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Abstract

Changing illumination constitutes a serious challenge for video seg-
mentation algorithms, especially in outdoor scenes under cloudy condi-
tions. Rapid illumination changes, e.g. caused by varying cloud cover,
often cause existing segmentation algorithms to erroneously classify
large parts of the image as foreground.

Here a method that extends existing segmentation algorithms by
detecting illumination changes using a CUSUM detector and adjust-
ing the background model to conform with the new illumination is
presented. The method is shown to work for two segmentation algo-
rithms, and it is indicated how the method could be extended to other
algorithms.

1 Introduction

The segmentation of image sequences in foreground and background is a
fundamental low-level task in computer vision. The result is used in dif-
ferent high level operations such as object tracking, video surveillance, and
monitoring.

To handle dynamically changing backgrounds most segmentation algo-
rithms today use adaptive estimation methods. Early work includes the use
of Kalman (Karman & von Brandt, 1990) and Wiener filters (Toyama et al.,
1999).

Allowing for only one background description per pixel these models en-
counter problems with multi-modal backgrounds. Multi-modal backgrounds
can be handled by modelling the background using Gaussian mixtures (Stauf-
fer & Grimson, 1999; Tuzel et al., 2005; Lindström et al., 2006). Using
similar background models these methods differ primarily in the recursive
updates of the model parameters. Further work in this rapidly growing field
includes post processing to remove shadows (KaewTraKulPong & Bowden,
2001), use of depth data (Harville et al., 2001) and compensation for camera
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movement (Hayman & Eklundh, 2003), to mention a few. An alternative to
the Gaussian mixtures is use use kernel density estimators (Elgammal et al.,
2000).

The recursive parameter estimation methods of the algorithms men-
tioned above handle gradual illumination changes. But, rapid illumination
changes often cause the algorithms to, erroneously, classify large parts of
the image as foreground (Lindström et al., 2006). In outdoor applications
illumination changes are mainly caused by varying cloud cover. The adap-
tive nature of the algorithms ensures that they will readjust to the new
background after a limited period, during which a substantial part of the
image may be misclassified as foreground. Unfortunately, this adaptation
can take 10-20 seconds (Lindström et al., 2006), severely hampering high
level algorithms that depend on the foreground segmentation.

Previous attempts to alleviate this drawback include temporarily in-
creasing the forgetting factor (Schindler & Wang, 2006), switching between
parallel background models when the amount of foreground exceeds a fixed
threshold (Toyama et al., 1999) or using edge detector data (Jabri et al.,
2000; Lindström et al., 2006). However, these approaches do not completely
resolve the issue, and potential complications include: 1) Increasing the
learning rate still requires some time for the model to adapt; 2) Using a
fixed threshold might not detect cases when only parts of the image is af-
fected by cloud cover; 3) Switching between parallel models works better
for indoor applications, where the illumination changes often are caused by
lights turning on or off, than for outdoor applications; 4) Under constant
illumination, edge detector data causes more false positives than RGB data.

Other alternatives include the use of depth information from multiple
cameras (Ivanov et al., 2000; Lim et al., 2005). However this increases the
hardware requirements and places some restrictions on the camera place-
ment (Lim et al., 2005).

Here a method based on detection of the rapid illumination changes using
a CUSUM detector (Page, 1954; Gustafsson, 2000) followed by adjustments
of the background model is proposed. The method allows a straightforward
extension of existing segmentation algorithms that improves their ability to
handle rapid illumination changes. The method is shown to work with the
algorithms in Stauffer & Grimson (1999) and Lindström et al. (2006), and
should be adaptable to other algorithms that model the background using
(Gaussian) mixtures.

The proposed method is described in Section 2, with 2.1 describing the
change detection and 2.2 describing how the background model is modified
to account for illumination changes. Results are presented in Section 3 and
Section 4 gives conclusions and a short summary.
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2 Theory and method

Handling rapid illumination changes can conceptually be divided into two
parts. Firstly the illumination change has to be detected, and secondly the
model should be adjusted to better reflect the new background.

