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Popular summary

Light can be used for many things, from transmitting radio signals and sending information
in optical fibers, to lighting up houses and providing energy through solar power. e light
to which we as humans are most familiar is the small window of wavelengths between 400
and 700 nanometers (one nanometer is a billionth of a meter), that correspond to all visible
colors between violet and red. A way to analyze the composition of light is to let it interact
with matter: For example, when white light emitted from the sun or a light bulb passes
through a prism, the wavelengths corresponding to different colors are separated from each
other and form all the colors of the rainbow. is argument can also be reversed: By
shining light on a object, and observing the amount of light that is reflected, transmitted
or absorbed, we can learn about the properties of matter. e method of shining light on a
material to extract information about its internal structure is called spectroscopy, and is the
topic of this thesis. Spectroscopic techniques are of large relevance for everyday life, and
are used in diverse circumstances such as medicine, chemistry and astronomy.

To understand what information we can obtain using spectroscopic methods, we first dis-
cuss some properties of matter. For large objects the properties of a material correspond to
a statistical average of the properties of the individual particles making up the material. As
an example, the current through a system is related to the average velocity of the electrons,
and the heat capacity is related to the average energy. e reason why only the statistical
properties are important in these materials is because they contain a large number of par-
ticles: e typical number of particles in an object of volume 1 cm3 is around 1023 (about
one million billion billions), and therefore adding one particle more or less makes no dif-
ference. For very small objects, such as atoms and so-called nanostructures, the number
of particles is much smaller. erefore, it is not sufficient to consider only the statistical
average of an object, since we must also describe its statistical fluctuations. is has the
implication that for small objects we can not make definite predictions about the value a
measurement of a given property such as the current would return, but only predict the
probability to measure a certain value.

Another important aspect of nanoscale systems is that the motion of a particle depends
strongly on the position of all other particles. Since electrons carry a negative charge, two
electrons that come close tend to repel each other. e repulsive interaction makes a de-
scription of systems with many electrons much more demanding, since we can no longer
describe the motion of each particle separately but have to consider the system as a whole.
erefore, it is often necessary to describe interactions in some approximate way. A com-
mon method to do this is to say that a given electron only feels the average charge coming
from all other electrons, and only try to describe the motion of this particular electron.
is approach works well in many circumstances, but also fails in many important cases.
A way to partially get around the problem of considering many interacting particles is to
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use an effective description of matter. is means that we neglect most of the particles in a
material, and only try to describe the motion of those particles that are expected to be most
important. Usually this means that we miss some aspects of the real system, but with the
advantage that the description of the reduced system can be significantly improved.

In the first part of this thesis we will study the effects of interactions between light and mat-
ter as a measurement tool to understand the energy structure of matter. For large objects,
the energy of a system is a continuous variable, meaning that it can take any value in a
given interval. As it turns out, this is no longer true for small objects, where the energy can
only take specific discrete values. is effect is known as quantization, and comes from the
fact that particles confined to a small volume start to behave like waves. e most famous
example of quantum effects is Bohr’s model of an atom, where the electrons can only orbit
the nucleus at a set of fixed distances. is has the consequence that the energy required to
move an electron from one orbit to another has a specific value, and therefore the atom can
only absorb energy corresponding to these quanta of energy. e energy difference between
different orbitals can be found by shining light on the atom, and measuring which wave-
lengths are absorbed. We have considered a similar experiment where the atom is replaced
by a so-called nanowire, to extract information about its energy levels.

In addition to giving information about an object, light can be used to initiate time-
dependent processes in a material. Much like the signal from a remote control is used
to active a television, short pulses of light can be used to start atomic processes. Although
conceptually similar, the time-scales on which these processes occur are very different, and
the typical time it takes for an electron to move inside a material is around one femtosecond
(a millionth billionth of a second). To study processes on this time-scale is therefore very
demanding, and only recently has the necessary technology been developed. One method
to investigate the fast electronic motion is by shining two or more pulses of light on a ma-
terial. A way to think of this method is that the first pulse gives a kick to the system that
forces it to react, while the second pulse takes a snapshot of the instantaneous configura-
tion. If the time between the two pulses is varied, these snapshots can be added one after
another like the frames of movie, which allows us to observe in real-time how the system
evolves.

By observing and understanding the electronic motion we can also hope to control it. In
this thesis we have attempted to control very fast processes, where for example an atom
initially stuck to a surface is released, or a decaying atom is hindered from doing so. We
have also studied the factors contributing to an efficient conversion of light energy to elec-
tric currents in a model solar cell. Even though these results may not be directly applicable
in a technological context at the moment, manipulating such basic processes is a first step
towards a more complete control of fast electronic dynamics. In the future the control of
electronic and atomic motion can hopefully be used to construct faster electronic compo-
nents, enhance chemical reactions, and improve the efficiency of solar cells.
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Populärvetenskaplig sammanfattning

Ljus kan användas till många saker, allt från att sända radiosignaler och skicka information
i optiska fibrer, till att lysa upp hem och utvinna energi via solceller. Det ljus vi är mest
vana vid som människor är ett intervall av våglängder mellan 400 och 700 nanometer (en
nanometer är en miljarddels meter), som svarar mot alla synliga färger mellan rött och vi-
olett. Ett sätt att undersöka sammansättningen hos ljus är genom att låta det växelverka
med materia: När vitt ljus exemplvis från solen passerar genom ett prisma, bryts de våg-
längder som svarar mot olika färger ut från varandra och bildar alla regnbågens färger. På
motsvarande sätt kan vi genom att belysa ett föremål få information om materiens egenska-
per, genom att mäta den andel av ljuset som reflekteras, transmitteras eller absorberas. Den
typ av experiment som använder ljus för att extrahera information om ett föremåls interna
struktur kallas för spektroskopi, och är ämnet för denna avhandling. Spektroskopiska tekni-
ker är viktiga för många områden i vårt vardagsliv, och används i vitt skilda sammanhang
såsom inom medicin, kemi och astronomi.

För att bättre förstå den information vi kan få via spektroskopiska metoder, ger vi först en
kort bakgrund till ett antal egenskaper hos materien. För stora föremål svarar egenskaper-
na hos ett material mot det statistiska medelvärdet av egenskaperna hos de partiklar som
materialet består av. Exempelvis är den elektriska ström som passerar genom ett system re-
laterad till medelhastigheten hos elektronerna. Anledningen till varför endast de statistiska
egenskaperna är viktiga i stora föremål är att de består av ett stort antal partiklar: Det ty-
piska antalet partiklar i ett föremål av storleken 1 cm3 är omkring 1023 (cirka en miljon
miljarders miljarder), och det gör därför ingen skillnad med en partikel mer eller mindre.
För väldigt små föremål, såsom atomer och så kallade nanostrukturer, är antalet partiklar
mycket mindre. I sådana material är det därför inte tillräckligt att bara bekymra sig om en
egenskaps statistiska medelvärde, utan vi måste också beskriva dess statistiska fluktuationer.
Detta medför att vi för små föremål inte kan göra definitiva förutsägelser om resultatet av en
mätning (av exempelvis en egenskap som den elektriska strömmen), vi kan bara förutsäga
sannolikheten att mäta ett givet värde.

En ytterligare egenskap hos nanosystem är att rörelsen hos en given partikel är starkt bero-
ende av positionen hos alla de andra partiklarna. Eftersom elektroner har negativ elektrisk
laddning, så kommer två elektroner som är nära varandra att repellera varandra. Då vi inte
längre kan betrakta rörelsen hos varje enskild elektron som oberoende av de andra, måste
vi istället betrakta systemet som en sammansatt helhet. Den repulsiva växelverkan gör det
därför betydligt svårare att behandla ett system med många elektroner, och det är därför
vanligt att använda en approximativ beskrivning av växelverkan. En vanlig approximativ
metod är att anta att en given elektron bara känner av medelvärdet av laddningen från de
övriga elektronerna, och därefter endast beskriva rörelsen hos den enskilda elektronen. Det-
ta förhållningssätt fungerar bra för många system, men misslyckas också i många viktiga fall.
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Ett annat sätt att komma runt problemet att beskriva växelverkande partiklar kan då vara
att använda en effektiv beskrivning av systemet. Det innebär att vi ignorerar de flesta partik-
larna i materialet, och endast försöker beskriva rörelsen hos de partiklar som förväntas vara
viktigast för en given process. I praktiken innebär detta att vi utelämnar vissa aspekter hos
det ursprungliga systemet, men det har fördelen att det reducerade systemet kan beskrivas
mer detaljerat.

I den första delen av denna avhandling betraktar vi växelverkan mellan ljus och materia som
ett verktyg för att förstå ett föremåls energistruktur. För stora föremål är systemets energi en
kontinuerlig variabel, vilket innebär att den kan ta vilket värde som helst i ett givet intervall.
Det visar sig att för små föremål är detta inte längre fallet, och i sådana system kan energin
istället bara anta vissa diskreta värden. Denna effekt kallas kvantisering, och har sitt ursprung
i det faktum att partiklar som stängs in i en liten volym börjar att bete sig som vågor.
Det mest kända exemplet på sådana kvanteffekter är Bohrs atommodell, där en elektrons
banrörelse kring atomkärnan endast kan ske på vissa specifika avstånd från kärnan. Detta
medför i sin tur att energin som krävs för att flytta en elektron från en bana till en annan
har ett givet specifikt värde, och att atomen därmed bara kan absorbera ljus med en energi
som svarar mot dessa specifika värden. Energiskillnaden mellan olika elektronbanor kan
mätas genom att belysa atomen, och undersöka vilka väglängder av ljuset som absorberas.
Vi har studerat ett liknande exempel, där atomen bytts ut mot en så kallad nanotråd, för
att på så vis kunna extrahera information om nanotrådens energistruktur.

Utöver att ge information om ett föremål, så kan ljus användas för att initiera tidsberoende
processer i ett material. På samma sätt som signalen från en ärrkontroll används för att
sätta på en TV, kan korta ljuspulser användas för att sätta igång atomära processer. Trots
sina likheter så sker dessa processer på väldigt olika tidsskalor, då den typiska tiden det tar
för en elektron att förflytta sig inuti ett material är omkring en femtosekund (en miljondels
mijarddel av en sekund). Att studera atomära processer är därför väldigt komplicerat, och
den teknologi som krävs för att göra det har inte utvecklats förrän nyligen. En metod för att
undersöka elektroners rörelse är genom att belysa ett material med två eller flera ljuspulser.
Vi kan förstå hur denna metod fungerar genom att betrakta den första pulsen som en knuff,
vilken tvingar systemet att röra och anpassa sig, och den andra pulsen som en kamera som
tar en ögonblicksbild av systemets konfiguration. Genom att variera tiden mellan de två
pulserna får vi en mängd sådana bilder, vilka kan läggas efter varandra som bildrutorna i en
film så att vi kan betrakta systemets utveckling i realtid.

Genom att observera och förstå hur elektroner rör sig, är förhoppningen att vi ska kun-
na kontrollera deras rörelse. I den här avhandlingen har vi försökt att kontrollera ett antal
mycket snabba processer, där exempelvis en atom adsorberad vid en yta lossnar, eller en
atom hindras från att sönderfalla. Vi har också undersökt vilka faktorer som bidrar till en
snabb omvandling av ljusenergi till elektrisk energi i en prototypisk solcell. Även om dessa
resultat för tillfället inte kan tillämpas direkt i en teknologisk eller industriell kontext, så
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är möjligheten att manipulera sådana grundläggande processer ett första steg mot en mer
fullskalig kontroll av elektroners dynamik. I framtiden kan kontroll av elektroniska och
atomära processer förhoppningsvis användas för att konstruera snabbare elektriska kompo-
nenter, snabba på kemiska reaktioner, och förbättra effektiviteten hos solceller.
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Chapter 

Introduction

Physics is an empirical science, and as such, it relies on the comparison of measurements
and theoretical predictions. In a conceptual sense, we can say that physics proceeds in the
following manner: Starting from a few basic axioms, we propose an hypothesis that can
be either verified or falsified by a measurement. If the statement is falsified it is rejected,
while if verified it is taken as the basis for new hypotheses. By progressing in this manner
the valid hypotheses form an increasingly intricate theory that can ultimately be applied to
explain a vast range of experiments.

A more pragmatic perspective on the physical science is one of control: By understanding
the working principles of matter, we can design objects and materials that behave in a
predetermined manner. As our knowledge of the physical world grows, we can construct
more and more advanced technologies that can help benefit our daily life. Of this we
see examples everywhere, from trains and airplanes relying on the principles of classical
mechanics and electrodynamics, to light emitting diodes and solar harvesting materials that
work according to the principles of quantum mechanics. As time progresses the branches
of physics move towards increased maturity, where understanding of new processes go hand
in hand with their control and application. In light of this, we start by addressing three
fundamental questions: Firstly, what are the measurements and physical processes we aim
at describing? Secondly, what are the theoretical challenges in trying to do so? And finally,
how can these processes be controlled and used in technological applications?

is thesis is concerned with the class of measurements known as spectroscopies. By this we
mean experiments where an external electromagnetic wave is used to excite a system, and
information about the system is acquired by recording either the outgoing electromagnetic
field or some emitted particles. In many contexts, it is possible to a good degree to assume
that the field is so weak that it will only cause a small disturbance in the sample. Under such
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conditions a description of the process becomes significantly simpler, since it is possible to
describe the coupled system through perturbation theory. A special case is the theory of
linear response, where the perturbing field is treated only to lowest (linear) order.

In the linear regime the electromagnetic wave can be seen as a probe of the energy struc-
ture of the system. As an example, consider an atom in its ground state. If subjected to
monochromatic light of frequency ω, it can change its internal state by absorbing energy
from the field. is is however only possible if the frequency of the field matches the
difference in energy between two atomic energy states. By recording the spectral energy
density of the electromagnetic field after its interaction with the system, we can define the
absorbed energy per frequency s(ω). is type of experiment is known as photo-absorption
(PA) spectroscopy, and gives direct information about the atomic states through the tran-
sition energies encoded in s(ω). A similar way to probe a system, commonly used for solid
state materials, is to subject the system to electromagnetic radiation and measure the en-
ergy of the emitted electrons. In this case the final state will consist of a free electron with
momentum k, and an ionized system with one electron removed. By measuring the energy
s(ω,k) of the photo-electron, in an experiment known as angle-resolved photo-electron
spectroscopy (ARPES), we get information about the momentum resolved energy struc-
ture of the sample.

For traditional continuous wave lasers the theoretical predictions obtained from linear re-
sponse is often in good agreement with the experimental results. However, for experiments
performed using intense pulsed lasers the instantaneous field strength of the electromagnetic
wave is many times of the same order as the binding energies of atomic and solid state sys-
tems. Under such conditions it is necessary to take into account the non-linear effects
of light-matter interactions, such as wave mixing, multi-photon absorption and high har-
monic generation. For even stronger fields, where the field strength becomes comparable
with the characteristic energy scales of the sample, it is also necessary to take explicitly into
account the renormalization of material properties due to the presence of the field. With
present technologies it is possible to create pulses with a duration ranging from ps to as,
and photon energies from 1 eV to more than a hundred eV.

Using pulsed lasers it is also possible to study the time-evolution of a system resulting
from external perturbations. Examples of such dynamical processes is the time-dependent
current through the system, or the motion of electrons and nuclei in a solid material. In
macroscopic systems it is typically possible to distinguish between two regimes of the time-
evolution: At early times, shortly after the perturbation is switched on, the system responds
in an oscillatory fashion. is is commonly referred to as the transient regime. At later
times the oscillations are damped away due to dissipation in the material, and the system
reaches the steady state regime. e duration of the transient regime is dependent on the
mechanisms responsible for dissipation, and can be estimated from the typical energy scale
of the relevant process. For electrons the typical energy ϵe is on the order of electron volts,
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giving a characteristic time scale of τe ∼ ℏ/ϵe of femtoseconds. Correspondingly, the
typical energy ϵn of nuclear vibrations (phonons) is meV, giving a characteristic time τn on
the order of picoseconds.

Today it is possible to realize laser pulses with durations on the attosecond time-scale, which
can be used as instantaneous probes of a dynamic electronic system. One common method
for this is the so-called pump-probe scheme, which consists of an intense pump pulse excit-
ing the system and a weaker probe pulse that performs a PA measurement. In experiments
the delay τ between the pump and the probe is varied, and the probe field is measured.
is signal contains contributions from dipole oscillations in the sample, which encode
information about the current state of the system. By forming the difference of the probe
signals with and without the pump field present, we can construct a spectrum of differen-
tial absorption that gives information about which states are populated by the pump and
how these populations evolve in time. In this way, it is possible to directly measure the
properties of an excited system.

A theory of ultrafast and non-linear spectroscopy needs to deal simultaneously with the
time-dependence and non-linear features of the electromagnetic field. For systems in equi-
librium, it is often possible to use a description based on perturbation theory, while for non-
equilibrium problems the time-dependence of the field needs to be explicitly accounted for.
In addition, there are two aspects of the system itself that may complicate a theoretical de-
scription, namely the size of the system and the presence of internal particle-particle inter-
actions. For systems with weak interactions the problem can often be adequately described
in an effective single-particle picture, where the interactions are taken into account in an
approximate manner. is is beneficial, since the effort needed to solve a single-particle
problem scales linearly with the system size. In this thesis we have considered two such
methods, namely density functional theory (DFT) and the non-equilibrium Green’s func-
tion (NEGF) method. For stronger interactions the motion of each particle is dependent
on the position of every other particle, and an independent particle description is no longer
valid. Under such circumstances, it is preferable to use a method that includes interactions
in a non-perturbative way. To treat strongly interacting systems we have used two numer-
ically exact methods, the exact diagonalization (ED) and density matrix renormalization
group (DMRG) method. Although exact, these methods are of more limited scope than
DFT and NEGF, as will be discussed in detail in the next chapter.

To theoretically describe a system we first need to determine the equations governing its
dynamics. To this end we have considered two conceptually different approaches. e first
is the so-called ab initio approach, where the idea is to base the description on an equation
of motion taking explicit account of all constituent particles of the material. In this way, all
physical processes of the system are contained in the descrption, and very little is assumed
about the details of the system before a calculation is performed. e second approach to
describe a system is to formulate a set of effective equations for the most relevant degrees
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of freedom. We will refer to this as a model approach, since it only aims at describing the
qualitative features of a system. Although this approach is more limited in scope than the
ab initio theories, it many times offers a greater conceptual clarity. In addition, since the
effective equations are determined by a small number of parameters, it is easier to identify
the key mechanisms behind a process. Inherent in this approach is that we do not aim
to make detailed predictions about specific physical systems, but instead we focus on the
general aspects of a given physical process.

