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An Intuitive Design Method for Disturbance-Rejecting Peak Filters

Olof Troeng, Bo Bernhardsson

Abstract—We present a method for augmenting
a nominal controller with a peak filter to achieve
improved rejection of narrowband disturbances. The
method is based on consideration of the open-loop
Nyquist curve, which arguably makes it more intu-
itive and flexible than previous approaches. We also
comment on some implementation aspects, and give
an application example based on a control problem at
a particle accelerator.

I. Introduction
The PID controller is easy to understand and easy

to tune, which makes it an attractive choice for those
control applications where it gives sufficient performance.
However, a common situation where the PID controller
is outperformed by more advanced controllers, is when
the controlled process is affected by narrowband load
disturbances (e.g. from power supply switching or im-
balances in a rotating system). This shortcoming of the
PID controller can be understood from Francis’ internal
model principle [1], which states that the controller needs
to contain a model of the disturbances that it hopes to
reject; the PID controller is too simplistic in this regard.

By augmenting the PID controller (or any controller for
that matter) with a second-order peak filter, it is possible
to selectively increase the controller gain, and reject
disturbances with a specific frequency. This approach
gives only a small increase in controller complexity.
The filter can be seen as a model of the narrowband
disturbance; see [2] for an insightful interpretation. Peak
filters have been used for improved disturbance rejection
in hard-disk-drive track following [3]–[6], and several other
real-world applications [7]–[9].
Although the basic idea is straightforward, there is

one important detail: the phase of the peak filter needs
to be carefully chosen for maintained robustness and
closed-loop stability. Given its importance, it is surprising
that this question has not received more attention in the
literature. We are only aware of [7] and [3] that provide
qualitative discussions based on root-locus arguments, and
[4] that derives suitable filter coefficients by considering
a transformed system.
The main contribution of this paper is a more direct

and intuitive approach to designing disturbance-rejecting
peak filters. The approach is based on consideration of
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the open-loop Nyquist curve, which makes the design
trade-offs easy to understand. We will find that the
most natural filter design, based on Nyquist diagram
consideration, recovers the same coefficients as those
in [4]. However, the flexibility of our approach makes
it easy to consider other performance metrics as well.
It also readily extends to complex-coefficient systems.
We will also discuss the convergence time of the filter,
and provide practical implementation details. Finally,
as a motivating example, we consider how disturbance-
rejecting peak filters can be used to improve the control
performance in a particle accelerator application.

II. Filter Design

Given a single-input single-output plant P , and a
controller C, the magnitude of the sensitivity function

S(iω) = 1
1 + P (iω)C(iω)

quantifies the closed-loop robustness, and how the feed-
back from C affects the disturbance rejection.

We will consider how the disturbance rejection around
a specific frequency ω0 can be improved by augmenting
a nominal controller (e.g., a PID controller) C0 with a
second-order filter

CF (s) = s2 + 2ζzωzs+ ω2
z

s2 + 2ζ0ω0s+ ω2
0
, (1)

where ωz ≈ ω0, and ζz > ζ0. We will refer to the filter
(1) as a peak filter since this highlights the feature that
is most relevant in this paper; the terms resonant filter
and bandpass filter are also common.
If ωz is chosen equal to ω0, we have CF (0) = 1,

CF (±∞) = 1, and CF (iω0) = ζz/ζ0, enabling the gain
of the augmented controller C = C0CF to be selectively
increased at the disturbance frequency ω0. For maintained
robustness, and closed-loop stability, also the phase of
the open-loop system

L(s) = P (s)C0(s)CF (s)

around ω0 needs to be considered.
Choosing ωz different from ω0 gives two degrees of

freedom—ωz and ζz—making it possible to place L(iω0)
arbitrarily in the complex plane. We will see that this
allows robustness and stability to be maintained.
To clarify the behavior of the filter CF , we introduce

the parametrization

CF (s) = 1 + F (s) (2)
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Fig. 1: By augmenting a nominal controller C0 with a
peak filter CF = 1 + F it is possible to improve the
rejection of narrowband load disturbances d.
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Fig. 2: Typical pole-zero diagram for the peak filter
CF (s) = 1+F (s) with F (s) given by (2). Having different
imaginary parts for the poles and zeros gives freedom to
select the phase of CF (s) at ω0. In the limit of ζ0 → 0,
the poles are located in p1,2 = −∆± iω0, and the zeros
in z1,2 = p1,2 −∆Ke±iα.

with
F (s) := K

2∆(s cosα− ω0 sinα)
s2 + 2∆s+ ω2

0
, (3)

where K and α are new parameters, and ∆ = ζ0ω0. Note
that F (±iω0) = Ke±iα. The parametrization (2)–(3) is
inspired by the one in [4], but we have modified it slightly
to simplify the exposition1. See Fig. 1 for an illustration of
the controller structure, and Fig. 2 for a typical pole-zero
map of CF (s).

