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Abstract 
Combined quantum mechanical and molecular mechanical (QM/MM) calculations is a 

popular approach to study enzymatic reactions. They are often based on a set of minimised 
structures obtained on snapshots from a molecular dynamics simulation to include some 
dynamics of the enzyme. It has been much discussed how the individual energies should be 
combined to obtain a final estimate of the energy, but the current consensus seems to be to use 
an exponential average. Then, the question is how many snapshots are needed to reach a 
reliable estimate of the energy. In this paper, I show that the question can be easily be 
answered if it is assumed that the energies follow a Gaussian distribution. Then, the outcome 
can be simulated based on a single parameter, s, the standard deviation of the QM/MM 
energies from the various snapshots, and the number of required snapshots can be estimated 
once the desired accuracy and confidence of the result has been specified. Results for various 
parameters are presented and it is show that much more snapshots are required than is 
normally assumed. The number can be reduced by employing a cumulant approximation to 
second order. It is shown that most convergence criteria work poorly, owing to the very bad 
conditioning of the exponential average when s is large (more than ~7 kJ/mol), because the 
energies that contribute most to the exponential average have a very low probability. On the 
other hand, s serves as an excellent convergence criterion.  
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Introduction 
Combined quantum mechanical and molecular mechanics (QM/MM) is a popular method 

to study (among other things) enzyme reaction mechanisms.1,2 It has the advantage of 
providing a detailed atomistic account of the surrounding protein in the calculations. On the 
other hand, it is sensitive to the conformation of the surrounding protein and solvent – the 
addition or removal of a single hydrogen bond far from the active site affects the energy by 
~20 kJ/mol in a way that most likely is irrelevant for the reaction. A complicated molecule 
like a protein has in principle an infinite number of possible conformations and it is very hard 
to ensure that the surrounding enzyme remain in the same local minima throughout a reaction 
sequence. This problem can be alleviated by considering free energies, which are obtained by 
averaging over all relevant conformations.1–3 However, for a high-level QM method, this is 
very expensive. 

Therefore, most QM/MM studies are performed using minimised structures. To reduce 
the local-minima problem, various strategies have been used, e.g. keeping most of the 
surroundings fixed or running the reaction forth and back several times.2 However, the most 
common approach is to repeat the calculations for a number starting structures, typically 
snapshots from a molecular dynamics (MD) simulation, selected either by random 4–12 or by 
their similarity to the transition state.13,14 

Unfortunately, such an approach leads to several new problems. First, it must be decided 
how the calculated energies (or free energies, with entropies from a normal-mode analysis of 
harmonic frequencies) for the various snapshots (e.g. reaction or activation energies, Ei) 
should be combined to a final estimate. Some authors have used an arithmetic average6,13,15–24 
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which gives a proper averaging of the snapshots at the MM level (if they are picked at random 
from the simulation). Others have instead used an exponential average8–13,18–20,23,25–30 
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where n is the number of energies, T is the temperature and R is the gas constant. This can be 
seen as an attempt to reweight the snapshots with the QM/MM energy function (although for 
activation barriers, it may seem more natural to reweight with the total QM/MM energy, not 
the activation energy). Other methods have also been suggested, e.g. taking the minimum 
activation barrier.31 Recently, Cooper and Kästner compared the results of various approaches 
and they showed that the exponential averages gave the most accurate results compared to 
explicitly calculated free energies.13 Still, it should be remembered that all approaches are 
only approximations, avoiding the much more demanding free-energy calculations. 

The next question to answer is how many snapshots are needed to obtain a converged 
value of ∆EEA. Most studies have used only a few (3–10) snapshots,30 but a few studies used 
20–65 energies;13,25,27,29,30 Table 1 shows a compilation of 24 studies. In a recent paper, Li et 
al. tried to answer this question by considering the convergence of the results, using 20 
snapshots.30 They also tried to design proper convergence criteria to decide whether the 
enough snapshots are considered. They concluded that ~20 snapshots are needed for 
convergence. Unfortunately, their results are strongly misleading, because they have failed to 
recognize how badly conditioned the exponential average is. 