2.1 Detection of illumination changes

Illumination changes caused by rapidly changing cloud cover differ from illu-
mination changes caused by lights turning on or off. In the former case the
change is gradual with an increasing part of the image being affected as the
clouds drift over the scene; in the latter case the change is momentaneous.
This difference strongly influences the formulation of the change detection.

Illumination changes are very difficult to detect at a pixel level, implying
that use of frame level information would be advantageous (Toyama et al.,
1999). Here the total amount of foreground, Pt, in the image is used

Pt =

∑
i P

(
xit ∈ foreground|model at time t

)

nbr. of pixels
, (1)

where xit is pixel i at time t. For models that do not give foreground
probabilities, e.g. Stauffer & Grimson (1999), the probabilities in (1) are
replaced by indicators for the pixel belongings.

If clouds start to affect the segmentation at time T0, a simple model for
∆Pt = Pt − Pt−1 is

∆Pt ∈
{

N
(
0, σ2

)
, t ≤ T0,

N
(
k, σ2

)
, t > T0,

(2)

i.e. the total amount of foreground follows a random walk with mean zero
before the clouds cause an (approximately linear) increase in the expected
amount of foreground, differentiation reduces the problem to detection of a
shift in expectation. Here σ2 relates to the normal variation in Pt caused by
objects entering and leaving the scene, and k depends on how fast clouds
affect the illumination.

As a comparison an appropriate model for momentaneous illumination
change would be obtained by replacing ∆Pt with Pt in (2). A detection
scheme similar to that presented here should then be applicable. Since
we focus on the rapid but not instantaneous illumination changes that are
prevalent in outdoor applications, this is outside the scope of this article

A complication is that variations in ∆Pt can be caused both by objects
entering or leaving the scene and by illumination changes. Thus the de-
tection becomes a question of separating natural variations from increases
caused by illumination changes, see Figure 1.
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Figure 1: The total amount of foreground, Pt, in the video sequence as a
function of the frame number (15 fps). The two lower panels show enlarge-
ments of what happens when a car enters the scene (left) and when a cloud
alters the illumination in a section of the scene (right).

If ŝ2
t is a recursive estimate of σ2 at time t and using ∆Pt defined in (2),

then a CUSUM detector (Gustafsson, 2000, Ch. 3.4) can be formulated as

yt = max
(
yt−1 + ∆Pt/

√
ŝ2
t − C, 0

)
, (3)

with y0 = 0, and a change is detected when yt passes a threshold, h. The
drift, C, and threshold, h, are design parameters.

If σ2 is estimated using a delayed, windowed estimate

ŝ2
t =

∑L+T
i=T+1

(
∆Pt−i − ∆P t

)2

L − 1
, (4)

where ∆P t =
∑L+T

i=T+1 ∆Pt−i/L, and assuming that the covariance

C(∆Pt,∆Pτ ) = 0 if t 6= τ

(in practise for this application the auto-correlation is very small), then
∆Pt/

√
ŝ2
t follows a doubly non-central Student’s t distribution (Krishnan,

1967) (see Appendix, page 16, for details). The approximate expectation of
∆Pt/

√
ŝ2
t for large values of L is

E

(
∆Pt√

ŝ2
t

)
≈






0, t ≤ T0,
k
σ

4L−1
4(L−1) , T0 < t ≤ T̂ ,

k
σ

4L−1
4(L−1) −

k3

σ3

(t− bT )
(
1− t− bT

L

)

2(L−1) , T̂ < t < L + T̂ ,
k
σ

4L−1
4(L−1) , L + T̂ ≥ t,

(5)

where T̂ = T + T0 + 1.
Note that the expectation is large for T0 < t ≤ T̂ where after it decreases.