A. Nyquist Bubbles
Instead of considering the second-order filter (3) di-

rectly, we simplify the situation even further, and intro-
duce the first-order (complex-coefficient) filter

B(s) = Keiα
(

1
2 + 1

2
1− (s− iω0)/∆
1 + (s− iω0)/∆

)
(4)

= Keiα ∆
s− iω0 + ∆ .

For small ζ0 we now have

F (s) ≈ B(s) +B∗(s), (5)

1The definition F (s) := Ks(ω0 cosα−s sinα)/(s2 +2ζ0ω0s+ω2
0)

in [4] gives that F (iω0) = Ke−α/(2ζ0), i.e., the peak amplitude de-
pends on ζ0, also, the minus sign in front of α makes interpretations
of F (s) less intuitive.
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Fig. 3: The Nyquist curve of the first-order system (4).

where B∗(s) := B(s̄), giving that the transfer function on
the right hand side has real coefficients. Equality holds
in the limit2 ζ0 → 0.
From (4) we see that B(s) is a linear fractional

transformation C → C that maps the imaginary axis
to a circle/bubble. The Nyquist curve of B(s) is hence
a circle with diameter K that passes through 0, and is
directed at an angle α away from the origin3. We also
see that iω0 is mapped to the point furthest away from
the origin, and that i(ω0 ± ζ0ω0) are mapped to points
exactly in-between B(iω0) and the origin; see Fig. 3.

B. Nyquist Diagram Interpretation
For studying control performance and robustness, it

often gives more insight to consider the Nyquist curve of
the open-loop system, rather than the sensitivity function
S = 1/(1 +PC). The distance between the Nyquist curve
and the point −1 equals 1/ |S(iω)|, but the Nyquist curve
also shows useful phase information.
To understand the effect of the peak filter, we let

L0(s) = P (s)C0(s) be the nominal open-loop system,
and let L(s) = L0(s)CF (s) = L0(s)(1 + F (s)) be the
augmented system. If the peak filter is narrow, we have
that

L(s) ≈ L0(s) + L0(iω0)F (s). (6)

From the discussion in the previous section it is clear that
the Nyquist curve of the augmented system is similar
to the one of the nominal one, but with the addition
of circular bubbles at frequencies ±ω0 due to the term
L0(iω0)F (s). The bubble at iω0 will be oriented in the
direction α′ = α + ∠L0(iω0) and have diameter K ′ =
K · |L0(iω0)|; see Fig. 4 for an illustration.

2The exact expression is given by

B(s) +B∗(s) = K
2∆ (s cosα− ω0 sinα+ ∆ cosα)

s2 + 2∆s+ ω2
0 + ∆2 .

3This is immediate from noticing that

B0(s) =
1
2

+
1
2

1− s
1 + s

is a linear fractional transformation that maps the imaginary axis
to a circle with radius 0.5 centered around −0.5. It is also seen that
B0(0) = 1, |B0(±1)| = 1/

√
2, and |B0(±∞)| = 0.



C. Filter Deign for Maximum Sensitivity Reduction
For a given value of K, it is clear that maximum

sensitivity reduction at ω0 is achieved by orienting the
bubbles away from the point −1. This corresponds to
α′ = ∠(L(iω0)− (−1), giving

α = ∠ (L0(iω0)− (−1))− ∠L0(iω0)

= −∠ L0(iω0)
L0(iω0) + 1 = −∠T0(iω), (7)

where T0 = L0/(1 + L0) is the complementary sensitivity
function of the nominal system.

The choice (7) is the same as in [4]. However, the line of
argument that we used to arrive at this, arguably provides
more intuition.

Choosing α according to (7) and

K = N

|S0(iω0)|
1

|L0(iω0)| = N

|T0(iω0)| , (8)

we get a sensitivity reduction at ω0 by a factor (N + 1).
The choices (7) and (8) are illustrated in Fig. 4.

