} for curves
labeled {1, ..., n}. The �gure also contains the Pareto front for the case with of nine
inner layers placed on spheroids with axes scaled between 0.25 and 0.5 of the radial
distance.

The Pareto front for the self-resonant (3.2) single layer case is close to a single
point, approaching the solution obtained from a sphere (5.6). Its normalized dissi-
pation and Q-factors are around 4 and 1.4, respectively, which are slightly higher
than for the sphere (5.12). The Pareto front for tuned case (3.1) traverses from the
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Figure 6: Pareto curves for layered prolate spheroids with semi axes a and 0.9a for
ka = 0.5. Solid and dotted curves for tuned (3.1) and self resonant (3.2), respectively.
The layers have resistivity Rs and semi axes scaled (11−m)/10, wherem ∈ {1, ..., n}
for the curve labeled 1 − n. The black curves correspond to the B(1:10) case with
the inner 9 layers having semi axis equidistantly scaled between 0.25 and 0.5.

self-resonant mixed TE/TM mode (5.6) to the TM mode around (0.7, 1.8) which is
also obtained by evaluating the minimum Q-factor for TM radiation [6] and marked
with diamonds in Fig. 6.

Filling the spheroid highlights some di�erences between the lower bounds on the
dissipation and Q-factor. Here, internal layers are added, rather than a homogeneous
�lling [11, 33], to simplify the comparison with the surface currents in this paper.
We also note that there is a trivial scaling of the sheet resistivity (2.10) as two closely
spaced layers can be replaced by a single layer with the double thickness and hence
half the sheet resistivity. It is seen that the Pareto front extends as the number of
inner layers are included. The e�ect is largest for the layers close to surface and
the contributions from the layers close to the center are negligible as seen from the
small di�erence between the A(1:5) and A(1:10) cases. Through the introduction of
additional internal layers, the dissipation factor reduces while the lower bound on
radiation Q-factor is una�ected by the possible sources in the inner region [19]. This
shows that it is possible to utilize the interior region of an object to decrease losses
and that volumes should be considered in physical bounds on dissipation factor.

One possibility for using the inner region is to tune the dominant electric energy
from the outer shell magnetic energy in the inner region. This is illustrated by the
case denoted B(1:10) that consists of nine layers placed between 0.25 and 0.5 of the
radial distance. The lower bound for the self-resonant case traverses from the mixed
mode solution to a dominant TM mode.



15

6 Limit of electrically small antennas

The low-frequency (electrically small) limit o�ers explicit solutions for many antenna
problems [19, 31, 56, 57] and can be used to compute the dominant components of
the small size expansions (5.12) and (5.13) for arbitrary shaped objects. Under
the low-frequency expansion of a current density J ∼ J0 + kJ1 (as k → 0 where
∇ · J0 = 0 and ∇ × J1 = 0), the optimization problem for minimum Q-factor is
separated into its electric and magnetic parts [19]. The stored electric and magnetic
energies themselves have low-frequency asymptotic expansions3

We =
1

4ω
IH

1 XeI1 ∼
1

4
IH

1 CiI1 (6.1)

and

Wm =
1

4ω
IH

0 XmI0 ∼
1

4
IH

0 LI0, (6.2)

respectively, where L and Ci are de�ned by the impedance matrix Z = jkL− jCi/k.
The radiated power and dissipated power in ohmic losses can be written

Pr ∼
1

2
k4(IH

0 RTEI0 + IH
1 RTMI1) and PΩ ∼

1

2
IH

0 RΩI0, (6.3)

respectively, with the explicit representations of the matrices, e.g., given [31, Eq.
(3.9)]. Inserting the expansions in (5.5) shows that the eigenvalue problem separates
into TM and TE eigenvalue problems

k3Qrad
lb,TM = min eig

∇×
(Ci,RTM) =

6π

max eig γe

(6.4)

and

k3Qrad
lb,TE = min eig

∇·
(L,RTE) =

6π

max eig γm

(6.5)

which have explicit solutions expressed in the electric and magnetic polarizability
dyadics γe and γm, respectively, see also [16, 19, 20, 31, 56] for alternative derivati-
ons. In (6.4) and (6.5), eig∇× and eig∇· denote solving the eigenvalue problem while
admitting only curl- and divergence-free solutions, respectively. Note that this no-
tation assumes some regularity on the current density and generalization are needed
for surface currents and complex topologies. The lower bound on the Q-factor (5.5)
for combined TE and TM modes has the explicit representation

