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Spatially Coupled LDPC Codes Constructed
From Protographs

David G. M. Mitchell, Member, IEEE, Michael Lentmaier, Senior Member, IEEE,
and Daniel J. Costello, Jr., Life Fellow, IEEE

Abstract— In this paper, we construct protograph-based
spatially coupled low-density parity-check (LDPC) codes by
coupling together a series of L disjoint, or uncoupled, LDPC code
Tanner graphs into a single coupled chain. By varying L,
we obtain a flexible family of code ensembles with varying
rates and frame lengths that can share the same encoding and
decoding architecture for arbitrary L. We demonstrate that the
resulting codes combine the best features of optimized irregular
and regular codes in one design: capacity approaching iterative
belief propagation (BP) decoding thresholds and linear growth of
minimum distance with block length. In particular, we show that,
for sufficiently large L, the BP thresholds on both the binary
erasure channel and the binary-input additive white Gaussian
noise channel saturate to a particular value significantly better
than the BP decoding threshold and numerically indistinguish-
able from the optimal maximum a posteriori decoding threshold
of the uncoupled LDPC code. When all variable nodes in the
coupled chain have degree greater than two, asymptotically the
error probability converges at least doubly exponentially with
decoding iterations and we obtain sequences of asymptotically
good LDPC codes with fast convergence rates and BP thresholds
close to the Shannon limit. Further, the gap to capacity decreases
as the density of the graph increases, opening up a new way to
construct capacity achieving codes on memoryless binary-input
symmetric-output channels with low-complexity BP decoding.

Index Terms— Low-density parity-check (LDPC) codes,
LDPC convolutional codes, spatially coupled codes, iterative
decoding, belief propagation, density evolution, decoding thresh-
olds, minimum distance, capacity achieving codes.

I. INTRODUCTION

THE performance of an iterative belief propagation (BP)
decoder for low-density parity-check (LDPC) codes is
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strongly influenced by the degrees of the different variable
nodes and check nodes in the associated Tanner graph code
representation [1]. (J, K )-regular LDPC codes, with constant
variable node degree J and check node degree K , as originally
proposed by Gallager [2] in 1962, are asymptotically good in
the sense that their minimum distance grows linearly with
block length for J > 2; however, the iterative decoding
behavior of regular codes in the so-called waterfall, or mod-
erate bit error rate (BER), region of the performance curve
falls short of capacity, making them unsuitable for severely
power-constrained applications, such as uplink cellular data
transmission or digital satellite broadcasting systems.

On the other hand, optimized irregular LDPC codes [3],
with a variety of different node degrees, exhibit capacity
approaching performance in the waterfall but, unlike
(J, K )-regular codes, are normally subject to an error floor, a
flattening of the BER curve that results in poor performance
at high signal-to-noise ratios (SNRs), as a result of a large
number of degree two variable nodes; this makes such codes
undesirable for applications that require very low
decoded BERs, such as data storage and optical
communication. For irregular LDPC code ensembles,
the degrees of the variable and check nodes are often
modeled as random variables that are characterized by their
degree distributions λ(x) and ρ(x), respectively [3].
Each coefficient in the polynomials λ(x) and ρ(x)
corresponds to the fraction of edges in the graph
connected to nodes of a certain degree. Gallager’s
(J, K )-regular LDPC code ensembles correspond to the
special case λ(x) = x J−1 and ρ(x) = x K−1, i.e., the
degrees of each node type are constant. Using an algorithm
called density evolution (DE) [4], a BP decoding threshold
can be calculated for a randomly constructed LDPC code
ensemble with degree distribution pair (λ(x),ρ(x)) that
determines the limit of the error-free region asymptotically
as the block length tends to infinity. Using DE, irregular
code ensembles with thresholds very close to the Shannon
limit on the binary-input additive white Gaussian noise
channel (AWGNC) were designed in [5]. Moreover, in [6],
capacity achieving sequences of degree distribution pairs for
a given rate R with a vanishing gap between the threshold
and the Shannon limit εSh = 1 − R were presented for the
binary erasure channel (BEC).

LDPC convolutional codes (LDPC-CCs) [7], the
convolutional counterparts of LDPC block codes (LDPC-BCs),
have been shown to have certain advantages compared to
LDPC-BCs [8], [9]. Variations in the check and variable node
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degrees of LDPC-CC Tanner graphs are also characterized
by a degree distribution pair, where the connections between
nodes in the bi-infinite Tanner graph occur within a constraint
length. The performance of LDPC-CCs under iterative
BP decoding has been well studied. Extensive computer
simulation results (see [7], [10]–[12]) have verified that, for
practical code lengths, LDPC-CCs obtained by unwrapping an
LDPC-BC achieve a substantial convolutional gain compared
to the underlying LDPC-BC, where both codes have the
same computational complexity with iterative decoding and
the block length of the LDPC-BC equals the constraint
length of the LDPC-CC. Moreover, various code and graph
properties, such as iterative decoding thresholds [13]–[15],
girth [12], [16], minimum (free) distance [10], [17]–[19],
minimum (free) pseudo-distance [20], and minimum trapping
set size [19], of the unwrapped LDPC-CC have been shown
to be at least as good as the corresponding values of the
underlying LDPC-BC.

Spatially coupled LDPC (SC-LDPC) codes are constructed
by coupling together a series of L disjoint, or uncoupled,
LDPC code Tanner graphs into a single coupled chain.
They can be viewed as a type of LDPC-CC, since spatial
coupling is equivalent to introducing memory into the
encoding process. If the coupled chain is unterminated
(L → ∞), a SC-LDPC convolutional code (SC-LDPC-CC)
is formed, and if the chain is terminated (finite L),
a SC-LDPC block code (SC-LDPC-BC) results. Recently, it
has been proven by Kudekar et al. that SC-LDPC-BC
ensembles are capacity achieving on memoryless
binary-input symmetric-output (MBS) channels under
BP decoding [21], [22]. Consequently, the principle of spatial
graph coupling has attracted significant attention and has been
successfully applied in many other areas of communications
and signal processing, such as, for example, compressed
sensing [23], [24], relay channels [25]–[28], wiretap
channels [29], multiple access channels [30]–[33], broadcast
channels [34], intersymbol-interference channels [35], [36],
multiuser detection [37], random access [38], source
coding [39], quantum codes [40], [41], and models in
statistical physics [42]. Also, studies of the finite length
scaling properties of SC-LDPC-BCs were performed
in [43] and [44] and block erasure channel performance
bounds were given in [45].

LDPC code ensembles with a certain predefined structure
can be constructed by means of protographs [46]. By applying
a graph lifting operation, Tanner graphs of various sizes can
be constructed that preserve the rate, degree distribution, and
computation graphs (see [47]) of the protograph. It has been
observed that irregular protograph-based LDPC-BC ensem-
bles often have better thresholds than unstructured irregular
ensembles with the same degree distributions [48]. An extreme
example of this behavior is that the thresholds of carefully
designed protograph-based LDPC code ensembles containing
variable nodes of degree one can have good thresholds [48];
whereas an unstructured LDPC code ensemble with degree one
variable nodes will not even have a threshold. Moreover, the
inherent structure in protograph-based ensembles can improve
distance properties. For example, irregular protograph-based

LDPC-BC ensembles that contain degree two variable nodes
can be asymptotically good, and ensembles with minimum
variable node degree three can provide a good trade-off
between distance and threshold [48]. As a result of their good
properties and implementation advantages, many LDPC codes
have been adopted in recent industry standards, such as
wireless LANs (IEEE 802.11n), WiMax (IEEE 802.16e),
digital video broadcasting (DVB-S2), and the ITU-T standard
for networking over power lines, phone lines, and coaxial
cable (G.hn/G.9960), and each of these standard codes can
be viewed as protograph-based LDPC-BCs.

In this paper, we analyze ensembles of SC-LDPC-BCs
constructed from protographs. We present an edge spreading
procedure that is used to couple together L block protographs
to form a convolutional protograph. The protograph framework
enables us to extend previous DE analysis [13]–[15] and
codeword weight enumerator analysis [17] that were restricted
to certain (J, K )-regular SC-LDPC-CC ensembles to general
(J, K )-regular and irregular ensembles. We use this analysis to
show that, for protograph-based SC-LDPC-BC ensembles with
sufficiently large L, the iterative BP decoding thresholds on
both the BEC and the AWGNC saturate to a particular value
significantly larger than the BP decoding threshold and numer-
ically indistinguishable from the maximum a-posteriori (MAP)
decoding threshold of the underlying LDPC-BC ensemble.1

Further, we show that both the (J, K )-regular SC-LDPC-BC
ensembles with J > 2 and the irregular SC-LDPC-BC
ensembles considered in this paper are asymptotically good,
i.e., their minimum distance grows linearly with block length.
Thus, since the MAP thresholds of (J, K )-regular LDPC-BC
ensembles approach capacity as the graph density increases,
protograph-based SC-LDPC-BC ensembles combine the best
features of optimized irregular and regular codes in one
design: capacity approaching BP decoding thresholds and
linear minimum distance growth. Finally, we study the
relationship between the minimum distance growth rate of the
SC-LDPC-BC ensemble and the free distance growth rate of
the associated SC-LDPC-CC ensemble.

The paper is structured as follows. In Section II, we give
a brief review of LDPC-BCs and the protograph construction
method. We then describe the construction and structural
properties of protograph-based SC-LDPC-CC and
SC-LDPC-BC ensembles. In Section III, we begin with
an asymptotic weight enumerator analysis of protograph-
based SC-LDPC-BC ensembles. We then proceed to study
their iterative decoding properties by means of DE, first
for the BEC and then for the AWGNC. As the coupling
length L increases, we obtain a family of asymptotically good
code ensembles with increasing rates that feature a trade-off
between capacity approaching iterative decoding thresholds
and declining minimum distance growth rates. Then,
in Section IV, we show that the minimum distance growth
rates, while declining with L, converge to a bound on the
free distance growth rate of the unterminated SC-LDPC-CC

1It should be noted that the SC-LDPC-BC ensembles used to prove threshold
saturation in [21] and [22] had to be suitably randomized, and thus those
results do not apply directly to the protograph-based SC-LDPC-BC ensembles
considered in this paper.
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ensemble that is independent of L and significantly
larger than the minimum distance growth rate of the
underlying LDPC-BC ensemble. We then argue that an
appropriate distance measure for terminated SC-LDPC-CC
(i.e., SC-LDPC-BC) ensembles should also behave
independently of L. Some concluding remarks are given
in Section V.

II. SPATIALLY COUPLED LDPC CODE ENSEMBLES

In this section, we will describe the construction of
protograph-based SC-LDPC code ensembles. We begin with
a brief introduction to LDPC codes in Section II-A and
review the construction of LDPC code ensembles based
on protographs in Section II-B. In Section II-C we discuss
the construction of a convolutional protograph and the
associated ensemble of protograph-based SC-LDPC-CCs
by applying an edge spreading operation to (spatially)
couple together a sequence of uncoupled LDPC-BC
protographs. In Section II-D, we present two closely related
ways to construct SC-LDPC-BCs from protograph-based
SC-LDPC-CCs: termination and tail-biting. We conclude
with a discussion of variations to the edge spreading rule
and different ways of constructing SC-LDPC-BC ensembles
in Section II-E.

A. LDPC Block Codes

We begin with a brief introduction to LDPC-BCs
(see also [47], [49]). A (J, K )-regular LDPC-BC is defined
as the null space of a sparse binary parity-check matrix H,
where each row of H contains exactly K ones, each column
of H contains exactly J ones, and both J and K are small
compared with the number of rows in H. An LDPC-BC code
is called irregular if the row and column weights are not
constant. The code has block length n, where n is the number
of columns of H, and rate R = k/n, where (n − k) is the
rank of H. For (J, K )-regular codes, the code rate is given
as R ≥ 1 − J/K , with equality when H has full rank. It is
often useful to represent the parity-check matrix H using a
bipartite graph called the Tanner graph [1]. In the Tanner graph
representation, each column of H corresponds to a code bit
or variable node and each row corresponds to a parity-check
or check node. If position (i, j) of H is equal to one, then
check node i is connected by an edge to variable node j in
the Tanner graph; otherwise, there is no edge connecting these
nodes. The notion of degree distribution is used to characterize
the variations of check and variable node degrees (see [3]).

B. Protograph-Based Code Construction

A protograph [46] with design rate R = 1 − nc/nv is
a small bipartite graph (V , C, E) that connects a set of nv

variable nodes V = {v0, . . . , vnv −1} to a set of nc check nodes
C = {c0, . . . , cnc−1} by a set of edges E .2 We assume nv > nc
so that the protograph has a strictly positive design rate.

2The design rate is determined by the size of the protograph and is a
lower bound on the code rate of each member of the protograph-based code
ensemble.

