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Low-frequency and rare exome chip variants
associate with fasting glucose and type 2
diabetes susceptibility
Jennifer Wessel, Audrey Y. Chu, Sara M. Willems, Shuai Wang et al.#

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the

role of coding variation on these traits by analysis of variants on the HumanExome BeadChip

in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a

novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492;

MAF¼ 1.4%) with lower FG (b¼ �0.09±0.01 mmol l� 1, P¼ 3.4� 10� 12), T2D risk

(OR[95%CI]¼0.86[0.76–0.96], P¼0.010), early insulin secretion (b¼ �0.07±0.035

pmolinsulin mmolglucose
� 1 , P¼0.048), but higher 2-h glucose (b¼0.16±0.05 mmol l� 1,

P¼4.3� 10�4). We identify a gene-based association with FG at G6PC2

(pSKAT¼ 6.8� 10� 6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and

S324P). We identify rs651007 (MAF¼ 20%) in the first intron of ABO at the putative

promoter of an antisense lncRNA, associating with higher FG (b¼0.02±0.004 mmol l� 1,

P¼ 1.3� 10� 8). Our approach identifies novel coding variant associations and extends

the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D

susceptibility.
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G
enome-wide association studies (GWAS) highlight the
role of common genetic variation in quantitative glycae-
mic traits and susceptibility to type 2 diabetes (T2D)1,2.

However, recent large-scale sequencing studies report that rapid
expansions in the human population have introduced a
substantial number of rare genetic variants3,4, with purifying
selection having had little time to act, which may harbour larger
effects on complex traits than those observed for common
variants3,5,6. Recent efforts have identified the role of low
frequency and rare coding variation in complex disease and
related traits7–10, and highlight the need for large sample sizes to
robustly identify such associations11. Thus, the Illumina
HumanExome BeadChip (or exome chip) has been designed
to allow the capture of rare (MAFo1%), low frequency
(MAF¼ 1–5%) and common (MAFZ5%) exonic single
nucleotide variants (SNVs) in large sample sizes.

To identify novel coding SNVs and genes influencing
quantitative glycaemic traits and T2D, we perform meta-analyses
of studies participating in the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE12) T2D-Glycemia
Exome Consortium13. Our results show a novel association of a
low frequency coding variant in GLP1R, a gene encoding a drug
target in T2D therapy (the incretin mimetics), with FG and T2D.
The minor allele is associated with lower FG, lower T2D risk,
lower insulin response to a glucose challenge and higher 2-h
glucose, pointing to physiological effects on the incretin system.
Analyses of non-synonymous variants also enable us to identify
particular genes likely to underlie previously identified
associations at six loci associated with FG and/or FI (G6PC2,
GPSM1, SLC2A2, SLC30A8, RREB1 and COBLL1) and five with
T2D (ARAP1, GIPR, KCNJ11, SLC30A8 and WFS1). Further, we
found non-coding variants whose putative functions in epigenetic
and post-transcriptional regulation of ABO and G6PC2 are
supported by experimental ENCODE Consortium, GTEx and
transcriptome data from islets. In conclusion, our approach
identifies novel coding and non-coding variants and extends the
allelic and functional spectrum of genetic variation underlying
diabetes-related quantitative traits and T2D susceptibility.

Results
An overview of the study design is shown in Supplementary
Fig. 1, and participating studies and their characteristics are
detailed in Supplementary Data 1. We conducted single variant
and gene-based analyses for fasting glucose (FG) and fasting
insulin (FI), by combining data from 23 studies comprising up to
60,564 (FG) and 48,118 (FI) non-diabetic individuals of European
and African ancestry. We followed up associated variants at novel
and known glycaemic loci by tests of association with T2D,
additional physiological quantitative traits (including post-
absorptive glucose and insulin dynamic measures), pathway
analyses, protein conformation modelling, comparison with
whole-exome sequence data and interrogation of functional

annotation resources including ENCODE14,15 and GTEx16. We
performed single-variant analyses using additive genetic models
of 150,558 SNVs (P value for significance r3� 10� 7) restricted
to MAF40.02% (equivalent to a minor allele count (MAC)
Z20), and gene-based tests using Sequence Kernel Association
(SKAT) and Weighted Sum Tests (WST) restricted to variants
with MAFo1% in a total of 15,260 genes (P value for significance
r2� 10� 6, based on number of gene tests performed). T2D
case/control analyses included 16,491 individuals with T2D and
81,877 controls from 22 studies (Supplementary Data 2).

Novel association of a GLP1R variant with glycaemic traits. We
identified a novel association of a nonsynonymous SNV (nsSNV)
(A316T, rs10305492, MAF¼ 1.4%) in the gene encoding the
receptor for glucagon-like peptide 1 (GLP1R), with the minor (A)
allele associated with lower FG (b¼ � 0.09±0.01 mmol l� 1

(equivalent to 0.14 SDs in FG), P¼ 3.4� 10� 12, variance
explained¼ 0.03%, Table 1 and Fig. 1), but not with FI (P¼ 0.67,
Supplementary Table 1). GLP-1 is secreted by intestinal L-cells in
response to oral feeding and accounts for a major proportion of
the so-called ‘incretin effect’, that is, the augmentation of insulin
secretion following an oral glucose challenge relative to an
intravenous glucose challenge. GLP-1 has a range of downstream
actions including glucose-dependent stimulation of insulin
release, inhibition of glucagon secretion from the islet alpha-cells,
appetite suppression and slowing of gastrointestinal motility17,18.
In follow-up analyses, the FG-lowering minor A allele was
associated with lower T2D risk (OR [95%CI]¼ 0.86 [0.76–0.96],
P¼ 0.010, Supplementary Data 3). Given the role of incretin
hormones in post-prandial glucose regulation, we further
investigated the association of A316T with measures of post-
challenge glycaemia, including 2-h glucose, and 30 min-insulin
and glucose responses expressed as the insulinogenic index19 in
up to 37,080 individuals from 10 studies (Supplementary
Table 2). The FG-lowering allele was associated with higher 2-h
glucose levels (b in SDs per-minor allele [95%CI]: 0.10 [0.04,
0.16], P¼ 4.3� 10� 4, N¼ 37,068) and lower insulinogenic index
(� 0.09 [� 0.19, � 0.00], P¼ 0.048, N¼ 16,203), indicating
lower early insulin secretion (Fig. 1). Given the smaller sample
size, these associations are less statistically compelling; however,
the directions of effect indicated by their beta values are
comparable to those observed for fasting glucose. We did not
find a significant association between A316T and the measure of
‘incretin effect’, but this was only available in a small sample size
of 738 non-diabetic individuals with both oral and intravenous
glucose tolerance test data (b in SDs per-minor allele [95%CI]:
0.24 [� 0.20–0.68], P¼ 0.28, Fig. 1 and Supplementary Table 2).
We did not see any association with insulin sensitivity estimated
by euglycaemic-hyperinsulinemic clamp or frequently sampled
IV glucose tolerance test (Supplementary Table 3). While
stimulation of the GLP-1 receptor has been suggested to reduce
appetite20 and treatment with GLP1R agonists can result in

Table 1 | Novel SNPs associated with fasting glucose in African and European ancestries combined.