This decrease is caused by (4) overestimating σ2 since it uses ∆Pt:s both
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before and after T0. The decrease is a motivation for the use of a suitably
chosen lag, T , in (4).

When selecting C it should be noted that ∆Pt/
√

ŝ2
t follows a standard

Student’s t distribution with L − 1 degrees of freedom if t ≤ T0 (see Ap-
pendix, page 16). If L is large ∆Pt/

√
ŝ2
t will be approximately N(0, 1) and

C could be taken as a Gaussian quantile, e.g. C = λ0.99 = 2.3263, which
should ensure that yt ≈ 0 for t ≤ T0.

After the illumination change at T0, yt will increase approximately as

E(yt) ≈
{

0, t ≤ T0,(
k
σ
− C

)
4L−1

4(L−1) (t − T0), t > T0,
(6)

with a somewhat slower increase for t > T̂ due to the overestimation of
σ2. The expression is approximate since the true expression for E(yt) is
intractable, due to the maximum operation in (3). Given some knowledge
about the normal variations, σ2, in ∆Pt and the speed, k, at which the
illumination changes affect Pt, (6) can be used to select a suitable threshold,
h.

2.2 Modifying the background model

Having detected a potential illumination change the background model should
be adapted to represent the new illumination. In this section a simple il-
lumination model is used to motivate a functional relationship between the
old and new background models, estimation of parameters in the relation-
ship is described, and details for altering the background model for the two
segmentation algorithms in Stauffer & Grimson (1999) and Lindström et al.
(2006), are given.

Since both the algorithms studied here operate in RGB colour space the
following discussion is focused on that space. However for algorithms work-
ing in different colour spaces, such as normalised RGB or Lαβ the change
detection presented earlier and the principles of altering the background
model are still valid. But a slightly different method for calculating the new
background is needed.

2.2.1 A simple illumination model

If ρic is the measured intensity of channel c (c ∈ {1, 2, 3} for RGB images)
for pixel i on a Lambertian surface, then a simple illumination model (Tsin
et al., 2001) is

ρic =

∫
fc(λ)Si(λ)l(λ)dλ.

Here fc(λ) is the sensitivity of the channel, Si(λ) is the surface reflectance
and l(λ) is the light spectrum. The simplifying assumption of a Lambertian
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surface is made since specular highlights only occur in few, if any, pixels so
ignoring specular highlights will have limited effects.

In case of altered illumination only l(λ) is affected, and the new pixel
values become

ρ̂ic = α

∫
fc(λ)Si(λ)l̂(λ)dλ, (7)

where α is a possible attenuation due to the automatic gain control (AGC)
of the camera. If the illumination change is roughly homogeneous over the
support of fc(λ) then (7) can be reformulated as

ρ̂ic = α

∫
fc(λ)Si(λ)l̂(λ)dλ ≈ αkc

∫
fc(λ)Si(λ)l(λ)dλ = κcρic, (8)

where κc = αkc are channel specific constants. The approximately linear
relationship is illustrated in Figure 2.

The assumption of homogeneous illumination change is fulfilled if, ei-
ther the illumination change mainly affects the intensity and not the colour
of the light or, the sensor has a narrow bandwidth compared to the struc-
tures in the illumination change, e.g. if the illumination change consists of
one homogeneous change in the light affecting the red sensor and, another,
homogeneous change in the light affecting the green sensor. The latter is
usually true for most illumination changes (Finlayson et al., 2000), including
those caused by clouds.
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Figure 2: The top row depicts the scene before and after an illumination
change. The bottom row contains 2-dimensional histograms of pixel values
(logarithmic scale) before and after the change in intensities for the three
colours (from left to right: red, green and blue), together with a regression
line estimated using (9).
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2.2.2 Estimating κc