Fig. 1. (a) Protograph of a (2, 3)-regular LDPC-BC ensemble,
(b) Tanner graph of a (2, 3)-regular LDPC-BC lifted from the protograph
with lifting factor M, where $ denotes a random interleaver (permutation) of
size M, and (c) example (2, 3)-regular Tanner graph lifted from the protograph
with M = 3.

Fig. 1(a) shows an example protograph with nv = 3 variable
nodes and nc = 2 check nodes. The Tanner graph representing
a protograph-based LDPC-BC with block length n = Mnv

is obtained by taking an M-fold graph cover (see [12]) or
“M-lifting” of the protograph. Graph lifting can be informally
described as follows: each edge in the protograph becomes a
bundle of M edges, connecting M copies of a variable node
to M copies of a check node. The connections within each
bundle are then permuted between the variable and check node
pairings. The resulting covering graph is M times larger than
the protograph and has the same rate, degree distribution, and
computation graphs as the protograph.3

Example 1: Fig. 1(b) shows a general M-lifting of the
(2, 3)-regular protograph given in Fig. 1(a), and Fig. 1(c)
shows a particular M-lifting with M = 3. !

The protograph can be represented by its nc × nv base
biadjacency matrix B, where Bi, j is taken to be the number of
edges connecting variable node v j to check node ci . In general,
a protograph can have multiple edges connecting a variable
node to a check node, which corresponds to entries in B
greater than 1. The Mnc × Mnv parity-check matrix H of

3The computation graphs are preserved since the computation graph of each
of the M copies of a variable node in the lifted graph is identical to the
computation graph of the original variable node in the protograph (see [46]).



MITCHELL et al.: SC-LDPC CODES CONSTRUCTED FROM PROTOGRAPHS 4869

a protograph-based LDPC-BC with block length n = Mnv

and rate R ≥ 1 − Mnc/Mnv = 1 − nc/nv is created
(M-lifted) by replacing each non-zero entry in B by a sum
of Bi, j permutation matrices of size M × M and each zero
entry by the M × M all-zero matrix.4

Example 1 (cont.): The base matrix of the protograph shown
in Fig. 1(a) is

B =
[

1 1 1
1 1 1

]
, (1)

and the parity-check matrix corresponding to an M-lifting of
the base matrix in (1) is

H =
[

$1,1 $1,2 $1,3
$2,1 $2,2 $2,3

]
, (2)

where $i, j is an M × M permutation matrix. !
Since an LDPC-BC is defined as the null space of a sparse

parity-check matrix H, we define the ensemble of protograph-
based LDPC-BCs with block length n = Mnv and design rate
R = 1 − nc/nv as the set of all parity-check matrices H that
can be lifted from a given base matrix B, or equivalently as the
collection of all M-fold graph covers of the protograph. It is
an important feature of this construction that each lifted code
inherits the design rate, degree distribution, and computation
graphs of the protograph. As a consequence, ensemble DE
and weight enumerator analysis can be performed within
the protograph [48]. Using these tools, properly designed
protograph-based LDPC-BC ensembles have been shown in
the literature to have many desirable features, such as good
iterative decoding thresholds and linear minimum distance
growth (see [48]).

A particularly interesting example of such a code design that
incorporates both of these desirable features is the accumulate-
repeat-jagged-accumulate (ARJA) and accumulate-repeat-
by-4-jagged-accumulate (AR4JA) family of irregular
protograph-based LDPC-BC ensembles [48]. These practically
interesting codes were proposed as a CCSDS standard for
near-earth and deep space communication [50] and serve in
this paper as an example and template for the successful
application of spatial coupling to irregular graphs. The
protographs of these ensembles are depicted in Fig. 2.
(Note that setting e = 0 in the AR4JA protograph results in
the ARJA protograph.) The white circles in these protographs
represent punctured variable nodes, i.e., no code bits are
transmitted in these positions. In a Tanner graph M-lifted
from the protograph, the M copies of a punctured variable
node are also punctured. The design rate of a protograph-
based LDPC-BC ensemble with nt transmitted variable nodes
in the protograph is

R = nv − nc

nt
. (3)

Note that, in the case nt = nv , there is no puncturing and
consequently the design rate is R = 1 − nc/nv .

4The lifted parity-check matrix H may have linearly dependent rows; this
simply means that the lifted code has a slightly higher rate than the design
rate R = 1 − nc/nv .

Fig. 2. Protographs representing good irregular LDPC-BC ensembles: (a) the
ARJA protograph with design rate R = 1/2, and (b) the family of AR4JA
protographs with extension parameter e and design rates R = (1+ e)/(2+ e).
White circles represent punctured variable nodes.

C. Convolutional Protographs and Spatial Coupling

In this section, we introduce the notion of a convolutional
protograph, which represents an ensemble of SC-LDPC-CCs.
A convolutional protograph is obtained by connecting, or
spatially coupling, a sequence of disjoint block protographs
together in a chain. Spatial coupling introduces memory
into the code design, i.e., transitioning from a block code
to a convolutional code, and is achieved by applying an
edge spreading operation to the sequence of disjoint block
protographs.

Definition 1 (Edge Spreading Rule for Spatial Coupling):
Consider replicating a block protograph with bv variable
nodes and bc check nodes as an infinite sequence of disjoint
graphs. We associate each graph in the sequence with a
time index t . Suppose variable node v j is connected to
check node ci by Bi, j edges in each protograph, where
i ∈ {0, 1, . . . , bc − 1} and j ∈ {0, 1, . . . , bv − 1}. We now
spread (connect) the Bi, j edges emanating from node v j
at time t arbitrarily over the w + 1 check nodes of type ci
at times t, t + 1, . . . , t + w, where w > 0 is the coupling
width of the graph, or memory of the code.5 This operation
is repeated (independently) for each of the bv variable nodes
at time t . Applying this edge spreading identically to the
variable nodes at all time instants results in a convolutional
protograph.

Definition 2: An ensemble of protograph-based spatially
coupled LDPC-CCs (SC-LDPC-CCs) with coupling width w,
design rate R = 1 − bc/bv , and constraint length
ν = (w + 1)Mbv is the collection of all M-fold graph covers
of a convolutional protograph.

In this paper we are primarily interested in
asymptotic results in the code block or constraint length,
i.e., in the regime where the lifting factor M tends to
infinity. A block/convolutional protograph represents a finite
block/constraint length LDPC-BC/LDPC-CC ensemble for
each lifting factor M; however, in the sequel, unless stated
otherwise, we consider an infinite lifting factor. Thus, if we
refer to a code ensemble represented by a protograph in the
singular, we implicitly assume infinite M .

Note that the convolutional protograph constructed using
the Edge Spreading Rule has the same design rate, degree

5The coupling width w is referred to in convolutional coding parlance as
the syndrome former memory (see [7]), or, in the recent series of papers by
Kudekar et al., the smoothing parameter [21], [22].
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Fig. 3. (a) Protograph representing a (3, 6)-regular LDPC-BC ensemble,
(b) sequence of (3, 6)-regular LDPC-BC protographs, (c) illustration of edge
spreading for one segment of the graph at time t with coupling width w = 2,
and (d) protograph representing a (spatially coupled) (3, 6)-regular LDPC-CC
ensemble with w = 2.

distribution, and computation graphs as the original block
protograph. This ensures that the computation graphs of the
LDPC-CC ensembles defined by the convolutional protograph
are the same as those of the LDPC-BC ensembles defined
by the original block protograph. There are many ways to
apply the Edge Spreading Rule for a given w to a sequence
of disjoint block protographs that give an extra degree of
freedom in the protograph-based construction. It will be shown
later that different edge spreadings affect both the iterative
BP decoding performance and distance properties of the
resulting code ensemble. Generalizations of the edge spreading
operation and a discussion of the degrees of freedom in the
design are presented in Section II-E.

Example 2: Fig. 3 illustrates the edge spreading operation
applied to a (3, 6)-regular (block) protograph with design
rate R = 1/2. First, the protograph is replicated as an infinite
sequence of disjoint graphs, shown in Fig. 3(b). (This can be
considered as block code transmission over time.) An edge
spreading with coupling width w = 2 applied to the variable
nodes at time t is shown in Fig. 3(c). The three edges
emanating from each variable node v0 and v1 are spread such
that exactly one edge connects the variable node to check
node c0 at times t , t+1, and t+2. Applying this edge spreading
to variable nodes at all time instants results in the (3, 6)-regular
convolutional protograph with design rate R = 1/2 shown
in Fig. 3(d). !

The (convolutional) base matrix corresponding to the con-
volutional protograph is

B[−∞,∞] =

⎡

⎢⎢⎢⎢⎣

. . .
. . .

. . .
Bw Bw−1 · · · B0

Bw Bw−1 · · · B0
. . .

. . .
. . .

⎤

⎥⎥⎥⎥⎦
, (4)

where the bc × bv component base matrices Bi ,
i = 0, 1, . . . , w, represent the edge connections from the
bv variable nodes at time t to the bc check nodes at time t + i .
Starting from the base matrix B = [Bi, j ]0≤i≤nc−1,0≤ j≤nv−1 of
an LDPC-BC ensemble, the Edge Spreading Rule divides the
edges associated with each variable node in B among
w + 1 component base matrices Bi , i = 0, 1, . . . , w, such
that the condition

w∑

i=0

Bi = B (5)

is satisfied, where each Bi contains non-negative integer
entries.

Example 2 (cont.): The (3, 6)-regular protograph shown
in Fig. 3(a) has base matrix B = [ 3 3 ]. The edge spreading
depicted in Fig. 3(c) with w = 2 corresponds to component
base matrices

B0 = [ 1 1 ] = B1 = B2. (6)

(Note that this is a valid edge spreading since the com-
ponent base matrices conform to condition (5).) Then the
(3, 6)-regular convolutional base matrix corresponding to the
convolutional protograph of Fig. 3(d) is obtained in the form
of (4) as

B[−∞,∞] =

⎡

⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
1 1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1

. . .
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎥⎦
.

!
A similar edge spreading to that used in Example 2 can be

applied to construct (J, K )-regular convolutional protographs
from (J, K )-regular block protographs where the greatest
common divisor of J and K is greater than one.

Definition 3 (The C(J, K ) SC-LDPC-CC Ensemble):
Let a = gcd(J, K ) denote the greatest common divisor of
J and K . Then there exist positive integers J ′ and K ′ such
that J = a J ′ and K = aK ′ with gcd(J ′, K ′) = 1. It follows
that the base matrix of a (J, K )-regular protograph-based
SC-LDPC-CC ensemble with coupling width w = a − 1 can
be defined as in (4), where the submatrices Bi , i = 0, . . . , w,
are identical J ′ × K ′ matrices with all entries equal to one.
We denote the SC-LDPC-CC ensembles constructed using this
edge spreading as C(J, K ).

Note that, if a = 1, the coupling width is equal to zero and
the convolutional protograph is not fully connected. In this
case, we can simply choose a different edge spreading of a
(J, K )-regular block protograph following the Edge Spreading
Rule.

Example 3: Consider the (3, 4)-regular protograph defined
by the all-ones base matrix B of size 3 × 4. We can spread
the edges of B as

B0 =
⎡

⎣
1 1 0 0
0 1 1 0
0 0 1 1

⎤

⎦ and B1 =
⎡

⎣
0 0 1 1
1 0 0 1
1 1 0 0

⎤

⎦.
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Fig. 4. (a) Sequence of ARJA block protographs with design rate R = 1/2,
and (b) spatially coupled ARJA convolutional protograph with w = 1 and
design rate R = 1/2. Also shown are the termination markings for the related
spatially coupled ARJA block protograph.

These component base matrices satisfy condition (5) and can
be used to construct a (3, 4)-regular convolutional base matrix
B[−∞,∞] with coupling width w = 1 (see (4)). !

Next, we demonstrate the application of the Edge Spreading
Rule to irregular protographs.

Example 4: Fig. 4 shows an example of the Edge Spreading
Rule applied to the irregular ARJA protograph with base
matrix

B =

⎡

⎣
1 2 0 0 0
0 3 1 1 1
0 1 2 1 2

⎤

⎦. (7)

A sequence of disjoint ARJA protographs with design rate
R = 1/2 is shown in Fig. 4(a). An irregular (spatially coupled)
ARJA convolutional protograph with design rate R = 1/2 and
coupling width w = 1 is shown in Fig. 4(b). The component
base matrices corresponding to this edge spreading are

B0 =

⎡

⎣
1 2 0 0 0
0 1 1 1 0
0 0 1 0 2

⎤

⎦, B1 =

⎡

⎣
0 0 0 0 0
0 2 0 0 1
0 1 1 1 0

⎤

⎦,

where B0 + B1 = B. Note that there is one punctured variable
node at each time instant of the convolutional protograph.
In the sequel, we refer to the SC-LDPC-CC ensemble rep-
resented by this ARJA convolutional protograph by CARJA.