Gene Variation type Chr Build 37
position

dbSNPID Alleles African and European Proportion of trait
variance explained

Effect Other EAF Beta s.e. P

GLP1R A316T 6 39046794 rs10305492 A G 0.01 �0.09 0.013 3.4� 10� 12 0.0003
ABO intergenic 9 136153875 rs651007 A G 0.20 0.02 0.004 1.3� 10� 8 0.0002

EAF, effect allele frequency.
Fasting glucose concentrations were adjusted for sex, age, cohort effects and up to 10 principal components in up to 60,564 (AF N¼ 9,664 and EU N¼ 50,900) non-diabetic individuals. Effects are
reported per copy of the minor allele. Beta coefficient units are in mmol l� 1.
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reductions in BMI21, these potential effects are unlikely to
influence our results, which were adjusted for BMI.

In an effort to examine the potential functional consequence of
the GLP1R A316T variant, we modelled the A316T receptor
mutant structure based on the recently published22 structural
model of the full-length human GLP-1 receptor bound to
exendin-4 (an exogenous GLP-1 agonist). The mutant
structural model was then relaxed in the membrane
environment using molecular dynamics simulations. We found
that the T316 variant (in transmembrane (TM) domain 5)
disrupts hydrogen bonding between N320 (in TM5) and E364
(TM6) (Supplementary Fig. 2). In the mutant receptor, T316
displaces N320 and engages in a stable interaction with E364,
resulting in slight shifts of TM5 towards the cytoplasm and TM6
away from the cytoplasm (Supplementary Figs 3 and 4). This
alters the conformation of the third intracellular loop, which
connects TM5 and TM6 within the cell, potentially affecting
downstream signalling through altered interaction with effectors
such as G proteins.

A targeted Gene Set Enrichment Analysis (Supplementary
Table 4) identified enrichment of genes biologically related to
GLP1R in the incretin signalling pathway (P¼ 2� 10� 4); after
excluding GLP1R and previously known loci PDX1, GIPR and
ADCY5, the association was attenuated (P¼ 0.072). Gene-based
tests at GLP1R did not identify significant associations with
glycaemic traits or T2D susceptibility, further supported by Fig. 2,
which indicates only one variant in the GLP1R region on the
exome chip showing association with FG.

To more fully characterize the extent of local sequence variation
and its association with FG at GLP1R, we investigated 150 GLP1R
SNVs identified from whole-exome sequencing in up to 14,118
individuals available in CHARGE and the GlaxoSmithKline
discovery sequence project (Supplementary Table 5). Single-
variant analysis identified association of 12 other SNVs with FG
(Po0.05; Supplementary Data 4), suggesting that additional
variants at this locus may influence FG, including two variants

(rs10305457 and rs761386) in close proximity to splice sites
that raise the possibility that their functional impact is
exerted via effects on GLP1R pre-mRNA splicing. However, the
smaller sample size of the sequence data limits power for firm
conclusions.

Association of noncoding variants in ABO with glycaemic traits.
We also newly identified that the minor allele A at rs651007 near
the ABO gene was associated with higher FG (b¼ 0.02±0.004
mmol l� 1, MAF¼ 20%, P¼ 1.3� 10� 8, variance explained¼
0.02%, Table 1). Three other associated common variants in strong
linkage disequilibrium (LD) (r2¼ 0.95–1) were also located in this
region; conditional analyses suggested that these four variants
reflect one association signal (Supplementary Table 6). The FG-
raising allele of rs651007 was nominally associated with increased
FI (b¼ 0.008±0.003, P¼ 0.02, Supplementary Table 1) and T2D
risk (OR [95%CI]¼ 1.05 [1.01–1.08], P¼ 0.01, Supplementary
Data 3). Further, we independently replicated the association at
this locus with FG in non-overlapping data from MAGIC1

using rs579459, a variant in LD with rs651007 and genotyped on
the Illumina CardioMetabochip (b¼ 0.008±0.003 mmol l� 1,
P¼ 5.0� 10� 3; NMAGIC¼ 88,287). The FG-associated SNV at
ABO was in low LD with the three variants23 that distinguish
between the four major blood groups O, A1, A2 and B (rs8176719
r2¼ 0.18, rs8176749 r2¼ 0.01 and rs8176750 r2¼ 0.01). The blood
group variants (or their proxies) were not associated with FG levels
(Supplementary Table 7).

Variants in the ABO region have been associated with a
number of cardiovascular and metabolic traits in other studies
(Supplementary Table 8), suggesting a broad role for this locus in
cardiometabolic risk. A search of the four FG-associated variants
and their associations with metabolic traits using data available
through other CHARGE working groups (Supplementary
Table 9) revealed a significant association of rs651007 with
BMI in women (b¼ 0.025±0.01 kg m� 2, P¼ 3.4� 10� 4) but
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Figure 1 | Glycaemic associations with rs10305492 (GLP1R A316T). Glycaemic phenotypes were tested for association with rs10305492 in GLP1R

(A316T). Each phenotype, sample size (N), covariates in each model, beta per s.d., 95% confidence interval (95%CI) and P values (P) are reported.

Analyses were performed on native distributions and scaled to s.d. values from the Fenland or Ely studies to allow comparisons of effect sizes across

phenotypes.
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not in men. As previously reported24,25, the FG increasing
allele of rs651007 was associated with increased LDL and
TC (LDL: b¼ 2.3±0.28 mg dl� 1, P¼ 6.1� 10� 16; TC:
b¼ 2.4±0.33 mg dl� 1, P¼ 3.4� 10� 13). As the FG-associated
ABO variants were located in non-coding regions (intron 1 or
intergenic) we interrogated public regulatory annotation data sets,
GTEx16 (http://www.gtexportal.org/home/) and the ENCODE
Consortium resources14 in the UCSC Genome Browser15 (http://
genome.ucsc.edu/) and identified a number of genomic features
coincident with each of the four FG-associated variants. Three of
these SNPs, upstream of the ABO promoter, reside in a DNase I
hypersensitive site with canonical enhancer marks in ENCODE
Consortium data: H3K4Me1 and H3K27Ac (Supplementary
Fig. 5). We analysed all SNPs with similar annotations, and
found that these three are coincident with DNase, H3K4Me1 and
H3K27Ac values each near the genome-wide mode of these assays
(Supplementary Fig. 6). Indeed, in haematopoietic model K562
cells, the ENCODE Consortium has identified the region
overlapping these SNPs as a putative enhancer14. Interrogating
the GTEx database (N¼ 156), we found that rs651007
(P¼ 5.9� 10� 5) and rs579459 (P¼ 6.7� 10� 5) are eQTLs for
ABO, and rs635634 (P¼ 1.1� 10� 4) is an eQTL for SLC2A6 in
whole blood (Supplementary Table 10). The fourth SNP,
rs507666, resides near the transcription start site of a long non-
coding RNA that is antisense to exon 1 of ABO and expressed in
pancreatic islets (Supplementary Fig. 5). rs507666 was also an

eQTL for the glucose transporter SLC2A6 (P¼ 1.1� 10� 4)
(Supplementary Fig. 5 and Supplementary Table 10). SLC2A6
codes for a glucose transporter whose relevance to glycaemia and
T2D is largely unknown, but expression is increased in rodent
models of diabetes26. Gene-based analyses did not reveal
significant quantitative trait associations with rare coding
variation in ABO.