D. Closed-Loop Behavior
With the choices of α and N in (7)–(8), we can derive

an approximate expression for how the filter affects the
closed-loop sensitivity around ω0. First, re-write the
sensitivity function of the augmented system as

S(s) = 1
1 + L0(s)(1 + F (s))

= 1
1 + L0(s)︸ ︷︷ ︸

S0(s)

· 1
1 + T0(s)F (s) . (9)

Then, using (7), (8), and that T0(s)F (s) ≈ T0(iω0)F (s),

S(s) ≈ S0(s) s2 + 2ζ0ω0s+ ω2
0

s2 + 2(N + 1)ζ0ω0s+ ω2
0
. (10)

For N > 0 the second factor (10) is a notch filter, with
a convergence time on the order of τF = 1/((N + 1)ω0ζ0).
Thus, the time it takes for the peak filter to reject a
narrowband disturbance is given by τF .
Since (N + 1)ω0ζ0 is the 3 dB bandwidth of the

notch around ω0, the same number also determines the
degradation of the closed loop at frequencies away from
ω0, due to the waterbed effect. In [4] a similar discussion,
but only the behavior at the frequency ω0 was considered.

E. Implementation Aspects
When the filter CF is used for augmenting a PI(D)

controller, it will probably be advantageous to place it
before the PI(D) controller in order to reduce the impact
on the anti-windup implementation. Perhaps, it is even
better to place the filter as in Fig. 5, since there is no
need to filter the reference signal through the peak filter.

-1

L0(iω0)

N|S
0 (iω

0 )|

Re L(iω)

Im L(iω)

Nominal System
Augmented System

Fig. 4: By augmenting a nominal controller with a peak
filter, it is possible to introduce a bubble in the open-
loop Nyquist curve, moving the Nyquist curve at ω0 to
an arbitrary point. The figure illustrates when the filter
parameters are chosen according to (7) and (8), which
gives a sensitivity reduction at ω0 by a factor (N + 1).
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Fig. 5: For a practical implementation it could be bene-
ficial to avoid filtering the reference signal through the
peak filter, as is shown in this figure.

A discrete time counterpart to the filter (1) obtained
through pole-zero matching is given by

CF (z) = (z − rzeiωzh)(z − ze−iωzh)
(z − r0eiω0h)(z − r0e−iω0h)

= z2 − 2rz cos (ωzh)z + r2
z

z2 − 2r0 cos (ω0h)z + r2
0
,

where h is sample time, r0 = e−ζ0ω0h and rz = e−ζzωzh.

F. Design Guidelines
The filter F (s) in (3) has four parameters, which gives

us four degrees-of-freedom that allow us to select
• The peak frequency
• The peak phase
• The magnitude of the peak
• The width of the peak (i.e., settling time, robustness,

numerical stability)
A typical approach to select the parameters in the peak

filter (3) would be:
1) Select ω0 as the disturbance frequency.
2) Select the desired sensitivity reduction N at ω0, and

put K = N/ |T0(iω0)|.
3) Select ∆ (ζ0) based on consideration of the spectral

width of the disturbance, the required convergence
time, and numerical implementation considerations.



4) Select α to achieve the best possible robustness, the
typical choice would be according to (7).

Some comments on point 3) are in order. If it is
considered more important to maintain a large amplitude
or phase margin, it would make sense to choose α different
from (8). Another case where a different value of α should
be considered, is when the bubbles are far away from
their ideal circular shape. This is seen in Figure 11a,
where a small increase of α would improve the closed-
loop robustness. Note that the intuition provided in this
section makes these modifications obvious.

G. Remarks
Remark 1 : In the case of complex-coefficient systems

[10], the frequency response and disturbance spectrum
might not be symmetric about the zero frequency. This
case is easy to handle by working directly with the
Nyquist bubbles (4). For example, if L0 is not conjugate
symmetric, the two bubbles at ±ω0 should have their
parameters chosen differently. If the disturbance only
occurs at one side of the frequency spectrum, one may
use a single bubble.
Remark 2 : From expression (1) it is clear that the

maximum of |CF (iω)| might not occur at ω0. For example,
with ω0 = 10, ωz = 2, ζ0 = 0.1 and ζz = 0.2. the
maximum is achieved at ω? = 9.77. However, if the
maximum gain ζz/ζp of (1) is large, then the distance
between ω0 and the peak frequency ω? will be small.

III. Particle Accelerator Application

As an application example, we design peak filters
for reducing the regulation errors of the accelerating
electromagnetic fields in the linear particle accelerator at
the European Spallation Source4. The accelerating fields
will be confined in 155 radio-frequency (RF) cavities,
each driven by a dedicated RF amplifier, see Fig. 6. The
RF amplifiers will be controlled by feedback loops that
keep the amplitudes and phases of the accelerating fields
constant, which is crucial to accelerator operation.
The accelerator will be pulsed at 14 Hz, with a peak

power consumption of about 200 MW. To meet the grid-
flicker requirements of regional power grid, many of the
DC power supplies for RF amplifiers have been designed
in-house. Simulation results5 indicate that the output
voltage of the DC supplies will contain a narrowband
disturbance at 90 kHz, see figures 7 and 8. The ripple will
couple to the output of the RF amplifiers, acting as a
disturbance on the cavity fields.