Similarly, we can construct a series of AR4JA convolutional
protographs with coupling width w = 1 and design rate
R = (1 + e)/(2 + e) using the edge spreading shown
in Fig. 5. The resulting SC-LDPC-CC ensembles are
denoted CAR4JA(e). !

Remark 4: The convolutional protograph constructed using
the Edge Spreading Rule with coupling width w can be viewed
as an infinite graph lifting of the block protograph. Conse-
quently, a protograph-based SC-LDPC-CC can be viewed as
a double graph cover of a block code protograph. As the local
connectivity is maintained by graph lifting, the computation

Fig. 5. Spatially coupled AR4JA convolutional protographs with coupling
width w = 1 and design rate R = (1 + e)/(2 + e). Also shown are
the termination markings for the related spatially coupled AR4JA block
protograph.

graph is identical and the BP decoder cannot distinguish if it
is operating on the original protograph or a covering graph
of the protograph. As a result, the BP decoding threshold
of the SC-LDPC-CC is equal to the BP decoding threshold of
the uncoupled LDPC-BC ensemble. For further discussion of
SC-LDPC-CCs as graph covers of LDPC-BCs, see [10], [12].

D. Spatially Coupled LDPC Block Codes

Even though the convolutional protograph and lifted
SC-LDPC-CC Tanner graphs extend infinitely forward and
backward in time, in practice there is always some finite
starting and ending time, i.e., the protograph is terminated.
As a consequence, ‘convolutional-like’ block codes of flexible
frame length can be obtained by termination, and we will
see later that the iterative BP threshold of SC-LDPC-CCs is
significantly improved by termination.

1) Terminated SC-LDPC-CC Ensembles:
Definition 5: A terminated convolutional protograph with

coupling width w and coupling length L > 0 can be obtained
as the subgraph of the convolutional protograph induced by
the variable nodes over time instants t = 0, 1, . . . , L − 1.
An ensemble of protograph-based spatially coupled
LDPC-BCs (SC-LDPC-BCs) with coupling width w,
coupling length L, and block length n = Mnv = M Lbv is
obtained as the collection of all M-fold graph covers of the
terminated convolutional protograph, where nv = Lbv is the
total number of variable nodes in the terminated convolutional
protograph.

Terminating the convolutional protograph is equivalent to
applying the Edge Spreading Rule to spatially couple L
disjoint copies of a block protograph, where connections are
allowed at the right hand boundary to wbc additional check
nodes in sections t = L, L + 1, . . . , L +w − 1. Consequently,
there are bv variable nodes and bc check nodes at each time
instant t = 0, 1, . . . , L − 1 and bc additional check nodes
at each time instant t = L, L + 1, . . . , L + w − 1. We now
use nv and nc to denote the total number of variable nodes
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and check nodes, respectively, in the terminated convolutional
protograph. The nc × nv = (L + w)bc × Lbv base
matrix B[0,L−1] corresponding to the terminated convolutional
protograph is

B[0,L−1] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0

B1 B0

... B1
. . .

Bw
...

. . . B0

Bw B1

. . .
...

Bw

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(L+w)bc×Lbv

, (8)

which can be obtained by truncating the convolutional base
matrix B[−∞,∞] from (4).

Terminating a convolutional protograph has two effects on
the resulting subgraph:

• A structured irregularity is introduced to the graph:
the variable nodes at each time index have the same
number and type of edge connections as the original
block protograph; however, the first wbc and last wbc
check nodes have, in general, a reduced number of edge
connections;

• For finite L, a rate loss is incurred due to the check nodes
at the right hand boundary of the subgraph (connections
to check nodes at time instants t = L, L + 1, . . . ,
L + w − 1).

The design rate of the terminated convolutional protograph
(without puncturing) is

RL = 1 − nc

nv
= 1 − (L + w)bc

Lbv
= 1 −

(
L + w

L

)
(1 − R),

(9)

where R = 1 − bc/bv is the design rate of the unterminated
convolutional protograph (and the uncoupled block proto-
graph). We assume that a sufficiently large L is chosen such
that the SC-LDPC-BC ensemble has a strictly positive design
rate, i.e., L > wbc/(bv − bc). Assuming w > 0 and finite L,
we see from (9) that the terminated convolutional protograph
has reduced design rate RL < R. Note that the rate loss and
structured irregularity in the check node degree distribution
introduced by termination become vanishingly small as the
coupling length L increases: the rate RL increases monoton-
ically and approaches the design rate R of the unterminated
convolutional protograph (limL→∞ RL = R), and the check
node degree distribution approaches that of the unterminated
convolutional protograph.

Example 2 (cont.): Fig. 6 shows (highlighted in black) the
terminated (3, 6)-regular convolutional protograph induced by
the variable nodes over time instants t = 0, 1, . . . , L − 1. The
corresponding terminated convolutional base matrix, obtained

Fig. 6. Protograph of a SC-LDPC-BC ensemble (highlighted in black) with
coupling length L and coupling width w = 2 obtained by terminating a
(3, 6)-regular convolutional protograph.

using (8), is

B[0,L−1] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1 1 1
1 1 1 1 . . .

1 1 . . .
. . . 1 1

1 1
1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(L+2)×2L

.

Note the structured irregularity in the resulting chain of
coupled protographs: each variable node is connected to
3 check nodes, while the check nodes in the middle are
connected to 6 variable nodes. The wbc = 2 check nodes
located at the beginning and at the end of the chain, however,
are only connected to either 2 or 4 variable nodes. The
ensemble design rate for L > 2 is obtained using (9) as

RL = 1 − L + 2
2L

= L − 2
2L

.

We will denote the SC-LDPC-BC ensemble obtained using
this edge spreading and coupling length L as C(3, 6, L). With
the exception of the slight structured irregularities at the ends
of the graph, the C(3, 6, L) ensembles retain essentially all of
the beneficial structural properties of (3, 6)-regular ensembles
with, as will be demonstrated later, dramatically improved
iterative BP thresholds. !

In a similar fashion, we obtain C(J, K , L) SC-LDPC-BC
ensembles by terminating the associated C(J, K )
SC-LDPC-CC ensemble with coupling length L.

Definition 6 (The C(J, K , L) SC-LDPC-BC Ensemble):
Let a = gcd(J, K ) denote the greatest common divisor of
J and K . Then there exist positive integers J ′ and K ′ such
that J = a J ′ and K = aK ′ with gcd(J ′, K ′) = 1. It follows
that the base matrix of a protograph-based SC-LDPC-BC
ensemble with coupling width w = a − 1 can be defined as
in (8), where the submatrices Bi , i = 0, . . . , w, are identical
J ′ × K ′ matrices with all entries equal to one. We denote
the SC-LDPC-BC ensembles constructed using this edge
spreading as C(J, K , L).

It follows that CARJA(L) and CAR4JA(e, L) SC-LDPC-BC
ensembles can be defined in a similar fashion.

Example 4 (cont.): The irregular ARJA convolutional
protograph can be terminated as shown in Fig. 4(b). Note
the additional (structured) irregularity introduced when the
convolutional protograph is terminated: the variable nodes
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Fig. 7. Evolution of the average bit erasure probability Pb of the
variable nodes at time t for the C(3, 6, 20) SC-LDPC-BC ensemble trans-
mitted over a BEC with erasure probability ε = 0.48 for iterations
i = 1, 5, 20, 50, 90, 98, 99, 100 (from top to bottom).

at each time instant and the check nodes in the center of
the chain have the same number and type of connections as
the block/convolutional ARJA protograph; however, the check
nodes at the ends of the chain have a reduced number of
connections. Note also that there are exactly L punctured
nodes in the terminated protograph with base matrix B[0,L−1].
As a result of the all-zero row in component matrix B1
(the disconnected check node in Fig. 4(b)), the terminated
protograph associated with B[0,L−1] has nc = (L +w)bc −1 =
3L + 2 check nodes and nv = Lbv = 5L variable nodes.
After puncturing, the number of transmitted variable nodes is
nt = 5L − L = 4L (see Fig. 4(b)) and the design rate of the
SC-LDPC-BC ensemble with coupling length L ≥ 2 is

RL = nv − nc

nt
= 5L − (3L + 2)

4L
= L − 1

2L
.

In the sequel we will denote the SC-LDPC-BC ensemble
obtained using this edge spreading and coupling length L
as CARJA(L).

In an identical way, the irregular AR4JA convolutional
protograph can be terminated as shown in Fig. 5. The design
rate of the terminated convolutional protograph with extension
parameter e and coupling length L ≥ 2 is given by

RL = (5 + 2e)L − (3L + 2)

(4 + 2e)L
= (1 + e)L − 1

(2 + e)L
.

In the sequel we will denote the SC-LDPC-BC ensemble
obtained using this edge spreading and coupling length L
as CAR4JA(e, L). !

In the context of iterative BP decoding, the smaller degree
check nodes at the ends of the graph pass more reliable
messages to their neighboring variable nodes, and this effect
propagates throughout the graph as iterations increase. This
effect is demonstrated in Fig. 7, where we plot the evolution
of the average bit erasure probability Pb, obtained using DE on
a BEC, of the variable nodes at times t = 1, 2, . . . , 20 for the

C(3, 6, 20) SC-LDPC-BC ensemble with an increasing number
of iterations of the BP decoder with a ‘flooding’ update
schedule (all check nodes in the graph are updated followed
by all variable nodes in each iteration). We observe that Pb for
variable nodes close to the ends of the spatially coupled chain,
which are connected to the lower degree check nodes, quickly
decreases with iterations, and that this ‘wave’ moves through
the chain from either end towards the variable nodes in the
center. In Section III, we will see that this phenomenon results
in excellent iterative decoding thresholds for SC-LDPC-BC
ensembles. Note that, after termination, the SC-LDPC-CC
ensemble can be viewed as an LDPC-BC ensemble with block
length n = M Lbv . However, compared to typical LDPC-BC
designs that have no restrictions on the location of the
ones in the parity-check matrix and hence allow connections
across the entire graph, the SC-LDPC-BC ensemble has a
highly localized graph structure, since the non-zero portion
of the parity-check matrix is restricted to a diagonal band
of width ν. In addition to the good asymptotic ensemble
properties such as excellent BP thresholds and linear minimum
distance growth rates that will be demonstrated in Section III,
this localized graph structure also gives rise to efficient
decoder implementations such as the high-throughput pipeline
decoder [7], [11] and low-latency sliding window decoding
strategies [15], [51], [52]. Such strategies can significantly
reduce the complexity, memory, and latency requirements;
see Section II-E.6 for further details.

2) Tail-Biting LDPC-CC Ensembles: The convolutional
protograph can also be terminated using tail-biting [53], [54].

Definition 7: A tail-biting convolutional protograph is
obtained from the terminated convolutional protograph with
coupling length L > w by combining the check nodes at
times t = L, L + 1, . . . , L + w − 1 with the corresponding
check nodes of the same type at times t = 0, 1, . . . , w − 1,
respectively. An ensemble of protograph-based tail-biting spa-
tially coupled LDPC-BCs (TB-SC-LDPC-BCs) with block
length n = M Lbv is then obtained as the collection of all
M-fold graph covers of the tail-biting convolutional
protograph.

The Lbc × Lbv base matrix Btb
[0,L−1] corresponding to the

tail-biting convolutional protograph is

Btb
[0,L−1] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 Bw · · · B1
... B0

. . .
...

Bw−1
... Bw

Bw Bw−1

Bw
. . .

B0
. . .

... B0
. . . Bw−1

...
. . .

Bw Bw−1 · · · B0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

which can be obtained from the terminated base matrix
B[0,L−1] in (8) by adding the last wbc rows to the first wbc
rows.
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Fig. 8. Protograph of a (3, 6)-regular TB-SC-LDPC-BC ensemble with
coupling length L and coupling width w = 2.

Note that the tail-biting protograph has the same design rate

Rtb
L = 1 − Lbc/Lbv = 1 − bc/bv = R, (11)

and degree distribution as the convolutional protograph,
i.e., there is no structured irregularity introduced to the graph
or rate loss after termination. Consequently, tail-biting is
a useful way to terminate a convolutional protograph to a
block protograph of desired length such that the properties
of the convolutional protograph are retained. We denote the
TB-SC-LDPC-BC ensemble obtained from the SC-LDPC-BC
ensemble C(J, K , L) with coupling length L as Ctb(J, K , L).

Example 2 (cont.): Fig. 8 shows the tail-biting (3, 6)-regular
convolutional protograph with coupling length L and coupling
width w = 2. The corresponding tail-biting base matrix,
obtained using (10), is

Btb
[0,L−1] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 . . .

1 1 . . .
. . . 1 1

1 1 1 1
1 1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×2L

.