Rare variants in G6PC2 are associated with fasting glucose. At
the known glycaemic locus G6PC2, gene-based analyses of 15 rare
predicted protein-altering variants (MAFo1%) present on the
exome chip revealed a significant association of this gene with FG
(cumulative MAF of 1.6%, pSKAT¼ 8.2� 10� 18, pWST¼ 4.1
� 10� 9; Table 2). The combination of 15 rare SNVs remained
associated with FG after conditioning on two known common
SNVs in LD27 with each other (rs560887 in intron 1 of G6PC2
and rs563694 located in the intergenic region between G6PC2 and
ABCB11) (conditional pSKAT¼ 5.2� 10� 9, pWST¼ 3.1� 10� 5;
Table 2 and Fig. 3), suggesting that the observed rare variant
associations were distinct from known common variant signals.
Although ABCB11 has been proposed to be the causal gene at this
locus28, identification of rare and putatively functional variants
implicates G6PC2 as the much more likely causal candidate. As
rare alleles that increase risk for common disease may be
obscured by rare, neutral mutations4, we tested the contribution

0

38.6 38.8 39 39.2 39.4
Position on chr6 (Mb)

2

BTBD9

GLO1

DNAH8

LOC100131047 GLP1R

SAYSD1 KCNK5 KCNK16

KCNK17

KIF6

4

6

–L
og

10
(P

-v
al

ue
) 8

10

0.2
0.4
0.6
0.8

rs10305492
Annotation key

Rare
Lowfreq
Common

r2
12

100

80

R
ec

om
bi

na
tio

n 
ra

te
 (

cM
/M

b)

60

40

20

0

Figure 2 | GLP1R regional association plot. Regional association results (� log10p) for fasting glucose of GLP1R locus on chromosome 6. Linkage
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Table 2 | Gene-based associations of G6PC2 with fasting glucose in African and European ancestries combined.

Gene Chr: Build
37 position

cMAF* SNVs
(n)w

Weighted sum test (WST) Sequence Kernel Association Test (SKAT)

P Pz Py P|| P Pz Py P||

G6PC2 2:169757930-
169764491

0.016 15 4.1� 10� 9 2.6� 10� 5 2.3� 10�4 3.1� 10� 5 8.2� 10� 18 4.8� 10�9 6.8� 10�6 5.2� 10� 9

Fasting glucose concentrations were adjusted for sex, age, cohort effects and up to 10 principal components in up to 60,564 non-diabetic individuals.
*cMAF¼ combined minor allele frequency of all variants included in the analysis.
wSNVs(n)¼ number of variants included in the analysis; variants were restricted to those with MAFo0.01 and annotated as nonsynonymous, splice-site, or stop loss/gain variants.
zP value for gene-based test after conditioning on rs563694.
yP value for gene-based test after conditioning on rs560887.
||P value for gene-based test after conditioning on rs563694 and rs560887.
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of each G6PC2 variant by removing one SNV at a time and
re-calculating the evidence for association across the gene. Four
SNVs, rs138726309 (H177Y), rs2232323 (Y207S), rs146779637
(R283X) and rs2232326 (S324P), each contributed to the
association with FG (Fig. 3c and Supplementary Table 11).
Each of these SNVs also showed association with FG of
larger effect size in unconditional single-variant analyses
(Supplementary Data 5), consistent with a recent report in
which H177Y was associated with lower FG levels in Finnish
cohorts29. We developed a novel haplotype meta-analysis method
to examine the opposing direction of effects of each SNV. Meta-
analysis of haplotypes with the 15 rare SNVs showed a significant
global test of association with FG (pglobal test¼ 1.1� 10� 17)

(Supplementary Table 12) and supported the findings from the
gene-based tests. Individual haplotype tests showed that the most
significantly associated haplotypes were those carrying a single
rare allele at R283X (P¼ 2.8� 10� 10), S324P (P¼ 1.4� 10� 7)
or Y207S (P¼ 1.5� 10� 6) compared with the most common
haplotype. Addition of the known common intronic variant
(rs560887) resulted in a stronger global haplotype association test
(pglobal test¼ 1.5� 10� 81), with the most strongly associated
haplotype carrying the minor allele at rs560887 (Supplementary
Table 13). Evaluation of regulatory annotation found that this
intronic SNV is near the splice acceptor of intron 3 (RefSeq:
NM_021176.2) and has been implicated in G6PC2 pre-mRNA
splicing30; it is also near the transcription start site of the
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Figure 3 | G6PC2. (a) Regional association results (� log10p) for fasting glucose of the G6PC2 locus on chromosome 2. Minor allele frequencies (MAF) of

common and rare G6PC2 SNVs from single-variant analyses are shown. P values for rs560887, rs563694 and rs552976 were artificially trimmed for the

figure. Linkage disequilibrium (r2) indicated by colour scale legend. y-Axis scaled to show associations for variant rs560887 (purple dot, MAF¼43%,

P¼4.2� 10� 87). Triangle symbols indicate variants with MAF45%, square symbols indicate variants with MAF1–5% and circle symbols indicate variants

with MAF o1%. (b) Regional association results (� log10p) for fasting glucose conditioned on rs560887 of G6PC2. After adjustment for rs560887, both

rare SNVs rs2232326 (S324P) and rs146779637 (R283X), and common SNV rs492594 remain significantly associated with FG indicating the presence of

multiple independent associations with FG at the G6PC2 locus. (c) Inset of G6PC2 gene with depiction of exon locations, amino-acid substitutions and

MAFs of the 15 SNVs included in gene-based analysis (MAFo1% and nonsynonymous, splice-site and gain/loss-of-function variation types as annotated

by dbNSFPv2.0). (d) The contribution of each variant on significance and effect of the SKAT test when one variant is removed from the test. Gene-based

SKAT P values (blue line) and test statistic (red line) of G6PC2 after removing one SNV at a time and re-calculating the association. (e) Haplotypes and

haplotype association statistics and P values generated from the 15 rare SNVs from gene-based analysis of G6PC2 from 18 cohorts and listed in panel (c).

Global haplotype association, P¼ 1.1� 10� 17. Haplotypes ordered by decreasing frequency with haplotype 1 as the reference. Orange highlighting indicates

the minor allele of the SNV on the haplotype.
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expressed sequence tag (EST) DB031634, a potential cryptic
minor isoform of G6PC2 mRNA (Supplementary Fig. 7). No
associations were observed in gene-based analysis of G6PC2 with
FI or T2D (Supplementary Tables 14 and 15).