Denote the current estimate of the pixel values of the background for chan-
nel c, pixel i, as µic, and denote the current pixel value as xic. It should now
be noted that µic and xic are noisy observations of ρic and ρ̂ic respectively.
This implies that κc (8) can be estimated using regression with errors in
both variables (Fuller, 1987). Further, only those pixels actually affected
by the illumination change should be used to estimate κc. Since the illu-
mination change has been detected as an abnormal amount of foreground,
the foreground probabilities (indicators), pi, of each pixel can be used as
regression weights. Thus we take

κc =
Sxx − Sµµ +

√
(Sxx − Sµµ)2 + 4S2

µx

2Sµx
, (9)

where Sµµ =
∑

i µ2
icpi, and similarly for Sxx and Sµx. The new estimates of

the background become µ̂ic = κcµic, see Figure 2.
A potential issue here is that actual foreground objects in the scene will

act as outliers, leading to strange estimates of κc. However, experiments
indicate that using a robust estimator of κc makes very little difference, and
preserving the old background drastically reduces the problems caused by
incorrect κc estimates.

2.2.3 Applying the changes

The adaptation of the background described above now has to be incorpo-
rated into existing background segmentation algorithms. The principles for
doing this are very similar for all algorithms but details may vary.

In principle the most likely and least likely background components for
each pixel are located, κc is estimated and a new possible background is
determined. The least likely background is then replaced with the new,
altered background and the two background components (most likely and
altered) are given equal prior probabilities. The motivation for this strategy
is twofold: 1) Parts not yet affected by the illumination change still need the
old background model; 2) In case of an erroneous change detection retention
of the old background models allows for graceful failure. Note that this only
alters the expectation of the background components and not their variances.
We have found that estimating appropriate new in variances is a far harder
task than estimating the new expectations. Further a small increase in the
forgetting factor for the first few frames after the change detection seems
to be sufficient for the recursive algorithm to adjust the variance of the
background components.

Below details for the algorithms proposed by Stauffer & Grimson (1999)
and Lindström et al. (2006) are given. These should be fairly easy to extend
to other segmentation algorithms.
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The algorithm proposed by Stauffer & Grimson (1999) models each pixel
value, xi, as a Gaussian mixture

p(xi) =

K∑

k=1

πikf(xi|µik, σ
2
ik),

where πik are mixture probabilities and f(xi|µik, σ
2
ik) are Gaussian densities

with expectation µik and covariance matrix σ2
ikI, where I is an identity ma-

trix of suitable size. Here k indices the different Gaussian components used
to describe the value taken by each pixel. The components are then ranked
in decreasing order by their weight to standard deviation ratio, πik/σik,
and the first few components are considered to be background. The most
likely background model and least likely model can therefore be found by
considering the ratio πik/σik.

Introducing Ii = argmaxk
πik

σik
and Ji = argmink

πik

σik
, the most likely pixel

values of the background are µi,Ii,c, where the additional subscript c indices
the colour channel. Using µi,Ii,c together with the pixels from the current
frame, xic, and the foreground probabilities, pi, in (9) gives estimates of κc

which allows calculation of new background pixel values that accounts for
the altered illumination. The least likely component is replaced with the
new background, i.e.

µi,Ji,c := κcµi,Ii,c, and σ2
i,Ji

:= σ2
i,Ii

.

And the probability of the most likely background component is divided
evenly between the old and new background components

πi,Ji
:= πi,Ii

/2, and πi,Ii
:= πi,Ii

/2,

renormalising so that
∑

k πi,k = 1 if necessary. This replaces the old, most
likely, background model with two, equally probable, models relating to the
image with and without illumination changes. Note that as much as possi-
ble of the old background model is retained by letting the new component
replace the component with the lowest mixture weight.