Note that each variable node has degree 3 and each check
node has degree 6 in the tail-biting protograph, i.e., the graph
is (3, 6)-regular, the degree distribution is unchanged, and the
ensemble design rate is Rtb

L = 1 − L/2L = 1/2. !
Protograph-based TB-SC-LDPC-BCs have been used

to obtain lower bounds on important parameters of
protograph-based SC-LDPC-CC ensembles, such as the free
distance [18], [19] and minimum trapping set size [19].

E. Discussion

1) Edge Spreading Variations: Given a coupling width w,
one may construct a convolutional protograph based on a
time-varying edge spreading, where a different edge spreading
is applied at each time instant, such that

w∑

i=0

Bi (t) = B, ∀t . (12)

(Note that the degree distribution and computation graphs are
not necessarily preserved under this generalization of the Edge
Spreading Rule.) Moreover, the construction of a convolutional
protograph can be further generalized by coupling a sequence
of time-varying protographs, i.e., the base matrix B(t) at each
time instant depends on t .

2) Non-Protograph-Based SC-LDPC-CC Construction:
Edge spreading can be applied directly to the Tanner graph
or parity-check matrix H of an LDPC-BC to construct an
SC-LDPC-CC, without first constructing a block protograph.
The two major approaches that have been detailed in the
literature can be categorized in this way:

• Tanner first developed the connection between
quasi-cyclic (QC) block codes and time-invariant
convolutional codes [55]. This approach was extended to
construct time-invariant SC-LDPC-CCs in [10], where
the construction can be viewed as a particular infinite
graph cover of the Tanner graph of a QC-LDPC-BC [12];

• SC-LDPC-CCs were first introduced in the open liter-
ature by Jimenez-Felström and Zigangirov in 1999 [7].
Here, time-varying LDPC-CCs were constructed using
a cut-and-paste technique termed unwrapping, which is
equivalent to applying the Edge Spreading Rule to a
sequence of disjoint LDPC-BC Tanner graphs. As a result
of the unwrapping/edge spreading procedure, the compu-
tation graph of the underlying LDPC-BC is preserved.

For both construction methods, the SC-LDPC-CCs were
shown to have improved BER performance compared to their
underlying LDPC-BC counterparts [7], [10], [12].

3) Kudekar’s Randomized SC-LDPC-BC Ensemble: A con-
struction of SC-LDPC-BC ensembles, closely related to the
C(J, K , L) ensemble studied in this paper, was presented
recently by Kudekar et al. [21]. Here, M degree J variable
nodes and J

K M degree K check nodes are placed at 2L + 1
index positions [−L, L], L ∈ N. In a similar way to the
construction presented here, the graphs are coupled together,
where the J connections from the M variable nodes at
position t are allowed only to check nodes at positions
[t, t + w − 1]; however, here the connections are randomized,
such that different edge spreadings are applied to specific
fractions of the M variable nodes at each time instant (see [21]
for a precise definition of the ensemble). This randomized
ensemble construction results in a similar structured irregu-
larity and rate loss due to the boundary (termination) effects
as the protograph-based SC-LDPC-BC ensembles presented
here. It should be noted, however, that the randomized code
ensemble does not contain any particular protograph-based
code ensemble since, given a coupling width w, the random-
ized ensemble has a non-zero fraction of variable nodes at
each position in the chain of every possible edge spreading
type, whereas a protograph-based ensemble contains a specific
(small) number of edge spreading types at each position.

In general, the randomized ensemble does not enjoy
as favorable a tradeoff between rate, threshold, and
block length as the protograph-based ensemble [21],
and it lacks the inherent implementation advantages of a
structured ensemble; however, it is a useful ensemble for
analytical purposes. In particular, it was shown analytically



MITCHELL et al.: SC-LDPC CODES CONSTRUCTED FROM PROTOGRAPHS 4875

in [21] that the BP threshold for the randomized
SC-LDPC-BC ensemble improves all the way to the optimal
maximum a posteriori (MAP) threshold of the underlying
(J, K )-regular LDPC-BC ensemble (a fact previously
demonstrated numerically for a permutation matrix-based
SC-LDPC-CC ensemble in [15]), a phenomenon termed
threshold saturation. In other words, the randomized
ensemble achieves globally optimal decoding performance
with low-complexity, locally optimal, iterative BP decoding.
In this paper, following the approach applied in [15], we show
numerically that the threshold saturation effect also occurs for
the considered protograph-based SC-LDPC-BC ensembles.
In addition, we show that such ensembles have minimum
distance growing linearly with block length, promising
excellent performance in both the waterfall and error-floor
regions of the BER curve.

4) Quasi-Cyclic Protograph-Based Codes: In general,
highly structured codes and code ensembles are attractive
from an implementation standpoint. In particular, members
of a protograph-based LDPC code ensemble that are QC
are of great interest to code designers, since they can be
encoded with low complexity using simple feedback shift-
registers [56], [57] and their structure leads to efficiencies
in decoder design [58], [59]. Moreover, QC-LDPC codes can
be shown to perform well compared to randomly constructed
LDPC codes for moderate block lengths [10], [60]–[62]. The
construction of QC-LDPC codes can be seen as a special
case of the protograph-based construction in which the M-fold
graph cover is obtained by restricting the edge permutations
to be cyclic, and it can be described by an Mnc × Mnv parity-
check matrix formed as an nc × nv array of M × M circulant
matrices. However, unlike typical members of a protograph-
based LDPC code ensemble, asymptotic ensemble average
results such as iterative decoding thresholds and minimum
distance growth rates cannot be used to describe the behavior
of the QC sub-ensemble, since the probability of picking such
a code vanishes in the limit of large M . For example, if the
protograph base matrix consists of only ones and zeros, then
the minimum Hamming distance is bounded above by (nc+1)!,
where nc is the number of check nodes in the protograph,
regardless of the lifting factor M [63], [64].

5) Code Design Flexibility: A nice feature of
SC-LDPC-CCs is that, by varying the termination
(or coupling) length L, we obtain a flexible family of
SC-LDPC-BCs with varying rates and frame lengths that
display little variation in performance [11], i.e., the beneficial
properties of spatial coupling are preserved over a range of
termination lengths. This is particularly useful in applications
or standards that require varying frame lengths, because one
would typically have to design a separate LDPC-BC for each
required length. Moreover, if the SC-LDPC-CC is periodic
(defined formally in Section IV), it is possible to obtain a
family of periodically time-varying SC-LDPC-BCs that share
the same encoding and decoding architecture for arbitrary L.

6) Windowed Decoding and Finite-Length Performance:
Practical code design of SC-LDPC-BCs is beyond the scope
of this contribution; however we conclude this section with
a brief summary of some of the design issues concerning

the implementation of windowed decoding of such codes in
modern communication and storage systems. The interested
reader is directed to [15], [51], [52], and [65] for a more
in-depth discussion of the performance, latency, and complex-
ity trade-offs of windowed decoding of SC-LDPC-BCs.

• Since the decoding latency of windowed decoding
is determined by the size of the decoding
window W [51], [52], [66], a windowed decoding strategy
significantly reduces the latency, which is crucial
in time-dependent applications such as personal
wireless communication, real-time audio and video, and
command-and-control military communication.

• In addition to the density of the Tanner graph, which
determines the complexity for a single iteration of
BP decoding, the overall decoding complexity also
depends on the allowed/required number of iterations of
message passing. When L is large, applying a standard
‘flooding’ message passing scheme, where all the check
nodes in the graph are updated followed by all the
variable nodes in each iteration, will typically not be
an efficient way to decode SC-LDPC-BCs since a large
number of iterations may be required for the decoding
wave to reach the center of the chain. A natural approach
to decode SC-LDPC-BCs is to schedule node updates in
a greedy way determined by the progress of the decod-
ing wave, i.e., windowed decoding with an appropriate
stopping rule. In this way, the required number of itera-
tions required per symbol can be significantly reduced
and is similar to LDPC-BCs with the same decoding
latency [51], [52], [67].

• The finite-length scaling of SC-LDPC-BCs has been
discussed in [44]. As discussed further in Section IV
in the context of free distance, the potential strength
of SC-LDPC-BC ensembles for large L scales with the
constraint length ν = M(w + 1)bv , which increases
with M but is independent of L. Note that the code
performance is determined primarily by the coupling
width w and the lifting factor M; whereas the decoder
performance is determined by W . This implies that, when
sliding window decoding strategies are employed, the
coupling length L is not a crucial design parameter.

III. MINIMUM DISTANCE AND THRESHOLD TRADE-OFFS

FOR SC-LDPC-BC ENSEMBLES

In this section, we begin with an asymptotic weight
enumerator analysis of protograph-based SC-LDPC-BC
ensembles, then proceed by means of a DE analysis to obtain
iterative decoding thresholds for both the BEC and AWGNC,
demonstrating that the ensembles are both asymptotically
good in terms of minimum distance and exhibit the threshold
saturation effect with iterative decoding.

A. Weight Enumerators

We begin by summarizing the procedure presented in [48]
to obtain the average distance spectrum for a protograph-based
ensemble and then apply it to some example SC-LDPC-BC
ensembles to test if they are asymptotically good,
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taking advantage of the fact that the inherent structure
of members of a protograph-based LDPC code ensemble
facilitates the calculation of average weight enumerators.

Suppose that all nv variable nodes of the protograph are
to be transmitted over the channel and that each of the nv

transmitted variable nodes has an associated weight di , where
0 ≤ di ≤ M for all i .6 Let Sd = {(d0, d1, . . . , dnv−1)} be the
set of all possible weight distributions such that d0+d1+ . . .+
dnv−1 = d . The ensemble average weight enumerator for the
protograph is then given by

Ad =
∑

(d0,d1,...,dnv−1)∈Sd

Ad, (13)

where Ad is the average number of codewords in the ensemble
with a particular weight distribution

d = (d0, d1, . . . , dnv−1).

Combinatorial expressions for Ad have been derived in [48]
and [68]. Note that if nt < nv variable nodes are to be
transmitted over the channel, then the weight enumerator Ad is
a double summation over all possible partial weight patterns
Sp and Sd of the punctured and transmitted variable node
weights, respectively, where the codeword weight d is the sum
of the partial weights associated with the transmitted nodes
(see [48] for details).

The asymptotic spectral shape function of a code ensem-
ble can be written as r(δ) = limn→∞ sup rn(δ), where
rn(δ) = ln(Ad)/n, δ = d/n, d is the Hamming weight,
n is the block length, and Ad is the ensemble average weight
distribution. Suppose that the first positive zero crossing of
r(δ) occurs at δ = δmin. If r(δ) is negative in the range
0 < δ < δmin, then δmin is called the minimum distance growth
rate of the code ensemble. By considering the probability

P(d < nδmin) ≤
nδmin−1∑

d=1

Ad ,

it is clear that, as the block length n becomes sufficiently
large, if P(d < nδmin) ≪ 1, then we can say with high
probability that a randomly chosen code from the ensemble
has a minimum distance that is at least as large as nδmin [48],
i.e., the minimum distance increases linearly with block
length n. We refer to such an ensemble of codes as
asymptotically good.

Example 2 (cont.): Examining the asymptotic weight enu-
merators of the C(3, 6, L) ensembles for various coupling
lengths L, we find that the ensembles are asymptotically
good. The calculated minimum distance growth rates are
given in Table I. As the coupling length L tends to infinity,

we observe that the minimum distance growth rate δ(L)
min

decreases. This is consistent with similar results obtained
for TB-SC-LDPC-BC ensembles in [19]. We also observe

6In this context, the ‘weight’ di associated with a particular variable node vi
in the protograph refers to the portion of the overall Hamming weight d of
a codeword that is distributed over the M variable nodes of type vi in the
M-fold graph cover. Since we use M copies of the protograph, the weight
associated with a particular variable node in the protograph can be as large
as M.

TABLE I

MINIMUM DISTANCE GROWTH RATES FOR THE C(3, 6, L)

SC-LDPC-BC ENSEMBLES

TABLE II

COMPLEXITY OF THE C(J, 2J, L) SC-LDPC-BC ENSEMBLES

from Table I that the scaled growth rates δ(L)
min L/(w + 1)

converge to a fixed value as L increases. A similar result was
first observed in [17] for an ensemble of (3, 6)-regular
SC-LDPC-CCs constructed from M × M permutation matri-
ces, where it was shown that the scaled growth rates
of the terminated SC-LDPC-BC ensembles converged to a
bound on the free distance growth rate of the unterminated
SC-LDPC-CC ensemble. !

In the following example, we consider how the distance
growth rates of SC-LDPC-BC ensembles are affected by
increasing the density of the graph.