The discussed peak filters provide a convenient tool to
reduce the impact of this disturbance. Given the large
number of plants with varying dynamics, it becomes
important with a straight-forward and intuitive design
method, such as the one discussed previous section.

4A neutron spallation facility that is currently under construction
outside of Lund, Sweden [11]

5Provided by the Power Converter group at ESS in Nov. 2015.
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Fig. 6: Illustration of an RF station, and the feedback loop
that controls the amplitude and phase of the accelerating
electromagnetic field in the cavity.

0 1 2 3 4
0

50

100

Time [µs]

Vo
lta

ge
[k

V
]

1 1.05 1.1 1.15 1.2 1.25 1.3

−0.1

0

0.1

Time [µs]

R
el

at
iv

e
Va

ria
tio

n
[%

]

Fig. 7: Voltage pulse of the DC power supply. The zoom
reveals the presence 90 kHz switching ripple.
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Fig. 8: Power spectral density of the DC supply ripple.
The dominant harmonic at 90 kHz lies in the frequency
range where the disturbance rejection of the cavity
feedback loop is the worst.



A. Process Description
To keep the exposition simple, we only consider the

phase dynamics of the cavity control loop. A normalized
baseband model is given by
1) Plant Dynamics:

P (s) = γ

s+ γ
e−sτ , (11)

where γ is the cavity bandwidth, and τ = 1 µs is the
loop delay (from signal processing in the controller and
electromagnetic wave propagation in the waveguide and
the measurement cable). We have neglected amplifier
dynamics, nonlinearities, parasitic cavity modes, and
detuning; see [10] for a more detailed model.

In our numerical example we will consider three cavity
types with different bandwidths γ,
• Radio-Frequency Quadrupole (RFQ), γ/(2π)=55 kHz
• Drift-Tube Linac (DTL), γ/(2π) = 12 kHz
• Elliptical medium-β cavity, γ/(2π) = 0.5 kHz.
2) Impact of DC Supply Ripple: The supply ripple acts

on the cavity field as an input load disturbance given by

d(t) = Kgξ∆supp(t),

where ∆supp(t) is the relative voltage variation of the DC
supply, the factor Kg relates relative variations of the
RF drive to relative variations on the cavity field [10],
and ξ is the phase-pushing factor of the RF amplifier6.
Typically 1 ≤ Kg ≤ 2, and the RF amplifiers that will
drive the considered cavities have ξ ≈ 10◦/%.
3) Nominal Controller Design: Given the simple plant

dynamics (11), the PI(D) is an appropriate choice for
suppressing low-frequency disturbances. For each cavity
type, a nominal PID controller C0 was designed for rejec-
tion of low-frequency disturbances, subject to constraints
on the control signal activity and ||S0(iω)||∞ ≤ 1.6.
A typical transfer function from load disturbances d

to control errors, when the cavity is controlled by a PID
controller is shown in Fig. 9. It is seen that the disturbance
rejection is worst at around 50 kHz–100 kHz, which is due
to the fundamental limitations from the 1 µs loop delay.

B. Peak Filter Design
The nominal controllers were augmented with peak

filters designed according to (7) and (8). The same peak
filter parameters were used for all three cavity types:
ω0 = 90 kHz, ζ0 = 0.015, and N = 6.

C. Simulation Results
The improvement from the peak filters in terms of

rejecting the ripple in Fig. 8 is shown in Table I. The
Nyquist plots for the different designs are shown in Fig. 11.
Note that the bulges from the peak filters are oriented
quite different, showing the advantage with an automatic
design procedure.

6Variations of the DC supply voltage also affects the amplitude
of the output, but to a much smaller extent [12].

TABLE I: Control performance for PID controllers with
and without peak filters. The numbers only include the
impact of DC supply ripple—during operation there will
be many additional disturbances.

RFQ DTL Medium-β

Bandwidth γ/(2π) [kHz] 55 12 0.5
Kg 1.3 1.3 2

Phase error (rms)
Requirement 0.20◦ 0.20◦ 0.10◦
PID 0.51◦ 0.16◦ 0.013◦
PID + peak filter 0.13◦ 0.05◦ 0.008◦
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Fig. 9: Transfer functions from load disturbances d to
cavity field errors for a DTL, with different controllers.