Similar convergence questions have recently been discussed in the related area of 
employing QM/MM methods to postprocess free-energy perturbation calculations performed 
at the MM level.32–34 In particular, Boresch and Woodcock employed statistical probability 



distributions to study the convergence.35 In the present paper, I use a similar approach to 
answer how many QM/MM energies are needed to obtain a reliable estimate of ∆EEA and how 
it can be known if the sum is converged. I compare four convergence criteria and illustrate the 
problem of the exponential average. 

Theory and Methods  

Theory 
The question about the minimum value of n needed to obtain a reliable estimate of the 

exponential average in Eqn. 2 can easily be answered by assuming a certain distribution of the 
energies (Ei). Throughout this paper, I will assume that they follow a Gaussian distribution: 
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 The validity of this assumption will be discussed below. A Gaussian distribution is 
characterised by two parameters, the expectation value (mean; µ) and the standard deviation 
(s).  

If the energies Ei follow a Gaussian distribution, the sum in Eqn. 2 can be turned into the 
integral:35 
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 This integral has an analytical solution,  
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Throughout this article, I will assume that T = 300 K and use kJ/mol as the energy unit. 

Convergence criteria 
I have tested four criteria previously used to decide whether the exponential sum in Eqn. 

2 is converged or not. The first is Kish’s effective sampling size, 36 
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where the wi is the weight of each term in Eqn. 2, i.e. 
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The second is the maximum value of these weights, wmax, 37,38 which is obtained for the 
smallest (most negative) energy Emin. The third is the weighting entropy:39  
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Finally, the fourth is the disproportionation effect suggested by Li et al.,30 
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where ∆EEA(n) is the exponential average from Eqn. 2, based on all n energies, whereas 
∆EEA(n–1min) is the same estimate, based on all energies except Emin.  

Simulation 
With a Gaussian approximation, the summation in Eqn. 2 can be studied by a numerical 

simulation. A simple program was written that generates a certain number of Gaussian-
distributed energies (by the Box–Muller transform40) and calculates the exponential average 
in Eqn. 2 and the four convergence criteria. This is repeated 1000 times and it is noted how 
many times this average was within a certain limit (q) from the analytical results (Eqn. 5). The 
program automatically finds the minimum number of snapshots (within 0.1%) needed to fulfil 
these criteria. The Fortran code can be provided by the author upon request. 

Result and Discussion 
In this paper, I investigate how many QM/MM energies are needed to give a converged 

and correct result for the exponential sum in Eqn. 2. This can be easily done if it assumed that 
the energies follow a Gaussian distribution. Then, the correct answer is analytically known 
(Eqn. 5) and a simple simulation can be used to determine how many energies are needed to 
reach a certain accuracy (q) and confidence. The Gaussian distribution depends on only a 
single parameter, the standard deviation, s (because the mean value only translocates the 
distribution and therefore is arbitrary in this discussion).  

The number of energies 
To start with, I assume that we want to obtain an energy ∆EEA that is within q = 4 kJ/mol 

of the correct answer with 95% confidence, which seems to be a reasonable limit for accurate 
calculations. In Figure 1, the results of the simulations are shown, viz. the number of required 
QM/MM energies as a function of the standard deviation, s. It can be seen that for a small 
standard deviation, only few energies are needed. For example, with a s of 1 kJ/mol, a single 
value is enough, because the spread of the energies is so small (compared to the desired 
accuracy of 4 kJ/mol). However, when s gets larger, the number increases exponentially (note 
the logarithmic scale in Figure 1). 