Example 5: Consider the C(J, 2J, L) SC-LDPC-BC
ensembles. The design rates RL of these SC-LDPC-BC
ensembles approach the design rates R = 1/2 of the
associated unterminated C(J, 2J ) SC-LDPC-CC ensembles
as L → ∞. As we increase the variable node degree J , the
graph density, and hence the iterative decoding complexity
(commonly measured as the average variable and check node
degrees), grows. Table II describes the complexity of the
C(J, 2J, L) ensembles. For finite L, the average check node
degree of the C(J, 2J, L) ensemble is strictly less than 2J
(the check node degree of the C(J, 2J ) SC-LDPC-CC
ensemble). The check node degree increases with L, tending
to 2J as L tends to infinity. The variable node degree remains
constant at J for all coupling lengths L.

Fig. 9 plots the minimum distance growth rates for
C(J, 2J, L) code ensembles with J = 3, 4, and 5,
some (J, K )-regular LDPC-BC ensembles, and the Gilbert-
Varshamov bound [69], [70]. As with the C(3, 6, L) ensembles
analyzed in Example 2, we find that the C(4, 8, L) and
C(5, 10, L) ensembles are asymptotically good, with large
minimum distance growth rates for the lower rate ensembles
corresponding to small L; then, as the coupling length L is
increased, we observe declining minimum distance growth
rates as the code rates increase. We again observe that the
scaled minimum distance growth rates δ(L)

min L/(w+1) converge
as L increases, which allows us to estimate the growth rates
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Fig. 9. Minimum distance growth rates for C(J, 2J, L) SC-LDPC-BC
ensembles with design rate RL = (L − J + 1)/2L and some (J, K )-regular
LDPC-BC ensembles with design rate R = 1 − J/K . Also shown is the
Gilbert-Varshamov bound for random block code minimum distance growth
rates.

for L > 20 (as explained further in Section IV). As expected,
there is a significant increase observed in the growth rates of
the C(4, 8, L) ensembles compared to the C(3, 6, L) ensembles
of the same rate, and there is a smaller improvement for the
C(5, 10, L) ensembles. We would expect this trend to continue
as we further increase the variable node degree J . !

B. Thresholds for the BEC

In this section, we assume that BP decoding is performed
after transmission over a BEC with erasure probability ε.
In every decoding iteration, all of the check nodes are updated
followed by all of the variable nodes. The messages that are
passed between the nodes represent either an erasure or the
correct symbol value (0 or 1). For the BEC, a DE analysis of
the BP decoder can be performed for an unstructured
LDPC-BC ensemble with degree distribution pairs
(λ(x),ρ(x)) explicitly by means of the equation

p(i) = ελ
(

1 − ρ
(

1 − p(i−1)
))

, (14)

where p(i) denotes the probability that a variable to check node
message in decoding iteration i corresponds to an erasure,
averaged over all codes in the ensemble. Due to this averaging,
the message probabilities are equal for all edges in the graph.
The DE threshold of an ensemble, defined as the maximum
value of the channel parameter ε for which p(i) converges
to zero as i tends to infinity, directly follows from (14).
Equation (14) is also the key to the design of degree dis-
tribution pairs (λ(x),ρ(x)) for capacity achieving sequences
of codes with a vanishing gap between the threshold and the
Shannon limit (capacity) εSh = 1− R [6]. Check-concentrated
or even check-regular ensembles are known to provide a good
trade-off between iterative decoding complexity (measured by
the average variable and check node degrees) and gap to
capacity.7

7Check-concentrated ensembles have a degree distribution such that ρ(x)
has two non-zero terms. Check-regular ensembles have a degree distribution
such that ρ(x) has precisely one term.

The lower bounds in [71] on the decoding complexity of
general message passing decoders, obtained using sphere-
packing arguments, predict a double exponential reduction of
the error (erasure) probability with the number of iterations.
A double exponential decrease of the decoding erasure prob-
ability with iterations implies that the probability of erased
frames also converges to zero [72]. A Taylor expansion of (14)
reveals that the erasure probability p(i) converges to zero at
least doubly exponentially with i if all nodes have a variable
node degree of at least three, while an analysis by means of the
messages’ Bhattacharyya parameter shows that this is also true
for general MBS channels [72]. Consequently, protograph-
based C(J, K , L) ensembles achieve this double exponential
decay in error probability for J ≥ 3. We note that the condition
that all variable node degrees should be at least 3 is sufficient,
but not necessary, for a double exponential decay. For example,
it has been shown that structured protograph-based LDPC code
ensembles containing degree two variable nodes can
achieve the desired double exponential decay [73]; how-
ever, unstructured capacity approaching irregular LDPC-BC
ensembles containing a large number of degree two variable
nodes have frame error (erasure) probabilities bounded away
from zero.

Since every member of a protograph-based ensemble
preserves the structure of the base protograph, DE analysis
for the resulting codes can be performed within the proto-
graph. We now describe the application of DE to structured
protograph-based ensembles. It is useful to label the edges in
E from both a variable node and a check node perspective.
Then ev

y,l indicates the lth edge emanating from variable
node vy . Similarly, ec

x,m denotes the mth edge emanating
from check node cx . Note that l ∈ {1, . . . , ∂(vy)} and m ∈
{1, . . . , ∂(cx )}, where ∂(vy) and ∂(cx) denote the degree of
variable node vy and check node cx , respectively. It follows
that if ev

y,l and ec
x,m define the same edge, vy is connected

to cx .
For a BEC, let q(i)(ec

x,m) denote the probability that the
check to variable node message sent along edge ec

x,m in
decoding iteration i is an erasure. (Note that this will be
the case if at least one of the incoming messages from other
neighboring variable nodes is erased.) Explicitly,

q(i) (
ec

x,m
) = 1 −

∏

m′ ̸=m

(
1 − p(i−1)

(
ec

x,m′

))
, (15)

where p(i−1)(ec
x,m′) denotes the probability that the incoming

message in the previous update of check node x is an erasure
and m, m′ ∈ {1, . . . , ∂(cx )}. In contrast, the variable to check
node message sent along edge ev

y,l is an erasure if the incoming
message from the channel and the messages from all the
other neighboring check nodes are erasures. This happens with
probability p(i)(ev

y,l), where

p(i)
(

ev
y,l

)
= ε

∏

l′ ̸=l

q(i)
(

ev
y,l′

)
(16)

and l, l ′ ∈
{
1, . . . , ∂(vy)

}
. The BP decoding threshold ε∗

of a protograph-based ensemble is defined as the maximum
value of the channel parameter ε for which p(i)(ev

y,l) converges
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Fig. 10. BEC iterative BP decoding thresholds for C(3, 6, L) SC-LDPC-BC
ensembles with design rate RL = (L − 2)/2L and the corresponding
Shannon limit εSh = 1 − RL for rate RL . Also shown are the BP and MAP
decoding thresholds for the underlying (3, 6)-regular LDPC-BC ensemble,
ε∗ = 0.429 and εMAP = 0.4881, respectively, and the Shannon limit for
R = 1/2 codes, εSh = 0.5.

to zero as i tends to infinity for all edges ev
y,l emanating

from variable node vy and for all variable nodes vy in the
protograph.

Example 2 (cont.): Fig. 10 shows the calculated
BP decoding thresholds ε∗ obtained for the C(3, 6, L)
SC-LDPC-BC ensembles by recursive application
of (15) and (16) for different channel parameters ε.
Also shown is the corresponding Shannon limit εSh = 1− RL .
For small values of L, where the design rate is lower,
we observe large thresholds (e.g., ε∗ = 0.635 for L = 3,
where R3 = 1/4 and εSh = 0.750, resulting in a gap to
capacity of 0.115). As we increase L, the rate increases and
the thresholds decrease; however, the gap to capacity also
decreases (e.g., ε∗ = 0.505 for L = 10, where R10 = 2/5 and
εSh = 0.6, resulting in a gap to capacity of 0.095). When
L becomes sufficiently large (in this example around L = 20),
the threshold converges, or saturates, to a constant value
ε∗ = 0.488. As L is further increased and the rate approaches
R∞ = 1/2, the threshold remains constant at ε∗ = 0.488, i.e.,
it displays the remarkable property that it does not continue
to decay as the design rate of the ensembles increases
and approaches R∞ = 1/2. The Shannon limit is equal to
εSh = 0.5 for rate R∞ = 1/2, and thus the gap to capacity
decreases with increasing L to the constant value 0.012.
Since the gap to capacity improves with increasing L, while
the distance growth rate worsens with L (see Table I), this
indicates the existence of a trade-off between distance growth
rate and threshold.

Also shown in Fig. 10 are the sub-optimal, low complexity
BP threshold ε∗ = 0.429 and the optimal, high complexity
MAP decoding threshold εMAP = 0.4881 for the underlying
(3, 6)-regular LDPC-BC ensemble. (Note that even with
optimal decoding, there is still a small gap to capacity for
a (3, 6)-regular LDPC-BC ensemble.) We observe that the
BP thresholds of the C(3, 6, L) SC-LDPC-BC ensembles are
significantly larger than the BP threshold of a (3, 6)-regular

LDPC-BC ensemble for all L. Moreover, the BP thresholds
of the C(3, 6, L) ensembles converge to a value numerically
indistinguishable from the MAP decoding threshold of a
(3, 6)-regular LDPC-BC ensemble, i.e., threshold saturation is
observed. Recall that as L → ∞, R∞ = 1/2 and the
C(3, 6, L) ensemble degree distribution approaches
(3, 6)-regular; consequently, the C(3, 6, L) ensemble displays
the remarkable property of achieving optimal decoding
performance with low complexity BP decoding! As we will
observe in the remainder of this section, this phenomenon
occurs for all of the protograph-based C(J, K , L) ensembles.
Indeed, it has recently been proven analytically that the
BP thresholds of the randomized C(J, K , L) ensemble
described in Section II-E.3 saturate precisely to the MAP
decoding thresholds of their underlying (J, K )-regular
LDPC-BC ensembles, both for the BEC [21] and for general
MBS channels [22]. Finally, we note that, in conjunction
with the excellent thresholds, all variable nodes in the
C(3, 6, L) ensembles have degree greater than two and thus,
asymptotically, the error probability converges at least doubly
exponentially with decoding iterations. !

The interesting phenomenon that the calculated thresholds
do not decay as L increases beyond a certain value was first
observed empirically in [13] for C(J, 2J, L) SC-LDPC-BC
ensembles constructed from M × M permutation matrices,
and it was shown to be true for arbitrarily large L in [15].
To prove this result, a sliding window updating schedule can
be considered, where the decoder updates the nodes only
within a window of size W ≤ L, starting at time t = 0.
Once the variable-to-check node message probabilities p(ev

y,l),
l = 1, 2, . . . , ∂(vy), are below some value ε0 for all nodes vy ,
y = 0, 1, , . . . , bv−1, at time t , the window is shifted one time
unit further. Suppose that the message probabilities at times
t < 0 are initialized by some value ε0 > 0. If, under these
conditions, the value ε0 is reached at time t = 0 after some
number of iterations, so that the window can be shifted one
step further, then, for the actual initial probabilities p(ev

y,l) = 0
of nodes at times t < 0, the value ε0 can also be reached at
all times t , t = 0, . . . , L − 1.

Intuitively, one can explain the result as follows: during the
iterations, due to the lower check node degrees at the start of
the graph, the messages along edges at time t = 0 will be the
most reliable ones. Their erasure probabilities thus have the
potential to converge to zero even for channel parameters ε
beyond the threshold of the underlying LDPC-BC ensemble.
But when the symbols at t = 0 are perfectly known, the
connected edges can be removed from the protograph with
base matrix B[0,L−1], which results in a shortened proto-
graph with base matrix B[1,L−1]. It follows now by induction
that the messages eventually converge to zero at all times
t = 0, . . . , L − 1 for an arbitrary coupling length L.

Example 5 (cont.): Fig. 11 shows the BEC iterative decoding
thresholds for several C(J, 2J, L) SC-LDPC-BC ensembles.
In each case, we observe that the gap to capacity decreases
as the coupling length L increases. Also, for a fixed rate
and small values of L, we see that the thresholds worsen
as we increase J , which is consistent with the behavior
observed for fixed rate (J, 2J )-regular LDPC-BC ensembles,
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Fig. 11. BEC iterative BP decoding thresholds for C(J, 2J, L) SC-LDPC-BC
ensembles with design rate RL = (L − J + 1)/2L and some (J, K )-regular
LDPC-BC ensembles with design rate R = 1 − J/K .

e.g., the (3, 6)-, (4, 8)-, and (5, 10)-regular ensembles shown
in the figure. Recall from Fig. 9 that, for a fixed rate and
small values of L, the minimum distance growth rates of the
C(J, 2J, L) ensembles improve as we increase J , which is also
consistent with the behavior observed for fixed rate
(J, 2J )-regular LDPC-BC ensembles. Thus, in the small
L regime, SC-LDPC-BC ensembles behave like LDPC-BC
ensembles, i.e., thresholds worsen and distance growth rates
improve by increasing J (and hence iterative decoding com-
plexity).