Qrad
lb =

6π

k3(max eig γe + max eig γm)
. (6.6)

The low-frequency expansion transforms the optimization for the minimal self-
resonant dissipation factor (5.2) to

maximize IH
0 RTEI0 + IH

1 RTMI1

subject to IH
0 RΩI0 = 1

IH
0 LI0 = IH

1 CiI1,

(6.7)

3The components I0 and I1 may be represented by lower dimension bases, however for notational
simplicity we assume here that they are expressed in the same basis as a general current vector I.
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where the electric and magnetic part separates. The electric part is maximized
in (6.4) simplifying the optimization problem to

maximize IH
0 RTEI0 + β

subject to IH
0 RΩI0 = 1

IH
0 LI0 = 6πβ/γ,

(6.8)

where γ = max eig γe. The above problem is thus reduced to a maximization over
I0 and the parameter β. This optimization is solved analogously to (5.2). The k4

scaling of the radiated power in (6.3) shows that the dissipation factor scales as
k−4. . The electric part (charge) is hence identical for minimum Q-factors of the
electric dipole (TM) (6.4), and combined mode (TM+TE) (6.6), and self resonant
maximal e�ciency cases (6.8). Maximization of (6.8) includes both dissipation in
ohmic losses RΩ and magnetic radiation RTE. Assuming an electric dipole radiator,
i.e., negligible magnetic radiation in (6.8), gives an optimization problem for I0

in (6.8) as the maximum Q-factor of an inductor

Qub,L

k
= max

IH
0 LI0

IH
0 RΩI0

= max eig
∇·

(L,RΩ). (6.9)

Inserting (6.9) into (6.8) yields the minimal TM dissipation factor as the quotient
between the TM radiation and inductor Q-factors

δlb,TM =
min eig∇×(Ci,RTM)

k4 max eig∇·(L,RΩ)
=

6π

k3γQub,L

=
Qrad

lb,TM

Qub,L

. (6.10)

This solution can be interpreted as stored energy from a lossless electric dipole
radiators tuned with lossy inductive currents.

Q-factor bounds Qrad
lb,TM, Q

rad
lb,TE, and Qub,L are depicted in Fig. 7 for planar rec-

tangles with aspect rations `x/`y and two antenna geometries circumscribed by the
rectangles. The loops and meander lines have strip widths `x/12 which imply that
the loop and meander line reduce to the rectangle for `x ≥ 6`y and `x ≥ 12`y, re-
spectively. The TM and TE Q-factors in dashed dotted and dashed curves, respecti-
vely, are normalized with (ka)3 and related to the polarizability dyadic, see (6.4)
and (6.5).

The loop and meander shapes are formed be removing parts of the rectangle
and are hence suboptimal in (6.4), (6.5), and (6.9) compared to the solution for
the circumscribing rectangle. Suboptimal solutions to the minimization in (6.4)
and (6.5) imply increased Q-factors Qrad

TM and Qrad
TE. Similarly, suboptimal solutions

imply reduction to the maximization of Qub,L in (6.9), see arrows in Fig. 7. This
is a similar conclusion as drawn from the variational bounds for the polarizability
dyadics [16]. However, the electric polarizability is only marginally decreased as the
removed parts are located in the inner region of the rectangle [20] and hence are the
corresponding Q-factors approximately the same for the antenna geometries as for
the circumscribing rectangle. Contrary, the TE Qrad

lb,TE and inductive Qub,L Q-factor
change rapidly as inner parts are removed. This can be attributed to elimination of
loop currents when such regions are removed or cut by slots.
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Figure 7: Normalized Q-factors for electric dipole antennas Qrad
lb,TM(ka)3 (6.4) (dot

dashed), magnetic dipole Qrad
lb,TE(ka)3 (6.5) (dashed), and inductors Qub,L/(ka) (6.9)

(solid) con�ned to a rectangular region with side lengths `x and `y. E�ects on the
Q-factors from removal of the inner region (loop) and slots (meandering) are also
included.