In this thesis we look at some conceptual questions relevant to the fields of non-linear and
ultrafast spectroscopy. A first major topic is the role of strong interactions: In many of the
systems we have studied, the dynamics are driven by interactions between different particle
species. In Paper , we study atomic desorption from a surface, which is induced by electron-
nuclear interactions. In Paper , we look at the role of electron-electron interactions for
charge-transfer in a prototypical donor-acceptor system, and in Paper  we discuss second
harmonic generation in a two-level system with strong electron-photon interactions.

Another key topic is the control of dynamical processes, which is discussed in a number
of different contexts: In Papers  and  we show that subjecting an adsorbed atom to
external laser pulses can induce desorption, and in particular that the desorption yield can
be controlled by using two pulses with varying delay. In Paper  we investigate the non-
linear photo-emission signal from InAs nanowires. We found that the signal depends both
on the crystal phase of the material and on the polarization of the incident field, which
allows for a spatial control of the non-linear response by varying the crystal structure or
the polarization. In Paper  we study the Auger effect of an isolated atom, and show that
the lifetime of the process can be controlled by inducing the quantum Zeno effect. is is
interesting since it in principle allows for very fast processes to be studied on an artificially
longer time-scale.

Finally, we mention a few practical applications: e desorption process is of technological
importance since it appears in many catalytic devices. However, in a more general sense it
corresponds to the breaking an interatomic bond, and could therefore be of relevance also to
photo-switches in molecular systems. e charge-transfer process is of high relevance since
it constitutes the initial step of any light-harvesting device. To understand this process is
important to identify suitable materials for solar devices. Systems where charge-separation
is driven by electron correlation could also be of particular interest, since they are expected
to relax faster than systems driven by nuclear effects.

e thesis is organized as follows: In the two initial chapters ( and ) we give an introduc-
tion and background to the theoretical frameworks used in the papers, with the aim of being
reasonably self-contained while not including too much detail. e following two chapters
( and ) give an introduction to the physical processes studied in the papers. In chapter 
we summarize the main results and discuss some possible routes of further research.
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Chapter 

Wavefunction based methods

To make theoretical predictions about a physical system we need to formulate a set of
equations governing its dynamics, and use their solution to extract some information of
interest. In the low-energy regime of atomic, nanoscale and solid state systems, the funda-
mental equation of motion is the many-body Schrödinger equation, and the result of its
solution the many-particle state vector. We start this chapter by discussing two numeri-
cally exact ways of solving the many-body Schrödinger equation, namely the exact diago-
nalization (ED) method (Sec. .) and the density matrix renormalization group (DMRG)
method (Sec. .). Both these methods are limited in scope by an unfortunate scaling of
the computational effort either with the system size (in the case of ED), or with the system
dimension (in the case of DMRG). However, when applicable, they give the exact solu-
tion of the Schrödinger equation. We then introduce density functional theory (Sec. .),
which reformulates the many-body problem in terms of an effective one-particle theory
and allows us to address larger systems. Although exact in principle, the performance of
this theory depends crucially on a quantity known as the exchange-correlation potential,
which in practice has to be approximated. In the final section (Sec. .), we derive and
discuss the semi-classical Ehrenfest approximation.

. Exact diagonalization

e many-body Schrödinger equation is easy to write down but tricky to solve. Given a
Hamiltonian H(t) it reads (in units where ℏ = 1)

i
∂

∂t
|Ψ(t)⟩ = H(t)|Ψ(t)⟩, (.)
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where |Ψ(t)⟩ is the many-particle state vector at time t. In principle the Schrödinger equa-
tion describes the dynamics of any non-relativistic system, and in this section we will dis-
cuss how to solve it both for purely electronic systems as well as for systems of interacting
electrons and bosons. We start by defining the Hamiltonian for a system of interacting
electrons. e most general form we will consider is

H(t) =
∑
ijσ

tij(t)c
†
iσcjσ +

1
2

∑
ijlmσσ′

Uijmlc
†
iσc

†
jσ′clσ′cmσ, (.)

where ciσ destroys an electron in the orbital |i⟩ with spin projection σ. e diagonal ele-
ments of the matrix tij(t) describe the orbital energies and possible local potentials, while
the off-diagonal elements describe the hopping between different orbitals and possible in-
teractions with an external electromagnetic field. e tensor Uijlm contains the two-particle
Coulomb interaction, and in order for H to be Hermitian it must hold that tji(t) = t∗ij(t)
and Umlij = U∗

ijml.

What prevents an easy solution of the Schrödinger equation is the presence of interactions,
which couple states where more than one particle has changed its state. To illustrate this
point we temporarily assume that the Hamiltonian consists only of one-body operators,

H =
∑
ij

tijc
†
i cj, (.)

and ignore the spin degree of freedom. If the matrix tij is non-singular, H can be diagonal-
ized by a unitary transformation cj = ⟨j|k⟩ak of the creation and annihilation operators,
where ak destroys a particle in the eigenstate |k⟩ of the matrix tij. Since the Hamiltonian
is diagonal in the basis |k⟩, the ground state for a system with N particles is given by the
single Slater determinant

|Ψ0⟩ = |k1, k2, . . . , kN⟩, (.)

where |k1⟩ to |kN⟩ are the N states of lowest energy. To find the ground state of a system
of non-interacting electrons described by L orbitals it is therefore sufficient to solve a single
matrix equation of size L × L, which scales linearly with the size of the system. A similar
simplification occurs also for time-dependent systems of non-interacting particles. e
time-evolved state vector is then given by

|Ψ(t)⟩ = T e−i
∫ t

0 dt
′H(t′)|Ψ0⟩ = |k1(t), k2(t), . . . , kN(t)⟩, (.)

where we have defined |k(t)⟩ = T e−i
∫ t

0 dt
′H(t′)|k(0)⟩ and T is the time-ordering operator.

e many-particle state |Ψ(t)⟩ can therefore be obtained by separately time-evolving the
single-particle states |k⟩, and the time-dependent problem is also reduced to considering
matrices of size L× L.
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For the general Hamiltonian in Eq. ., no such simplification is possible, and to solve the
Schrödinger equation we must work with the full basis of many-body states. We consider
a system described by the L single-particle orbitals |i⟩ and with N = N↑ + N↓ particles,
where N↑ and N↓ are the number of particles with spin up and down respectively. e
basis of many-body states can be written like |ni1σ, ni2σ, . . . , niLσ⟩, where N↑ (N↓) of the
occupation numbers ni↑ (ni↓) are equal to one and the rest are zero. e number of ways in
which the non-zero occupation numbers can be distributed gives the number of possible
configurations Ne, that can be written as

Ne =

(
L
N↑

)(
L
N↓

)
. (.)

In matrix form the electronic Schrödinger equation therefore becomes an eigenvalue prob-
lem of size Ne × Ne. In the half-filled case N↑ = N↓ = L/2, we find for large L that
Ne ∼ 4L/(πL/2). e size of the problem therefore grows exponentially with L, and al-
ready for a moderate system size L = 12 the number of states is Ne = 853776. is scaling
was referred to by Kohn as the exponential wall [], and prohibits the application of exact
diagonalization methods to systems larger than L ≈ 20.

.. Electron-boson systems

We now add a degree of complexity and consider a system of interacting electrons and
bosons. Depending on the particular features of the system we want to model, different
forms of the Hamiltonian might be appropriate. e most general Hamiltonian we con-
sider is

H(t) = He(t) +He−b(t) +He−n, (.)

where He(t) is the electronic Hamiltonian given in Eq. ., and He−b(t) and He−n are de-
tailed below. For bosons corresponding to quanta of harmonic vibration, such as phonons,
plasmons and photons, the Hamiltonian can be written like

He−b(t) =
∑
k

ωkb
†
kbk +

∑
ijkσ

gijk(t)c
†
iσcjσ(b

†
k + bk). (.)

Here bk destroys a quantum of energy ωk in the bosonic mode k, and the electron-boson
coupling satisfies gjik(t) = g∗ijk(t) in order for He−b to be Hermitian. To describe nuclear
motion beyond the harmonic regime, it is more convenient to treat the nucleus in first
quantization with a Hamiltonian

He−n(t) =
p2

2M
+ V(x) +

∑
ijσ

gij(x)c
†
iσcjσ. (.)
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Here p and x are momentum and position operators in first quantization, M is the nuclear
mass, V(x) an external nuclear potential, and gji(x) = g∗ij(x) the electron-nuclear interac-
tion. e physics of coupled electron-boson systems will be discussed in detail in Chapters 
and , and in the following we will focus on the computational aspects.

To solve the Schrödinger equation we want to write the Hamiltonian in matrix form using
a complete basis of many-body states. A single boson mode k is described by the basis
|nk⟩, where in principle nk = 0, 1, . . . ,∞. However, since we will work at zero temper-
ature and finite coupling strength gijk, only a finite number of states will be significantly
populated. We therefore truncate the boson space at some maximum number Nk, so that
nk = 0, 1, . . . ,Nk, and treat Nk as a convergence parameter. For K boson modes the pro-
cedure is identical, and gives the full boson basis |nk1 , nk2 , . . . , nkK⟩, with nki = 0, . . . ,Nki .
e size of the bosonic configuration space is then given by

Nb = Nk1Nk2 · · ·NkK . (.)

For the nuclear mode we use the real-space basis |x⟩ corresponding to a continuous spec-
trum. In our calculations we restrict the coordinate to a finite interval [xmin, xmax], and
discretize the interval onto a finite grid |xn⟩ of size Nn. e basis states are then given by
the coordinates xn = xmin + (n− 1)xmax/Nn, where n = 1, 2, . . . ,Nn. e length of the
interval and the number of grid points have to be treated like convergence parameters. e
full electron-boson problem can now be described in the basis

|ψm⟩ = |ni1σ, ni2σ, . . . , niLσ⟩ ⊗ |nk1 , nk2 , . . . , nkK⟩ ⊗ |xn⟩, (.)

for which the size is Ntot = NeNbNn. In the next section we discuss how to handle this
problem numerically.

.. Numerical implementation

e most direct method to solve the Schrödinger equation in matrix form is through ex-
act diagonalization of the Hamiltonian. In equilibrium this corresponds to solving the
eigenvalue problem

H(0)|Ψ(t)⟩ = E|Ψ(t)⟩, (.)

which gives Ntot eigenvalues and eigenvectors that we label by ϵλ and |ψλ⟩. However, in
most cases we are only interested in finding the ground state of a system, and therefore
a full diagonalization is unnecessary. ere are several numerical methods specialized in
obtaining only one or a few eigenstates of a matrix, and in our calculations we have used
the shift-invert method that extracts the eigenstates closest to a predefined energy ϵ from
the poles of the resolvent (H− ϵ)−1. e groundstate is the eigenvector corresponding to
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the eigenvalue with lowest energy, and for a non-degenerate ground state we take |Ψ(0)⟩ =
|ψ0⟩. If the ground state is degenerate, then the states of the ground state manifold can be
distinguished by looking at their eigenvalues with respect to some other operator, such as
the total spin.

To solve the time-dependent Schrödinger equation, we start by considering the time-evolution
of the system in a small interval [t, t+ dt]. We can then write

|Ψ(t+ dt)⟩ = T e−i
∫ t+dt
t H(t′)dt′ |Ψ(t)⟩ ≈ e−iH(t+dt/2)dt|Ψ(t)⟩, (.)

which is correct to order O(dt2) in the time step. To evaluate this expression we note that
the time-evolution operator can be expanded in a series, e−iHdt =

∑
k(−idt)kHk/k!, and

so the state at time t+ dt is given as an expansion in the vectors Hk|ψ(t)⟩. For small dt it is
reasonable to assume that the time-evolution can be obtained from a truncated expansion.
is observation forms the starting point for time-evolution schemes based on the Lanczos
algorithm [], which we outline in the following.

e Lanczos algorithm is a unitary transformation that maps the Hamiltonian onto a real
tridiagonal matrix T = U†HU. e columns |Uk⟩ of the transformation matrix U are
known as the Lanczos vectors, and are constructed from the vectors Hk|Ψ⟩ by Gram-
Schmidt orthogonalization. In practice it is common to consider the space KNL , known as
the Krylov subspace of order NL, which is spanned by the first NL vectors |Uk⟩. Intuitively
this corresponds to truncating the expansion of e−iHdt after NL terms, while still retaining
the unitarity of the time-evolution operator. In the Krylov subspace we can approximate
the time evolution by

|Ψ(t+ dt)⟩ ≈
NL∑
i=1

|Ui⟩⟨Ui|e−iT(t+dt/2)dt|U0⟩ =
NL∑

i,λ=1

|Ui⟩⟨Ui|λ⟩e−iϵλdt⟨λ|U0⟩, (.)

where ϵλ and |λ⟩ are the eigenvalues and eigenvectors of T. For short time-steps dt this
reproduces the full time evolution while only requiring the diagonalization of a matrix of
order NL × NL, and even for a very large basis it is typically enough to take NL ≈ 10.
However, both dt and NL have to be treated as convergence parameters.

. Density matrix renormalization group

It is known from quantum statistical physics that to describe a macroscopic system only
a few parameters are needed, such as temperature, entropy and internal energy. On the
other hand, as we have seen in the previous section, a microscopic description of large
systems involve a very large number of states and observables. It is then interesting to ask
how the large set of observables in the microscopic description reduces to only a few at





the macroscopic scale? A large part of this answer came with Wilsons formulation of the
renormalization group (RG) method [, ], in which a system is systematically rescaled
from a microscopic to macroscopic description. is allows among other things for an
identification of relevant and irrelevant variables, where only the relevant variables remain
non-zero in the macroscopic limit.

e basic idea of RG methods is to find an optimal set of states to describe the low energy
excitations of a system, by starting from a small system and successively increasing its size.
In the original RG algorithms this was done by taking a system B (called a block) described
by a number of states m, and coupling it to another identical block to form the product BB
described by m2 states. e Hamiltonian of the block BB is then diagonalized and the m
states with lowest energy are kept. In a following renormalization step the Hamiltonian is
projected onto the subspace of these m states, and the algorithm starts over with B = BB,
again described by m states. It was soon realized that this algorithm performs quite poorly
for many systems. One way to improve upon this situation is to increase the size of the block
B more slowly, by adding only one site at a time instead of joining two identical blocks.
From a physical point of view this approach has the advantage that the states kept will not
have nodes where the states of the next iteration is close to a maximum, which is a problem
encountered with the original algorithm when applied for example to a one-dimensional
tight-binding model [].

A crucial step forward came with the realization of White [, ], that in order to properly
describe a system in the thermodynamic limit one should not consider an isolated system,
but rather a system coupled to an environment. e optimal states to keep in representing
the system are the m eigenstates of the reduced density matrix with the highest eigenvalues.
is is motivated as follows: Consider the coupled system and environment to be in a
definite state |ψ⟩, where the system is described by the ni states |i⟩ and the environment
by the nj states |j⟩. en we can write |ψ⟩ =

∑
ij ψij|i⟩|j⟩. We now want to find a set

of m states |uα⟩, that represents the state |ψ⟩ in an optimal way. More precisely, we want
to find the states that minimize the difference S = ||ψ⟩ − |ψ̃⟩|2, where |ψ̃⟩ is defined by
|ψ̃⟩ =

∑
αj aαj|uα⟩|j⟩. It can be shown that the states that minimize S are the m eigenstates

of the reduced density matrix ρii′ =
∑

j ψijψi′j with the largest eigenvalues.

To implement this procedure we define Bℓ to be a block of size ℓ, BRℓ to be its parity trans-
formed reflection, and • to be a single site. e density matrix renormalization group
(DMRG) algorithm introduced by White for an infinite system is then as follows [], for
the step going from ℓ to ℓ + 1: Start by constructing the superblock Bℓ • •BRℓ and find
its ground state. Calculate the reduced density matrix of the subsystem Bℓ•, by tracing
out the degrees of freedom of the environment •BRℓ , and find its m eigenstates |uα⟩ with
highest weight. Renormalize the Hamiltonian of the system Bℓ• by transforming it to the
new basis |uα⟩. Define Bℓ+1 = Bℓ• and start the next step of the algorithm.
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For a finite system with L orbitals this algorithm should only be carried out a finite number
of times, until the size of the superblock reaches the size of the system. After the system has
reached its target size the ground state is iteratively improved by a method called sweeping,
in which the size ℓ of the left block is varied between 1 and L − 3 with the superblock
being Bℓ • •BRL−ℓ−2. After each change in Bℓ the Hamiltonian is again renormalized by
the eigenstates of the reduced density matrix, and the algorithm is continued until the
difference in the ground state between two consecutive steps is smaller than a specified
convergence parameter. When convergence has been reached the ground state of the full
system is typically obtained as the ground state of the superblock BL/2−1 • •BRL/2−1. By
increasing m the difference with the real ground state of the system can be made arbitratily
small. e matrix of the Hamiltonian to be diagonalized in each step will be of size (mn)2,
where n is the size of the Hilbert space of a single site.