However, as L increases, the thresholds of the C(J, 2J, L)
ensembles each saturate to a value numerically indistin-
guishable from the MAP decoding threshold (and signif-
icantly larger than the BP threshold) of the underlying
(J, 2J )-regular LDPC-BC ensemble. These values improve,
rather than worsen, as we increase J (ε∗ = 0.4881, 0.4977,
and 0.4994 for the C(3, 6, L), C(4, 8, L), and C(5, 10, L)
ensembles, respectively). This indicates that, unlike the under-
lying (J, 2J )-regular LDPC-BC ensembles, for large L, both
the distance growth rates and the BP thresholds improve with
increasing complexity, and we would expect this trend to
continue as we further increase the variable node degree J .
Moreover, as we let J → ∞, the MAP threshold (for an
arbitrary MBS channel) of the underlying (J, 2J )-regular
LDPC-BC ensemble improves all the way to the Shannon
limit [74]. This allows the construction of capacity achieving
C(J, 2J, L) SC-LDPC-BC ensembles with BP decoding as the
graph density grows unbounded.8 !

The results described so far are indicative of the general
behavior of C(J, K , L) SC-LDPC-BC ensembles. In practice,
the coupling length L adds an extra degree of freedom.
We obtain a family of asymptotically good ensembles with
varying iterative decoding thresholds and minimum distance

8Here we observe numerically that the BP thresholds of the C(J, 2J, L)
ensembles saturate to the MAP threshold of the underlying (J, K )-regular
LDPC-BC ensemble. Hence these ensembles are not capacity achieving in the
strict sense. However, the randomized C(J, 2J, L) ensembles in [21] and [22]
are provably capacity achieving in this regard.

growth rates covering a wide variety of design rates. Moreover,
the desired range of achievable SC-LDPC-BC design rates
can be extended by coupling higher or lower rate LDPC-BC
protographs together using the Edge Spreading Rule.

Example 6: In this example, we consider the C(3, 12, L),
C(3, 9, L), C(3, 6, L), and C(4, 6, L) SC-LDPC-BC
ensembles. Each ensemble has design rate approaching
R∞ = 1 − J/K (the rate of the underlying (J, K )-regular
LDPC-BC ensemble), with the usual structured irregularity
occurring as a result of the termination. Fig. 12 displays
the BEC thresholds and distance growth rates of these
C(J, K , L) ensembles and, for comparison, several uncoupled
(J, K )-regular LDPC-BC ensembles, along with the Shannon
limit and the Gilbert-Varshamov bound, respectively. For
each family, when L is small and the design rate is low, the
iterative decoding thresholds are further from capacity and
the minimum distance growth rates are larger compared to
the ensembles with larger L. Then, as L increases, the gap to
capacity decreases and the BP threshold saturates to a value
close to the Shannon limit (i.e., the MAP decoding threshold
of the underlying (J, K )-regular LDPC-BC ensemble) and
significantly better than the BP threshold of the underlying
(J, K )-regular LDPC-BC ensemble. It follows that, as in
the previous examples, we observe a minimum distance vs.
threshold trade-off for each of these C(J, K , L) ensembles,
since both the minimum distance growth rates and the gap
to capacity decrease with increasing L. Finally, we note that
the design rates RL of the C(J, K , L) ensembles included
in Fig. 12, given by (9), cover a wide range of values. !

The choice of edge spreading affects the properties of the
SC-LDPC-BC ensembles, in particular for small to moderate
values of L. In the next example, we will see that it is
possible to improve both the minimum distance growth rates
and thresholds simultaneously by carefully selecting the edge
spreading.

Example 7: In this example, we consider a different edge
spreading than that chosen for the C(3, 6, L) ensembles.
Fig. 13(a) shows the (3, 6)-regular protograph used to con-
struct the C(3, 6, L) ensembles. This protograph is copied L
times and an edge spreading with coupling width w = 1
is applied as shown in Fig. 13(b). We will denote the
SC-LDPC-BC ensembles obtained with this edge spreading
as CA(3, 6, L). Comparing the CA(3, 6, L) ensembles to the
C(3, 6, L) ensembles, we notice two major differences. Struc-
turally, the CA(3, 6, L) ensembles are more regular. The first
and last check nodes have degree 3 and all the other check
nodes have degree 6. Secondly, since w = 1, the ensemble
design rate RL = (L −1)/2L obtained using (9) is larger for a
given L, i.e., there is less rate loss. Asymptotically in L, both
ensembles approach R∞ = 1/2 and a (3, 6)-regular degree
distribution.

The BEC thresholds and distance growth rates calculated
for the C(3, 6, L) and CA(3, 6, L) ensembles are displayed
in Table III. We observe that, even though the CA(3, 6, L)
ensembles have a very small structured irregularity (only one
reduced degree check node at either end of the chain), like
the C(3, 6, L) ensembles their BP thresholds still saturate
to the optimal MAP decoding threshold of the underlying
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Fig. 12. BEC iterative BP decoding thresholds and minimum distance growth rates of four C(J, K , L) SC-LDPC-BC ensembles and several uncoupled
(J, K )-regular LDPC-BC ensembles.

Fig. 13. Protographs of (a) a (3, 6)-regular LDPC-BC ensemble, and
(b) a resulting SC-LDPC-BC ensemble with coupling length L obtained by
applying the Edge Spreading Rule with coupling width w = 1.

TABLE III

BEC THRESHOLDS AND DISTANCE GROWTH RATES FOR SC-LDPC-BC

ENSEMBLES OBTAINED BY TWO DIFFERENT EDGE SPREADINGS

OF A (3, 6)-REGULAR LDPC-BC PROTOGRAPH

(3, 6)-regular LDPC-BC ensemble. Moreover, the CA(3, 6, L)
ensembles are also asymptotically good and display both
larger growth rates and better thresholds than the C(3, 6, L)
ensembles.

The larger distance growth rates obtained for the CA(3, 6, L)
ensembles can be attributed to having no degree 2 check nodes
and a larger proportion of non-zero elements in B[0,L−1],
i.e., a denser base matrix. We note that by retaining some

repeated edges in the CA(3, 6, L) ensemble protograph, the
memory requirements for decoder implementation are reduced,
i.e., the SC-LDPC-CC constraint length is ν = M(w + 1)
bv = 4M , compared to ν = M(w + 1)bv = 6M for the
C(3, 6, L) ensembles. Moreover, constructing SC-LDPC-CC
ensembles from protographs with repeated edges in order to
reduce memory requirements has been shown to improve the
performance of a windowed decoder [52]. !

There are many ways of spreading the edges among the
component submatrices Bi of a base matrix B, and different
constructions can result in varying thresholds and ensem-
ble growth rates. (For some other examples of different
(3, 6)-regular edge spreadings see [75], [76].) Choices con-
taining all-zero rows and/or columns in the submatrices should
be avoided, since they can lead to disconnected subgraphs.
Simple row and column permutations (applied to all compo-
nent submatrices) do not affect the graph structure, and so,
in turn, they do not affect the threshold and distance growth
rate of the ensemble. A good threshold is expected when the
check nodes at the ends of the graph have low degree (but at
least degree 2). This gives an initial convergence boost to the
iterative decoder, and the spatially coupled structure allows
this reliable information generated at the ends of the graph to
propagate through the chain to the center.

We conclude this section by investigating the minimum
distance and threshold trade-off for the irregular CARJA(L) and
CAR4JA(L) SC-LDPC-BC ensembles.

Example 4 (cont.): The minimum distance growth rates and
BEC iterative decoding thresholds for the CARJA(L) ensem-
bles are given in Table IV. (For reference, the underlying
ARJA LDPC-BC ensemble has minimum distance growth rate
δmin = 0.0145 and BEC threshold ε∗ = 0.4387.) Similar to the
C(J, K , L) ensembles, we observe that the ensembles are each
asymptotically good; but as the coupling length L → ∞, the
minimum distance growth rate δ(L)

min → 0. We also observe
from Table IV that the scaled growth rates ntδ

(L)
min converge
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Fig. 14. BEC iterative BP decoding thresholds and minimum distance growth rates for the CAR4JA(e, L) SC-LDPC-BC ensembles, the underlying AR4JA
LDPC-BC ensembles, and several (J, K )-regular LDPC-BC ensembles.

TABLE IV

DISTANCE GROWTH RATES AND BEC THRESHOLDS FOR THE

ARJA SC-LDPC-BC ENSEMBLES CARJA(L)

as L increases. We will see in Section IV that the scaled
growth rates converge to a bound on the free distance growth
rate of the unterminated CARJA ensemble. This allows us
to estimate the minimum distance growth rate δ(L)

min of the
CARJA(L) ensembles for large L by dividing this value by
the number of transmitted nodes in the protograph nt = 4L.

In addition, we see the same type of threshold behavior
exhibited by the C(J, K , L) ensembles. The BEC iterative
decoding threshold saturates to ε∗ = 0.4996 as L becomes
sufficiently large and does not further decay as L → ∞. This
is very close to the Shannon limit εsh = 0.5 for rate R∞ = 1/2
and is significantly larger than the BP threshold of the ARJA
LDPC-BC ensemble. As the coupling length L increases, we
also observe that the gap to capacity decreases, resulting in the
usual trade-off between distance growth rate and threshold.

Fig. 14 shows the results obtained for the CAR4JA(e, L)
SC-LDPC-BC ensembles, the underlying AR4JA LDPC-BC
ensembles, and several (J, K )-regular LDPC-BC ensembles.
For the CAR4JA(e, L) ensembles with e = 1, . . . , 5, we
observe that, as in the e = 0 case, increasing the coupling
length L results in asymptotically good code ensembles with
capacity approaching iterative decoding thresholds and
declining minimum distance growth rates. For each family,

the iterative decoding threshold converges to a value close to
the Shannon limit for R∞ (and significantly larger than the
BP threshold of the underlying AR4JA LDPC-BC ensemble)
as L gets large. The design rates RL of the CAR4JA(e, L)
ensembles overlap for increasing extension parameter e, allow-
ing a large selection of asymptotically good codes to be
obtained in the rate range 1/4 ≤ R ≤ 6/7, and the achievable
code rate can be increased further by considering larger
extension parameters e.

We also observe that the minimum distance growth rates
of the CAR4JA(e, L) ensembles for small coupling lengths L
typically exceed those of (3, K )-regular codes for K ≥ 6.
Further, for the same extension parameter e and large L, the
CAR4JA(e, L) ensembles have significantly better thresholds
and less complexity than the underlying AR4JA LDPC-BC
ensembles,9 but smaller distance growth rates and slightly
lower code rates. Further, by increasing the extension para-
meter e, and for small L, the minimum distance growth rates
of the CAR4JA(e, L) ensembles are larger than those of the
AR4JA ensemble with only a slightly worse threshold and
some increase in complexity.

Fig. 15 shows the minimum distance growth rates against
the fractional gap to capacity (εsh − ε∗)/εsh for the
CAR4JA(e, L) SC-LDPC-BC ensembles with coupling lengths
L = 2, . . . , 10, 20, 50, 100, the underlying AR4JA LDPC-BC
ensembles, and several (J, K )-regular LDPC-BC ensembles.
The trade-off we observe effectively allows a code designer to
‘tune’ between distance growth rate and threshold by choosing
the parameters e and L. We observe that, in particular, inter-
mediate values of L provide thresholds with a small gap to
capacity while maintaining a reasonable distance growth rate
with only a small loss in code rate. The complexity of the
CAR4JA(e, L) ensembles (measured by average variable and

9Complexity, as earlier, is measured by average variable and check node
degrees. When comparing the CAR4JA(e, L) ensembles to the underlying
AR4JA LDPC-BC ensembles with equal extension parameters, the average
variable node degree is the same for all L , but the average check node degree
is less for the CAR4JA(e, L) ensembles because of the termination.
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Fig. 15. Minimum distance growth rate vs. the fractional gap to capacity for
the CAR4JA(e, L) SC-LDPC-BC ensembles, the underlying AR4JA LDPC-BC
ensembles, and several (J, K )-regular LDPC-BC ensembles.

check node degrees) increases slowly with L and approaches
that of the underlying AR4JA LDPC-BC ensemble for a given
extension parameter e. Further, as L becomes sufficiently large
for the scaled growth rates to converge, we observe that the
gaps to capacity are approximately proportional to L for all
of the CAR4JA(e, L) ensembles. For example, we obtain about
a 10% gap to capacity by terminating after L = 9 time
instants; a 5% gap after L = 20 time instants; a 2% gap
after L = 50 time instants; and a 1% gap after L = 100 time
instants. Finally, choosing the extension parameter e allows
additional flexibility, where a larger e gives a higher code rate
but a lower distance growth rate and greater complexity. !