The small increases of Qrad
lb,TE for the loop compared with the rectangle indicate

that the magnetic polarizability is dominated by the loop area. The corresponding
much larger decrease in Qub,L shows that the inductance can bene�t more from
the inner parts, cf. with the C and D cases in Fig. 4. The approximate factor of
two between Qrad

lb,TM and Qrad
lb,TE for `x = `y indicate a potential 66% reduction for

the combined TM-TE mode (5.5). This reduction however vanished rapidly with
increasing aspect ratio as the quotient Qrad

lb,TM/Q
rad
lb,TE � 1 for `x ≥ 2`y.

The impact from the slots in the meander lines is much larger than for the
loops as the slots hinder large loop currents spanning the entire surface. Here,
Qrad

lb,TE increases and Qub,L decreases close to a factor of 10. These large changes

in Qrad
lb,TE and Qub,L with respect to removal of geometry compared to the small

changes of Qrad
lb,TM partly explains the increased di�culty to design optimal antennas

for Qrad
TE, Q

rad, and e�ciency compared to Qrad
TM. The solutions to (6.4) and (6.9)

are qualitatively di�erent for surface and volumetric regions Ω. Minimization of
the Q-factors (6.4) and (6.5) have surface charge and surface current distributions,
respectively [19]. The maximization of the inductor Q-factor (6.9) has instead a
volumetric current distribution, cf. the �lled spheroid in Fig. 6.

7 Controllable Region Constraints

Restricting control of currents to a subregion of a structure is equivalent to adding a
linear constraint IG = TIA to (3.1) and (3.2), see [6, 15] for details. This restriction
shifts the Pareto front into the region of feasible solutions; that is, less control leads
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problem (3.1) was solved at ka = 1/2 for Rs = 1 Ω. The self-resonance Pareto fronts,
ful�lling (3.2) and depicted by solid black lines, are added only for the completeness
as they are of extremely limited scope. In all cases, the same mesh grid was used
with 202 RWG elements in the controllable region and 422 RWG elements on the
ground plane.

to stricter bounds in both Q-factor and e�ciency.
Here we examine a simple example of a calculation involving this class of linear

constraints imposed by incomplete control of currents within a design region. The
sample problem, shown in Fig. 8, consists of an antenna design region ΩA where
currents represented by IA are fully controllable. Below this region is a larger ground
plane ΩG where currents represented by IG are induced according to the linear
relation IG = TIA.

The height h of the controllable region over the ground plane is adjusted and the
resulting data in Fig. 8 demonstrate how this distance a�ects the Pareto fronts. Both
extremal points on the Pareto front degrade with decreasing height within the range
studied here, i.e., minimum radiation Q-factor increases while maximum e�ciency
decreases. Additionally, the interior of the Pareto fronts become smoother with
decreasing height, indicating that the trade-o� between these quantities becomes
more pronounced as the controllable region is brought closer to the ground plane.
Speci�cally, for the largest value of h studied here, an e�ciency marginally below
the maximum (71% vs. 73%) can be achieved by a current with radiation Q-factor
only 40% above the minimum. However, at the smallest value of h, the same relative
sacri�ce in radiation Q-factor leads to an e�ciency well below the optimal value (36%
vs. 59%). These results can further be compared to the high cost of approaching
the absolute minimum possible Q-factor, which in all cases studied here dictates a
low e�ciency on the order of 5% or less.
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plate of `× `/2 dimensions, ka = 1/2, with 1478 RWG basis functions was divided
into two regions of di�erent surface resistivity, Rs1 and Rs2. Two schemes of surface
current controllability are considered: full control ΩA = `× `/2 (red curves) and
partial controlΩA = `1 × `/2 (black curves). Resistivity of the larger area is constant
while the resistivity of smaller area is 0 Ω (PEC) or 1 Ω. The selected Pareto optimal
current densities are depicted only for relevant part of the plate, highlighted by the
dashed yellow region.