For the algorithm proposed by Lindström et al. (2006), the procedure
is very similar. Here the pixel values are modelled using a common, global
Gaussian mixture for the foreground and local Gaussian mixtures for the
background. Let πB

il and µB
il be the mixture probabilities and expectations

of pixel i in the lth, local, background class. We once again introduce,
Ii = argmaxl π

B
il and Ji = argminl π

B
il , to index the most likely and least

likely background. As previously we use (9) to obtain estimates of κc, and
replace the least likely background with the altered background, i.e. µB

i,Ji,c
:=

κcµ
B
i,Ii,c

and ΣB
i,Ji

:= ΣB
i,Ii

. The mixture probabilities, πB
il , are divided evenly

between the old and new background components by splitting the cumulative
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sums (see Lindström et al., 2006, for details), SB
i,Ji

:= SB
i,Ii

/2 and SB
i,Ii

:=

SB
i,Ii

/2.

Another aspect remains to be considered. If the illumination change is
detected rapidly, the κc used to calculate the new background component (8)
will be estimated using only a small portion of the image, giving a reasonable
but far from perfect estimate. This will in turn cause a less than optimal
new background component. To mitigate the effects of slightly incorrect new
background component, the forgetting factor should be increased for a short
time period, allowing faster changes to the background model. Increasing
the forgetting factor also gives the segmentation algorithms more margin to
adapt the covariance matrices of the new background component, avoiding
the cumbersome issue of estimating the covariance matrices.

3 Results

The algorithms from (Stauffer & Grimson, 1999) and (Lindström et al.,
2006) have been used to segment a video sequence of 20 000 frames. The
video is from a traffic surveillance camera under cloudy conditions and con-
tains several illumination changes caused by clouds obscuring the sun.

Parameter values used for the algorithm in (Stauffer & Grimson, 1999)

were α = 0.001, T = 0.7, K = 5, ωinit = 0.05 and σ2
init =

∑
i

(
x1i − x1i

)2
/
(
10N

)
,

i.e. one tenth of the variance in the first frame, with α temporarily in-
creased to 0.01 after a detection. Parameters for the algorithm in (Lind-
ström et al., 2006) were α = 0.99, Kmax = 8, Lmax = 3, C = 0.1, Uadd = 135,
Umem = 900, πF

init = 0.2, πF
min = 0.01, v = 3 and Σinit was taken as one fifth

of the covariance matrix from the first frame with the off diagonal elements
set to zero. The parameter α was temporarily decreased to 0.90 after a de-
tection. For further details about the parameters and their interpretation,
see Stauffer & Grimson (1999) and Lindström et al. (2006).

The change detector from Section 2.1 was used to detect anomalous
events and three different approaches for handling the illumination changes
were applied: 1) do nothing, 2) increase the forgetting factor for a limited
time period (150 frames or 10 s), 3) modify the background according to
Section 2.2 and increase the forgetting factor for a limited time period (150
frames or 10 s). The parameters of the change detector (3) and (4) were set
to L = 150 frames (10 seconds), T = 30 frames (2 seconds), C = 2.3263 and
h = 50.

Both approaches 2) and 3) reduce the amount of erroneously detected
foreground after illumination changes, see Figure 3, with the largest re-
duction taking place for approach 3). Studying a few frames before and
after a detected illumination change (see Figures 4, 5 and 6) shows that
only increasing the forgetting factor still leads to a short period with erro-
neously detected foreground. It also shows that modifying the background
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Figure 3: The graphs depict the amount of foreground in the video as a
function of the frame number (15 fps) using the algorithm in (Stauffer &
Grimson, 1999) (left) and (Lindström et al., 2006) (right) for the three sce-
narios: 1) no intervention (top), 2) increased forgetting factor (middle) and
3) altered background model and increased forgetting factor (bottom). In-
tervention points are marked with dots in the two lower figures. Note the
difference in vertical scale for the three graphs.

improves the performance for both segmentation algorithms. It should be
noted that the change is detected eleven frames later when using the al-
gorithm in (Stauffer & Grimson, 1999). This is due to the slightly higher
number of false foreground detections in this algorithm, which reduces the
signal to noise ratio of the change detector.