How can we estimate the number of states m needed to describe a system of size L? A hand-
waving argument based on entropy goes as follows []: e entropy SL corresponding to
the density matrix of a block BL is given by SL = Tr ρL ln ρL, and its maximal value
SmaxL = lnm is obtained when all eigenvalues of ρL are equal to m. e number of states
needed to represent a system of maximal entropy is thereforem = eSmaxL . For ground states it
can be shown that the entropy scales according to an area law [], meaning that S ∼ Ld−1

with d the dimension of the system. is implies that for a one-dimensional system m
is largely independent of the system size, while in two dimensions m ∼ eL. is limits
the DMRG algorithm to one-dimensional systems, or to rather small systems in higher
dimensions. In practice it is enough to take m ≈ 100 for most D systems, which for a
chain with L = 100 gives a Hamiltonian of size 160000. is can be compared with the
size Ntot ∼ 1029 of the many-body Hilbert space for the same system.

e DMRG method can be extended to also treat time-dependent problems. Here we
encounter the problem that the states |m⟩ describing the DMRG ground state |Ψ(0)⟩ is in
general not adapted to describe the time-evolved state |Ψ(t)⟩, since |Ψ(t)⟩ can explore parts
of the Hilbert space not well represented by |m⟩. To tackle this issue usually one of two
strategies are followed: Firstly, we can enlarge the Hilbert space during the time evolution,
to take into account the extended Hilbert space explored by the state |Ψ(t)⟩. Secondly, we
can try to use the time-independent DMRG formalism to adapt the basis in time. Since
a full discussion of these strategies are quite lengthy, we refer the interested reader to [].
We note however one particular feature of time-dependent DMRG (tDMRG). Due to an
accumulation of the truncation error introduced by the renormalization procedure, after a
certain time tr known as the runaway time, the precision of the tDMRG results decreases by
orders of magnitude. e runaway time increases with m but decreases with the time-step
dt (for a fixed final time), so in practice the length of a tDMRG simulation is limited by
the value of m and the time-scale of the dynamics.
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. Density functional theory

As mentioned in the introduction to this chapter, it is possible to reformulate the many-
body problem posed by the Schrödinger equation in terms of an effective single-particle
problem. is leads to a great numerical simplification (as discussed in Sec. .), since
instead of considering the full basis of many-body states it is enough to work with a basis of
single-particle states. Below we discuss the details of this reformulation, which is known as
density functional theory (DFT) in its ground state version, and time-dependent density
functional theory (TDDFT) in the non-equilibrium case. Before delving into the theory
itself, it is worth mentioning that an important idea implicit in DFT is that of reduction.
As discussed by Kohn in his Nobel lecture [], already for systems of moderate size the state
vector contains so many components that even if it could be found, it can not be stored on
any foreseeable computer. A key aspect of DFT is therefore that it reduces the problem to
concern the electronic density n(r), that even for large systems is a manageable quantity.

e ground state version of DFT was formulated in two seminal papers by Hohenberg
and Kohn [] and by Kohn and Sham []. In the first paper a one-to-one mapping is
established between the ground state electron density and state vector of the system, which
is known as the Hohenberg-Kohn theorem. is proof was extended to degenerate ground
state manifolds by Levy []. In the second paper it is argued how the exact electron density
of an interacting system can be obtained from that of an auxiliary non-interacting system,
through what is now known as the Kohn-Sham construction. Since the original works
the DFT framework have been extended in several directions. How to treat non-collinear
spins was described by von Barth and Hedin [], and Vignale and Rasolt [] extended the
theory to describe currents and magnetic fields. e theory was adapted to lattice models
by Gunnarsson and Schönhammer []. For time-dependent problems the corresponding
mapping from electron density to state vector was first proven by Runge and Gross []
and later generalized by van Leeuwen []. e first application to time-dependent lattice
problems was done by Verdozzi [], and the questions of representability were thoroughly
addressed by Tokatly for current DFT [] and Farzanehpour and Tokatly for DFT [].

.. Ground state density functional theory

In this section we prove Levy’s version of the Hohenberg-Kohn theorem, following the
procedure outlined in [, ], and show how to construct the Kohn-Sham system. We
consider a general electronic Hamiltonian of the form H = T+U+

∑
i v(ri), where T is

the kinetic energy operator, U the electron-electron interaction, and v an external potential.
We start by defining the energy functional E[n] = F[n]+

∫
drv(r)n(r), which depends on
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the electron density n(r) at all points in space. Here

F[n] = min
|Ψ⟩∈M

⟨Ψ|T+ U|Ψ⟩, (.)

and M is the set of states that give the expectation value ⟨n⟩ = n. If we pick |Ψ⟩ to be a
state for which F attains its minimum, then

E[n] = F[n] +
∫

drv(r)n(r) = ⟨Ψ|H|Ψ⟩ ≥ E0. (.)

e inequality follows from the variational principle since the density that minimizes Fmay
not be that which minimizes E. Now pick a ground state |Ψ0⟩ of the full Hamiltonian,
and call the corresponding density n0. en

E0 = ⟨Ψ0|T+ U|Ψ0⟩+
∫

drv(r)n0(r) ≥ F[n0] +

∫
drv(r)n0(r) = E[n0] (.)

Combining the inequalities we see that E[n] ≥ E0 for any density n(r), and that E[n0] = E0
for the true ground state density n0(r). is allows us to find both the ground state energy
and state vector by minimizing E[n] [].

It was realized by Kohn and Sham that it is possible to derive a set of single-particle equa-
tions that reproduce the exact ground state density of the interacting system. For this
purpose we write the total energy like E[n] = T0[n] + EH[n] + Eext[n] + Exc[n], where
T0 is the kinetic energy of a non-interacting system, EH is the Hartree energy and Eext the
external energy. e remaining contribution Exc is called the exchange-correlation energy
and contains all interaction effects beyond the mean-field level. Since the energy satisfies
the variational principle it must hold that

δE[n] =
∫

dr
(
δT0

δn
+ v+ vH[n] + vxc[n]

)
δn(r) = 0. (.)

Here the potentials are defined as functional derivatives with respect to the density, so
v = δEext/δn, vH = δEH/δn, and vxc = δExc/δn. e equation above is the same as
we would find by calculating the energy from the ground state of the Hamiltonian H =
T +

∑
i vKS[n](ri), where vKS = v + vH + vxc is known as the Kohn-Sham potential.

Instead of solving the full many-body Schrödinger equation we can therefore solve the set
of single-particle equations

[T+ vKS[n](r)]ψi(r) = ϵiψi(r). (.)

ese equations are known as the Kohn-Sham equations, and a few remarks about them are
in order. First we note that since vKS depends on the density, the equations must be solved
self-consistently with n(r) =

∑
i |ψi(r)|2 constructed from the N states of lowest energy
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(for a system with N particles). Secondly, the energies ϵi and orbitals ψi have no physical
meaning, since they are the solutions of an auxiliary problem. e exception is the energy
of the highest occupied orbital, that was shown by Almbladh and von Barth to equal the
exact ionization energy of the system []. However, in practice the Kohn-Sham energies
are usually considered to be a good approximation to the exact single-particle excitations
of the system. irdly, since vxc is defined by a derivative, there is in the general case
no guarantee that it exists. e Kohn-Sham construction tells us that if there is such a
potential, it is given by vxc, but gives no information about its existence. is is known as
the v-representability problem of DFT, and is in the general case as of yet unsolved.

Although the Kohn-Sham equations look deceptively simple, obtaining the exact exchange-
correlation potential is as hard a problem as solving the many-particle Schrödinger equa-
tion. is is since the construction of vxc requires a full knowledge of the energy of the
interacting system. Also, the potential at a given point r depends on the density profile
at all points in space. In practice it is therefore necessary to approximate vxc somehow. If
we assume that the density n(r) varies slowly with position, the dependence of vxc on the
density can be shown to be local [, ]. Assuming this is true in general we obtain the
so-called local density approximation (LDA), where we write vxc[n](r) = vxc(n(r)) and
approximate vxc(n(r)) with the potential of a uniform electron gas of density n. A strength
of the DFT formulation is that for many systems the dominating contributions to the total
energy comes from the kinetic and Hartree energies, which means Exc is expected to give a
small contribution. Under these circumstances we expect the LDA to perform well, which
is also verified by comparison to experiment. ere are also many systems for which the
LDA is not valid due to strong electron-electron interactions, and they are referred to as
strongly correlated materials.

.. Time-dependent density functional theory

e DFT framework is extended to time-dependent problems by the Runge-Gross the-
orem []. We assume that the electronic Hamiltonian is of the form H = T + U +∑

i v(ri, t), and that the density n(r, t) and external potential v(r, t) are analytic functions
of time. e theorem then states that the density of an interacting system can be found by
solving the equations

i
∂

∂t
ψi(r, t) = [T+ vKS[n](r, t)]ψi(r, t), (.)

where n(r, t) =
∑

i |ψi(r, t)|2. To obtain the exact time-dependent density the potential
vKS has to be chosen according to vKS = v + vH + vxc, where in analogy with the ground
state case the exchange-correlation part is given by vxc = δAxc/δn and Axc is the exchange-
correlation part of the action integral []. A few remarks are again in order. Firstly, the
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time-dependent Kohn-Sham equations have to be solved with the initial conditions that
the density n(r, 0) and current j(r, 0) are the same in the interacting and Kohn-Sham sys-
tems [, ]. Secondly, the value of vxc at a particular point (r, t) depends on the density
at all points r and all previous times t′ < t. In this sense, the exact vxc is said to contain the
memory of the system, which makes it extremely difficult to find. In reality it is therefore
common practice to assume that the potential depends only on the (time and space) local
density, vKS[n](r, t) = vKS(n(r, t)), which is known as the adiabatic local density approx-
imation (ALDA). is approximation is expected to perform well for systems where the
density varies slowly both in time and space.

.. Multi-component systems

In many situations it is important to not only consider the dynamics of electrons, but also
other degrees of freedom such as the motion of atomic nuclei or the presence of photon
fields. It is therefore of interest to extend the DFT and TDDFT frameworks to multi-
component systems treating both electrons and bosons on the same footing. In fact, the
development of multi-component theories is a topic of intense research, with present works
extending the basic theory to electron-nuclear systems [, ] as well as electron-photon
systems both in the non-relativistic [, ] and relativistic [] limit.

In constructing a general density functional theory it is necessary to define a suitable set of
basic variables, in terms of which the state of the system can be labeled. For the continuum
theory discussed above a possible labelling is |Ψ(v)⟩, where v(r) is the external potential of
the system. However, since by the Hohenberg-Kohn theorem the external potential v(r)
is in one-to-one correspondence with the electron density n(r), an alternative way to label
the states is by |Ψ(n)⟩. Although not strictly true, an intuitive way of understanding this
relationship is to consider the pair (v, n) as conjugate variables, and the transformation
from |Ψ(v)⟩ to |Ψ(n)⟩ as a Legendre transform (for a detailed discussion see e.g. []).
is reasoning allows us to identify possible extensions of the basic theory, by considering
other pairs of conjugate variables. For example, in systems with an external vector potential
A(r), for which the conjugate variable is the current density j(r), it is possible in a similar
fashion as in basic DFT to show a one-to-one correspondence between the pair (A, j) [].
is leads to a current DFT where the states are labeled by |Ψ(j)⟩.

e same philosophy can be used when considering multi-component systems. Here we
will discuss a model of lattice electrons coupled to a single nuclear coordinate, as was used
in Paper  to study effects of electron-nuclear interactions during desorption. However, the
theory can be straightforwardly extended to N mutually interacting nuclei, as discussed in
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detail in Appendix B. We consider the Hamiltonian

H =
∑
i

Uni↑ni↓ +
∑
ijσ

(
Text
ij (t)c

†
iσcjσ + h.c.

)
+

p
2M

+ Vext(x, t) (.)

+
∑
ijσ

Hint
ij (x)

(
c†iσcjσ + h.c.

)
,

where U is the electron-electron interaction and Text a complex external field of modulus
one acting on the electrons. e nuclear system is described by the momentum p and
coordinate x, with M the nuclear mass and Vext an external nuclear potential. Finally the
electron-nuclear interaction is given by Hint. For the desorption process considered in
Paper  an important point is that the hopping amplitude can vary in time due to the motion
of the atomic nucleus. In particular, for a large separation of the atoms (corresponding to
a large x), the amplitude should tend to zero. To capture this effect in a non-interacting
system, it is necessary that the Kohn-Sham potential TKS have both a phase and modulus
that can vary in time.

With this in mind, we now want to identify the conjugate variables of the external fields
(Text,Vext). For the nuclear system this is straightforward, since like in ordinary DFT the
internal variable conjugate to Vext(x) is the nuclear density Γ(x). For N nuclei, this should
be replaced with the diagonal of the nuclear one-particle density matrix. For the electrons,
we note that without the electron-nuclear coupling the variable conjugate to Text is the
electronic current j. In presence of electron-nuclear interactions this is generalized to a
complex electronic current Q [], that is defined by Qσ

ij (t) = Text
ij (t)ρσij (t)+ ρ̃σij (t). Here ρ

is the electronic one-particle density matrix, and the additional nuclear effects are contained
in ρ̃σij (t) = ⟨ψ(t)|Hext

ij (x)c
†
iσcjσ|ψ(t)⟩. e real and imaginary parts of the complex current

give respectively the bond kinetic energy Kij and the electronic current density jij. A proof
of the one-to-one mapping (Text,Vext) ↔ (Q,Γ) is given in Appendix B, and leads to the
Kohn-Sham Hamiltonians

HKS
e =

∑
ijσ

(
TKS
ij [Qij,Γ](t)c

†
iσcjσ + h.c.

)
(.a)

HKS
n =

∑
k

p2

2M
+ VKS[Qij,Γ](x, t). (.b)

ese operators give rise to a set of coupled single-particle equations evolving under the
effective potentials TKS and VKS. In Section . as well as in Paper  we discuss how to
construct the exact potentials for a system during desorption.
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. Ehrenfest approximation

Due to the large mass difference between electrons and nuclei, it is in many circumstances
not necessary to treat the electron and nuclear dynamics on the same footing. More pre-
cisely, in the limit where the nuclear mass M tends to infinity, the spread of the nuclear
wavefunction and the characteristic nuclear velocity v = p/M tend to zero, leading to a
separation of the electronic and nuclear time-scales. In this limit the nuclear coordinates
can be treated as classical variables, and we can solve for the electronic ground state for a
fixed nuclear configuration. is is formalized by the Born-Oppenheimer approximation,
where the total Hamiltonian H of the electron-nuclear system is separated according to

H = Te + Ue−e + Ue−n + Un−n + Tn = HBO + Tn, (.)

and where T and U are kinetic and interaction terms respectively. In the limit of infinite
mass the nuclear kinetic energy Tn → 0, and the Born-Oppenheimer Hamiltonian will
depend parametrically on the nuclear coordinates by HBO = HBO(R). Here R = {Rν} is
defined as a short-hand notation for the set of nuclear coordinates. Solving the Schrödinger
equation for HBO for all possible nuclear configurations gives rise to a number of potential
energy surfaces Vi(R), and the ground state energy E0 will be at the minimum R0 of the
lowest surface, E0 = V0(R0).

To describe the dynamics of an electron-nuclear system, we would like to extend this rea-
soning to the time domain. In the limit of large but finite nuclear mass, we can approximate
the wavefunction as a product state |Ψ⟩ = |ϕR⟩ ⊗ |χ⟩, with |ϕR⟩ the electronic and |χ⟩
the nuclear wavefunction. For slow perturbations, the electrons can be considered to be
in their instantaneous ground state, and we can solve the Schrödinger equation for the
electrons with the Born-Oppenheimer Hamiltonian together with the nuclear equation of
motion

i
∂

∂t
|χn(t)⟩ = [Tn + V0(R)]|χn(t)⟩. (.)

In this adiabatic approximation the nuclei therefore evolve on the ground state potential
energy surface. For faster perturbations, the electrons may be excited to higher states, and
it is necessary to replace the product wavefunction with the so-called Born-Oppenheimer
expansion. is however reintroduces the same complexity to the problem as solving the
original Schrödinger equation, and so reduces the efficiency of the approach.

A way to derive a set of semi-classical equations of motion for the coupled electron-nuclear
system is to replace the product wavefunction of the Born-Oppenheimer approximation
with the exact product wavefunction introduced by Abedi, Maitra and Gross []. Using
r = {rµ} to denote the set of electronic coordinates, the total wavefunction can be written
as Ψ(r,R, t) = ϕR(r, t)χ(R, t), where the electronic wavefunction satisfies the partial
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normalization condition
∫
dr|ϕR(r, t)|2 = 1. e electron and nuclear wavefunctions

satisfy the equations []

i
∂

∂t
ϕR(r, t) = [He(r,R, t)− V(R, t)]ϕR(r, t) (.a)

i
∂

∂t
χ(R, t) =

[∑
ν

1
2Mν

(−i∇ν +Aν(R, t))2 − V(R, t)

]
χ(R, t), (.b)

where the scalar potential is given by V(R, t) = ⟨ϕR(t)|He(r,R, t)− i∂t|ϕR(t)⟩ and the
vector potential by Aν(R, t) = −⟨ϕR(t)|i∇νϕR(t)⟩. ese equations are in principle
exact and equivalent to the Schrödinger equation for |Ψ⟩, provided the scalar and vector
potentials are known. Here however, we use them to derive the semi-classical limit of
electron-nuclear dynamics.

If we let Mν → ∞ and choose the gauge where ⟨ϕR(t)|∂tϕR(t)⟩ = 0, the electronic
Hamiltonian is given by the Born-Oppenheimer expressionHe(r,R, t) = HBO(r,R(t))+
vext(r, t). To find an equation of motion for the nuclear coordinates, we interpret the posi-
tion and momentum in Eq. .b as classical variables, and use the resulting Hamiltonian
in the classical Hamilton equations. e equation of motion for Rν is then

Mν
∂2Rν

∂t2
= −∇νϵ(R, t) +

∂

∂t
Aν(R, t)−

∂Rν

∂t
× (∇ν ×Aν(R, t)). (.)

is equation closely resembles that of a particle evolving under the Lorentz force, although
with a different sign convention for A coming from Eq. .b. It should however be noted
that the potentials entering this equation are not due to external fields, but come from
the interaction with the electrons. is equation can be propagated together with the elec-
tronic dynamics resulting from the Born-Oppenheimer Hamiltonian to give a semi-classical
description of an electron-nuclear system. However, it is common to make the further as-
sumption that the vector potential A, corresponding to a geometric Berry connection, is
zero. e resulting equation for R is known as the Ehrenfest approximation, and is used in
Papers  and . e equations of motion for the nuclear coordinates are in the Ehrenfest
approximation given by

Mν
∂2Rν

∂t2
= −∇ν⟨He(r,R, t)⟩. (.)
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Chapter 

Correlator based methods

In the previous chapter we discussed methods for solving the many-body problem based
either on the evaluation of the many-particle state vector, or the calculation of an effective
set of single-particle states. In this chapter we take a different approach, and introduce
the non-equilibrium Green’s function method. In this method we are not concerned with
finding the state of the system, but rather with the direct calculation of certain correlation
functions related to experimental observables. is reduces the complexity of the prob-
lem, but at the expense of introducing a new quantity known as the self-energy, that like
the exchange-correlation potential of DFT contains all complicated interaction effects. We
start by defining the central quantity, the one-particle Green’s function, and motivate its
equation of motion (Sec. .). In the following sections we discuss how to use the Green’s
function to extract experimental observables, and how to construct appropriate approxima-
tions to the self-energy. en we discuss the generalized Kadanoff-Baym ansatz, an addi-
tional approximation that reduces the computational complexity of evaluating the Green’s
function. In the last section we combine density functional theory with the Green’s func-
tion method, and outline how to perform simulations of realistic materials through the GW
method (Sec. .).