Let us now re-evaluate the recent study by Li et al..30 They studied fluoroacetate 
dehalogenase with two substrates, fluoroacetate and chloroacetate, and two different sizes of 
the QM system. From the energies in their supplementary Table 1, s can be calculated: 10, 
13, 14 and 17 kJ/mol, respectively. According to Figure 1 and Table 2, ~4200 energies are 
needed to get an answer that is converged to 4 kJ/mol with 95% confidence for the first case 
(chloroacetate with the small QM system), whereas 500 000, 4 000 000 and ~109 samples are 
needed for the other three cases. This is in sharp contrast to the conclusions in the original 
paper, which suggested that ~20 energies were enough. According to the simulations, 20 
samples would give errors of 8, 16, 20 and 33 kJ/mol on average in the four cases. How can 
we reach such different conclusions? The answer is that Li et al. have failed to realise how 
badly conditioned the sum in Eqn. 2 is.  

The integral version of the exponential sum in Eqn. 4, consists of two terms, the Gaussian 



function (G(E) in Eqn. 3) and the Boltzmann function (𝐵(𝐸) = 𝑒B
3
56). They are plotted 

together with their product (P(E)) in Figure 2. The desired result is the (logarithm of the) area 
below the product curve, which is also shown (right axis). It can be seen in Figure 2a that G 
shows the well-known bell-shape, whereas B is monotonously growing as E decreases. For 
small values of s, G decreases faster than B and therefore, the product has also nearly a bell 
shape, which is only slightly skewed towards lower values. For s = 1, it attains its maximum 
at a slightly negative value (–0.4 kJ/mol) and both terms attain small values around the range 
where the product is significant (G = 0.4 and B = 1.2). This means that all values that 
significantly contribute to the product have a large probability to be observed. ∆EEA shows a 
rapidly decreasing trend as E decreases, but the variation is small and it is converged within 4 
kJ/mol already at E = –0.2 kJ/mol, near the peak of the Gaussian distribution. 

However, for s = 10 kJ/mol, the situation is different as can be seen in Figure 2b. In this 
figure, the curves span a much larger range of energies, so that they need to be shown on a 
logarithmic scale. B is still monotonically increasing, giving a straight line on the logarithmic 
scale. Likewise, G still shows a bell-shaped curve, but with a much larger spread (owing to 
the larger s), so that a much larger range of energies is important. This means that G 
decreases slower and it does not dominate B until E < –74 kJ/mol. In particular, the product 
attains its maximum around E = –40 kJ/mol. The probability to observe this or lower energies 
is only 8×10–5, i.e. you need to sample ~12000 points before such energies are observed. 
Moreover, many even more unlikely energies need to be sampled before you have found all 
energies that contribute significantly to the integral (P > 1 for –74 < E < –6, with probabilities 
down to 1×10–14). Fortunately, the logarithm in Eqn. 4 makes ∆EEA more stable, as is also 
shown in Figure 2b (right axis): ∆EEA is converged within 4 kJ/mol already around E = –30 
kJ/mol, in accordance with the simulated result that 4200 energies are needed. However, with 
only 20 energies, the observed energies are typically in the range –19 < E < 19 kJ/mol, giving 
a major underestimate of ∆EEA. Figure 2b also explains why Li et al. reached an incorrect 
conclusion regarding the number of points needed. They suggested that you should sample 
until ∆EEA estimated from the last five points does not change by more than 4 kJ/mol. 
However, five points is not much if the probability to find the important points is <10–3.  

Instead a numerical simulation is needed, as the one in Figure 1 and Table 2, which show 
how many points are needed for a certain accuracy and confidence. However, we have seen 
that if s is large, the number of points rapidly becomes prohibitively large. The compilation 
of previous QM/MM studies in Table 2 show that such large s values are not rare: s ranges 
from 0.6 to 97 kJ/mol and 73% of the studies have at least one series of energies with s > 10 
kJ/mol. What can be done in these cases? Is this the end of QM/MM minimisation studies? 