The last example in this paper studies simple rectangular plate, divided into
two regions of di�erent surface resistivity, Rs1, Rs2, and considering two di�erent
schemes of controllability � in one only a small area is controllable while in the
other the entire plate is controllable. The results are depicted in Fig. 9 and it is
immediately seen that the Pareto fronts sweep a broad range of dissipation factor and
radiation Q-factor values. Notice that the ends of the Pareto fronts corresponding
with minimum Q-factor are already known: the optimal current for ΩA = `× `/2,
Rs1 = 1 Ω is depicted in [7] and the optimal current for partial control and PEC is
depicted in [6].

Naturally, many permutations of the controllable region problem exist and ge-
neral conclusions cannot be drawn from a single example. This formulation is adap-
table to the study of bounds and trade-o�s of arbitrary antenna / ground con�gu-
rations and is powerful in determining the speci�c behavior of optimal currents in
complex design settings. Additional investigation is enabled by considering inhomo-
geneous loss properties through the use of (2.6). In this way, it is possible to study
the impacts of the performance bounds achievable in the region ΩA in the presence
of an arbitrarily lossy parasitic region ΩG. This analysis is of practical importance
for informing the speci�cation and design of antennas placed in operating environ-
ments where varying loading or parasitic e�ects may be encountered, e.g., in-body
or embedded antennas [39].
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8 Conclusion

Using tools from convex and multi-objective optimization, we study the trade-o�s
between antenna e�ciency and radiation Q-factor. Even with this focused scope,
there exists a plethora of constraints (resonance, restricted controllable regions) to
explore with minimal changes in the formulation. Manipulating the choice of ope-
rators and di�erent constraints yields many more tractable problems than covered
here. Thus a general conclusion of this work is that, independent of speci�c nu-
merical outcomes, the proposed formulation of multi-objective current optimization
problems enables the study and quanti�cation of many antenna problems and will
seed signi�cant further work in this area.

More speci�c conclusions and physical insights are drawn from the numerical
examples. Foremost is the enormous cost of self-resonance on e�ciency, i.e., the
maximum e�ciency attainable by a self-resonant current is generally much lower
than that achievable by a non-resonant current. Additionally, though technically
continuous, the Pareto front in this problem is clustered into two distinct regions
prioritizing either e�ciency or Q-factor. Examination of these clusters shows the
rapid transition between a nearly constant current (non-resonant, high e�ciency,
extremely high Q-factor) and a multi-mode solution (self-resonant, low-e�ciency,
low Q-factor). Moving slightly away from the extreme case of the optimal e�ciency
constant current, we �nd a smoother single-mode solution which has a Q-factor
only slightly higher than that of the multi-mode solution while having signi�cantly
improved e�ciency when lossless tuning is assumed. The numerical comparisons
between these two classes of solutions vary between examples, but the structure of
the results stays the same.

Given these results we conclude by answering the question: By looking for the
most e�cient antenna possible, do we sacri�ce Q-factor? Yes, but numerical results
suggest that the relative tradeo� depends highly on the speci�c problem under
consideration. For the fully controllable regions studied here, the sacri�ce is small,
with increases to Q-factor on the order of 10% to 50% allowing for very large increases
in e�ciency. However for small controllable antenna regions near larger parasitic
structures the tradeo� cost between these parameters may be much higher.

Appendix A Degeneracies

Degenerate eigenvalues require special care when constructing the Pareto front for
the tuned problem (3.1). Many degenerate eigenvalues are associated with symme-
tries in the geometry of the problem [43]. Inversion symmetry r → −r are inherent
in canonical geometries such as rectangles and spheroids, as well as simple antenna
geometries like loops and dipoles. For these cases the symmetries are known and
can be used to turn the computational problems with degeneracies to advantages.
The inversion symmetry decomposes the solution set into two orthogonal subspaces
consisting of symmetric (even) and anti-symmetric current densities. This reduces
the size of the matrices and hence computational complexity in the generalized ei-
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genvalue problems. The decomposition also separates the solutions into TM (even)
and TE (odd) parts in the limit of electrically small structures.
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