. Non-equilibrium Green’s functions

e fundamental idea behind Green’s function based methods is that in order to extract
experimentally relevant observables, a knowledge of the full state vector is not strictly nec-
essary. Since most quantities of interest involve one or a few particles, and are obtained
from the state vector by tracing out the remaining degrees of freedom, instead of first trying
to calculate the state of the system and then remove all unwanted information, the Green’s
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function method proceeds to the direct calculation of observables.

Historically the Green’s function was introduced as a mathematical tool for solving inho-
mogeneous differential equations, and have its name from its inventor George Green. e
Green’s functions used to study condensed matter systems are however not Green’s func-
tions in the strict mathematical sense, except when applied to non-interacting systems.
Instead the many-body Green’s functions are defined as correlation functions of field op-
erators, and were originally introduced in the context of quantum electrodynamics (QED)
by Schwinger [] and Feynman []. In the QED framework the system is assumed to be
at zero temperature and the Hamiltonian is independent of time, so the correlation func-
tions can be evaluated in the interacting ground state. e formalism was later generalized
to finite temperature by Matsubara [], and to non-equilibrium systems by Kadanoff and
Baym [], Schwinger [] and Keldysh []. e different flavors of Green’s functions can
be unified in an elegant manner by defining a Green’s function with time arguments on
a complex contour, where different choices of the contour correspond respectively to the
T = 0, T > 0 and non-equililbrium formalisms []. We start the discussion by defining
the one-particle Green’s function G on the Schwinger-Keldysh contour γ, and later show
how to reduce the formalism to that for equilibrium systems.

Before discussing the equation of motion for G, we need to write the Hamiltonian in terms
of the field operators ψ. is gives

H(z) =
∫

dxψ†(x)h(r, z)ψ(x) +
1
2

∫
dxdx′ψ†(x)ψ†(x′)u(x,x′)ψ(x′)ψ(x), (.)

where z is a complex time that lies on the contour γ of Fig. ., x = (r, σ), and we have
assumed that the single particle Hamiltonian h is independent of spin. For complex z = iτ
we take h(r, iτ) = h(r, 0) − µ, with µ the chemical potential, so that H(z) is defined on
the full contour. e one-particle Green’s function is defined in terms of the field operators
as []

G(1, 2) = − i
Z
Tr

[
T e−i

∫
γ dzH(z)ψ(1)ψ†(2)

]
, (.)

where we have used the notation i = (xi, zi) as a collective index denoting space, spin
and time variables. Here Z = Tr e−βH(0) is the partition function describing the initial
preparation of the system, and β is the inverse temperature. e operator T orders time
arguments on γ with earlier times to the right, with the convention that the contour begins
at z = iβ/2 and ends at z = −iβ/2 (see Fig. .). In this expression the field operators only
carry a time index to indicate in which order they should be placed by the time-ordering
operator T , and have no explicit time dependence. e equation of motion for the Green’s
function is obtained be differentiating the expression above and using the Heisenberg equa-
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Figure 3.1: The Schwinger-Keldysh contour γ on which the non-equilibrium Green's function G(1, 2) has its time arguments.
The horizontal axis corresponds to real time z = t and the vertical axis to imaginary time z = iτ .

tion for the field operators. is gives [][
i
∂

∂z1
− h(1)

]
G(1, 2) = δ(1, 2)− i

∫
γ
d3u(1, 3)G2(1, 3, 2, 3+), (.)

where the quantity G2 appearing under the integral is the two-particle Green’s function,
and is defined similarly to G but contains two creation and two annihilation operators.
e presence of G2 prevents us from closing the equation of motion for G, and to proceed
we need to derive an equation also for G2. It turns out that this expression couples G2
to G and the three-particle Green’s function G3, and more generally we obtain a set of
equations coupling Gn to Gn−1 and Gn+1. ese equations are known as the Martin-
Schwinger hierarchy, whose solution is equivalent to solving the full many-body problem.
A thorough discussion of the hierarchy would take us too far off topic, and we refer the
interested reader to [].

Since we are mainly interested in the one-particle Green’s function G, we want to rewrite
its equation of motion in such a way that the equation closes for G. It turns out that this
is possible if we introduce a new quantity, known as the self energy Σ(1, 2), that is defined
by [] ∫

γ
d3Σ(1, 3)G(3, 2) = −i

∫
γ
d3u(1, 3)G2(1, 3, 2, 3+). (.)

With this definition the equation of motion for G, known as the Kadanoff-Baym equation,
takes the form [

i
∂

∂z1
− h(1)

]
G(1, 2) = δ(1, 2) +

∫
γ
d3Σ(1, 3)G(3, 2). (.)

is is the fundamental equation of the NEGF method. Much like the exchange-correlation
potential of DFT, the self-energy contains all many-body and interaction effects, and also
carries the memory of the system. If we were able to find the exact self-energy this equation
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would give us the exact time-evolution of the Green’s function. However, this is generally
not possible, and we will discuss below how to approximate Σ.

To solve the Kadanoff-Baym equation we need to transform it from contour time to real-
time variables. Depending on where (z1, z2) lie on the contour we differentiate between
five different components ofG. For (z1, z2) on the horizontal (real) axis, we define the lesser
Green’s function G< for z1 < z2, and the greater Green’s function G> for z1 > z2. If the
right argument is on the vertical axis and the left on the horizontal, (z1, z2) = (t1, iτ2), we
talk of the right Green’s function G⌉, while for (z1, z2) = (iτ1, t2) we have the left Green’s
function G⌈. Finally if both arguments are on the vertical axis, (z1, z2) = (iτ1, iτ2), we
define the Matsubara Green’s function GM. We can now write an equation of motion for
each of these components by making use of the so-called Langreth rules [], that describe
how to transform the convolution integral in Eq. . from contour to real times. Since
these equations are quite lengthy we don’t reproduce them here, and the reader is referred
to [].

If we are interested in describing equilibrium systems at finite temperature, it is sufficient to
consider solely the Matsubara Green’s function GM. is is equivalent to replacing the full
Schwinger-Keldysh contour by only the vertical segment. In the zero-temperature (β →
∞) formalism it is common to work with the time-ordered Green’s function GT(1, 2) =
θ(t1 − t2)G>(1, 2) − θ(t2 − t1)G<(1, 2), where the contour is chosen as γ0 = R. Since
we are at zero temperature only the ground state contributes to the trace in Eq. ., and we
can write GT(1, 2) = ⟨Ψ|T ψ(1)ψ†(2)|Ψ⟩ with |Ψ⟩ the interacting ground state.

.. Relation to observables

So far we have defined the Green’s function as a mathematical object, and now we discuss
its physical content and relation to observables. e time-dependent expectation value of
any one-particle operator O(1) = o(1)ψ†(x1)ψ(x1) can be written

⟨O(1)⟩ = 1
Z
Tr

[
o(1)T e−i

∫
γ dzH(z)ψ†(1)ψ(1)

]
= −io(1)G<(1, 1). (.)

e knowledge ofG therefore allows us to compute any one-particle expectation value, such
as the density n(x) or current density j(x). In an analogous way the n-particle Green’s func-
tion gives access to the expectation value of any n-particle operator. If we solve Eq. . for G
we are in general unable to compute the average of two- or many-particle operators. ere
is however an exception, the total energy of the system, that can be obtained from solely
the knowledge of G. is is since the interaction energy, formally a two-body operator,
can be extracted from the equation of motion . for G in the limit 2 → 1+. Restricting
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for simplicity to systems in equilibrium, we can write the interaction energy as

⟨U⟩ = − i
2

∫
dx1 lim

2→1+

[
i
∂

∂z1
− h(1)

]
G(1, 2). (.)

Combined with the average ⟨T⟩ of the single-particle term of the Hamiltonian, this gives
the so-called Galitskii-Migdal formula for the total energy

E = − i
2

∫
dx1 lim

2→1+

[
i
∂

∂z1
+ h(1)

]
G(1, 2). (.)

For systems in equilibrium the Green’s function is invariant under time translations, and so
only depends on z = z2 − z1. is allows us to define the Fourier transform G(x1,x2, ω),
which in the zero temperature limit gives the lesser and greater components []

G<(x1,x2, ω) = 2πi
∑
m

Q∗
m(x2)Qm(x1)δ(ω − E0 + EN−1

m ) (.a)

G>(x1,x2, ω) = −2πi
∑
m

P∗m(x2)Pm(x1)δ(ω − EN+1
m + E0) (.b)

ese functions have peaks at the exact removal and addition energies E0 − EN−1
m and

EN+1
m − E0 of the interacting many-particle system, weighted by the amplitudes Qm(x) =

⟨ΨN−1
m |ψ(x)|Ψ0⟩ and Pm(x) = ⟨Ψ0|ψ(x)|ΨN+1

m ⟩. Using these equations we can find an
expression for the so-called spectral function A(ω) = i[G>(ω)− G<(ω)] that reads

A(x,x, ω) = 2π
∑
m

|Qm(x)|2δ(ω − E0 + EN−1
m ) (.)

+ 2π
∑
m

|Pm(x)|2δ(ω − EN+1
m + E0).

is quantity is important in photoemission and inverse photoemission experiments, as it
describes the probability that an electron emitted or absorbed at a point x will have the
energy ω. Knowledge of the Green’s function G thus allows us both to extract information
about one-particle properties in the system, but also to access its spectral features. Now that
we know how to use the Green’s function, we discuss in the next section how to construct
reasonable approximations to calculate G.

.. Approximating the self-energy

As pointed out earlier, to solve the Kadanoff-Baym equations for G we need to find an ap-
proximate expression for the self-energy Σ. To approach this issue we make the observation
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that in the definition of the Green’s function (given in Eq. .), the interaction Hamilto-
nian only enters at one point, namely in the exponent. is allows us to write the trace as
an expansion in powers of the interaction according to

iZG(a, b) =
∑
k

(−i)k

k!

∫
γ
dz1 . . . dzkTr

[
T e−i

∫
γ dzT(z)U(z1) . . .U(zk)ψ(a)ψ†(b)

]
.

(.)

Since in this expression the trace is taken with the non-interacting Hamiltonian T, and the
interaction Hamiltonian U contains two pairs of creation and annihilation operators, this
equation gives G as an expansion in the non-interacting (2n+1)-particle Green’s functions
G0,2n+1. Each such non-interacting Green’s function can, using Wick’s theorem [, ],
be written as a (2n+ 1)× (2n+ 1) determinant of non-interacting single-particle Green’s
functions G0 []. Similarly the partition function Z can be written as an expansion in the
non-interacting Green’s functions G0,2n, and so the interacting single-particle function G
is completely determined by an expansion in G0.

e question now becomes: How can we structure this expansion in such a way that it
becomes practical to handle? It was realized by Feynman [] that the series can be depicted
using simple diagrams, today known as Feynman diagrams, and then turned into exact
mathematical expressions by a set of prescribed rules. It can be shown that in the expansion
for G only the connected and topologically distinct diagrams need to be considered [, ],
and that the structure of the expansion has the general structure

= +

Here the double line denotes G, the single line G0, and the filled circle the self-energy Σ,
and written as an equation we have

G(1, 2) = G0(1, 2) +
∫
γ
d3d4G0(1, 3)Σ(3, 4)G(4, 2). (.)

is is known as Dyson’s equation, and is equivalent to the Kadanoff-Baym equation. e
equation implicitly defines the self-energy in terms of diagrams, which can be drawn either
in terms of the non-interacting G0 or the interacting G. We will use the later approach for
two reasons: Firstly, the explicit expression for Σ in terms of G contains less diagrams than
in terms of G0, and so is easier to handle. Secondly, the expression in terms of G implicitly
contains more diagrams, since each line in Σ representing G contains an infinite number
of self-energy insertions []. In this sense, an expansion of Σ to finite order in G contains
a whole class of diagrams from the expansion of Σ in terms of G0.

We now discuss the most common approximations for Σ. e easiest possible approxima-
tion is to truncate the expansion of Σ at first order in the interaction, which corresponds to
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Figure 3.2: Feynman diagrams for the self-energy in second Born, GW and T-matrix approximations. The self-energies ΣGW
and ΣT are obtained by summing the so-called bubble or ladder diagrams to infinite order.

the Hartree-Fock (HF) approximation. If instead the expansion is truncated at second or-
der, we obtain the second Born (B) approximation corresponding to the diagrams shown
in the first row of Fig. .. A different approach to constructing approximations for Σ is
to include a whole class of diagrams that can be summed to infinite order. We have used
two such approximations, known as the GW and T-matrix approximations, for which the
diagrams are shown in Fig. .. In the GW approximation we define an additional quantity,
the screened interactionW, which is obtained from the sum of all so-called bubble diagrams
(as indicated in Fig. .). ese diagrams describe particle-hole excitations in the material,
and thus account for polarization effects. However, in contrast to the B approximation,
the GW diagrams only describe exchange to first order. e screened interaction is usually
depicted by a double wavy line, as shown in Fig. .. In the T-matrix approximation we
also define an additional quantity, the transfer matrix T, which is obtained from the sum
of the so-called ladder diagrams. It describes repeated particle-particle and particle-hole
scattering, and is expected to perform well for low particle density and short-range interac-
tions [, ]. For brevity we only show the generic structure of the T-matrix diagrams in
Fig. ., and neglect both exchange diagrams and the distinction between particle-particle
and particle-hole scattering. We note that the GW and T-matrix approximations are com-
putationally more expensive than B, since W and T have to be solved for self-consistently
together with Σ and G.
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.. Embedding self-energy

An attractive feature of the NEGF method is that it is possible to give an exact treatment
of a small system connected to a number of non-interacting heat and particle reservoirs.
is is due to the fact that the self-energy Σij is non-zero only if both i and j correspond
to states in the interacting region (since any self-energy diagram starts and ends with an
interaction line). To make this observation more formal, we divide the system into an
interacting region c, and a number of non-interacting reservoirs i = 1, 2, . . . , nR. If we
write the matrix elements of the Kadanoff-Baym equation corresponding to two indexes in
c, and one each in i and c, we find the equations[

i
∂

∂z
− hcc(z)

]
Gcc(z, z′) = δ(z, z′) +

∑
i

hci(z)Gic(z, z′) +
∫
γ
dz̄Σcc(z, z̄)Gcc(z̄, z′)[

i
∂

∂z
− hii(z)

]
Gic(z, z′) = hic(z)Gcc(z, z′) (.)

Since the last equation has a vanishing interaction kernel, it can be solved using the math-
ematical Green’s function method, and is given by

Gic(z, z′) =
∫
γ
dz̄ gii(z, z̄)hic(z̄)Gcc(z̄, z′). (.)

Here gii is the solution of the homogeneous equation [i∂z−hii(z)]gii(z, z′) = δ(z, z′), with
the same boundary conditions as G. Using this solution in the equation of motion for Gcc
closes the equation to[

i
∂

∂z
− hcc(z)

]
Gcc(z, z′) = δ(z, z′) +

∫
γ
dz̄ [Σemb(z, z̄) + Σcc(z, z̄)]Gcc(z̄, z′), (.)

where we have defined the embedding self-energy Σemb =
∑

i hci(z)gii(z, z
′)hic(z′). Since

gii satisfies the equation of a non-interacting Green’s function, it can be found analytically
from the eigenvalues of the matrix hii. In other words, the exact dynamics of the central
region c can be obtained by solving an equation restricted to this region, even in presence
of reservoirs.

.. Generalized Kadanoff-Baym ansatz

To solve the Kadanoff-Baym equations in practice is very numerically demanding, since the
two-time dependence of G(1, 2) and the inclusion of memory makes the time-propagation
scale with the number of time-steps nt likeO(n3

t ). is is to be compared with methods like
exact diagonalization or TDDFT where the time-evolution scales linearly with the number
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of time-steps. Since most observables can be found from the single-particle density matrix
ρ(t) = −iG<(t, t), and propagating this one-time quantity would give a more favorable
scaling with nt, it is reasonable to ask if it is possible to write an equation for ρ starting
from the Kadanoff-Baym equations. We will now show that this is the case, by using what
is known as the generalized Kadanoff-Baym ansatz (GKBA).

For a system at zero temperature taking the difference between the equation of motion for
G< and its adjoint gives (in matrix form)

∂

∂t
ρ(t) + i[hHF(t), ρ(t)] = −

(
I<(t, t) + h.c.

)
, (.)

where we have separated out the Hartree-Fock part from the self-energy. e right-hand
side is the so-called collision integral I<, which can be written in terms of the retarded and
advanced Keldysh components GR(t, t′) = θ(t− t′)[G>(t, t′)−G<(t, t′)] and GA(t, t′) =
[GR(t′, t)]† as

I<(t, t) =
∫ ∞

−∞
dt′

[
Σ<(t, t′)GA(t′, t) + ΣR(t, t′)G<(t′, t)

]
. (.)

Since this equation contains G< for off-diagonal time arguments, it is not a closed equation
for ρ. To proceed we use the fact that Dyson’s equation for G< can be reformulated as an
expansion in ρ and GR/A [], which to lowest order reads G<(t, t′) = −GR(t, t′)ρ(t′) +
ρ(t)GA(t, t′). Keeping only this leading term constitutes the GKBA, and closes the equa-
tion for ρ provided we knowGR/A. ese functions are usually taken to be the Hartree-Fock
solutions, since then the GKBA is exact when the collision integral vanishes. In the general
case this is of course an approximation, and is expected to work well as long as a quasi-
particle description of the system is appropriate. It should be noted that other choices are
possible for the retarded propagator [], and that the specific choice can be of particular
importance for open systems. As further discussed in Chapter , we used the GKBA in
Paper  to study charge-separation in a prototypical donor-acceptor system.