Fortunately, not necessarily. If the user is willing to accept an approximation, the 
situation improves significantly: If it is assumed that the distribution indeed is Gaussian, ∆E 
can be estimated from the analytical solution in Eqn. 3, instead of the sum in Eqn. 2. This is 
the cumulant approximation to the second order.41–43 It requires only estimates of µ and s, 
which are much more well-behaving, because they are based on arithmetic averages. Figure 3 
and Table 2 shows the required number of energies as a function of s  with the cumulant 
approximation. It can be seen that for low s, the difference gain is minimal, but for s > 6 
kJ/mol, appreciably lower values of n are required with the cumulant approximation. For 
example, for the four sets in the study of Li et al. (with s = 10–17 kJ/mol), 230–1700 energies 
are needed for an accuracy of 4 kJ/mol with 95% confidence. However, this is still much 
more than what is normally used. 

This may indicate that we have aimed at a too high accuracy. Therefore, the 
corresponding results for accuracies of 10 and 20 kJ/mol are shown in Figure 4 and Table 2 
(still with a confidence of 95%). It can be seen that in the first case, 92–2×106 snapshots are 



needed with a full exponential average if the energies show a standard deviation (s) of 10–17 
kJ/mol (as in the study of Li et al.). This is still too large. On the other hand, if the cumulant 
approximation is employed, it is enough with 35–266 snapshots, which starts to be acceptable. 
With an accuracy of 20 kJ/mol, the corresponding numbers are 7–7400 for the exponential 
average and 10–66 with the cumulant approximation. This is probably the accuracy we can 
hope for in a standard QM/MM study, unless the spread of the individual energies is low. 

As mentioned in the introduction, some authors have suggested the use of an arithmetic 
average instead. However, as can be seen from Eqn. 5, this will not reproduce the exponential 
average if s is large (remember that µ is the arithmetic average). In fact, the arithmetic 
average will deviate from the exponential average by more than 4, 10 and 20 kJ/mol when s 
is larger than 4.5, 7.1 and 10.0 kJ/mol, respectively.  

The situation is similar for the minimum value: It does not coincide with or converge 
towards the exponential average. However, the minimum value is approximately proportional 
to s, whereas the exponential average depends on s2 (Eqn. 5). Therefore, the minimum value 
is too negative for small s, whereas it is too large for larger s. The cross-over and the detailed 
accuracy depends on the number of samples. With 10 samples, the minimum value agrees 
with the exponential average within 4, 10 and 20 kJ/mol with 95% confidence when s is less 
than 1, 8 and 11 kJ/mol, respectively, and the cross-over is around s = 8 kJ/mol. With 1000 
samples, the corresponding numbers are 1, 3 and 19 kJ/mol and the cross-over is at s = 16 
kJ/mol). 

An important use of QM/MM studies on enzymes is to compare alternative reaction 
mechanisms, using the height of activation barrier as the discriminating criterion. This is an 
appreciably easier task, because it is not necessary to accurately estimate the actual barriers, 
only their relative size. Figure 5 shows the number of energies needed to reach the correct 
ranking in 95% of the simulations if µ of the two normal distributions differ by either ∆µ = 
10, 20 or 40 kJ/mol, and both are characterised by the same s. Four different estimates of the 
activation energies are tested. The exponential average (red curves in Figure 5) shows a steep 
increase in the number of energies when s is increased, as can be expected from the results in 
Figure 4. However, the number of energies does not rise to prohibitive large values until s » 
∆µ. For example, less than 11 energies are needed as long as s < 30 kJ/mol if ∆µ = 40 kJ/mol. 
Moreover, it can be seen that using the minimum value does not lead to any improvement in 
the convergence (yellow curves in Figure 6). 