C. Thresholds for the AWGNC

In this section, we perform an AWGNC threshold analysis
of protograph-based SC-LDPC-BC ensembles and show that
the dramatic threshold improvement obtained by terminating
SC-LDPC-CC also extends to the AWGNC. Exact DE is far
more complex for the AWGNC than for the BEC since the
densities are vectors not scalars and one must also consider
a density for each individual edge in the graph rather than
simply an erasure probability. Consequently, it is only fea-
sible for simple protographs, so here we make use of the
reciprocal channel approximation (RCA) technique introduced
in [77], which has been successfully applied to the analysis of
protograph-based ensembles in [48]. With this approach, the
calculation of approximate AWGNC thresholds for a variety
of regular and irregular protographs becomes feasible with
reasonable accuracy.

Example 2 (cont.): In Fig. 16, we plot the AWGNC BP
thresholds (in terms of the noise standard derivation σ )
obtained using the RCA technique for several C(3, 6, L)
SC-LDPC-BC ensembles along with the Shannon limit for
the given design rate RL = (L − 2)/2L. We observe the same
behavior as demonstrated for the BEC in Fig. 10: we find that
the threshold decreases monotonically with increasing rate,

Fig. 16. AWGNC BP thresholds in terms of the noise standard deviation σ for
C(3, 6, L) SC-LDPC-BC ensembles with design rate RL = (L − 2)/2L and
the corresponding Shannon limit for rate RL . Also shown for comparison
are the BP and MAP decoding thresholds for the underlying (3, 6)-regular
LDPC-BC ensemble, σ∗ = 0.881 and σMAP = 0.948, respectively, and the
Shannon limit for R = 1/2 codes, σSh = 0.979.

but the gap to capacity for the given rate also decreases. For
example, the threshold values are equal to σ ∗ = 1.446 for
L = 3 and σ ∗ = 0.9638 for L = 10. As L is further increased,
the thresholds saturate to a constant value σ ∗ = 0.948 and do
not further decay as L → ∞ and RL → 1/2. We observe that
σ ∗ = 0.948, which is equal to the MAP decoding threshold
of the underlying (3, 6)-regular LDPC-BC ensemble, is much
closer to the Shannon limit σSh = 0.979 than the BP threshold
σ ∗ = 0.881 of the (3, 6)-regular LDPC-BC ensemble. !

This behavior, which can be observed for all of the regular
and irregular ensembles considered, is similar to the corre-
sponding results for the BEC, presented in Section III-B.
In Fig. 17, we display calculated thresholds for the AWGNC
for a variety of C(J, K , L), CARJA(L), and CAR4JA(e, L)
ensembles along with the thresholds of the underlying
LDPC-BC ensembles. Fig. 17(a) plots the thresholds in terms
of the standard deviation σ against the ensemble design rate.
We observe that as L increases, the design rate increases
and the threshold decreases monotonically; however, as L
becomes sufficiently large, the thresholds saturate to the MAP
thresholds of the underlying LDPC-BC ensembles. Further,
they are close to the Shannon limit and, importantly, they
do not decrease further as L → ∞ and the design rate
and degree distribution approach those of the underlying
LDPC-BC ensembles.

The same thresholds are depicted in Fig. 17(b) in terms of
the SNR Eb/N0. Since Eb/N0 takes into account the code
rate overhead, the ensembles with lower rate have a larger
noise variance, and the monotonic behavior of the thresholds
noted in Fig. 17(a) is no longer visible. In both plots, however,
we see that the gap to capacity decreases with increasing L.
Consequently, in a similar fashion to the BEC, varying the
coupling length L results in SC-LDPC-BC ensembles with
different design rates and a trade-off between iterative decod-
ing threshold and minimum distance growth rate.
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Fig. 17. AWGNC BP thresholds in terms of (a) standard deviation σ and
(b) signal-to-noise ratio Eb/N0 (dB) for several families of SC-LDPC-BC
ensembles with different coupling lengths L .

To conclude this section, we examine the AWGNC BP
thresholds for various SC-LDPC-BC ensembles with design
rates approaching R∞ = 1/2 and varying graph densities.
In addition, we use simulation to examine the finite length
performance of SC-LDPC-BC ensembles on the AWGNC
and demonstrate that the excellent performance promised by
the asymptotic results also translates into improved decoding
performance for finite code lengths.

Example 5 (cont.): We consider once more sev-
eral C(J, 2J, L) ensembles and the CARJA(L) ensembles
in Fig. 18(a). We observe that, as L increases, the ensem-
ble design rate of the SC-LDPC-BC ensembles increases
(approaching R = 1/2 asymptotically) and the thresholds
improve, nearing the Shannon limit for large L. Further, we
note that the (J, 2J )-regular LDPC-BC ensemble thresholds
worsen as we increase J , and we see that this is also
the case for the C(J, 2J, L) ensembles on the AWGNC
for small coupling lengths L, as was previously noted for

Fig. 18. Comparison of the C(J, 2J, L) SC-LDPC-BC ensembles, the
CARJA(L) SC-LDPC-BC ensembles, and the underlying LDPC-BC ensem-
bles: (a) AWGNC thresholds in terms of SNR Eb/N0 (dB), and (b) minimum
distance growth rate vs. threshold gap to capacity.

the BEC. Thus, for (J, 2J )-regular LDPC-BC ensembles and
C(J, 2J, L) ensembles with small L, thresholds worsen and
distance growth rates improve by increasing J (and hence
iterative decoding complexity). However, as L increases,
the behavior of the C(J, 2J, L) ensembles changes and
their thresholds saturate to a value numerically indistinguish-
able from the MAP decoding threshold of the underlying
(J, 2J )-regular LDPC-BC ensemble and this value approaches
the Shannon limit as we increase J . This indicates that,
for large L, both the distance growth rates and the thresh-
olds improve with increasing complexity, and we expect
this trend to continue as we further increase the variable
node degree J , although the improvement will diminish with
increasing J . As a final observation, we note that for all
achievable rates the CARJA(L) ensembles have better thresh-
olds than the C(3, 6, L) ensembles. This is expected, since the
ARJA LDPC-BC ensemble has been designed to have a good
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Fig. 19. AWGNC decoding performance (solid lines) and BP decoding
thresholds (dashed lines) of C(3, 6, 100) and C(4, 8, 150) SC-LDPC-BCs with
lifting factor M = 6000 and rate R = 0.49. For comparison, the performance
of (3, 6)-regular LDPC-BCs with M = 6000 and M = 200000 are also
shown along with the associated BP decoding threshold. (The BP thresholds of
(4, 8)- and (5, 10)-regular LDPC-BCs are 1.61dB and 2.04dB, respectively.)

iterative decoding threshold. However, we also observe that,
for large L, the C(4, 8, L) and C(5, 10, L) ensembles have
comparable thresholds to the CARJA(L) ensembles, demon-
strating the benefit that derives from the spatially coupled
convolutional structure, i.e., we obtain near capacity threshold
performance with an almost regular code graph.

Fig. 18(b) plots the minimum distance growth rates
against the threshold gap to capacity (the difference
between the AWGNC threshold (in terms of Eb/N0)
of an ensemble and capacity for the ensemble design
rate) for the C(J, 2J, L) ensembles with coupling lengths
L = w + 1, . . . , 16, 20, 50, 100, the CARJA(L) ensembles
with L = 2, . . . , 10, and the underlying (J, 2J )-regular and
ARJA LDPC-BC ensembles. We observe that, in particular,
intermediate values of L provide thresholds with a small gap
to capacity while maintaining linear minimum distance growth
with only a slight loss in code rate. We also note that, for
a fixed gap to capacity close to zero, the largest minimum
distance growth rate is obtained by choosing the C(J, 2J, L)
ensemble with the largest J , and that the CARJA(L) ensembles
falls in between the C(3, 6, L) and C(4, 8, L) ensembles.
(In this region, with the gap to capacity close to zero, the
rates of all the ensembles are approximately equal and close
to 1/2.) For larger fixed gaps to capacity, we see that the
order changes and that the reverse order holds for large gaps
to capacity.

Now consider choosing L such that the ensemble design rate
is R = 0.49 and the BP threshold values of the C(J, 2J, L)
ensembles improve with J . The thresholds of the C(3, 6, 100)
and C(4, 8, 150) ensembles are shown in Fig. 19, along
with the simulated performance of randomly chosen codes
from the underlying ensembles with permutation matrix size
M = 6000. Also shown, for comparison, is the BP threshold
of the (3, 6)-regular LDPC-BC with design rate R = 0.5
along with the simulated decoding performance of

two randomly chosen codes from the ensemble with
permutation matrix sizes M = 6000 and M = 200, 000.
A standard LDPC-BC decoder employing the BP decoding
algorithm was used in each case. For the SC-LDPC-BCs
with M = 6000, we observe that the waterfall performance
is within 0.2dB of the threshold, and we expect the gap to
decrease for larger permutation matrix sizes M . By choosing
a larger L, the rate increases (approaching 1/2), and the
thresholds and corresponding waterfall performance of codes
chosen from these ensembles will improve slightly. Note, in
particular, that the SC-LDPC-BCs are operating far beyond
the threshold of the (3, 6)-regular LDPC-BC ensemble, and as
the graph density J increases this improvement will become
more pronounced, since the thresholds and corresponding
waterfall performance of the SC-LDPC-BCs gets better
whereas the thresholds and performance of the LDPC-BCs
will become worse. !

Remark 8 (Importance of Coupling Length L): From the
BP threshold results presented in Sections III-B and III-C,
it follows that one should select a large coupling length L
where possible, since the gap to capacity decreases with
increasing L (see, e.g., Figs. 12 and 17). As will be discussed
further in the next section, the strength of SC-LDPC-BCs is in
fact independent of L, and consequently one should avoid the
viewpoint of comparing a SC-LDPC-BC to a large LDPC-BC
with an overall block length of n = L Mbv that is decoded
using standard LDPC-BC decoding techniques. In practice,
the implementation of a windowed decoder is crucial to
reduce the memory, latency, and complexity requirements
of SC-LDPC-BCs; moreover, the window size W , lifting
factor M , and coupling width w are the design parameters
that must be optimized for any given system constraints,
whereas L is less important but should not be chosen
to be small. Such design aspects have been investigated
in the literature and simulated decoding performance of
SC-LDPC-BCs for various W , M , w, and L, can be found
in [12], [44], [51], and [65].

IV. FREE DISTANCE GROWTH RATES OF

SC-LDPC-CC ENSEMBLES

In the previous section, we saw that the BP decoding
thresholds of SC-LDPC-BC ensembles tend toward the MAP
thresholds of the underlying LDPC-BC ensembles on both
the BEC and AWGNC with increasing coupling length L,
while the minimum distance growth rates δ(L)

min tend to zero
as L → ∞. Considering the SC-LDPC-BC as an LDPC-BC
with given finite block length n = M Lbv , a careful choice of
the parameters M and L becomes necessary to achieve the best
performance. The minimum distance growth rate δ(L)

min provides
a useful measure for comparison of the distance properties of
SC-LDPC-BC ensembles; however, based on their spatially
coupled (convolutional) structure, it is clear that the potential
strength of SC-LDPC-BC ensembles for large L scales with
the constraint length ν = M(w + 1)bv , which increases
with M but is independent of L. Consequently, the free
distance growth rate δfree of the closely related SC-LDPC-CC
ensemble, which is independent of L, is a more appropriate



MITCHELL et al.: SC-LDPC CODES CONSTRUCTED FROM PROTOGRAPHS 4885

measure of the performance of SC-LDPC-BC ensembles than
their minimum distance growth rates δ(L)

min.
This fact is supported by the excellent decoding

performance of a continuous sliding window
decoder [15], [51], [52], which only passes messages
across a window of fixed size W , typically a small multiple
of the constraint length ν (independent of L), as opposed
to passing messages directly across the entire length of the
graph (which grows with L), like a standard LDPC-BC BP
decoder. Provided that W is not chosen to be too small, the
strength of the SC-LDPC-BC is contained within the window
and there is no perceivable loss in performance compared to
a standard decoder [51], [52]. Moreover, this strategy is of
particular practical importance since it allows one to fully
exploit the localized structure of SC-LDPC-BC ensembles
in terms of minimizing decoding latency and memory
requirements.

In the remainder of this section, we investigate the
connection between the minimum distance of SC-LDPC-BC
ensembles and the free distance of the closely related
SC-LDPC-CC ensembles.

Definition 9: The minimum free distance of a convolutional
code, denoted by dfree, is defined as the minimum Hamming
distance between any two distinct code sequences in the code
x[0,∞] and y[0,∞]. Since convolutional codes are linear, this
condition simplifies to

dfree = min
x[0,∞] ̸=0

w(x[0,∞]),

where w(·) denotes the Hamming weight of the argument,
i.e., dfree is the weight of the minimum Hamming weight
nonzero code sequence.