. Density functional theory and GW

In Paper  we studied multi-photon absorption of InAs nanowires by performing ground
state DFT calculations. However, to predict the absorption signal it is important to cor-
rectly described the band structure and in particular the band gap of the system, which is
known to be underestimated by DFT. For InAs, where the experimental band gap is only
Eg ∼ 0.6 eV, the situation is even worse since many calculations predict a vanishing or
even negative band gap. To improve upon this situation we extended the DFT treatment
to include many-body corrections at the GW level, which renormalizes the quasi-particle
energies and opens up a gap. In this section we briefly describe how this is done.
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Figure 3.3: Self-consistency cycle of the combined DFT and GW calculations. We start by constructing the Kohn-Sham Green's
function GKS, and use it to find the polarization χ. From χ we obtain the dielectric function ϵ and the screened
interaction W, which is used to construct the self-energy Σ.

Since the Kohn-Sham system describes non-interacting particles, the Kohn-Sham Green’s
function GKS satisfies the Kadanoff-Baym equation with Σ = 0. is makes it possible to
solve explicitly for GKS, which can be written in Fourier space as

GKS(k, ω) =
∑
ϵi<ϵF

ψi(k)ψ
∗
i (k)

ω − ϵi − iη
+

∑
ϵi>ϵF

ψi(k)ψ
∗
i (k)

ω − ϵi + iη
. (.)

Here ϵi and ψi are the Kohn-Sham energies and orbitals, and ϵF the Fermi energy of the
system. e purpose of the GW corrections is to improve the single-particle energies ϵi
and wavefunctions ψi, through the self-consistency cycle shown in Fig. .. e calcu-
lation starts by constructing the polarization χ(1, 2) = −iGKS(1, 2)GKS(2, 1+), from
which the screened interaction can in principle be found by solving the Dyson equa-
tion for W. However in practice it is more efficient to construct the dielectric function
ϵ(1, 2) = δ(1, 2)−

∫
d3v(1, 3)χ(3, 2), in terms of which W =

∫
d3ϵ−1(1, 3)v(3, 2). Fi-

nally the self-energy is obtained from Σ(1, 2) = iG(1, 2)W(1+, 2). In principle the cycle
can be iterated until self-consistency is reached by constructing a new G from the Dyson
equation (Eq. .). However, experience has shown that even though self-consistency tends
to improve the total energy, it typically does not improve the spectral features of the system.
How to apply the GW theory in practice is therefore a complex problem, and depends both
on the system we consider and the quantity we are interested in computing []. To cal-
culate the single-particle band structure it is common to do only one iteration in order to
find Σ (so-called one-shot GW), and then find the energies and wavefunctions by solving
the quasi-particle equation []

[h(r1) + vH(r1)]ψ(r1) +

∫
dr2Σ(r1, r2, ϵqp)ψ(r2) = ϵqpψ(r1). (.)

If we are only interested in the energies this equation can be solved to first order in ϵqp−ϵKS
by ϵqp = ϵKS + Z⟨ψKS|Σ(ϵKS)− vxc|ψKS⟩, where Z is the so-called renormalization factor.
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.. Wannier functions and interpolation

To calculate the rate of multiphoton absorption, to be discussed in detail in Chapter ,
it is necessary to find the dipole transition matrix elements Mvkck′ = ⟨ψck′ |d|ψvk⟩. For
the calculations in Paper  it was necessary to include on the order of 105 k-points for
the results to converge, which is far beyond what is feasible to include explicitly in a GW
calculation. To address this issue we used an interpolation of the matrix elements based on
Wannier functions [], which will be discussed in this section.

e Wannier functions are localized orbitals centered at a given lattice site R of the crystal,
which can be obtained from the Bloch functions ψnk by a unitary transformation

wnR(r) =
V

(2π)3

∫
dk

∑
m

Uk
mnψmk(r)e−ik·R. (.)

is transformation is not unique, since different choices of the Bloch periodic functions
unk =

∑
mUk

mnumk will give different Wannier functions []. is gauge freedom can
be utilized to find a set of maximally localized Wannier functions, defined as the set that
minimizes the spread functional Ω =

∑
n[⟨r2

n⟩ − ⟨rn⟩2]. Once the Wannier functions
have been constructed we can invert the above transformation to get a new set of Bloch
functions ψW

vk, where the index W indicates that these functions are reconstructed from the
Wannier orbitals. Since the transformation is valid for any k, not just those of the original
k-point grid, we can now write the matrix elements

Mvkck = ⟨ψW
ck|d|ψW

vk⟩ =
∑
R

eik·R⟨wc0|d|wvR⟩. (.)

is process is known as Wannier interpolation, and we now briefly discuss its validity.
Given a set of Bloch functions defined on a k-grid of size Nk×Nk×Nk, the corresponding
Wannier functions will be periodic over a supercell of size L × L × L, where L = Nka
and where a is the lattice parameter. e purpose of defining maximally localized Wannier
functions is that for a given Nk, if the Wannier functions decay fast enough that for r =
L/2 they are essentially zero, any property computed from the Wannier functions will be
insensitive to a further increase of Nk []. By converging the Wannier functions with
respect to Nk we can then safely use these functions for interpolation. In Paper  the
convergence was ensured by demanding that the band structure obtained from the Wannier
functions reproduced the band structure of the GW calculations.
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Chapter 

Elements of non-linear spectroscopy

In this chapter we give a brief review of the classical theory of light-matter interactions, and
make a distinction between linear and non-linear effects. We then discuss how to connect
the classical equations to an underlying microscopic description of matter, which is used to
calculate the multi-photon absorption of InAs nanowires (Sec. .). In the following section
we address how light is affected by the non-linear interaction with matter (Sec. .). For
this purpose we use a quantum description of the light field and study multi-photon effects
in a two-level system. Although forbidden in a perturbative treatment, we show that second
order harmonics can appear in a non-perturbative description due to mixing of the atomic
orbitals by the interaction with light. We also present results for the fluorescence spectrum
of a two-level atom, and identify signatures of quantum radiation.

. Multi-photon absorption

e equations that describe the electromagnetic properties of a material are the macroscopic
Maxwell equations, which if we neglect the magnetic field and assume no macroscopic
currents are given by []

ϵ0∇ ·E(r, t) +∇ ·P(r, t) = ρ(r, t) (.a)
∇×E(r, t) = 0. (.b)

is assumption corresponds to neglecting effects of a finite wavelength, consistent with
the dipole approximation discussed below. e macroscopic response of matter to external
electromagnetic radiation is contained in the polarization vector P(r, t), which is defined
as the density of dipole moments. For weak electromagnetic fields the dependence of the
polarization on the electric field is linear, and can for a homogeneous system be written
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as []

Pi(t) = ϵ0

∫ t

−∞
dt′χij(t, t′)Ej(t′). (.)

Here i ∈ (1, 2, 3) denotes the component of the polarization vector, and χij is the re-
tarded susceptibility tensor that takes into account the memory of the system as well as its
(possibly) non-isotropic response. For systems in equilibrium the susceptibility depends
only on the time difference t− t′, and the equation above is more conveniently written in
frequency space as Pi(ω) = ϵ0χij(ω)Ej(ω). For stronger electromagnetic fields the polar-
ization must be written as an expansion in the electric field, and is with the assumption of
an instantaneous material response (to simplify the equations) given by []

Pi(t) = χ
(1)
ij Ej(t) + χ

(2)
ijk Ej(t)Ek(t) + χ

(3)
ijklEj(t)Ek(t)El(t) + . . . , (.)

In this equation the higher order terms define the non-linear response of the system. In
many cases the electric field strength E = |E| is weak enough that the non-linear terms
become negligible. However, with present technologies is it possible to create pulsed lasers
with a duration on the femto- or attosecond scale [], and to reach field strengths of the
same order of magnitude (and significantly stronger) as the characteristic energy scales of
atomic and solid-state materials. Under such conditions, the non-linear terms are of great
importance for the understanding and interpretation of experiments.

We now show how to calculate the photon absorption to lowest order, and discuss the
relation between the total absorption rate and the linear susceptibility. Fundamentally the
susceptibility must have its origins in microscopic light-matter processes, where individual
electrons absorb or emit photons and thereby change their internal state. e chance for
such a process to happen is quantified by the transition probability Pa→b, describing the
probability that an electron initially in state |a⟩ transfers into state |b⟩ due to the action of
an external perturbing field.

For simplicity we specialize to gapped solid state systems, like semiconductors and insula-
tors, where the total Hamiltonian can be written as H = H0 + H(t). We assume that the
equilibrium Hamiltonian H0 can be treated using an effective single-particle theory like
DFT, and that it has eigenstates |ψnk⟩ of energy ϵnk. e zero temperature ground state
will consist of completely filled valence bands denoted by n = v, and completely empty
conduction bands denoted by n = c, so that the quantum numbers of the initial and final
states of the transition probability are a = vk and b = ck′. e time-dependent pertur-
bation is given by a monochromatic electric field, for which the interaction Hamiltonian
can be written as H(t) = ed ·E sin(ωt) in the Göppert-Mayer gauge []. To obtain this
Hamiltonian we have used the dipole approximation, in which it is assumed that the spa-
tial dependence of the electric field can be neglected since it varies over length scales large
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compared to the characteristic lengths of the system. e transition probability for photon
absorption is to lowest order given by []

Pvk→ck′(ω) =
2π
ℏ

(eE)2 δscsv |e ·Mvkck′ |2 δ(ϵck′ − ϵvk − ℏω), (.)

where Mvkck′ = ⟨ψck′ |d|ψvk⟩ is a dipole matrix element.

A consequence of the dipole approximation is that only vertical transitions (where k′ = k)
are allowed. is follows directly from group theoretical arguments [], by noting that
since d is the dipole operator in the primitive unit cell, it transforms according to the
identity representation under lattice translations (TRd = d). Since a Bloch state with
vector k belongs to the irreducible representation labeled by k, the matrix element Mvkck′

is zero unless k′ = k. e transitions are called vertical since they correspond to photons
with zero momentum, and therefore connect states of the band structure along a vertical
line. e total rate W of absorbed photons is obtained by summing over all possible initial
and final states [],

W(ω) =
4π
ℏ

(eE)2
∑
cvk

|e ·Mvck|2 δ(ϵck − ϵvk − ℏω). (.)

In the special case where the matrix elements are constant, Mvck = M, the rate is pro-
portional to the density of states ρ(ϵck − ϵvk − ℏω). If we are interested mainly in the
absorption rate for energies close to the band gap, taking Mvck constant is usually a good
approximation, but in the general case effects due to the matrix elements are important.

To find the linear susceptibility we note that it is closely related to the dielectric tensor
ϵij(ω) = 1 + χij(ω), which has a clear physical interpretation. e real part of ϵ(ω) gives
the refraction of radiation propagating through a material, while its imaginary part is related
to the absorption rate by Imϵ(ω) = 2πℏ/(mωE)2W(ω) []. Due to the causal property
of the susceptibility (χ = 0 for t′ > t), the dielectric function is analytic in the upper half
of the complex plane. is allows for the real part to be extracted from the imaginary part
by a Hilbert transform, and implies that a full knowledge of either the real or imaginary
part of the dielectric function is enough to completely determine the whole function. is
is referred to as the Kramers-Kronig relation []. To obtain the linear susceptibility it is
therefore sufficient to determine the total absorption rate W(ω) for all values of ω.

For more intense external radiation we need to extend the calculations above to higher
orders in the electric field. To simplify the notation we use ϵabk = ϵak − ϵbk to denote
the transition energies, and assuming all absorbed photons have the same frequency ω the
second and third order absorption rates are given by

W2p(ω) =
8π
ℏ

(eE)4
∑
cvk

∣∣∣∣∣∑
α

e ·Mcαk e ·Mαvk

ϵαvk − ℏω

∣∣∣∣∣
2

δ(ϵcvk − 2ℏω) (.a)
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W3p(ω) =
24π
ℏ

(eE)6
∑
cvk

∣∣∣∣∣∑
βα

e ·Mcβk e ·Mβαk e ·Mαvk

(ϵβvk − 2ℏω)(ϵαvk − ℏω)

∣∣∣∣∣
2

δ(ϵcvk − 3ℏω). (.b)

In contrast to the first order absorption rate these expressions contain a sum over virtual
transitions. Note however that we have neglected virtual transitions where photons are
emitted, which should be taken into account for a general absorption measurement. e
reason for this is that we will use the transition rates to model photo-emission from InAs
nanowires, where the value of the work function stops these transitions from contributing
to the photo-emission process. For this application we need to extract the energies ϵnk and
matrix elements Mcvk from some microscopic calculation, as discussed in the next section.

.. Polarization dependence in InAs nanowires

One method to study the non-linear response of a material is to exploit the local field
enhancement from nanostructures. e field enhancement depends strongly both on the
morphology of the structure and the polarization of the incident field, and can be controlled
by varying the polarization [, , ]. Most studies of the non-linear response in nanos-
tructures have used noble metals, which are favorable due to their strong surface-plasmon
response. In Paper  we instead study semi-conductor nanostructures, since their response
is expected to show an interesting interplay between polarization dependence, morphology
and crystal structure []. In addition, these materials are important since semi-conductor
materials are commonly used in the fabrication of electronic components []. Until re-
cently, electronic devices could be made faster by reducing the size of the individual compo-
nents, but since today their size is close to the atomic scale a further shrinking is no longer
possible. A possible way to increase the speed of electronic devices is instead to use plas-
mons to carry opto-electronic signals, since these are both highly confined and propagate
with a high group velocity []. is requires an understanding of the non-linear response
of semi-conductor nanostructures in the regime where quantum effects become important.

In Paper  we studied the photoabsorption of InAs nanowires with segments selectively
grown in the zincblende or wurtzite phase. e nanowires were placed on a SiO substrate
and studied by photoemission electron microscopy (PEEM) []. e nanowire morphol-
ogy and experimental setup are shown in Fig. .. As seen in the figure the light grazes
the substrate at an angle of 65◦ and makes an angle α with the nanowire axis. e wires
were grown so that the wurtzite c-axis is parallel to the nanowire axis. e non-linear
photoemission signal was obtained by subjecting the nanowires to a train of infrared laser
pulses with a duration of 6.1 fs and a central frequency of 800 nm. Since the pulses are
localized in the time domain their spectral profile becomes broadened, and is non-zero in
the range 1.2 < ℏω < 1.8 eV. e experiment measured the photoemission signal for
the zincblende and wurtzite segments as a function of the polarization angle θ, and it was
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Figure 4.1: Panel (a) shows a a schematic of the nanowire morphology, with a gold nanoparticle at the top, followed by a
wurtzite segment, a zincblende segment and a second wurtzite segment. Panel (b) shows the experimental setup
used to study the non-linear photoemission signal for InAs nanowires. In panel (c) the photo-emission signal is
shown as a function of the polarization angle θ for a nanowire with α ≈ 2◦. The figures are adapted from Paper .

found that the signal depends differently on the polarization in the two crystal phases (see
Figs. .c and .c). Since the polarization behavior was most clear for nanowires aligned
so that α ≈ 0, we restrict the following discussion to this case. For this alignment of the
wires a polarization θ = 0◦ corresponds to a field perpendicular to the nanowire axis, while
θ = 90◦ correspond to a field along the axis. As seen in Fig. ., the measured signal for
the zincblende segments is strongest for a polarization angle θ = 0◦, while for the wurtzite
segments the photoemission is strongest for θ = 90◦.

e behavior of the zincblende segment can be understood from the nanowire morphol-
ogy, that gives a strong field enhancement for θ = 0◦. If the system had no microscopic
polarization dependence, the strongest signal should be observed at this polarization angle
since the photoemission signal is proportional to the local electric field. In the wurtzite
segment, where the opposite result is observed, the behavior must therefore be due to the
crystal structure. To explain the polarization dependence of the wurtzite segments we cal-
culated the rates for one-, two- and three-photon absorption using a generalized version
of Eqs. . and .. e modified equations take into account the finite pulse envelope,
which allows photons of different energy to be absorbed. Since the resulting formulas are
quite lengthy they are not reproduced here. We note that our simulations do not cover the
entire photoemission process, but only the initial photoabsorption step. Although photoe-
mission can be rigorously addressed in the linear regime [], a treatment of multi-photon
photoemission for realistic systems is currently out of reach (except for model applications,
see []). Assuming an isotropic photoemission event, we expect any anisotropy of the pho-
toabsorption process to be reflected also in the photoemission signal, and therefore restrict
to this process.

To predict the absorption signal we need to extract the energies ϵnk and matrix elements
Mcvk from some microscopic calculation. It is then important to correctly describe the
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Figure 4.2: In panels (a) and (b) we show the calculated multi-photon absorption rates from the zincblende and wurtzite InAs
structures respectively. Panel (c) shows the polarization dependence of the experimental photoemission signal from
the nanowire in Fig. 4.1c. The different curves correspond to the segments of the nanowire shown in Fig. 4.1a and
4.1c. The figures are adapted from Paper .

band structure and in particular the band gap of the system, which is known to be under-
estimated by DFT. For wurtzite InAs, where the experimental band gap is only Eg ∼ 0.6
eV, the situation is even worse since many DFT calculations predict a vanishing or even
negative band gap. is issue has been discussed in detail in [], and was found to be
due to the neglect of the 4d electrons in most common pseudopotentials. To calculate the
energies ϵnk and matrix elements Mcvk, we therefore used the  package to perform
self-consistent quasi-particle GW simulations on top of the original DFT results. is was
done for both zincblende and wurtzite InAs in bulk. Since the GW calculations are time
intensive they were performed on an 8 × 8 × 8 Monkhorst-Pack grid [] with a total of
512 k-points. However, to converge the absorption rates a grid with about 105 k-points
is necessary, and for this purpose we used the  and associated  pack-
ages to interpolate the energies and matrix elements. A more extensive discussion of the
methodology is provided in Sec. ..

e calculated photoabsorption rates for zincblende InAs show no polarization dependence
(see Fig. .a), which is expected since the zincblende structure has no preferred crystal axis.
For the wurzite structure on the other hand (Fig. .b), the multi-photon absorption rates
show a strong polarization dependence, that also varies between the one-, two- and three-
photon signals. We find that the three-photon absorption rate is in good agreement with
the experimental photo-emission signal (see Fig. .c), showing a strong enhancement for
a field along the wurtzite c-axis. Since the work function of InAs is about 4.9 eV [],
we expect at least four photons are necessary to give a photoemission signal. is is also
observed experimentally, where the photoemission signal was found to scale as E2n with
n = 4, which is the expected behavior for a four-photon process. If we assume that three
photons are involved in the photoabsorption, while the fourth gives rise to a final isotropic
photoemission event, we therefore expect the photoemission signal to resemble the signal
of the three-photon absorption rate. From this we conclude that the observed polarization
behavior is most likely due to the microscopic features of the wurtzite structure.
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. Second harmonic generation

In the previous section we discussed the non-linear response of a system to radiation, under
the assumption that the radiation itself is unaffected by the interaction with matter. We now
change focus and investigate what happens with the light during light-matter interactions.
We focus here on the second-order polarization, which can be written []

P(2)i (t) = ϵ0

∫
dt′dt′′χ(2)

ijk (t− t′, t− t′′)Ej(t′)Ek(t′′). (.)