On the other hand, the convergence is strongly improved is the cumulant approximation is 
used (blue curves), but only for large values of s. In fact, up to s = ∆µ, fewer energies are 
needed with exponential averaging than with the cumulant approximation. Instead, the most 
stable results are obtained with the arithmetic average (green curves in Figure 6). It always 
gives the lowest n among the four methods tested. Moreover, the increase is more modest as s 
is increased. Thus, to discriminate between two mechanism with the activation barrier, the 
arithmetic average gives the most stable results, but the actual values of the barriers will be 
inaccurate. Of course, the detailed results may change if the two distributions are allowed to 
have different values of s, but the arithmetic average will still have much better convergence 
properties than the other averages (and the situation can easily be simulated numerically). 

Convergence criteria 
Finally, I have also studied and compared four convergence criteria, used in previous 

investigations.30,36–39 The results for three typical s values (7, 10 and 13 kJ/mol) are shown in 
Figures 6a–c. It can be seen that all four convergence criteria give reasonable results, i.e. they 
give a meaningful variation for n values around which the Gaussian simulations indicate that 



convergence is obtained. The reason for this is of course that they study essentially the same 
property, viz. how many energies that provide a significant contribution to the exponential 
sum and how sensitive this sum is to the largest term. If only one or a few values contribute, it 
is likely that the convergence is poor and that the result may change significantly if more 
energies are calculated. Among these three estimates, Sw shows the smallest variation: The 
range is only 0.1 throughout the range considered for all three cases and it may therefore be 
hard to design an accurate convergence value. DE has the disadvantage of being dependent on 
the value of ∆EEA. Q shows the largest variation. 

Table 3 shows the convergence value for each estimate for the four convergence criteria 
and the three s values (using the convergence limits shown in Table 2). Unfortunately, it can 
be seen that all the convergence criteria depend somewhat on s: Q increases with s (from 7 to 
13), whereas the other three estimates decrease. wmax shows the smallest variation, from 0.38 
to 0.33, whereas for Sw, the variation is larger than the total range in the three studied cases, 
making it useless for general use. However, also for the other three criteria, the variation is 
quite large compared to the variation with n. 

Furthermore, all criteria are independent on the accuracy threshold used. This is 
illustrated in Figure 6d and the last row in Table 3, in which the results are shown for s = 18 
kJ/mol with the desired accuracy of 20 kJ/mol. In that case, totally different values of the 
various criteria need to be used (last line in Table 3). Therefore, it must be concluded that the 
convergence limits vary with the system and with the desired accuracy in a way that needs to 
be tested for each system. Therefore, I instead recommend the use of s as the convergence 
criterion. Using s, the required number of energies can be directly read from Table 2 and the 
simulation can easily be redone if other accuracies or confidences are required. 

Conclusions 
In this paper, I have discussed how many QM/MM-minimised energy estimates are 

needed to obtain an accurate estimate of the exponential average (e.g. for the activation 
barrier or reaction energy). Assuming that the energies follow a Gaussian distribution, an 
unambiguous answer to this question can easily be obtained, as soon it is decided what 
accuracy and what confidence is required. Values needed to reach accuracies of 4, 10 and 20 
kJ/mol with a confidence of 95% are shown in Table 2 as a function of a single parameter, the 
standard deviation of the individual energy values from different snapshots (s). 

For practical use, I suggest to first calculate three energy values, from which an estimate 
of s is obtained. Then, Table 2 directly shows how many additional points are needed. Once 
these are obtained, a better estimate of s is also gained. If s is above ~10 kJ/mol, the user 
may prefer to employ the cumulant approximation, for which the required n is smaller (also in 
Table 2). However, if s is too large, the required number can still become too large. Then, the 
user may need to use other methods to estimate the energy, preferably free-energy 
perturbation or related methods.1–3 On the other hand, if the main interest is to compare 
alternative mechanisms, arithmetic averages give more stable results (but less accurate 
energies), as is shown in Figure 5. 