Maintaining the old background introduces robustness against incor-
rectly detected changes, i.e. false positives, see Figure 7. Here a bus causes
an incorrect change detection and the background is modified. However,
since the new and old background models are used in parallel after a change
the incorrect detection does not degrade the segmentation.
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Figure 4: Results for a correctly detected illumination change using the seg-
mentation algorithm in (Lindström et al., 2006). From top to bottom, frame
number and frame number relative to the frame at which the change was
detected, original data, detected foreground with no intervention, with in-
creased forgetting factor, and with altered background model and increased
forgetting factor.
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Figure 5: Results for a correctly detected illumination change using the seg-
mentation algorithm in (Stauffer & Grimson, 1999). Note that the change
is detected eleven frames later than when using the algorithm in (Lindström
et al., 2006). From top to bottom, frame number and frame number rela-
tive to the frame at which the change was detected, original data, detected
foreground with no intervention, with increased forgetting factor, and with
altered background model and increased forgetting factor.

12



16788 16790

Figure 6: Results for a correctly detected illumination change using the seg-
mentation algorithm in (Stauffer & Grimson, 1999). From top to bottom,
frame number, original data, detected foreground with no intervention, and
with altered background model and increased forgetting factor. The differ-
ence in segmentation prior to the detection is due to previous compensations
for illumination changes. Note that the two pedestrians remain after altering
the background model.
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Figure 7: Results for a incorrectly detected illumination change using the
segmentation algorithm in (Lindström et al., 2006). From top to bottom,
frame number relative to the frame at which the change was detected, orig-
inal data, detected foreground with no intervention, and with altered back-
ground model and increased forgetting factor. Note that the incorrect de-
tection does not affect the segmentation.

4 Conclusions

A method that extends existing segmentation algorithms by detecting illu-
mination changes and adjusting the background model to conform with the
new illumination has been presented. Other segmentation algorithms that
attempt to handle illumination changes exist but commonly either require
more hardware (Ivanov et al., 2000; Lim et al., 2005) or are relatively com-
plex to implement (Javed et al., 2002). The aim of the method presented
in this paper is to give a relatively simple extension that allows existing
mixture based segmentation algorithms to handle illumination changes.

The method uses a CUSUM detector to find illumination changes fol-
lowed by weighted regression with errors in both variables to estimate a new
background that reflects the altered illumination. Details for the CUSUM
detector were given, and possible detection speeds and choices of detector pa-
rameters were discussed. Regarding the change detection two things should
be noted: 1) The increase in foreground caused by the illumination change
has to be notably larger than the variation ordinarily caused by foreground
objects, for the change to be detected. 2) A better, i.e. less false positives,
segmentation algorithm gives less noise in the total amount of foreground Pt

thus requiring smaller changes before detection of an illumination change.
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Results for two segmentation algorithms were given and it was indicated
how the method can be adapted for use with other segmentation algorithms,
allowing a simple extension of existing algorithms that improve their ability
to handle rapid illumination changes. The results show that the proposed
method significantly reduces the effects of rapid illumination changes in an
outdoor surveillance application. Further it was shown that the method is
robust against false positives, i.e. incorrect detection of changes.
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A Appendix

The change detector (3) contains terms of the kind ∆Pt/
√

ŝ2
t . To analyse

the properties of the change detector we need the expectation and variance
this term where ∆Pt and ŝ2

t are defined according to (2) and (4).

In the following superscript arrows, ~x, denotes column vectors, with ~1
being a vector of ones, bold face, A, denotes matrices with I being the
identity matrix, and ⊤ denotes transpose. To simplify notation the ∆Pt:s
used in the estimate of ŝ2

t are stacked in a vector, ~xt, giving

~xt =
(
∆Pt−T−1, . . . , ∆Pt−T−L

)⊤
.

Under the assumptions outlined in Section 2.1 the ~x-vector follows a
multivariate Gaussian distribution, ~xt ∈ N

(
~µt, σ

2I
)
. The expectation, µt,

varies with t depending on the position of the change point T0 relative to ~xt

and consists of: 1) a zero vector, 2) a set of t − T̂ k:s followed by L + T̂ − t
0:s, or 3) a vector containing only k:s, i.e.