Further characterization of exonic variation in G6PC2 by
exome sequencing in up to 7,452 individuals identified 68 SNVs
(Supplementary Table 5), of which 4 were individually associated
with FG levels and are on the exome chip (H177Y, MAF¼ 0.3%,
P¼ 9.6� 10� 5; R283X, MAF¼ 0.2%, P¼ 8.4� 10� 3; S324P,
MAF¼ 0.1%, P¼ 1.7� 10� 2; rs560887, intronic, MAF¼ 40%;
P¼ 7� 10� 9) (Supplementary Data 6). Thirty-six SNVs met
criteria for entering into gene-based analyses (each MAFo1%).
This combination of 36 coding variants was associated with
FG (cumulative MAF¼ 2.7%, pSKAT¼ 1.4� 10� 3, pWST¼
5.4� 10� 4, Supplementary Table 16). Ten of these SNVs had
been included in the exome chip gene-based analyses. Analyses
indicated that the 10 variants included on the exome chip data
had a stronger association with FG (pSKAT¼ 1.3� 10� 3,
pWST¼ 3.2� 10� 3 vs pSKAT¼ 0.6, pWST¼ 0.04 using the 10
exome chip or the 26 variants not captured on the chip,
respectively, Supplementary Table 16).

Pathway analyses of FG and FI signals. In agnostic pathway
analysis applying MAGENTA (http://www.broadinstitute.org/
mpg/magenta/) to all curated biological pathways in KEGG
(http://www.genome.jp/kegg/), GO (http://www.geneontology.org),
Reactome (http://www.reactome.org), Panther (http://www.
pantherdb.org), Biocarta (http://www.biocarta.com) and Inge-
nuity (http://www.ingenuity.com/) databases, no pathways
achieved our Bonferroni-corrected threshold for significance of
Po1.6� 10� 6 for gene set enrichment in either FI or FG data
sets (Supplementary Tables 17 and 18). The pathway P values
were further attenuated when loci known to be associated with
either trait were excluded from the analysis. Similarly, even after
narrowing the MAGENTA analysis to gene sets in curated
databases with names suggestive of roles in glucose, insulin or
broader metabolic pathways, we did not identify any pathways
that met our Bonferroni-corrected threshold for significance of
Po2� 10� 4 (Supplementary Table 19).

Testing nonsynonomous variants for association in known
loci. Owing to the expected functional effects of protein-altering
variants, we tested SNVs (4,513 for FG and 1,281 for FI) anno-
tated as nonsynonymous, splice-site or stop gain/loss by
dbNSFP31 in genes within 500 kb of known glycaemic
variants1,27,32 for association with FG and FI to identify
associated coding variants, which may implicate causal genes at
these loci (Supplementary Table 20). At the DNLZ-GPSM1 locus,
a common nsSNV (rs60980157; S391L) in the GPSM1 gene was
significantly associated with FG (Bonferroni corrected P value
o1.1� 10� 5¼ 0.05/4513 SNVs for FG), and had previously
been associated with insulinogenic index9. The GPSM1 variant is
common and in LD with the intronic index variant in the
DNLZ gene (rs3829109) from previous FG GWAS1 (r2

EU¼ 0.68;
1000 Genomes EU). The association of rs3829109 with FG
was previously identified using data from the Illumina
CardioMetabochip, which poorly captured exonic variation in
the region1. Our results implicate GPSM1 as the most likely
causal gene at this locus (Supplementary Fig. 8a). We also
observed significant associations with FG for eight other
potentially protein-altering variants in five known FG loci,
implicating three genes (SLC30A8, SLC2A2 and RREB1) as
potentially causal, but still undetermined for two loci (MADD and
IKBKAP) (Supplementary Figs 6f–8b). At the GRB14/COBLL1
locus, the known GWAS1,32 nsSNV rs7607980 in the COBLL1

gene was significantly associated with FI (Bonferroni corrected
P value o3.9� 10� 5¼ 0.05/1281 SNVs for FI), further
suggesting COBLL1 as the causal gene, despite prior functional
evidence that GRB14 may represent the causal gene at the locus33

(Supplementary Fig. 8g).
Similarly, we performed analyses for loci previously identified

by GWAS of T2D, but only focusing on the 412 protein-altering
variants within the exonic coding region of the annotated
gene(s) at 72 known T2D loci2,34 on the exome chip. In
combined ancestry analysis, three nsSNVs were associated
with T2D (Bonferroni-corrected P value threshold (Po0.05/
412¼ 1.3� 10� 4) (Supplementary Data 7). At WFS1, SLC30A8
and KCNJ11, the associated exome chip variants were all common
and in LD with the index variant from previous T2D GWAS in
our population (rEU

2 : 0.6–1.0; 1000 Genomes), indicating these
coding variants might be the functional variants that were tagged
by GWAS SNVs. In ancestry stratified analysis, three additional
nsSNVs in SLC30A8, ARAP1 and GIPR were significantly
associated with T2D exclusively in African ancestry cohorts
among the same 412 protein-altering variants (Supplementary
Data 8), all with MAF40.5% in the African ancestry cohorts, but
MAFo0.02% in the European ancestry cohorts. The three
nsSNVs were in incomplete LD with the index variants at each
locus (r2

AF¼ 0, D’AF¼ 1; 1000 Genomes). SNV rs1552224 at
ARAP1 was recently shown to increase ARAP1 mRNA expression
in pancreatic islets35, which further supports ARAP1 as the causal
gene underlying the common GWAS signal36. The association for
nsSNV rs73317647 in SLC30A8 (ORAF[95%CI]: 0.45[0.31–0.65],
pAF¼ 2.4� 10� 5, MAFAF¼ 0.6%) is consistent with the recent
report that rare or low frequency protein-altering variants at this
locus are associated with protection against T2D10. The protein-
coding effects of the identified variants indicate all five genes are
excellent causal candidates for T2D risk. We did not observe any
other single variant nor gene-based associations with T2D that
met chip-wide Bonferroni significance thresholds (Po4.5� 10� 7

and Po1.7� 10� 6, respectively).

Associations at known FG, FI and T2D index variants. For the
previous reported GWAS loci, we tested the known FG and FI
SNVs on the exome chip. Overall, 34 of the 38 known FG GWAS
index SNVs and 17 of the 20 known FI GWAS SNVs (or proxies,
r2
Z0.8 1000 Genomes) were present on the exome chip. Twenty-

six of the FG and 15 of the FI SNVs met the threshold for sig-
nificance (pFGo1.5� 10� 3 (0.05/34 FG SNVs), pFIo2.9� 10� 3

(0.05/17 FI SNVs)) and were in the direction consistent with
previous GWAS publications. In total, the direction of effect was
consistent with previous GWAS publications for 33 of the 34 FG
SNVs and for 16 of the 17 FI SNVs (binomial probability:
pFG¼ 2.0� 10� 9, pFI¼ 1.4� 10� 4, Supplementary Data 9). Of
the known 72 T2D susceptibility loci, we identified 59 index
variants (or proxies r2

Z0.8 1000 Genomes) on the exome chip;
57 were in the direction consistent with previous publications
(binomial probability: P¼ 3.1� 10� 15, see Supplementary Data
10). In addition, two of the known MODY variants were on the
exome chip. Only HNF4A showed nominal significance with FG
levels (rs139591750, P¼ 3� 10� 3, Supplementary Table 21).