Many different methods have been suggested to determine whether estimates using 
exponential averaging are reasonable. Unfortunately, many of them do not work at all when 
the sum is badly conditioned, i.e. when the probability to find the values that contribute most 
to the integral in Eqn. 4 becomes very low. Convergence criteria that judge how many 
energies significantly contribute to ∆EEA (like wmax, Q and Sw) work better, but it is hard to 
suggest general convergence limits. Instead, I recommend the standard deviation of the 
energy distribution (s) as the convergence criterion and it gives a direct estimate of how badly 
conditioned the problem is and how many energies are needed. It is also directly available 



from any sample of energy estimates. It has previously been used to judge the convergence of 
free-energy perturbations, suggesting that s should be less than 1–2 RT (2.5–5 kJ/mol).44–46 

The estimates presented in this paper are based on the assumption that the QM/MM 
energy values follow a Gaussian distribution. Owing to the central limit theorem, this seems 
to be a reasonable assumption. Figure S1 in the supporting information shows histograms and 
normal plots of the eight data samples in Table 1 with 20 or more data points. They show a 
reasonably Gaussian distribution, possibly with a single outlier in one case (Figure S1a).  
Moreover, the estimates in Table 2 should not be considered as accurate values, but only as an 
indication of how many samples are needed and especially an indication whether there is any 
chance that a converged result can be obtained or not. In particular, it is unlikely that the 
distribution will be so favourable that a significantly smaller n is needed, and if a user want to 
make such a claim, he needs to provide strongly convincing evidence that this is actually the 
case. Likewise, if a user wants to employ the cumulant approximation, it becomes more 
important to provide evidence that the distribution actually is Gaussian.  

The main take-home message from this paper is that QM/MM energy estimates from 
minimised MD snapshots with an exponential average is much more problematic than what 
has previously been assumed. The use of less than 20 snapshots will work only if the energy 
distribution is narrow or if a rather low accuracy is accepted. This is owing to the curse of the 
exponential averaging, illustrated in Figure 2b. Fortunately, the accuracy of the approximation 
used can easily be estimated from one single parameter, s. It should be noted that the same 
method can be used and the same conclusions apply to any property that is obtained by 
exponential averaging, which is the proper approach when conformational sampling is 
performed with another energy function than the one used for the property calculation, e.g. 
when trying to calculate binding free energies at the QM level, based on MD simulations at 
the MM level.32–35 

Supporting information 
Histograms and normal plots of the eight data samples in Table 1 with 20 or more data points. 
The Supporting Information is available free of charge on the ACS Publications website.  
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Table 1. Method of averaging (arithmetic average, AA, or exponential average, EA), number 
of energies in the average (n) and the standard deviation among the energies (s in kJ/mol) in a 
number of QM/MM studies of enzyme reactions. The list is not exhaustive, but includes the 
articles listed in references 13 and 30. 
 
Group Year Ref. Method n s 
Schulten 1996 25 EA 25 44–49 
Shaik 2006 47 AA 3 6.8 
Zhang 2006 16 AA 11 5.0–8.5 
Thiel 2008 17 AA 10 5.4–12 
Mulholland 2010 18 AA, EA 7–10 6.6–26 
Mulholland 2010 19 AA, EA 5 3.3–6.3 
Kästner 2010 48 AA, EA 10 72–97 
Thiel 2010 21 AA 2 0.6–5.3 
Kästner 2011 12 EA 6 8.2–53 
Mulholland 2011 7  3 2.1–3.1 
Mulholland 2012 22 AA 10 4.8–13 
Field 2013 11 EA 5 4.7–18 
Kästner 2013 10 EA 4 40–63 
Mulholland 2013 23 AA, EA 5 18 
Mulholland 2013 26 EA 2–10 5.3–16 
Ryde 2013 6 AA 10 4.4–9.2 
Kästner 2014 13 AA, EA 65 16 
Lluch 2014 27 EA 9–11 11–24 
Wang 2014 28 EA 7 36 
Lonsdale 2015 9 EA 3 1.5–36 
Ramos 2015 29 EA 39 33 
Thiel 2015 24 AA 4–10 4.6–24 
Wang 2015 8  EA 3 12–21 
Wang 2016 30  EA 20 10–17 