~µt =






~0, t ≤ T̂

(k, . . . , k︸ ︷︷ ︸
t− bT

, 0, . . . , 0︸ ︷︷ ︸
L+ bT−t

)⊤, T̂ < t < L + T̂

k~1, L + T̂ ≤ t

.

The estimate of σ2 (4) can now be rewritten as

ŝ2
t (L − 1)

σ2
=

∑L+T
i=T+1

(
∆Pt−i − ∆P t

)2

σ2
= ~x⊤A~x,

where A =
(
I − (~1~1⊤)/L

)
/σ2. Now

(
ŝ2
t (L − 1)

)
/σ2 follows a non-central

χ2 distribution with L− 1 degrees of freedom and non-centrality parameter
δ2
t , denoted χ2

L−1(δ
2
t ), iff the following conditions are fulfilled (Styan, 1970,

Theorem 4)

(σ2I)
(
A(σ2I)

)2
= (σ2I)A(σ2I), (10)

rank
(
(σ2I)A(σ2I)

)
= tr

(
A(σ2I)

)
= L − 1, (11)

~µ⊤

t (A(σ2I))2 = ~µ⊤

t A(σ2I), (12)

~µ⊤

t A(σ2I)A~µt = ~µ⊤

t A~µt = δ2
t . (13)

The matrix Aσ2 is a projection matrix and thus idempotent, which implies
that (10), (12) and (13) are satisfied. It is obvious that

rank
(
σ2IAσ2I

)
= rank

(
Aσ2

)
= L − 1,
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with the last equality following since Aσ2 is a projection matrix. And since
tr

(
Aσ2

)
= L − 1, (11) is fulfilled. Finally δ2

t in (13) becomes

δ2
t =

{
k2

σ2 (t − T̂ )
(
1 − t− bT

L

)
, T̂ < t < L + T̂ ,

0, otherwise.

Having obtained the density for ŝ2
t , we rewrite ∆Pt/

√
ŝ2
t as

∆Pt√
ŝ2
t

=
∆Pt

σ√
ŝ2
t
(L−1)
σ2

√
L − 1, (14)

which gives a random variable on the form of a uni-variate Gaussian divided
by the square root of a non-central χ2 scaled by the square root of the
degrees of freedom in the χ2 distribution. If ∆Pt and ŝ2

t are independent
(true if T ≥ 1) (14) follows a doubly non-central Student’s t distribution, see
Krishnan (1967), denoted t′′. Note that the doubly non-central Student’s t
distribution in (14) is reduced to a standard Student’s t distribution with
L − 1 degrees of freedom for t ≤ T0, since δt = 0 and E(∆Pt) = 0 if t ≤ T0.

The density of a t′′ distribution is intractable but the raw moments are
given in Krishnan (1967), e.g. the first two moments are

E

(
∆Pt√

ŝ2
t

)
=






0, t ≤ T0,

k
σ

Γ
(

L−2

2

)

Γ
(

L−1

2

)
√

L−1
2 , T0 < t ≤ T̂ ,

k
σ

Γ
(

L−2

2

)

Γ
(

L−1

2

)
√

L−1
2 H

(
1
2 , L−1

2 ;
−δ2

t

2

)
, T̂ < t < L + T̂ ,

k
σ

Γ
(

L−2

2

)

Γ
(

L−1

2

)
√

L−1
2 , L + T̂ ≤ t,

and

E

(( ∆Pt√
ŝ2
t

)2
)

=






L−1
L−3 , t ≤ T0,(
1 + k2

σ2

)
L−1
L−3 , T0 < t ≤ T̂ ,

(
1 + k2

σ2

)
L−1
L−3H

(
1, L−1

2 ;
−δ2

t

2

)
, T̂ < t < L + T̂ ,(

1 + k2

σ2

)
L−1
L−3 , L + T̂ ≤ t,

where H
(
1/2, (L − 1)/2;−δ2

t /2
)

is the hyper-geometric function.