Discussion
Our large-scale exome chip-wide analyses identified a novel
association of a low frequency coding variant in GLP1R with FG
and T2D. The minor allele, which lowered FG and T2D risk, was
associated with a lower early insulin response to a glucose
challenge and higher 2-h glucose. Although the effect size on
fasting glucose is slightly larger than for most loci reported to
date, our findings suggest that few low frequency variants have a
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very large effect on glycaemic traits and further demonstrate the
need for large sample sizes to identify associations of low
frequency variation with complex traits. However, by directly
genotyping low frequency coding variants that are poorly
captured through imputation, we were able to identify particular
genes likely to underlie previously identified associations. Using
this approach, we implicate causal genes at six loci associated with
fasting glucose and/or FI (G6PC2, GPSM1, SLC2A2, SLC30A8,
RREB1 and COBLL1) and five with T2D (ARAP1, GIPR, KCNJ11,
SLC30A8 and WFS1). For example, via gene-based analyses, we
identified 15 rare variants in G6PC2 (pSKAT¼ 8.2� 10� 18),
which are independent of the common non-coding signals at this
locus and implicate this gene as underlying previously identified
associations. We also revealed non-coding variants whose
putative functions in epigenetic and post-transcriptional regula-
tion of ABO and G6PC2 are supported by experimental ENCODE
Consortium, GTEx and transcriptome data from islets and for
which future focused investigations using human cell culture and
animal models will be needed to clarify their functional influence
on glycaemic regulation.

The seemingly paradoxical observation that the minor allele at
GLP1R is associated with opposite effects on FG and 2-h glucose
is not unique to this locus, and is also observed at the GIPR locus,
which encodes the receptor for gastric inhibitory peptide (GIP),
the other major incretin hormone. However, for GLP1R, we
observe that the FG-lowering allele is associated with lower risk of
T2D, while at GIPR, the FG-lowering allele is associated with
higher risk of T2D (and higher 2-h glucose)1. The observation
that variation in both major incretin receptors is associated with
opposite effects on FG and 2-h glucose is a finding whose
functional elucidation will yield new insights into incretin
biology. An example where apparently paradoxical findings
prompted cellular physiologic experimentation that yielded new
knowledge is the GCKR variant P446L associated with opposing
effects on FG and triglycerides37,38. The GCKR variant was found
to increase active cytosolic GCK, promoting glycolysis and
hepatic glucose uptake while increasing substrate for lipid
synthesis39,40.

Two studies have characterized the GLP1R A316T variant
in vitro. The first study found no effect of this variant on cAMP
response to full-length GLP-1 or exendin-4 (endogenous and
exogenous agonists)41. The second study corroborated these
findings, but documented as much as 75% reduced cell surface
expression of T316 compared with wild-type, with no alteration
in agonist binding affinity. Although this reduced expression had
little impact on agonist-induced cAMP response or ERK1/2
activation, receptors with T316 had greatly reduced intracellular
calcium mobilization in response to GLP-1(7-36NH2) and
exendin-4 (ref. 42). Given that GLP-1 induced calcium
mobilization is a key factor in the incretin response, the in vitro
functional data on T316 are consistent with the reduced early
insulin response we observed for this variant, further supported
by the Glp1r-knockout mouse, which shows lower early insulin
secretion relative to wild-type mice43.

The associations of GLP1R variation with lower FG and T2D
risk are more challenging to explain, and highlight the diverse
and complex roles of GLP1R in glycaemic regulation. While
future experiments will be needed, here we offer the following
hypothesis. Given fasting hyperglycaemia observed in Glp1r-
knockout mice43, A316T may be a gain-of-function allele that
activates the receptor in a constitutive manner, causing beta cells
to secrete insulin at a lower ambient glucose level, thereby
maintaining a lower FG; this could in turn cause downregulation
of GLP1 receptors over time, causing incretin resistance and a
higher 2-h glucose after an oral carbohydrate load. Other variants
in G protein-coupled receptors central to endocrine function such

as the TSH receptor (TSHR), often in the transmembrane
domains44 (like A316T, which is in a transmembrane helix (TM5)
of the receptor peptide), have been associated with increased
constitutive activity alongside reduced cell surface expression45,46,
but blunted or lost ligand-dependent signalling46,47.

The association of variation in GLP1R with FG and T2D
represents another instance wherein genetic epidemiology has
identified a gene that codes for a direct drug target in T2D
therapy (incretin mimetics), other examples including ABCC8/
KCNJ11 (encoding the targets of sulfonylureas) and PPARG
(encoding the target of thiazolidinediones). In these examples, the
drug preceded the genetic discovery. Today, there are over 100
loci showing association with T2D and glycaemic traits. Given
that at least three of these loci code for potent antihyperglycaemic
targets, these genetic discoveries represent a promising long-term
source of potential targets for future diabetes therapies.

In conclusion, our study has shown the use of analysing the
variants present on the exome chip, followed-up with exome
sequencing, regulatory annotation and additional phenotypic
characterization, in revealing novel genetic effects on glycaemic
homeostasis and has extended the allelic and functional spectrum
of genetic variation underlying diabetes-related quantitative traits
and T2D susceptibility.

Methods
Study cohorts. The CHARGE consortium was created to facilitate large-scale
genomic meta-analyses and replication opportunities among multiple large
population-based cohort studies12. The CHARGE T2D-Glycemia Exome
Consortium was formed by cohorts within the CHARGE consortium as well as
collaborating non-CHARGE studies to examine rare and common functional
variation contributing to glycaemic traits and T2D susceptibility (Supplementary
Note 1). Up to 23 cohorts participated in this effort representing a maximum total
sample size of 60,564 (FG) and 48,118 (FI) participants without T2D for
quantitative trait analyses. Individuals were of European (84%) and African (16%)
ancestry. Full study characteristics are shown in Supplementary Data 1. Of the 23
studies contributing to quantitative trait analysis, 16 also contributed data on T2D
status. These studies were combined with six additional cohorts with T2D case–
control status for follow-up analyses of the variants observed to influence FG and
FI and analysis of known T2D loci in up to 16,491 T2D cases and 81,877 controls
across 4 ancestries combined (African, Asian, European and Hispanic; see
Supplementary Data 2 for T2D case–control sample sizes by cohort and ancestry).
All studies were approved by their local institutional review boards and written
informed consent was obtained from all study participants.

Quantitative traits and phenotypes. FG (mmol l� 1) and FI (pmol l� 1) were
analysed in individuals free of T2D. FI was log transformed for genetic association
tests. Study-specific sample exclusions and detailed descriptions of glycaemic
measurements are given in Supplementary Data 1. For consistency with previous
glycaemic genetic analyses, T2D was defined by cohort and included one or more
of the following criteria: a physician diagnosis of diabetes, on anti-diabetic treat-
ment, fasting plasma glucose Z7 mmol l� 1, random plasma glucose
Z11.1 mmol l� 1 or haemoglobin A1CZ6.5% (Supplementary Data 2).