In order to obtain our result, we introduce a sub-ensemble
of the SC-LDPC-CC ensemble given in Definition 2 where
each member is periodically time-varying.

Definition 10: An ensemble of periodically time-varying
protograph-based SC-LDPC-CCs with coupling width w,
design rate R = 1−bc/bv , constraint length ν = M(w+1)bv ,
and period T is obtained as the collection of all M-fold graph
covers of a convolutional protograph where the permutation
applied to edge l of variable node vy , l ∈ {1, . . . , ∂(vy)},
y ∈ {0, 1, . . . , bv − 1}, at time t is also applied to edge l at
times {t + kT |k ∈ Z\0} and T is the smallest natural number
for which this condition holds.

To avoid confusion with the notation, we will refer to
the periodically time-varying SC-LDPC-CC sub-ensembles of
the C(J, K ), CARJA, and CAR4JA(e) SC-LDPC-CC ensembles
with period T as T (J, K , T ), TARJA(T ), and TAR4JA(e, T ),
respectively. It is known that the average free distance of
an ensemble of periodically time-varying protograph-based
SC-LDPC-CCs with period T constructed as described in
Definition 10 can be bounded below by the average minimum
distance of the associated ensemble of TB-SC-LDPC-BCs
derived from the base matrix Btb

[0,L−1] with coupling length
L = T [18], [19]. Here, we show that the average free distance
of this ensemble can also be bounded above by the average
minimum distance of the terminated SC-LDPC-BC ensemble
derived from the base matrix B[0,L−1] with L = T .

Theorem 11: Consider a rate R = 1 − bc/bv periodically
time-varying SC-LDPC-CC ensemble with coupling width w,
constraint length ν = M(w + 1)bv , and period T derived
from a convolutional protograph with base matrix B[−∞,∞].
Let d

(L)
min be the average minimum distance of the associated

SC-LDPC-BC ensemble with coupling length L and block
length n = M Lbv derived from the terminated convolutional
protograph with base matrix B[0,L−1]. Then the ensemble
average free distance d

(T )
free of the SC-LDPC-CC ensemble is

bounded above by d
(L)
min for coupling length L = T , i.e.,

d
(T )
free ≤ d

(T )
min. (17)

Proof: There is a one-to-one relationship between
members of the periodically time-varying SC-LDPC-CC
ensemble and members of the associated SC-LDPC-BC
ensemble with coupling length L = T . For any such pair of
codes, every codeword x[0,M Lbv−1] = [ x0 x1 · · · xM Lbv−1 ]
in the terminated code be viewed as a codeword x[0,∞] =
[ x0 x1 · · · xL Nbv−1 0 0 · · · ] in the unterminated code. It fol-
lows that the free distance d(T )

free of the unterminated code can
not be larger than the minimum distance d(T )

min of the terminated
code. The ensemble average result d

(T )
free ≤ d

(T )
min then follows

directly. !
Since there is no danger of ambiguity, we will henceforth

drop the overline notation when discussing ensemble average
distances.

For SC-LDPC-CCs, conventionally defined as the null space
of a sparse parity-check matrix H[0,∞], it is natural to define
the free distance growth rate with respect to the constraint
length ν, i.e., as the ratio of the free distance dfree to the
constraint length ν. By bounding d(T )

free using (17), we obtain
an upper bound on the free distance growth rate as

δ(T )
free = d(T )

free

ν
≤ δ(T )

minT
(w + 1)

, (18)

where δ(T )
min = d(T )

min/n = d(T )
min/(MT bv ) is the minimum

distance growth rate of the SC-LDPC-BC ensemble with
coupling length L = T and base matrix B[0,T −1].10 Similarly,
it was shown in [19] that

δ(T )
free ≥ δ̌(T )

minT
(w + 1)

, (19)

where δ̌(T )
min is the minimum distance growth rate of the

TB-SC-LDPC-BC ensemble with tail-biting coupling length
L = T and base matrix Btb

[0,L−1].
Example 2 (cont.): As an example, consider the C(3, 6, L)

SC-LDPC-BC ensembles. Using (18), we calculate the upper
bound on the free distance growth rate of the periodically
time-varying SC-LDPC-CC ensemble T (3, 6, T ), with design
rate R = 1/2, as δ(T )

free ≤ δ(T )
minT/3 for coupling lengths

L = T ≥ 3. Fig. 20 displays the minimum distance growth
rates δ(L)

min of the C(3, 6, L) ensembles defined by B[0,L−1]

10The free distance growth rate δ(T )
free that we bound from above using (18)

is, by definition, an existence-type lower bound on the free distance typical of
most members of the ensemble, i.e., with high probability a randomly chosen
code from the ensemble has free distance at least as large as δ(T )

freeν as ν → ∞.
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Fig. 20. Minimum distance growth rates of the C(3, 6, L) (terminated)
and Ctb(3, 6, L) (tail-biting) SC-LDPC-BC ensembles with upper and lower
bounds on the free distance growth rate of the associated periodically time-
varying SC-LDPC-CC ensembles T (3, 6, L).

for L = 3, 4, . . . , 21 and the associated upper bounds on
the free distance growth rate δ(T )

free ≤ δ(T )
minT/3 for L = T .

Also shown are the minimum distance growth rates δ̌(L)
min of

the Ctb(3, 6, L) TB-SC-LDPC-BC ensembles, defined by base
matrix Btb

[0,L−1] for L = 3, 4, . . . , 21, and the associated lower

bounds, calculated using (19), on the free distance growth rate
δ(T )

free ≥ δ̌(T )
minT/3 for L = T .

We observe that the Ctb(3, 6, L) minimum distance growth
rates δ̌(L)

min remain constant for L = 3, . . . , 11 and then start
to decrease as the coupling length L grows, tending to zero
as L tends to infinity. Correspondingly, as L exceeds 11, the
lower bound on δ(T )

free levels off at δ(T )
free ≥ 0.086. As discussed

in Section III-A, the C(3, 6, L) minimum distance growth rates
δ(L)

min are large for small values of L (where the rate loss
is larger) and decrease monotonically to zero as L → ∞.
Using (18) to obtain an upper bound on the free distance
growth rate we observe that, for T ≥ 12, the upper and
lower bounds on δ(T )

free coincide, indicating that, for these
values of the period T , δ(T )

free = 0.086, significantly larger than
the underlying (3, 6)-regular LDPC-BC ensemble minimum
distance growth rate δmin = 0.023. This leveling-off phenom-
enon occurs as a result of the fact that the minimum weight
codeword in a typical member of the SC-LDPC-CC ensemble
also appears as a codeword in a typical member of the
SC-LDPC-BC ensemble once L exceeds 11. In addition, we
note that, at the point where the bounds coincide, the minimum
distance growth rates for both the terminated and tail-biting
ensembles coincide. (Recall that the bounds diverge for smaller
values of L since the Ctb(3, 6, L) ensembles have rate 1/2
for all L, whereas the rate of the C(3, 6, L) ensembles is a
function L given by (9).) !

Numerically, it becomes problematic to evaluate
δ(L)

min and δ̌(L)
min for large values of L, but the leveling-

off effect noted in Fig. 20, which also occurs in all the
other cases we have examined, strongly suggests that the

Fig. 21. Asymptotic free distance growth rates for some C(J, K ) and
CAR4JA(e) SC-LDPC-CC ensembles.

free distance growth rate δ(T )
f ree remains constant once

T increases beyond a certain value. This is due to the
fact that, for a fixed constraint length, further increases
in the period cannot result in convolutional ensembles
with larger free distances. We set δ f ree " maxT δ(T )

f ree,
and the leveling-off numerical results obtained for the
T (3, 6, T ) ensembles suggests that the free distance
growth rate δ f ree of the associated (non-periodic) C(3, 6)
SC-LDPC-CC ensemble converges to 0.086. Lower bounds
on free distance growth rates were calculated for a wide
variety of (J, K )-regular and irregular protograph-based
SC-LDPC-CC ensembles in [19] and, using the technique
described here, we can form upper bounds on the free
distance growth rates that coincide numerically with the
lower bounds for sufficiently large T , resulting in exact
free distance growth rates. Growth rates for a variety of
C(J, K ) and CAR4JA(e) SC-LDPC-CC ensembles are plotted
in Fig. 21, along with the minimum distance growth rates
of the underlying LDPC-BC ensembles. Also shown are
the Gilbert-Varshamov and Costello [78] lower bounds on
the growth rates of general ensembles of random block
and convolutional codes, respectively.11 We observe that
the convolutional free distance growth rates are significantly
larger than the corresponding block minimum distance growth
rates for each ensemble. This general technique can be used
to find the free distance growth rate of any regular or irregular
periodically time-varying protograph-based SC-LDPC-CC
ensemble.

The usefulness of the above result is twofold: on the one
hand, the fact that the minimum distance growth rates of
SC-LDPC-BC ensembles scale to a constant allows us to
approximate the growth rates for large L (as noted earlier
in Sections III-A and III-B), where otherwise it would not

11The constraint length ν that we define in this paper (see Definition 2)
is often referred to as the decoding constraint length. In order to facilitate
comparison to the Costello bound, rather than using (18), the free distance
growth rates shown in Fig. 21 are normalized by the encoding constraint
length. See [19] for further details.



MITCHELL et al.: SC-LDPC CODES CONSTRUCTED FROM PROTOGRAPHS 4887

be computationally feasible to do so; on the other hand, for
large L, the free distance is arguably a more appropriate
indicator of the strength of convolutional-like SC-LDPC-BC
ensembles. In particular, when using convolutional decoding
strategies, such as the sliding window decoder discussed
above, it is intuitively clear that increasing L will not have a
negative effect on performance. In this regard, it is natural that
an appropriate distance measure for SC-LDPC-BC ensembles
should be independent of L, like the free distance growth rate
δfree of the associated SC-LDPC-CC ensemble, rather than
decaying with L, like the minimum distance growth rate δ(L)

min,
which tends to zero as L → ∞. Numerous empirical studies
and simulation results (see [10], [12], [15]) indeed have shown
that the performance of SC-LDPC-BCs does not suffer as L
is increased, indicating that a distance measure independent
of L, such as δfree, is a more appropriate measure of decoding
performance than δmin.

V. CONCLUDING REMARKS

In this paper, we have considered protograph-based spa-
tially coupled LDPC codes. By coupling together a series of
L disjoint, or uncoupled, block protographs into a single
coupled chain by means of an edge spreading operation, we
introduce memory into the code design and obtain the graph
of a SC-LDPC-BC ensemble. By varying L, we obtain a
flexible family of code ensembles with varying rates and code
properties that can share the same encoding and decoding
architecture for arbitrary L. For the C(J, K , L) ensembles,
despite being almost regular, we demonstrated that the result-
ing codes combine the best features of optimized irregular and
regular codes in one design: capacity approaching iterative BP
decoding thresholds and linear growth of minimum distance
with block length. In particular, we saw that, for sufficiently
large L, the BP thresholds on both the BEC and AWGNC
saturate to a value significantly larger than the BP decoding
threshold and numerically indistinguishable from the MAP
decoding threshold of the underlying LDPC-BC ensemble.
Since all variable nodes have degree greater than two, asymp-
totically the error probability converges at least doubly expo-
nentially with decoding iterations, and we obtain sequences of
asymptotically good LDPC codes with fast convergence rates
and BP thresholds close to the Shannon limit. The gap to the
Shannon limit decreases as the density of the graph increases,
opening up a new way to construct capacity achieving codes
on MBS channels with low-complexity BP decoding.

The key to the excellent threshold performance of
SC-LDPC-BC ensembles is a slight structured irregularity
introduced to the graph at the boundaries. As L increases,
we obtain a family of codes with increasing design rates and
a trade-off between capacity approaching iterative decoding
thresholds and declining minimum distance growth rates.
However, we saw that the growth rates, while declining
with L, converge to a bound on the free distance growth
rate of the closely related SC-LDPC-CC ensemble, which is
independent of L and significantly larger than the minimum
distance growth rate of the underlying LDPC-BC ensemble,
indicating that, particularly in conjunction with convolutional

decoding strategies such as a sliding window decoder, an
appropriate distance measure for SC-LDPC-BC ensembles
should also be independent of L. Finally, we showed that
the threshold saturation effect obtained by spatial coupling a
sequence of disjoint graphs is a general phenomenon and can
be applied to both regular and irregular LDPC-BC ensembles.
Moreover, carefully designing the edge spreading, increasing
the density of the component graphs, and coupling optimized
irregular graphs can further improve performance in terms of
both asymptotic minimum distance growth rate and iterative
BP decoding threshold.
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