The transfer function from disturbances to control
errors for a DTL and different controllers are shown in
Fig. 9, and the corresponding power spectra are shown
in Fig. 10. As can be seen in Fig. 9, there is significant
improvement in rejection of the disturbance at 90 kHz,
with small performance degradation for other frequencies.
The Nyquist plots in Fig. 11 show that the the filters
only give a small impact on robustness.

D. Discussion

The presented approach, where a peak filter is intro-
duced to selectively increase the controller gain at a
specific frequency, allows the rejection of narrowband
disturbances at a low implementation cost. However
the approach relies on that the center frequency of the
narrowband disturbance is known, and it gives a more
complex controller with four additional parameters that
need to be correctly tuned.

IV. Summary

We have provided an interpretation in the open-loop
Nyquist diagram for how to selectively increase the
controller gain at a specific frequency without significantly
degrading the closed-loop robustness; this provides a
better understanding of how to do loop shaping for
rejection of narrowband disturbances.
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Fig. 10: Power spectral density of the cavity field error
for a DTL with the DC supply ripple in Fig. 8, and the
three controllers in Fig. 9. It is seen that the ripple filter
significantly reduces the impact of 90 kHz ripple.

We have also discussed a motivating example of how
narrowband disturbance rejection could improve the
control performance in a particle-accelerator application.

References
[1] B. A. Francis and W. M. Wonham, “The internal

model principle of control theory,” Automatica, vol.
12, no. 5, pp. 457–465, 1976.

[2] K. J. Åström and T. Hägglund, Advanced PID
Control. Research Triangle Park, NC: The Instru-
mentation, Systems, and Automation Society, 2006.

[3] Y. Kim, C. Kang, and M. Tomizuka, “Adaptive and
optimal rejection of non-repeatable disturbance in
hard disk drives,” in Proc. IEEE/ASME Int. Conf.
Adv. Intelligent Mechatronics, vol. 1, 2005, pp. 1–6.

[4] J. Zheng, C. Du, G. Guo, et al., “Phase lead peak
filter method to high TPI servo track writer with
microactuators,” in Proc. Am. Control Conf., IEEE,
2006, pp. 1309–1314.

[5] T. Atsumi, A. Okuyama, and M. Kobayashi, “Track-
following control using resonant filter in hard disk
drives,” IEEE/ASME Trans. Mechatronics, vol. 12,
no. 4, pp. 472–479, Aug. 2007.

[6] J. X. Xu, D. Huang, V. Venkataramanan, et
al., “Adaptive compensation of contact-induced
vibration in high density hdd servo systems using
peak filter method,” in IEEE Int. Symp. on Ind.
Electronics, May 2012, pp. 797–802.

[7] L. A. Sievers and A. H. von Flotow, “Comparison
and extensions of control methods for narrow-band
disturbance rejection,” IEEE Trans. Signal Process.,
vol. 40, no. 10, pp. 2377–2391, 1992.

[8] C.-H. Han, C.-C. Wang, and M. Tomizuka, “Sup-
pression of vibration due to transmission error of
harmonic drives using peak filter with acceleration
feedback,” in Proc. 10th IEEE Int. Workshop on
Adv. Motion Control, 2008., 2008, pp. 182–187.

-1 Re L(iω)
Im L(iω)

(a) Radio-frequency quadrupole.

-1 Re L(iω)
Im L(iω)

(b) Drift-tube linac.

-1 Re L(iω)

Im L(iω)

(c) Elliptical medium-β cavity.

Fig. 11: Nyquist curves for three different field control
loops. The blue solid lines correspond to nominal open-
loop systems, and the green dashed lines to systems
augmented with peak filters.

[9] M. Castilla, J. Miret, J. Matas, et al., “Control
design guidelines for single-phase grid-connected
photovoltaic inverters with damped resonant har-
monic compensators,” IEEE Trans. Ind. Electron,
vol. 56, no. 11, pp. 4492–4501, Nov. 2009.

[10] O. Troeng, “Cavity field control for high-intensity
linear proton accelerators,” Licentiate thesis, Lund
University, Sweden, 2017.

[11] S. Peggs, R. Kreier, C. Carlile, et al., “ESS technical
design report,” European Spallation Source, Tech.
Rep. ESS-doc-274, 2013.

[12] R. Zeng, A. Johansson, K. Rathsman, et al., “In-
fluence droop and ripple of modulator on klystron
output,” European Spallation Source, Tech. Rep.
ESS-AD-0033, 2011.