Now if the window used to estimate σ2 is large the degrees of freedom,
L − 1, will be large and the series expansion for the moments in terms of
1/(L − 1) given by Krishnan (1967) can be used to obtain approximate

17



expressions for the expectation

E

(
∆Pt√

ŝ2
t

)
≈






0, t ≤ T0,
k
σ

4L−1
4(L−1) , T0 < t ≤ T̂ ,

k
σ

4L−1
4(L−1) −

k3

σ3

(t− bT )
(
1− t− bT

L

)

2(L−1) , T̂ < t < L + T̂
k
σ

4L−1
4(L−1) , L + T̂ ≤ t.

and variance

V

(
∆Pt√

ŝ2
t

)
≈






1 + 2
L−1 , t ≤ T0,

1 + 2
L−1 + k2

σ2

1
2(L−1) , T0 < t ≤ T̂ ,

1 + 2
L−1 + k2

σ2

1−2(t− bT )
(
1− t− bT

L

)

2(L−1) , T̂ < t < L + T̂ ,

1 + 2
L−1 + k2

σ2

1
2(L−1) , L + T̂ ≤ t.

References

Elgammal, A. M., Harwood, D. & Davis, L. S. (2000). Non-parametric
model for background subtraction. In Computer vision - ECCV 2000, 6th
european conference on computer vision, vol. 2. Springer, pp. 751–767.

Finlayson, G. D., Hordley, S. D., Marchant, J. A. & Onyango, C. M. (2000).
Colour invariance at a pixel. In Proc. british machine vision conference.
pp. 13–22.

Fuller, W. A. (1987). Measurement error models. John Wiley & Sons Ltd.

Gustafsson, F. (2000). Adaptive filtering and change detection. John Wiley
& Sons Ltd.

Harville, M., Gordon, G. & Woodfill, J. (2001). Foreground segmentation
using adaptive mixture models in color and depth. In IEEE workshop on
detection and recognition of events in video. pp. 3–11.

Hayman, E. & Eklundh, J.-O. (2003). Statistical background subtraction for
a mobile observer. In Ninth IEEE international conference on computer
vision, vol. 1. IEEE, pp. 67–74.

Ivanov, Y., Bobick, A. & Liu, J. (2000). Fast lighting independent back-
ground subtraction. Internat. J. Comput. Vision 37, 199–207.

Jabri, S., Duric, Z., Wechsler, H. & Rosenfeld, A. (2000). Detection and lo-
cation of people in video images using adaptive fusion of color and edge in-
formation. In 15th international conference on pattern recognition, vol. 4.
IEEE, pp. 627–630.

18



Javed, O., Shafique, K. & Shah, M. (2002). A hierarchical approach to
robust background subtraction using color and gradient information. In
Workshop on motion and video computing. IEEE, pp. 22–27.

KaewTraKulPong, P. & Bowden, R. (2001). An improved adaptive back-
ground mixture model for real-time tracking with shadow detection. In
2nd european workshop on advanced video-based surveillance systems. pp.
149–158.

Karman, K.-P. & von Brandt, A. (1990). Moving object recognition using an
adaptive background memory. In V. Cappellini, ed., Time-varying image
processing and moving object recognition, vol. 2. Elsevier, pp. 297–307.

Krishnan, M. (1967). The moments of a doubly noncentral t-distribution.
J. Amer. Statist. Assoc. 62, 278–287.

Lim, S.-N., Mittal, A., Davis, L. S. & Paragios, N. (2005). Fast illumination-
invariant background subtraction using two views: Error analysis, sensor
placement and applications. In IEEE computer society conference on com-
puter vision and pattern recognition, vol. 1. IEEE, pp. 1071–1078.
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