Exome chip. The Illumina HumanExome BeadChip is a genotyping array con-
taining 247,870 variants discovered through exome sequencing in B12,000 indi-
viduals, with B75% of the variants with a MAFo0.5%. The main content of the
chip comprises protein-altering variants (nonsynonymous coding, splice-site and
stop gain or loss codons) seen at least three times in a study and in at least two
studies providing information to the chip design. Additional variants on the chip
included common variants found through GWAS, ancestry informative markers
(for African and Native Americans), mitochondrial variants, randomly selected
synonymous variants, HLA tag variants and Y chromosome variants. In the present
study we analysed association of the autosomal variants with glycaemic traits and
T2D. See Supplementary Fig. 1 for study design and analysis flow.

Exome array genotyping and quality control. Genotyping was performed with
the Illumina HumanExome BeadChipv1.0 (N¼ 247,870 SNVs) or v1.1
(N¼ 242,901 SNVs). Illumina’s GenTrain version 2.0 clustering algorithm in
GenomeStudio or zCall48 was used for genotype calling. Details regarding
genotyping and QC for each study are summarized in Supplementary Data 1. To
improve accurate calling of rare variants 10 studies comprising N¼ 62,666 samples
participated in joint calling centrally, which has been described in detail
elsewhere13. In brief, all samples were combined and genotypes were initially
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auto-called with the Illumina GenomeStudio v2011.1 software and the GenTrain2.0
clustering algorithm. SNVs meeting best practices criteria13 based on call rates,
genotyping quality score, reproducibility, heritability and sample statistics were
then visually inspected and manually re-clustered when possible. The performance
of the joint calling and best practices approach (CHARGE clustering method) was
evaluated by comparing exome chip data to available whole-exome sequencing data
(N¼ 530 in ARIC). The CHARGE clustering method performed better compared
with other calling methods and showed 99.8% concordance between the exome
chip and exome sequence data. A total of 8,994 SNVs failed QC across joint calling
of studies and were omitted from all analyses. Additional studies used the
CHARGE cluster files to call genotypes or used a combination of gencall and
zCall48. The quality control criteria performed by each study for filtering of poorly
genotyped individuals and of low-quality SNVs included a call rate of o0.95,
gender mismatch, excess autosomal heterozygosity, and SNV effect estimate s.e.
410� 6. Concordance rates of genotyping across the exome chip and GWAS
platforms were checked in ARIC and FHS and was 499%. After SNV-level and
sample-level quality control, 197,481 variants were available for analyses. The
minor allele frequency spectrums of the exome chip SNVs by annotation category
are depicted in Supplementary Table 22. Cluster plots of GLP1R and ABO variants
are shown in Supplementary Fig. 9.

Whole-exome sequencing. For exome sequencing analyses we had data from up
to 14,118 individuals of European ancestry from seven studies, including four
studies contributing exome sequence samples that also participated in the exome
chip analyses (Atherosclerosis Risk in Communities Study (ARIC, N¼ 2,905),
Cardiovascular Health Study (CHS, N¼ 645), Framingham Heart Study (FHS,
N¼ 666) and Rotterdam Study (RS, N¼ 702)) and three additional studies, Eras-
mus Rucphen Family Study (ERF, N¼ 1,196), the Exome Sequencing Project (ESP,
N¼ 1,338) and the GlaxoSmithKline discovery sequence project3 (GSK,
N¼ 6,666). The GlaxoSmithKline (GSK) discovery sequence project provided
summary level statistics combining data from GEMS, CoLaus and LOLIPOP
collections that added additional exome sequence data at GLP1R, including
N¼ 3,602 samples with imputed genotypes. In all studies sequencing was
performed using the Illumina HiSeq 2000 platform. The reads were mapped to the
GRCh37 Human reference genome (http://www.ncbi.nlm.nih.gov/projects/
genome/assembly/grc/human/) using the Burrows-Wheeler aligner (BWA49,
http://bio-bwa.sourceforge.net/), producing a BAM50 (binary alignment/map) file.
In ERF, the NARWHAL pipeline51 was used for this purpose as well. In GSK
paired-end short reads were aligned with SOAP52. GATK53 (http://
www.broadinstitute.org/gatk/) and Picard (http://picard.sourceforge.net) were used
to remove systematic biases and to do quality recalibration. In ARIC, CHS and FHS
the Atlas254 suite (Atlas-SNP and Atlas-indel) was used to call variants and
produce a variant call file (VCF55). In ERF and RS genetic variants were called
using the Unified Genotyper Tool from GATK, for ESP the University of
Michigan’s multisample SNP calling pipeline UMAKE was used (H.M. Kang and
G. Jun, unpublished data) and in GSK variants were called using SOAPsnp56. In
ARIC, CHS and FHS variants were excluded if SNV posterior probability was
o0.95 (QUALo22), number of variant reads were o3, variant read ratio was
o0.1, 499% variant reads were in a single strand direction, or total coverage was
o6. Samples that met a minimum of 70% of the targeted bases at � 20 or greater
coverage were submitted for subsequent analysis and QC in the three cohorts.
SNVs with 420% missingness, 42 observed alleles, monomorphic, mean depth at
the site of 4500-fold or HWE Po5� 10� 6 were removed. After variant-level QC,
a quality assessment of the final sequence data was performed in ARIC, CHS and
FHS based on a number of measures, and all samples with a missingness rate of
420% were removed. In RS, samples with low concordance to genotyping array
(o 95%), low transition/transversion ratio (o2.3) and high heterozygote to
homozygote ratio (42.0) were removed from the data. In ERF, low-quality
variants were removed using a QUALo150 filter. Details of variant and sample
exclusion criteria in ESP and GSK have been described before3,57. In brief, in ESP
these were based on allelic balance (the proportional representation of each allele in
likely heterozygotes), base quality distribution for sites supporting the reference
and alternate alleles, relatedness between individuals and mismatch between called
and phenotypic gender. In GSK these were based on sequence depth, consensus
quality and concordance with genome-wide panel genotypes, among others.

Phenotyping glycaemic physiologic traits in additional cohorts. We tested
association of the lead signal rs10305492 at GLP1R with glycaemic traits in the post
absorptive state because it has a putative role in the incretin effect. Cohorts with
measurements of glucose and/or insulin levels post 75 g oral glucose tolerance test
(OGTT) were included in the analysis (see Supplementary Table 2 for list of
participating cohorts and sample sizes included for each trait). We used linear
regression models under the assumption of an additive genetic effect for each
physiologic trait tested.

Ten cohorts (ARIC, CoLaus, Ely, Fenland, FHS, GLACIER, Health2008,
Inter99, METSIM, RISC, Supplementary Table 2) provided data for the 2-h glucose
levels for a total sample size of 37,080 individuals. We collected results for 2-h
insulin levels in a total of 19,362 individuals and for 30 min-insulin levels in 16,601
individuals. Analyses of 2-h glucose, 2-h insulin and 30 min-insulin were adjusted
using three models: (1) age, sex and centre; (2) age, sex, centre and BMI; and (3)

age, sex, centre, BMI and FG. The main results in the manuscript are presented
using model 3. We opted for the model that included FG because these traits are
dependent on baseline FG1,58. Adjusting for baseline FG assures the effect of a
variant on these glycaemic physiologic traits are independent of FG.