If the incident radiation is monochromatic, so that E(t) = E(eiωt+ e−iωt), we can rewrite
the polarization as []

P(2)i (t) = ϵ0

(
χ
(2)
ijk (ω, ω)[e

2iωt + e−2iωt] + 2χ(2)
ijk (ω,−ω)

)
EjEk, (.)

where χ has been transformed to Fourier space. We see that the polarization contains terms
oscillating at the twice the original frequency, as well as terms where the time-dependence
has canceled out. e first are known as frequency doubling terms, since solving the wave
equation with this polarization gives rise to components in the electric field oscillating at
twice the frequency of the incoming radiation []. e second type of terms are known
as optical rectification terms since they give rise to a constant polarization. In an analogous
way the nth-order polarization (if non-zero) leads to the production of radiation at fre-
quencies ±nω, in a process known as nth-order harmonic generation. Experimentally the
high harmonic generation in atomic systems is of great importance, since it underlies the
production of laser pulses of sub-femtosecond duration []. is however requires high
intensities of the driving laser, and for more moderate fields typically the lowest available
harmonic will dominate. In particular, second harmonic generation in non-linear crystals
is routinely used for up- and down-conversion of incoming light to twice or half the original
frequency, which allows to tune laser sources over a large frequency range. In the following
we restrict the discussion to second harmonic generation (SHG).

In the perturbative regime we can find an explicit expression for the second order polariza-
tion. Writing the Hamiltonian in the dipole approximation as H = H0 + d ·E(t), where
H0 describes the material system, the second order Kubo formula gives []

P(2)i (t) =
∫

dt′dt′′⟨Ψ|[[di(t), dj(t′)], dk(t′′)]|Ψ⟩Ej(t′)Ek(t′′), (.)

where the dipole operators d are in the Heisenberg picture with respect to H0. If H0 is
invariant under parity transformations, the ground state |Ψ0⟩ and the excited states |Ψi⟩
of H0 will be of definite parity. Inserting a complete set of states between each of the
dipole operators, and using that ⟨Ψi|d|Ψj⟩ = 0 for states of equal symmetry, we find that
χ(2) = 0 for such systems. Since this argument only relies on the fact that the number
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Figure 4.3: Schematic illustration of a three-level system. For a parity invariant Hamiltonian and in the perturbative limit (a),
second harmonic generation (SHG) is forbidden. In a non-perturbative treatment (b), level mixing allows for SHG.
Panel (c) shows the fluorescence spectrum of the three-level system (see Eq. 4.18) as a function of ω and ϵ2, for
ϵ1 = 0, ϵ3 = 1 and ω0 = 0.5. The figures are adapted from Paper .

of dipole operators entering the expression for χ(2) is odd, it can easily be extended to
show that χ(2n) = 0 for all n. If on the other hand the Hamiltonian H0 breaks parity, the
argument no longer holds, and χ(2n) ̸= 0.

A common model to study SHG consists of three atomic levels coupled to an incident
and a fluorescent electromagnetic field, as schematically illustrated in Fig. .a. In order to
obtain a second harmonic signal in the perturbative limit, the parities π1 and π3 of levels
|1⟩ and |3⟩ need to be different (for the fluorescent transition to be allowed), while the
parity π2 of level |2⟩ needs to be different both from π1 and π3 (in order for the exciting
transitions to be allowed). For states of definite parity this configuration is impossible
to achieve, exemplifying the above conclusion that SHG is forbidden for parity invariant
Hamiltonians. It is worthwhile to consider in more detail the limitations of the argument
above. By using perturbation theory we have implicitly assumed that the eigenstates of H
are similar to the eigenstates ofH0. For weak light-matter interactions this approximation is
well justified, and in this regime perturbation theory should give results in close agreement
with a non-perturbative solution. However, for stronger interactions, renormalization of
the eigenstates becomes important, and there is no a priori justification of the perturbative
results.

erefore consider again the three level system in the non-perturbative limit. As we will
see below, the light-matter coupling mixes electron-photon states in such a way that the
electronic levels no longer have a definite parity. is allows for all transitions in the three-
level system discussed above, but also for the additional direct transition from level |1⟩ to
|3⟩ (see Fig. .b). erefore, in the non-pertubative limit, SHG is possible. As a thought
experiment we can also consider shifting the intermediate level |2⟩ away from resonance
with the incident field. In Paper  we considered this experiment and studied the fluo-
rescence spectrum as the energy of level |2⟩ is taken to infinity. We find that the second
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harmonic signal survives in this limit (see Fig. .c), due to the additional coupling of the
incident field to the transition |1⟩ ↔ |3⟩. is limit is interesting, since it collapses the
system onto an effective two-level system. As will be discussed further below, this implies
that in the non-perturbative limit SHG in a two-level system is possible.

An interesting question is now how a parity invariant Hamiltonian can sustain electronic
states of indefinite electronic parity? e answer is simply that for coupled light-matter
systems, the relevant quantity is the parity of the total system, not the parity considered
in the electronic and photonic subsystems separately. As we will see below, this leads to
SHG for intermediate electron-photon coupling even when the Hamiltonian of the system
conserves parity.

.. Parity in coupled electron-photon systems

We now discuss second harmonic generation in a two-level system, and its relation to parity
conservation in the intermediate coupling regime. For this purpose it is most transparent
to work with a quantum description of the external radiation, and we therefore consider a
two-level system coupled to quantum photons as appropriate for an atom interacting with
the field of a cavity. We neglect terms quadratic in the photonic vector potential A, that
should be important only for very strong couplings. e same Hamiltonian was discussed
by Cini, D’Andrea and Verdozzi [, ] and is given by

H = ϵ1c
†
1c1 + ϵ2c

†
2c2 + ω0a†a+ ωb†b (.)

+ g(t)(c†1c2 + c†2c1)(a
† + a) + g′(t)(c†1c2 + c†2c1)(b

† + b),

were ci destroys an electron in level |i⟩ with energy ϵi. e operator a annihilates a photon
of an incident field with frequency ω0, and similarly b annihilates a photon of a fluorescent
field with frequency ω. e interaction of the electron with the incident and fluorescent
fields are respectively given by the couplings g(t) and g′(t), that can in principle have any
time-dependence. In order for g and g′ to be non-zero, the levels |1⟩ and |2⟩ need to be of
different parity. We also define a parity operator by

Π = (n1 − n2)eiπnaeiπnb , (.)

where ni (na/b) are density operators in the electron (photon) space, and Π acts in the
coupled electron-photon space. Since Π commutes with the Hamiltonian, the eigenstates
of H will be of definite parity. To simplify the discussion we temporarily set g(t) = gθ(t)
and g′(t) = 0.

We now consider the parity of the eigenstates of H. If we assume that the incident field
is close to resonance with the atomic transition, so that ω0 ≈ ϵ2 − ϵ1, we can use the
rotating wave approximation (RWA) []. is corresponds to assuming that the energy
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conserving transitions |1, na⟩ ↔ |2, na − 1⟩, where |na⟩ is a number state of the incident
field, dominate over the virtual transitions |1, na⟩ ↔ |2, na + 1⟩. In the RWA only the
nearly degenerate states |1, na⟩ and |2, na − 1⟩ are mixed by the light-matter interaction,
and we can diagonalize H to find the dressed eigenstates []

|+, n⟩ = cos θ|1, na⟩+ sin θ|2, na − 1⟩ (.a)
|−, n⟩ = − sin θ|1, na⟩+ cos θ|2, na − 1⟩. (.b)

Here the coefficients are determined by the mixing angle tan 2θ = g
√
na/δ, where δ =

ω0 − (ϵ2 − ϵ1) is the detuning. We note that when the detuning is zero, even a very
small coupling gives complete mixing of the states (since θ = π/4). By applying the parity
operator Π defined above, we see that the eigenstates |±, na⟩ are even (odd) with respect
to parity when na is even (odd).

If instead we assume that ω0 ≈ (ϵ2−ϵ1)/2, two photons are necessary to excite an electron
from level |1⟩ to level |2⟩. In this case we cannot apply the RWA, since the transitions
|1, na⟩ ↔ |2, na + 1⟩ are of the same importance as the transitions |1, na⟩ ↔ |2, na − 1⟩.
erefore, an exact analytical solution for the eigenstates is no longer available. However,
since the parity operator commutes with the Hamiltonian, the eigenstates can be written
on the general form []

|Ψe⟩ =
∑
na

c2na |1, 2na⟩+
∑
na

c2na+1|2, 2na + 1⟩ (.a)

|Ψo⟩ =
∑
na

c2na+1|1, 2na + 1⟩+
∑
na

c2na |2, 2na⟩, (.b)

where the subscript e (o) denotes a state with even (odd) parity. We note that although
these states have a definite parity in the full Hilbert space of the coupled electron-photon
system, if projected onto the electronic or photonic subsystems their parity is no longer
well defined. In fact, computing the reduced density matrix of the electronic system for
either of the above states gives the general structure ρel = α|1⟩⟨1|+β|2⟩⟨2|, showing that
the system is in a statistical mixture of the two electronic states.

Now that we know the structure of the eigenstates, we consider the evolution of the system
from a given initial state. First consider a system prepared with an electron in the ground
state |1⟩ and the incident radiation in a coherent state |β⟩. e initial state of the coupled
system is then

|Ψ⟩ = |1, β⟩ = |1⟩ ⊗ e−|β|2/2
∑
na

βna√
na!

|na⟩, (.)

which is of indefinite parity with respect to Π. is state will therefore in principle have a
non-zero overlap with all eigenstates of H, and the time-evolution will mix these states so
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that an electron may be excited from state |1⟩ to |2⟩. In this case, the possibility of second
harmonic generation is due to explicit parity breaking by the initial state. However, even if
we consider the field to be initially in a number state, so that |Ψ⟩ = |1, na⟩, it is possible
to excite the electronic system. In this case the evolution will be restricted to the subspace
of equal parity as the initial state, but since the initial state is not an eigenstate of H the
evolution will induce transitions between the electronic states. In this case, the total parity
Π = πelπph is conserved, but the electronic and photonic parities πel and πph can change.

Finally we consider the semi-classical limit of light-matter interactions, obtained by start-
ing from the density matrix ρ = |ψel, β⟩⟨ψel, β| and tracing out the photonic degrees of
freedom. In particular, we try to identify the Hamiltonian that satisfies the Liouville-von
Neumann equation

i
∂

∂t
ρel(t) = [Hel, ρel(t)] = Tr[H, ρ(t)] (.)

for the electronic density matrix ρel = |ψel⟩⟨ψel|. Using the definition of the coherent
states as eigenstates of the annihilation operator, a|β(t)⟩ = βe−iωt|β(t)⟩, we find

Tr[H, ρ(t)] =
1
π

∫
d(Reα)d(Imα)⟨α|Hρ(t)− ρ(t)H|α⟩ (.)

=
1
π

∫
d(Reα)d(Imα)[H(α∗, β)ρel(t)− ρel(t)H(β∗, α)]e−|α−β|2 ,

where the Hamiltonian depends parametrically on the values of the coherent fields. In this
formula we have used that the coherent states are non-orthogonal, and instead satisfy the
relation |⟨α|β⟩|2 = e−|α−β|2 . Since this function decays rapidly for α ̸= β, we can in
the limit of large β assume α = β in the Hamiltonian. Performing the integral over α for
the exponential function then gives a contribution π, and the semi-classical Hamiltonian
is given by

Hel = ϵ1c
†
1c1 + ϵ2c

†
2c2 + ω|β|2 + g(c†1c2 + c†2c1)(β

∗eiω0t + βe−iω0t). (.)

Since the semi-classical equations are derived from an initial electron-photon state of in-
definite parity, it is not surprising that they can give rise to non-conserving parity processes
in the electronic subspace.

.. Mollow and second harmonic spectra in two-level systems

We now return to the Hamiltonian of Eq. . and consider the fluorescence spectrum
obtained by varying the frequency ω. ese results are presented in Paper . We define
the fluorescence spectrum as [, ]

Pn(t, ω) =
∑
mi

|⟨i,m, n|T
[
e−i

∫ t
0 H(t′)dt′

]
|1, β, 0⟩|2, (.)
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Figure 4.4: Energy spectrum for a two-level atom coupled to an incident field on resonance with the atomic transition (left).
The original degenerate energy levels are split by the light-matter interaction. Also indicated are the fluorescent
transitions giving rise to the Mollow triplet. To the right are fluorescence spectra for a coherent field with β = 5
and g = 0.02 (top), and with β = 1 and g = 0.1 (bottom). In both cases light blue denotes the semi-classical result,
dark blue the quantum result, and g′ = 0.01. The diagram is adapted from [69] and the figures from Paper . The
results for the Mollow spectrum also appear in [66, 67].

where i denotes the electronic state, m the number of photons in the incident field and
n the photon number in the fluorescent field. e initial state is taken with the electron
in its ground state, the incident field in the coherent state |β⟩, and zero photons in the
fluorescent field. In the following we consider the case g′(t) = g′e−Γt, which introduces a
phenomenological damping of rate Γ, and take g(t) = gθ(t).

We first consider the fluorescence spectrum for a coherent field of frequency ω0 = ϵ2 − ϵ1.
e energies of the dressed states are given in the RWA by ϵ±,n = nω0 ± g

√
n, as indicated

schematically in Fig. .. When the system is probed by a fluorescent field the single spectral
line for g = 0 is transformed into a so-called Mollow triplet for g ̸= 0. e name comes
from the spectral shape in the limit of large β, where we can make the assumption

√
n ≈ β

and the energy splittings ϵ+,n − ϵ−,n = 2gβ become independent of n. In this limit there
are therefore three possible transition energies between states with consecutive n, and the
spectrum shows a three-peaked structure. e fluorescence spectrum for large β is shown
in Fig. . (upper right panel) for both a quantum and semi-classical treatment of the
incident field, which are seen to be in good agreement. For an incident field with small β
the level splittings are no longer independent of n, and there are four possible transition
energies between states with consecutive n. erefore we expect to see at least four peaks
in the fluorescence spectrum, which is indeed the case, as indicated in Fig. . (lower right
panel). In fact, we observe an even more intricate structure, coming from the fact that also
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Figure 4.5: Energy spectrum for a two-level atom coupled to an incident field of frequency ω0 = (ϵ2 −ϵ1)/2 (left), for different
values of the coupling g. To the right are fluorescence spectra for a coherent field with β = 5 and g = 0.02 (top),
and with β = 1 and g = 0.1 (bottom). In both cases light blue denotes the semi-classical result, dark blue the
quantum result, and g′ = 0.01. The SHG spectra are adapted from Paper  and also appear in [66, 67].

transitions with different n contribute to the spectrum. Since the semi-classical results only
depend on the product gβ, which is kept constant in the two calculations, it gives the same
result as for large β and is not able to reproduce the spectrum in the low-photon regime.

We now consider the fluorescence spectrum for an incident field with the frequency ω0 =
(ϵ2 − ϵ1)/2. For a coherent field with large β and small g the spectrum shows two peaks,
which are nicely reproduced by a semi-classical calculation (see Fig. .). e first peak
is due to elastic Rayleigh scattering, where the energy absorbed from the incident field
is emitted into the fluorescent field with the same frequency ω = ω0. e second peak
constitutes the second harmonic generation. For an incident field with small β and large g,
the elastic peak is still well described by the semi-classical results. However, for the second
harmonic peak the quantum calculation shows a superimposed Mollow structure that is not
captured by the semi-classical calculation. is feature can be understood by considering
the energy level spectrum for different coupling strengths g (see Fig. .). For g = 0.02 the
splitting of degenerate levels due to light-matter coupling is very small, so that effectively
the SHG spectrum contains a single peak. For g = 0.1 the splitting is large enough to be
visible in the fluorescence signal.
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Chapter 

Ultrafast spectroscopy

With the advent of laser technologies able to create pulses of femto- and attosecond du-
ration, it is now possible to study and manipulate atomic and solid-state systems on their
natural time-scale, and so investigate interacting systems far from equilibrium. However,
since pulsed light-fields break the time-translational invariance of the system, it is necessary
to use an explicitly time-dependent formulation of the problem. Together with the highly
non-adiabatic character of ultrafast processes, this makes a theoretical description challeng-
ing. In this chapter we look at three different ultrafast processes: We start by considering
adsorbate dynamics (Sec. .), for which a crucial ingredient is the interplay of electronic
and nuclear degrees of freedom. In particular, we look at the process of atomic desorption,
and discuss how ultrashort laser pulses can be used to study and control this process in
time. In the next section we look at the Auger process (Sec. .), and show how the life-
time of the Auger decay can be increased by inducing the quantum Zeno effect. Finally,
we discuss the role of electron-electron interactions for charge-separation in a prototypical
donor-acceptor system (Sec. .), a process of fundamental importance to solar harvesting
materials.

. Desorption dynamics

A process of great physical and technological importance is that of atomic adsorption, in
which an atom sticks to the surface of a substrate by forming a bond. Depending on the
strength of the bond it is common to distinguish between two types of adsorption, namely
physisorption (for weaker bonds) and chemisorption (for stronger bonds) []. Of equal
interest is the process of atomic desorption, in which an adsorbed atom breaks free from
the substrate. How and when an atom is prone to adsorb or desorb is interesting from a
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technological stand-point, for example in the catalysis of many chemical reactions. From
a theoretical perspective, adsorbate dynamics is of interest since it involves an interaction
of electronic and nuclear degrees of freedom beyond the harmonic regime. In this section
we discuss how external light-fields can be used to initiate and control the desorption of an
initially adsorbed atom.