  



Table 2. Number of energies needed to obtain the correct ∆EEA within a certain threshold (q = 
4, 10, or 20 kJ/mol) with a confidence of 95% as a function of s (in kJ/mol). 

 
s Exponential average Cumulant approximation 

 q = 4 10 20 4 10 20 
1 1 1 1 2 2 2 
2 2 1 1 2 2 2 
3 3 1 1 5 2 2 
4 8 1 1 10 3 2 
5 20 2 1 18 4 2 
6 42 4 1 35 6 3 
7 126 8 2 55 11 4 
8 372 15 3 101 15 5 
9 1560 38 4 147 24 7 
10 4180 92 7 228 35 10 
11 19900 251 12 318 50 13 
12 89300 800 28 448 68 18 
13 511000 2660 67 593 102 24 
14 3960000 11800 178 809 127 32 
15 28400000 57200 535 1040 167 42 
16  317000 1780 1330 214 53 
17  2190000 7410 1680 266 66 
18   33800 2290 340 83 
19   182000 2650 407 106 
20   1250000 3170 522 127 
25    7420 1320 292 
30    15760 2590 627 
35    30100 4580 1120 
40    51000 7670 2070 

 
  



Table 3. Quality criteria at the minimum required number of energy values (according to 
Table 2) in simulations using four different values of s (kJ/mol) and two values for the 
accuracy threshold (q, kJ/mol). 

 
s q wmax Q Sw DE 
7 4 0.38±0.01 6.7±0.1 0.49±0.00 -0.29±0.01 

10 4 0.35±0.01 9.7±0.2 0.36±0.00 -0.40±0.01 
13 4 0.33±0.01 13.3±0.4 0.28±0.00 -0.49±0.01 
18 20 0.60±0.01 3.4±0.1 0.14±0.00 -0.52±0.01 

 
 

  



Figure 1. Number of energies needed to obtain the correct ∆EEA within 4 kJ/mol with a 
confidence of 95% as a function of s. Note the logarithmic scale of the y axis. 
 

 
 

  



Figure 2. The two terms within the integral in Eqn. 4, viz. the Gaussian probability function, 
G(E) and the Boltzmann distribution, B(E), as well as their product, P(E) = G(E) * B(E), 
plotted as a function of the energy for two different values of s, (a) 1 and (b) 10 kJ/mol. Note 
the logarithmic scale in (b). Both figures also show ∆EEA (right y axis), which is calculated 
from the integral of P(E) for values between –E and +E. 
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Figure 3. Number of energies needed to obtain the correct ∆EEA within 4 kJ/mol with a 
confidence of 95% as a function of s employing the cumulant approximation. 

 

 
  



Figure 4. Number of energies needed to obtain the correct ∆EEA within a certain accuracy (4, 
10 or 20 kJ/mol) with a confidence of 95% as a function of s using either the exponential 
average (EA) in Eqn. 2 or the cumulant approximation (CA) in Eqn. 3. 
 

 
  



Figure 5. Number of energies needed to obtain the correct ranking of two Gaussian 
distributions G1(0,s) and G2(∆µ,s) in 95% of the 1000 simulations. Four different energies 
were tested: exponential averages (E; red curves), cumulant approximation (C; blue), 
arithmetic averages (A; green) and the minimum value (M; yellow–brown) and three values 
of ∆µ, 10, 20 and 40 kJ/mol. Note the logarithmic scale of the y axis. 
 

  



Figure 6. The dependence of four convergence criteria (wmax, Sw and DE on left axis and Q on 
left axis; for DE, the negative value is shown) on the number of energies included (n). Results 
are shown for (a) s = 7, (b) 10, (c) 13 and (d) 18 kJ/mol. The black vertical bar indicates the 
number of energies giving a ∆EEA converged to within 4 (a–c) or 20 (d) kJ/mol with a 
confidence of 95%. 
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