We calculated the insulinogenic index using the standard formula: [insulin
30 min� insulin baseline]/[glucose 30 min� glucose baseline] and collected data
from five cohorts with appropriate samples (total N¼ 16,203 individuals). Models
were adjusted for age, sex, centre, then additionally for BMI. In individuals with
Z3 points measured during OGTT, we calculated the area under the curve (AUC)
for insulin and glucose excursion over the course of OGTT using the trapezoid
method59. For the analysis of AUCins (N¼ 16,126 individuals) we used three
models as discussed above. For the analysis of AUCins/AUCgluc (N¼ 16,015
individuals) we only used models 1 and 2 for adjustment.

To calculate the incretin effect, we used data derived from paired OGTT and
intra-venous glucose tolerance test (IVGTT) performed in the same individuals
using the formula: (AUCins OGTT-AUCins IVGTT)/AUCins OGTT in RISC
(N¼ 738). We used models 1 and 2 (as discussed above) for adjustment.

We were also able to obtain lookups for estimates of insulin sensitivity from
euglycaemic-hyperinsulinemic clamps and from frequently sampled intravenous
glucose tolerance test from up to 2,170 and 1,208 individuals, respectively
(Supplementary Table 3).

All outcome variables except 2-h glucose were log transformed. Effect sizes were
reported as s.d. values using s.d. values of each trait in the Fenland study60, the Ely
study61 for insulinogenic index and the RISC study62 for incretin effects to allow
for comparison of effect sizes across phenotypes.

Statistical analyses. The R package seqMeta was used for single variant, condi-
tional and gene-based association analyses63 (http://cran.r-project.org/web/
packages/seqMeta/). We performed linear regression for the analysis of quantitative
traits and logistic regression for the analysis of binary traits. For family-based
cohorts linear mixed effects models were used for quantitative traits and related
individuals were removed before logistic regression was performed. All studies used
an additive coding of variants to the minor allele observed in the jointly called data
set13. All analyses were adjusted for age, sex, principal components calculated from
genome-wide or exome chip genotypes and study-specific covariates (when
applicable) (Supplementary Data 1). Models testing FI were further adjusted for
BMI32. Each study analysed ancestral groups separately. At the meta-analysis level
ancestral groups were analysed both separately and combined. Meta-analyses were
performed by two independent analysts and compared for consistency. Overall
quantile-quantile plots are shown in Supplementary Fig. 10.

Bonferroni correction was used to determine the threshold of significance. In
single-variant analyses, for FG and FI, all variants with a MAF40.02% (equivalent
to a MACZ20; NSNVs¼ 150,558) were included in single-variant association tests;
the significance threshold was set to Pr3� 10� 7 (P¼ 0.05/150,558), corrected for
the number of variants tested. For T2D, all variants with a MAF40.01% in T2D
cases (equivalent to a MACZ20 in cases; NSNVs¼ 111,347) were included in single-
variant tests; the significance threshold was set to Pr4.5� 10� 7 (P¼ 0.05/
111,347).

We used two gene-based tests: the Sequence Kernel Association Test
(SKAT) and the Weighted Sum Test (WST) using Madsen Browning weights to
analyze variants with MAFo1% in genes with a cumulative MACZ20 for
quantitative traits and cumulative MACZ40 for binary traits. These analyses were
limited to stop gain/loss, nsSNV, or splice-site variants as defined by dbNSFP v2.0
(ref. 31). We considered a Bonferroni-corrected significance threshold of
Pr1.6� 10� 6 (0.05/30,520 tests (15,260 genes� 2 gene-based tests)) in the
analysis of FG and FI and Pr1.7� 10� 6 (0.05/29,732 tests (14,866 genes� 2
gene-based tests)) in the analysis of T2D. Owing to the association of multiple rare
variants with FG at G6PC2 from both single and gene-based analyses, we removed
one variant at a time and repeated the SKAT test to determine the impact of each
variant on the gene-based association effects (Wu weight) and statistical
significance.

We performed conditional analyses to control for the effects of known or newly
discovered loci. The adjustment command in seqMeta was used to perform
conditional analysis on SNVs within 500 kb of the most significant SNV. For ABO
we used the most significant SNV, rs651007. For G6PC2 we used the previously
reported GWAS variants, rs563694 and rs560887, which were also the most
significant SNV(s) in the data analysed here.

The threshold of significance for known FG and FI loci was set at
pFGr1.5� 10� 3 and pFIo2.9� 10� 3 (¼ 0.05/34 known FG loci and¼ 0.05/17
known FI loci). For FG, FI and T2D functional variant analyses the threshold of
significance was computed as P¼ 1.1� 10� 5 (¼ 0.05/4513 protein affecting SNVs
at 38 known FG susceptibility loci), P¼ 3.9� 10� 5 (¼ 0.05/1281 protein affecting
SNVs at 20 known FI susceptibility loci), P¼ 1.3� 10� 4 (¼ 0.05/412 protein
affecting SNVs at 72 known T2D susceptibility loci) and P¼ 3.5� 10� 4 (0.05/
(72� 2)) for the gene-based analysis of 72 known T2D susceptibility loci2,34. We
assessed the associations of glycaemic1,32,64 and T2D2,34 variants identified by
previous GWAS in our population.

We developed a novel meta-analysis approach for haplotype results based on an
extension of Zaykin’s method65. We incorporated family structure into the basic
model, making it applicable to both unrelated and related samples. All analyses
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were performed in R. We developed an R function to implement the association
test at the cohort level. The general model formula for K-observed haplotypes (with
the most frequent haplotype used as the reference) is

Y ¼ mþXgþ b2h2 þ � � � þ bK þ bþ e ð1Þ

Where Y is the trait; X is the covariates matrix; hm(m¼ 2,y, K) is the expected
haplotype dosage: if the haplotype is observed, the value is 0 or 1; otherwise, the
posterior probability is inferred from the genotypes; b is the random intercept
accounting for the family structure (if it exists), and is 0 for unrelated samples; e is
the random error.

For meta-analysis, we adapted a multiple parameter meta-analysis method to
summarize the findings from each cohort66. One primary advantage is that this
approach allows variation in the haplotype set provided by each cohort. In other
words, each cohort could contribute uniquely observed haplotypes in addition to
those observed by multiple cohorts.

Associations of ABO variants with cardiometabolic traits. Variants in the ABO
region have been associated with a number of cardiovascular and metabolic traits
in other studies (Supplementary Table 8), suggesting a broad role for the locus in
cardiometabolic risk. For significantly associated SNVs in this novel glycaemic trait
locus, we further investigated their association with other metabolic traits,
including systolic blood pressure (SBP, in mm Hg), diastolic blood pressure (DBP,
in mm Hg), body mass index (BMI, in kg m� 2), waist hip ratio (WHR) adjusted
for BMI, high-density lipoprotein cholesterol (HDL-C, in mg dl� 1), low-density
lipoprotein cholesterol (LDL-C, in mg dl� 1), triglycerides (TG, natural log trans-
formed, in % change units) and total cholesterol (TC, in mg dl� 1). These traits
were examined in single-variant exome chip analysis results in collaboration with
other CHARGE working groups. All analyses were conducted using the R packages
skatMeta or seqMeta63. Analyses were either sex stratified (BMI and WHR
analyses) or adjusted for sex. Other covariates in the models were age, principal
components and study-specific covariates. BMI, WHR, SBP and DBP analyses were
additionally adjusted for age squared; WHR, SBP and DBP were BMI adjusted. For
all individuals taking any blood pressure lowering medication, 15 mm Hg was
added to their measured SBP value and 10 mm Hg to the measured DBP value. As
described in detail previously8 in selected individuals using lipid lowering
medication, the untreated lipid levels were estimated and used in the analyses. All
genetic variants were coded additively. Maximum sample sizes were 64,965 in
adiposity analyses, 56,538 in lipid analyses and 92,615 in blood pressure analyses.
Threshold of significance was P¼ 6.2� 10� 3 (P¼ 0.05/8, where eight is the
number of traits tested).