A description of atomic desorption is in principle within reach of DFT and NEGF, but
in practice these methods involve a number of approximations. e first is with regard to
the electron-electron interaction, which in DFT is treated by an approximate exchange-
correlation potential, and in NEGF by a perturbative expansion of the self-energy (see
Secs. . and .). e second approximation is with regard to the electron-nuclear interac-
tion, that is usually treated within the semi-classical Ehrenfest approximation (see Sec. .).
Even though there are extensions beyond this approach, such as surface hopping and tra-
jectory algorithms for wavefunction based methods [, , , ], and the inclusion of
quantum vibrations in the framework of NEGF [, ], a non-pertubative treatment of
general electron-nuclear interactions is still out of reach for first-principle descriptions of
matter. Since desorption involves nuclear dynamics in the highly anharmonic regime, we
therefore address the desorption process from a model perspective. is allows us to use a
full quantum description of the electron-nuclear interaction, but limits the size of the sys-
tem to a rather small substrate. To address finite size effects, we compare the results of an
exact treatment to a description in terms of NEGF together with Ehrenfest dynamics. is
later approach, although approximate with regard to the interactions, has the advantage
that it makes a treatment of macroscopic systems possible.

Since the physics of adsorbate-substrate systems is quite complex, we start by trying to
provide an intuitive understanding of the adsorption process through a simple model. More
specifically, we consider the Anderson model [] described by the Hamiltonian

H = ϵ0n0 + Un0↑n0↓ +
∑
k

ϵknk +
∑
k

tk(c
†
0ck + h.c.), (.)

which was originally introduced to describe the effects of localized magnetic impurities in
narrow band materials. It was later realized by Newns [] and Grimley [] that the same
model can be used to study the behavior of an atom adsorbed on a metallic surface. In this
context, the state |0⟩ represents an adsorbate atom with a local interaction U, coupled to a
substrate of electrons with energies ϵk via the matrix elements tk. By solving for the adsor-
bate Green’s function G0σ(ω) in the Hartree-Fock approximation [], we can distinguish
between two regimes of adsorption depending on the strength of the adsorbate-substrate
coupling. In the weak coupling limit we find a single localized orbital at approximately the
unperturbed Hartree-Fock energy ϵ0σ = ϵ0 +U⟨n0σ̄⟩, which largely resembles the atomic
state |0⟩. In the strong coupling limit we find two localized states with energies at oppo-
site edges of the substrate band, whose overlap with the atomic state is close to 1/2. us
in the weak coupling case the adsorbate level closely resembles that of the isolated atom,
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Figure 5.1: Illustration of the energy levels of an adsorbate-substrate system in the weak coupling limit (left) and the strong
coupling limit (right). The arrow indicates the bare atomic level of energy ϵ0, while the broadened spectral lines
show the energy of the states localized on the atom in presence of a substrate.

while in the strong coupling limit the atomic level is split into two states resembling the
bonding and anti-bonding levels of a surface molecule, formed by the adsorbate and the
substrate atoms to which it is directly coupled. e weak and strong coupling limits are
schematically shown in Fig. ..

In a dynamical description of adsorbate-substrate systems, we also need to consider the
effects of charge fluctuations on the adsorbate atom. Due to the presence of the surface, any
local charge fluctuations will be screened by an image charge consisting of the excitation of
plasmons and electron-hole pairs. A model to understand plasmon screening of core holes
was proposed by Lundqvist [] based on the Hamiltonian

H = ϵnc +
∑
q

ωqb†qbq +
∑
q

(1 − nc)gq(b†q + bq), (.)

where nc is the density operator for the core state, ωq is the energy of a plasmon with wave
vector q, and gq is the electron-plasmon coupling. An exact solution for the core level
spectral function A of this model was provided by Langreth []. Restricting to the lesser
part of A and assuming for simplicity that ωq = ωp for all q, the spectral function can be
written

A(ω) =
∑
m

e−aam

m!
δ(ω − ϵ− aωp + mωp), (.)

where a =
∑

q(gq/ωp)
2. e main effect of plasmon screening is therefore the appearance

of satellite structures in the spectral function, corresponding to ionization of the core hole
with the simultaneous creation of m plasmons. Since these peaks are suppressed by the
factor (g/ω)2m, only the lowest plasmon states will be important in the weak coupling
regime.

We now formulate a model for dynamical studies of desorption (used in Paper ), aimed
at including as many features as possible of a realistic adsorbate-substrate system while still
retaining enough simplicity to allow for an exact numerical solution. It contains as limiting
cases the Anderson-Newns-Grimley model and the plasmon screening model of Lundqvist,
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but also includes a mobile adsorbate along the lines of the charge-transfer model of Shin
and Metiu []. e total Hamiltonian is given by H(t) = Hs +Ha +Has +Hext(t), and
the model is schematically illustrated in Fig. .. Here

Hs = −t
∑
⟨ij⟩σ

c†iσcjσ + ωpb†b (.)

describes a substrate with nearest neighbor hopping t, and an effective plasmon mode of
frequency ωp. We can think of the tight-binding term as describing a narrow electronic
band (of d- or f-type), while the plasmon arises from a more extended band (of s- or p-
type). e adsorbate is governed by the Hamiltonian

Ha =
p2

2M
+ ϵcnc +

∑
vσ

ϵvnvσ +
∑
vv′σσ′

Uvv′nvσnv′σ′ − w(1 − nc)Na (.)

where p denotes the momentum of the adsorbate nucleus with mass M. e adsorbate has
a deep core level of energy ϵc, and a number of valence levels with energies ϵv interacting
via Uvv′ . In the event of core ionization the valence levels are shifted down an energy w,
and Na =

∑
v nv. e coupling between adsorbate and substrate is given by

Has =
κ

x4 − ge−λ(x−1)
∑
vσ

(
a†vσcSσ + h.c.

)
+ γ (Na − ⟨Na⟩0)

(
b† + b

)
, (.)

where κ is the strength of the nuclear-nuclear repulsion, and the parameters g and λ de-
termine the strength and decay length of an attractive adsorbate-substrate interaction. e
index S denotes the first atom of the substrate, to which the adsorbate is connected. e
last term describes the coupling between plasmons and charge fluctuations on the adsor-
bate with strength γ. To perturb the system we use an external field whose coupling to the
adsorbate levels is described by Hext(t) =

∑
v̸=v′σ Λvv′(t)a

†
vσav′σ, where Λ(t) determines

the strength and shape of the laser pulse. We used this model in Paper  to investigate
desorption dynamics in a finite system, and a simplified version in Paper  to study effects
of approximations and finite size. e main results of these papers are discussed in the
following sections.

.. Exact electron-nuclear dynamics

In Paper  we solved the model above using exact diagonalization, as discussed in Section .,
in the basis |ni1σ, ni2σ, . . . , ni7σ⟩ ⊗ |nk⟩ ⊗ |xn⟩ consisting of L = 7 electronic orbitals, one
plasmon mode k, and a set of grid points xn describing the distance of the adsorbate from
the substrate surface. Out of the electronic orbitals, two describe valence levels on the
adsorbate, and the remaining five the substrate (see Fig. .). Since the adsorbate core level
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Figure 5.2: The top panel gives a schematic illustration of the desorption model considered in Paper . Panel (a) shows the
time-evolution of the nuclear wavepacket using two different pulse protocols. By varying the delay between the
two pulses we can control the response of the plasmon and increase or decrease the associated desorption yield. In
panel (b) we show the effect of core ionization during the time evolution. The figures are adapted from Paper .

has no dynamics, we don’t include it explicitly in the description, but treat core ionization
as an instantaneous event where nc = 1 is changed to nc = 0. We consider a total of six
electrons with N↑ = N↓ = 3, and pick the energies ϵv1 and ϵv2 so that in the ground state
the level |v1⟩ is filled, |v2⟩ is empty and the substrate half-filled.

To quantify the desorption probability resulting from an external field of given shape and
intensity, we consider the desorption yield Y defined by Y(t) = 1 −

∫ x0
0 Pt(x)dx. Here

Pt(x) is the nuclear probability distribution at time t, and x0 is chosen as the smallest value
for which Y(0) = 0. In this way Y measures the fraction of the wavepacket that has left the
region where it is initially bound. In particular, we were interested in seeing if it is possible
to control the desorption yield by using specific pulse protocols. We therefore considered an
external field consisting of two 6 fs pulses with a carrier frequency of 800 nm and a delay τ
between their respective peak intensities. As seen in Fig. .a, only a slight shift in the delay
time can significantly alter the desorption behavior and give an increased yield on the order
of 15%. In both cases we see that part of the nuclear wavepacket is emitted while another
part stays bound, an effect that is not possible to describe with a semi-classical method
such as the Ehrenfest approximation. We also considered a similar protocol, consisting of
a single 800 nm pulse and a much shorter XUV pulse leading to instantaneous ionization
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Figure 5.3: Exact electronic and nuclear Kohn-Sham potentials for a dimer system during desorption. Panel (a) shows in red
the electron density on the interacting site, with the green curve denoting arg(TKS) and the blue curve |TKS|. The
snapshot at the bottom shows the nuclear density and nuclear potential at different times. Panel (b) shows the
nuclear potential VKS in time. The figures are adapted from Paper .

of the core level. By similarly varying the delay between the IR and XUV pulses we see
significant differences in desorption behavior and in the corresponding desorption yield
(Fig. .b). How can these results be understood? Since the nuclear dynamics happen on
a long time-scale compared to the shifts in pulse delay, the observed effects must be due to
electronic and plasmonic degrees of freedom. In fact, our results indicate that what happens
is that the first pulse excites coherent oscillations in the plasmon response, which the second
pulse can either enhance or suppress by being in phase or anti-phase with the oscillations.
Enhancing the plasmon oscillations in turn leads to a suppression of the bond kinetic energy
Kad between the adsorbate and substrate (see Fig. .), giving a larger desorption yield. It is
therefore possible to control the desorption yield on very short time-scales by manipulating
the plasmonic response.

Another important result of Paper  is the construction of exact electronic and nuclear
Kohn-Sham potentials for the multi-component TDDFT framework discussed in detail
in Section .. For simplicity we neglect plasmons and consider a two-site system, ob-
tained from the general Hamiltonian by retaining a single level on the adsorbate and in the
substrate. e Kohn-Sham system is described by the coupled set of equations

HKS
e =

∑
ij,σ

(
TKS
ij [Qij,Γ](t)c

†
i,σcj,σ + h.c.

)
(.a)

HKS
n =

∑
k

p2

2M
+ VKS[Qij,Γ](x, t), (.b)

where the fundamental variables are the diagonal of the nuclear density matrix Γ(x, t) and
the complex electronic bond current Qij(t) (for details see Section .). Since the system
we consider has a position dependent hopping between adsorbate and substrate, which





for large x tends to zero, the electronic Kohn-Sham potential needs to be complex and
have both a phase and modulus that can vary. To extract the exact potential VKS we use
the factorization of the electron-nuclear wavefunction introduced by Abedi, Maitra and
Gross []. Defining the nuclear wavefunction χ(x, t) = e−iS(x,t)ξ(x, t), the exact nuclear
potential is V = (2M)−1[(∂x ln ξ)

2 + ∂xx ln ξ − (∂xS)2] − ∂tS in the gauge where the
vector potential is zero. Since the potential describes a non-interacting nucleus, it is by
definition also equal to the exact Kohn-Sham nuclear potential VKS. e electronic po-
tential is obtained through numerical reverse-engineering, corresponding to a numerical
fitting of the Kohn-Sham density to the exact density in time. In Fig. . we show the
Kohn-Sham potentials for a case of substantial desorption, where the nuclear wavepacket
almost completely leaves the bound region of the potential. As the external field acts on
the system we see how the nuclear potential is lowered to release part of the wavepacket,
and then increases to contain the part that stays bound. We also note that just before the
wavepacket splits, the whole nuclear density has been shifted to larger adsorbate-substrate
distances, leading to a significant reduction in the modulus of the electronic potential.

.. Desorption in macroscopic systems

e most severe approximation for the system considered above is the truncation of the
substrate to a finite (in fact rather short) linear chain. is approximation is necessary to
solve the model using exact diagonalization, since the size of the many-body basis scales
exponentially with the system size. To address the effects of a finite system and to treat
macroscopic systems, we in Paper  used the NEGF method to describe a similar system,
with the nuclear coordinate treated classically using the Ehrenfest approximation. By com-
paring results from exact diagonalization and NEGF, we could also address the effects of
an approximate treatment of electron-electron and electron-nuclear interactions. Starting
from a full quantum treatment of the finite system, we therefore introduced first the Ehren-
fest approximation and then a perturbative treatment of electronic interactions, and in a
last step extended the linear chain to a macroscopic substrate using an embedding self-
energy. We note that to include classical nuclear coordinates R in a NEGF description
is very similar to the approach discussed in Sec. . for wavefunction methods. Since the
nuclear coordinates enter parametrically into the single-particle Hamiltonian, this amounts
to solving the Kadanoff-Baym equation with a Hamiltonian h = h(R), together with the
semi-classical equation

MR̈(t) = − ∂

∂R
⟨Ψ|h(1,R)|Ψ⟩ = i

∂

∂R

∫
dxh(1,R)G<(1, 1). (.)

In Fig. . we show results obtained with the different levels of approximation discussed
above. For early times, during which the external field is active, both the electron and
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Figure 5.4: Comparison of desorption dynamics in a finite system using exact diagonalization (red), exact electron dynamics with
the Ehrenfest approximation (green), and non-equilibrium Green's functions with the second-Born approximation
together with the Ehrenfest approximation (blue). The light blue line shows the result for a macroscopic system
using NEGF with an embedding self-energy. The figures are adapted from Paper .

nuclear dynamics are well described in all approximations. At later times however, the
electron density of the exact solution is better reproduced by the NEGF results than the
exact electronic dynamics together with the Ehrenfest approximation. is is however an
artifact of a known problem with NEGF for finite systems [], namely the appearance of
artificial damping due to a sampling of diagrams outside the finite Hilbert space. For the
nuclear dynamics the results from using exact electronic dynamics are in better agreement
with the exact solution than the results of NEGF. We see that the introduction of a macro-
scopic substrate has little effect on the electronic dynamics, while it reduces the stretching
of the nuclear coordinate. is is most likely due to the additional dissipation channel
introduced by the substrate, leading to a smaller energy transfer between the electrons and
nuclei. However, the effect of using the Ehrenfest approximation seems to be more severe
than the neglect of the infinite substrate, indicating that a good qualitative description of
desorption can be expected even in a finite system. As a final caveat, this conclusion is
probably dependent on the parameters, but should apply in the strong coupling (surface
molecule) limit considered here.

. Auger spectroscopy

In this section we discuss the Auger decay of an atom following photo-ionization of a deep
core level. is process, originally discovered by Meitner and later independently by Auger,
consists in a valence electron filling the core level with the simultaneous emission of a
secondary valence electron. Like in radiative decay, where the atom relaxes through the
emission of a photon with energy ω = ϵc − ϵv corresponding to the difference in binding
energy of the core and valence states, the Auger process gives information about the atoms
electronic structure. In Auger decay an electron is emitted with the energy ϵa = ϵc − ϵv1v2 ,
corresponding to the difference in binding energies of the core and the two participating
valence levels. is is used in Auger electron spectroscopy to characterize the chemical
composition and electronic structure of atomic gases and solids [].
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e theory of Auger decay has been extensively studied both for isolated atoms and systems
in the solid state. In atomic systems the Auger spectrum is typically composed of a series
of sharp peaks corresponding to a cascade of individual Auger processes [], while in solid
state spectra the lineshapes can have a more complicated form. is is due to the interaction
of the holes on the Auger decaying atom with the surrounding electrons in the material [,
, ]. Broadly speaking, the levels of theoretical description can be divided into one-step
and two-step models. e former treats the whole Auger decay, including the initial photo-
ionization and incomplete relaxation effects, on equal footing. In the latter, the core hole is
assumed to be long-lived enough that the system relaxes to a new ground state in presence
of the core hole, so that the ionization and decay processes can be treated separately. In
the following we briefly discuss some examples of these models, taken from the solid state
context.

Before going into details about the Auger process, we recall some general features of a
decay process. We consider the Wigner-Weisskopf model of a single level |0⟩ coupled to a
continuum of states |k⟩, as described by the Hamiltonian

H = ϵ0n0 +
∑
k

ϵknk +
∑
k

tk(c
†
0ck + h.c.). (.)

Although this model is completely non-interacting, it gives an effective description of the
Auger process in the limit where only the Auger interactions are retained. is is seen by
identifying |0⟩ = |v1v2⟩ with the state of the decaying valence levels, |k⟩ = |ck⟩ with the
state with a filled core level and one electron in the continuum, and the matrix element
tk = Uck21 with the Auger matrix element. e model can be solved exactly in frequency
space and gives the amplitude c0(ω) = i/[ω − ϵ0 − Σ(ω)] to find an electron emitted at
energy ω, where the self-energy is Σ(ω) =

∑
k |tk|2/[ω − ϵk + iη]. From this solution we

can extract two key features: First, the coupling with the continuum introduces a shift in
the peak of the probability to find an emitted particle from the bare energy ϵ0 to the energy
ω = ϵ0 +ReΣ(ω). Secondly, the lineshape of the level |0⟩ is broadened into a Lorentzian
of width Γ(ω) = ImΣ(ω). If for simplicity we assume the width to be independent of
frequency, this gives rise to an exponential decay of the amplitude c0(t) ∼ e−Γt in time.