Pathway analyses of GLP1R. To examine whether biological pathways curated
into gene sets in several publicly available databases harboured exome chip signals
below the threshold of exome-wide significance for FG or FI, we applied the
MAGENTA gene-set enrichment analysis (GSEA) software as previously described
using all pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG),
Gene Ontology (GO), Reactome, Panther, BioCarta and Ingenuity pathway data-
bases67. Genes in each pathway were scored based on unconditional meta-analysis
P values for SNVs falling within 40 kb upstream and 110 kb downstream of gene
boundaries; we used a 95th percentile enrichment cutoff in MAGENTA, meaning
pathways (gene sets) were evaluated for enrichment with genes harbouring signals
exceeding the 95th percentile of all genes. As we tested a total of 3,216 pathways in
the analysis, we used a Bonferroni-corrected significance threshold of
Po1.6� 10� 5 in this unbiased examination of pathways. To limit the GSEA
analysis to pathways that might be implicated in glucose or insulin metabolism, we
selected gene sets from the above databases whose names contained the terms
‘gluco,’ ‘glycol,’ ‘insulin’ or ‘metabo.’ We ran MAGENTA with FG and FI data sets
on these ‘glucometabolic’ gene sets using the same gene boundary definitions and
95th percentile enrichment cutoff as described above; as this analysis involved 250
gene sets, we specified a Bonferroni-corrected significance threshold of
Po2.0� 10� 4. Similarly, to examine whether genes associated with incretin
signalling harboured exome chip signals, we applied MAGENTA software to a gene
set that we defined comprised genes with putative biologic functions in pathways
common to GLP1R activation and insulin secretion, using the same gene
boundaries and 95th percentile enrichment cutoff described above (Supplementary
Table 4). To select genes for inclusion in the incretin pathway gene set, we
examined the ‘Insulin secretion’ and ‘Glucagon-like peptide-1 regulates insulin
secretion’ pathways in KEGG and Reactome, respectively. From these two online
resources, genes encoding proteins implicated in GLP1 production and degradation
(namely glucagon and DPP4), acting in direct pathways common to GLP1R and
insulin transcription, or involved in signalling pathways shared by GLP1R and
other incretin family members were included in our incretin signalling pathway
gene set; however, we did not include genes encoding proteins in the insulin
secretory pathway or encoding cell membrane ion channels as these processes
likely have broad implications for insulin secretion independent from GLP1R
signalling. As this pathway included genes known to be associated with FG, we
repeated the MAGENTA analysis excluding genes with known association from
our gene set—PDX1, ADCY5, GIPR and GLP1R itself.

Protein conformation simulations. The A316T receptor mutant structure was
modelled based on the WT receptor structure published previously22. First, the
Threonine residue is introduced in place of Alanine at position 316. Then, this
receptor structure is inserted back into the relaxed membrane-water system from
the WT structure22. T316 residue and other residues within 5 Å of itself are
minimized using the CHARMM force field68 in the NAMD69 molecular dynamics
(MD) programme. This is followed by heating the full receptor-membrane-water to
310 K and running MD simulation for 50 ns using the NAMD program.
Electrostatics are treated by E-wald summation and a time step of 1 fs is used
during the simulation. The structure snapshots are saved every 1 ps and the
fluctuation analysis (Supplementary Fig. 3) used snapshots every 100 ps. The final
snapshot is shown in all the structural figures.

Annotation and functional prediction of variants. Variants were annotated
using dbNSFP v2.0 (ref. 31). GTEx (Genotype-Tissue Expression Project) results
were used to identify variants associated with gene expression levels using all
available tissue types16. The Encyclopedia of DNA Elements (ENCODE)
Consortium results14 were used to identify non-coding regulatory regions,
including but not limited to transcription factor binding sites (ChIP-seq),
chromatin state signatures, DNAse I hypersensitive sites and specific histone
modifications (ChIP-seq) across the human cell lines and tissues profiled by
ENCODE. We used the UCSC Genome Browser15,70 to visualize these data sets,
along with the public transcriptome data contained in the browser’s ‘Genbank
mRNA’ (cDNA) and ‘Human ESTs’ (Expressed Sequence Tags) tracks, on the hg19
human genome assembly. LncRNA and antisense transcription were inferred by
manual annotation of these public transcriptome tracks at UCSC. All relevant track
groups were displayed in Pack or Full mode and the Experimental Matrix for each
subtrack was configured to display all extant intersections of these regulatory and
transcriptional states with a selection of cell or tissue types comprised of ENCODE
Tier 1 and Tier 2 human cell line panels, as well as all cells and tissues (including
but not limited to pancreatic beta cells) of interest to glycaemic regulation. We
visually scanned large genomic regions containing genes and SNVs of interest and
selected trends by manual annotation (this is a standard operating procedure in
locus-specific in-depth analyses utilizing ENCODE and the UCSC Browser). Only a
subset of tracks displaying gene structure, transcriptional and epigenetic data sets
from or relevant to T2D, and SNVs in each region of interest was chosen for
inclusion in each UCSC Genome Browser-based figure. Uninformative tracks
(those not showing positional differences in signals relevant to SNVs or genes
of interest) were not displayed in the figures. ENCODE and transcriptome data
sets were accessed via UCSC in February and March 2014. To investigate the
possible significant overlap between the ABO locus SNPs of interest and ENCODE
feature annotations we performed the following analysis. The following data sets
were retrieved from the UCSC genome browser: wgEncodeRegTfbsClusteredV3
(TFBS); wgEncodeRegDnaseClusteredV2 (DNase); all H3K27ac peaks (all:
wgEncodeBroadHistone*H3k27acStdAln.bed files); and all H3K4me1 peaks (all:
wgEncodeBroadHistone*H3k4me1StdAln.bed files). The histone mark files were
merged and the maximal score was taken at each base over all cell lines. These
features were then overlapped with all SNPs on the exome chip from this study
using bedtools (v2.20.1). GWAS SNPs were determined using the NHGRI GWAS
catalogue with P valueo5� 10� 8. LD values were obtained by the PLINK
program based on the Rotterdam Study for SNPs within 100 kB with an r2

threshold of 0.7. Analysis of these files was completed with a custom R script to
produce the fractions of non-GWAS SNPs with stronger feature overlap than the
ABO SNPs as well as the Supplementary Figure.
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