Let us now move one step closer to a full description and consider Auger decay in the
Anderson model [] along the lines of Cini [, ]. Similar results were obtained by
Sawatzky [] but for a Hubbard model []. e Hamiltonian is given by

H = ϵ0n0 + Un0↑n0↓ +
∑
k

ϵknk +
∑
k

tk(c
†
0ck + h.c.), (.)

whereU is a local interaction at the atom undergoing Auger decay and the continuum states
describe a completely filled valence band of bandwidth W. We define the Auger current by

jk =
d
dt
⟨Φ(t)|nk|Φ(t)⟩, (.)
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Figure 5.5: Evolution of the Auger lineshape as a function of increasing interaction. For low interactions U compared to the
band width W, the lineshape is band-like but asymmetric. When the ratio U/W > 1 an atomic like peak appears
in the spectrum, and for larger interactions more of the spectral weight is shifted into the atomic peak. The dashed
line corresponds to a rough approximation of the one-particle density of states ρ, and the thin solid line to the
self-convolution G0. The results are adapted from [87].

and treat the system in the two-step approximation where |Φ(t)⟩ = U(t,−∞)|Φ⟩ and
|Φ⟩ = cc|Ψ⟩ is the ground state of the system in presence of a core hole. If the evolution
operator U is expanded to lowest order in the Auger interaction, the current is given by

jk = 2π⟨Φ|A†
kδ(ω −H)Ak|Φ⟩, (.)

where the operator Ak = Ukc00c0↑c0↓ includes the Auger matrix elements Ukc00. As can
be seen, the current is proportional to the imaginary part of the two-hole Green’s function
G(ω) = ⟨Ψ|(ω − H)−1|Ψ⟩, where |Ψ⟩ = c0↑c0↓|Φ⟩, which can be solved for exactly to
find []

G(ω) =
G0(ω)

1 − UG0(ω)
. (.)

Here G0 is the non-interacting two-particle Green’s function and can be written as a con-
volution of the one-particle density of states with itself, G0(ω) =

∫
dω′ρ(ω − ω′)ρ(ω′).

e Auger lineshape is now determined by the ratio U/W, as displayed in Fig. .: For
U/W ≪ 1 the lineshape resembles the non-interaction density of states G0, although
slightly asymmetric. On the other hand, for U/W ≫ 1 a pole appears in G that gives rise
to a sharp atomic-like line. For intermediate values of U/W the spectrum will contain both
atomic and bandlike features.

In a one-step model of Auger decay the initial ionization has to be explicitly taken into
account. As discussed by Almbladh [] and by Gunnarsson and Schönhammer [], this
can be achieved by treating the state |Φ(t)⟩ to first order in the external field, giving the
current []

jk = 2πV
∑
p

|τcp|2⟨Φ|
1

ω − ϵp −H(0)− iΓ
A†
kδ(ω − ϵp − ϵk −H(1))Ak (.)

× 1
ω − ϵp −H(0) + iΓ

|Φ⟩.





..

i

..

k

.

j

..

p

..

i

..

k

.

j

....

p

..

i

..

k

.

j

......

p

Figure 5.6: Examples of processes contributing to the Auger decay. The solid lines correspond to electrons (with arrows point-
ing up) and holes (with arrows pointing down), the dashed lines to the Auger interaction, and the wavy lines to
excitations of the valence electrons. The left diagram shows the lowest order process, the middle diagram a process
with virtual Auger transitions, and the right a process with virtual excitations that do not factorize according to a
two-step description. The diagrams are adapted from [92].

In this expression V is the amplitude of the external field with frequency ω, τcp the dipole
matrix elements between the core state and continuum states with energy ϵp, and ϵk is
the energy of the Auger electron. e state |Φ⟩ = cc|Ψ⟩ is a linear combination of
(N − 1)-particle eigenstates, and H(n) is the valence electron Hamiltonian for core-hole
occupancy n. e operator Ak =

∑
ijUkcijcicj is together with the optical potential Γ =∑

ijkl Γijklc
†
i c
†
j clck responsible for virtual transitions during the decay, that give rise to ef-

fects from so-called incomplete relaxation. is includes spectral features such as satellite
structures at higher energy (due to shake-down processes), and features due to screening of
the core-hole by plasmon and electron-hole excitations. e formula for the Auger current
in the one-step model can also be written in real-time as

jk = 2πVρ(ϵp)|τ |2
∫ ∞

0
dtdt′⟨Φ|ei(H(0)+iΓ)t′A†

ke
i(ϵk−H(1))(t′−t)Ake−i(H(0)−iΓ)t|Φ⟩, (.)

where ρ and τ are the average density of states and matrix elements at the energy of the pho-
toelectron. For Γ → 0 and with the assumption e−H(0)t|Φ⟩ = ⟨Φ0|Φ⟩|Φ0⟩ this formula
reduces to the form of the Cini-Sawatzky model with a general valence band Hamiltonian
H = H(1). In Fig. . we show some processes contributing to the Auger decay. Due
to virtual excitations screening the core-hole, the diagrams can in general not be separated
into a photoionization and Auger decay part. Inclusion of such processes thus leads to the
breakdown of the two-step approximation.

A benefit with formulating the problem in real-time is that propagation of the Schrödinger
equation incorporates in a natural way all screening and relaxation effects of the Auger
decay. Also, it is straightforward to include explicitly time-dependent terms in the Hamil-
tonian. However, due to the computational complexity associated with including the in-
teraction terms responsible for Auger decay in the time-propagation, most studies are done
in the frequency domain. In Paper  we studied the Auger decay of a four level atom in
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presence of classical radiation, as described by the Hamiltonian

H =
∑
i

ϵini +
∑
ij

Uijninj +
∑
k

ϵknk +
∑
q

ϵqnq + f(t)Ω
(
c†3c2 + h.c.

)
(.)

+
∑
k

Ukc12

(
c†kc

†
c c2c1 + h.c.

)
+

∑
q

Uqc13

(
c†qc

†
c c3c1 + h.c.

)
.

e first two terms describe the atom with single-particle energies ϵi and interactions Uij
between the levels. We assume there are three levels |c⟩, |v1⟩ and |v2⟩ of s-symmetry involved
in the primary Auger decay, and a fourth level |v3⟩ of p-symmetry involved in an additional
decay. e third and fourth terms of the Hamiltonian give the energies of the continuum
into which an Auger electron is emitted, with the states |k⟩ representing the s-channel and
|q⟩ the p-channel. e two Auger decays are mediated by the terms in the second line,
that for simplicity we will denote by Mk = Ukc12 and Mq = Ukc13. e two highest
valence levels |2⟩ and |3⟩ are coupled via a classical external field with Rabi frequency Ω, a
frequency ω = ϵ3 − ϵ2 and a time-dependence set by f(t).

We study this system in a two-step approach starting from the initial hollow state |1⟩ =
|v1v2⟩, which will decay into the states |k⟩ = |ck⟩ with a lifetime τ1. Similarly, if we
would start from the state |2⟩ = |v1v3⟩ we would find a decay into the states |cq⟩ with
lifetime τ2. We note that due to the form of the interactions, it is possible to reformulate
the dynamics starting from state |1⟩ in a one-particle language (cf. the discussion about the
Wigner-Weisskopf model). e Hamiltonian now takes the form

H =
∑
i

Eini +
∑
k

Eknk +
∑
q

Eqnq + f(t)Ω
(
c†2c1 + h.c.

)
(.)

+
∑
k

Mk

(
c†kc1 + h.c.

)
+

∑
q

Mq

(
c†qc2 + h.c.

)
,

where E1 = ϵ1+ϵ2+U12, E2 = ϵ1+ϵ3+U13 and Ek/q = ϵc+ϵk/q. Since the Hamiltonian
only couples states within the two-particle subspace spanned by |1⟩, |2⟩, |k⟩ and |q⟩, we
can expand the state vector like

|Ψ(t)⟩ = c1(t)e−iE1t|1⟩+ c2(t)e−iE2t|2⟩+
∑
k

ck(t)e−iEkt|k⟩+
∑
q

cq(t)e−iEqt|q⟩. (.)

is allows us to write a closed set of equations for the coefficients c1 and c2 on the form

(i∂t − E1)c1(t) =
∑
k

∫
dt′gk(t− t′)Mkc1(t′) + Ωf(t)c2(t) (.a)

(i∂t − E2)c2(t) =
∑
q

∫
dt′gq(t− t′)Mqc2(t′) + Ωf(t)c1(t), (.b)
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where gk/q(t − t′) = e−iEk/q(t−t′)θ(t − t′) is the non-interacting Green’s function of the
continuum states. In Paper  we wanted to investigate how the presence of external driving
affects the lifetime τ1 of the primary Auger decay, and as discussed further in the next
section, we found that the lifetime can be prolonged by inducing the quantum Zeno effect.

.. Quantum Zeno dynamics

e quantum Zeno effect (QZE) is the quantum mechanical analog of the arrow paradox
put forward by the antique philosopher Zeno of Elea. As a disciple of the philosophic school
of Parmenides, Zeno believed in a static and unchanging world, and meant by his paradoxes
to disprove the concept of motion. e paradox of the arrow is that at any instant where it is
observed, the arrow is at rest, and since at every instant it is at rest, there can be no motion.
e quantum analog of this paradox was first put forward by Misra and Sudarshan [], who
argued that if a quantum system is measured upon frequently enough, its evolution will be
inhibited. In a later analysis of Cook [] an explicit proposal was put forward to measure
the QZE in a slowly driven transition between the ground state and an excited state of an
atom. By simultaneously driving a second transition that rapidly decays back to the ground
state, and in the process emits a photon, a measurement can be performed by observing the
outgoing photon. If the measurement cycle is short compared to the time it takes to drive
the primary transition, this process should slow down in accordance with the QZE. e
protocol of Cook was experimentally realized shortly after in the group of Wineland [],
using Be ions, and indeed a slowdown of the primary transition was observed. Since then
the QZE has also been observed in the tunnel decay of ultracold atomic gases [, ], but
so far not for any naturally occurring decay processes.

e way we expect the QZE to appear in our model of Auger decay is as follows. At the
initial time t = 0, just after photoionization, we subject the system to a pulse of duration
tπ = π/Ω (a so-called π-pulse). After this pulse the probability Pv3 of finding an electron
in the upper valence state |v3⟩ is given by Pv3(tπ) = Pv2(0)Ω

2/(Ω2 + δ2), where δ =
ω − (ϵ3 − ϵ2) is the detuning from resonance and Pv2(0) is the probability that the state
|v2⟩ is initially occupied. At this point, a local projective measurement of the form Γ =
γ|v3⟩⟨v3| can in principle be performed lasting for a time tm. After the measurement,
another π-pulse transfers the electron back to state |v2⟩ with probability Pv2(tπ+tm+tπ) =
Pv2(0)

[
Ω2/(Ω2 + δ2)

]2. Since we consider the case of zero detuning, the final probability
is Pv2(2tπ + tm) = Pv2(0), and the system returns to its original state.

If the system is subjected to a sequence of N measurements equally spaced in an interval
[0,T], this will induce a QZE. For small times the probability evolves quadratically with
t, so at the beginning of the first measurement Pv2(Δt) ≈ 1 − (Δt/τz)2, where 1/τ 2

z =
⟨H2⟩−⟨H⟩2 defines the so-called Zeno time τz. Since the individual measurements preserve
the probability Pv2 , the chance of remaining in the initial state at time T can be written





Figure 5.7: Parameter dependence of the quantum Zeno effect in an Auger decaying atom (left). The circles show the effective
lifetime as a function of intensity I for a system with unperturbed lifetimes τ1 = 100 and τ2 = ∞, as obtained
from the RWA (green) and the full field dynamics for ω = 10 (red) and ω = 3 (blue). The shaded areas show nc
(orange) and n1 as function of time for τ2 = ∞ and within the RWA. The boundaries of these areas correspond to
the decay with no field and with Ω =

√
10 eV. The squares show the same results but with τ2 = 300. The figure to

the right shows the dynamics of nc, n1 and n2 as function of time for atomic Li. The blue curves are for I = 0, the
green curves for I = 5.1 TW/cm2 and the red curves for I = 20.4 TW/cm2. The figures are adapted from Paper .

Pv2(T) = Pv2(Δt)N, which in the limit of infinitely many measurements becomes

Pv2(T) ≈ lim
N→∞

[
1 − (T/Nτz)2]N = e−T2/Nτ 2

z . (.)

For a large number of measurements the survival probability thus decays exponentially, and
for N → ∞ it tends to 1 giving a QZE.

In this argument we have implicitly assumed that the decay of the system can be neglected
during the measurement, which is strictly true only in the limit of an infinite number of
measurements and a stable upper valence level (τ2 = ∞). In the more general case, we
will see a prolongation of the lifetime τ1 that increases with the number of measurements,
and tends to the value τ1 = τ2 in the limit N → ∞. is is shown in Fig. . illustrating
the lifetime τ1 as a function of the square of the Rabi frequency Ω. e Rabi frequency is
proportional to the intensity I of the external field, meaning that higher Rabi frequencies
give a faster measurement cycle. erefore, by tuning the intensity of the laser we can
increase the measurement frequency, and get closer to the QZE regime.

We also applied the QZE protocol to the specific case of atomic Li, by driving the transition
between the configurations 1s2s2 and 1s2s2p with the respective lifetimes τ1 = 17.6 fs and
τ2 = 174 fs. e results are shown in Fig. . for a number of different intensities. e
maximal slowdown observed for the primary decay is about twice the unperturbed value,
for a laser intensity of I = 20.4 TW/cm2. e main reason why it is not possible to
increase the lifetime further in this system, is that the Rabi frequency needed to perform
measurements faster than τ1 soon becomes larger that the transition energy ω = 2.5 eV.
In the strong coupling regime Ω/ω ≈ 1 the execution of the protocol becomes harder,
since the electron is no longer driven between the levels in the smooth fashion predicted by
the rotating wave approximation (RWA). is issue should vanish for systems with longer
Auger lifetimes, since for systems with a lifetime of ps the intensity could be reduced by
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Figure 5.8: Schematic illustration of the charge separation process. In the first step an electron is excited in the donor and an
exciton is created. The exciton then travels to the donor-acceptor interface, where it may dissociate into a spatially
separated electron and hole.

four orders of magnitude. However, already the slowdown observed for Li should be clearly
measurable, either in the time-domain [] or as a narrowing of the spectral linewidth.

. Charge-transfer dynamics

e importance of understanding the basic mechanisms of light harvesting devices, in
which usable energy is extracted through photon absorption, cannot be overestimated. It is
responsible for life in all organic matter and carries the potential to revolutionize our supply
for energy. e process as it occurs in nature is also fascinating due to its high efficiency in
separating the initial photo-induced exciton into electrons and holes []. To understand
the details of the charge-separation process is therefore of great relevance, and has been a
topic of extensive study [, , , , ]. To form an intuitive understanding of the
light harvesting process we can think of it as consisting of three steps, shown in Fig. ..
In the first step an electron is excited from an occupied orbital in the donor system (for
molecules typically the highest occupied molecular orbital, HOMO) to an initially empty
orbital (typically the lowest unoccupied molecular orbital, LUMO) also in the donor. Due
to interactions between the electron and hole they form a bound excitonic state. In the sec-
ond step the exciton is transported to the donor-acceptor interface, and in the third step the
exciton dissociates to create a charge separated state. Once charge separation has occurred,
the electron and hole can be extracted as electric currents and used for power supply.

In realistic systems there are several factors complicating this simplified description of
charge separation, and affect the question of how to increase its efficiency. Firstly, many fea-
tures of the process are system dependent, and involve diverse phenomena such as multiple
charge-transfer excitons [, ], charge delocalization [], nuclear motion [, ]
and disorder [, ]. Which process that will dominate in a given system is difficult to
assess a priori, and therefore it is difficult to carry over results found in one system to an-
other. Secondly, it is believed that part of the reason why the charge separation occurring
in nature is so efficient, is because the systems are vastly complicated []. Starting from the
initial excitation there is a large number of pathways available for the charge separation to
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happen, and through coherent transport the probability that the system finds a way is very
high. However, microscopically simulating these large systems in their entity is typically
out of reach, and it is necessary to focus on the process in a single donor-acceptor molecule.

Due to the complexity of even a single donor-acceptor system it is generally not possible to
treat their dynamics with numerically exact methods. Many studies have therefore relied on
TDDFT for their description, since this allows a first-principle treatment of molecules with
a couple of hundred constituent atoms. Further, TDDFT is in principle able to describe
on equal footing all electronic excitations, such as Frenkel excitons, charge-transfer excitons
and charge separated states, through the solution of the Kohn-Sham equations. It has been
argued in several studies that in order to observe fast charge-separation dynamics in organic
molecules it is necessary to take into account the effects of nuclear motion [, ]. By
using two-dimensional coherent electron spectroscopy the authors could show that the os-
cillations in electron density observed during the charge-separation process was closely cor-
related with the frequency of a molecular vibrational mode. is was further substantiated
by TDDFT simulations that when nuclei were free to move reproduced the experimen-
tally observed charge-separation behavior, while for frozen nuclei gave a vanishing charge
transfer.

It is then interesting to ask if these results are general, or if there are other systems where
charge separation can occur independently of nuclear motion. From studies on atomic
and molecular systems (see e.g. []), it is known that ultrafast oscillations in the electron
density can be driven solely by electron correlation. Further, as noted already in the works
discussed above, it seems that the main effect of nuclear vibrations is to shift the Kohn-Sham
energy levels in time, so that they periodically come into contact with the energy levels of
the acceptor molecule. However, as the exchange-correlation potential vxc is usually taken
within the ALDA, a TDDFT description is unable to account for spatially non-local and
memory dependent effects in the interaction. Since including interaction effects beyond
those contained in the ALDA could be expected to both shift and broaden the single particle
energy levels, it is not unreasonable to think that a similar effect as that induced by nuclear
motion could be obtained from a higher order treatment of electron-electron interactions.

In Paper  we wanted to investigate the role of electronic correlations on the charge-
separation process. We used the NEGF method together with the GKBA and treated
interactions within second order perturbation theory, which is the simplest approxima-
tion going beyond a mean-field treatment (for details see Sec. .). Since we are interested
in the conceptual question of the role of interactions, we studied a prototypical donor-
acceptor system consisting of a donor molecule with two active levels, a HOMO and a
LUMO, coupled to the acceptor molecule C60 [, ]. We also assumed that the exciton
is created at the donor-acceptor interface, so that we can ignore any effects due to exciton
transport. e Hamiltonian we consider is H(t) = Hd + Ha + Hda + He−ph + Hext(t),
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Figure 5.9: Comparison of results using time-dependent Hartree-Fock, non-equilibrium Green's functions with the second-Born
approximation, and the time-dependent density matrix renormalization group method. For these calculations the
C60 molecule is mapped onto a linear chain using the Lanczos method. The effective parameters of the Lanczos
chain are shown in panel (a). The time-evolution of the LUMO density is shown in panel (b), with the time-dependent
driving field in the inset. The figures are adapted from Paper .

where the donor is described by

Hd = ϵHnH + ϵLnL + UHLnHnL. (.)

Here ϵH and ϵL are the energies of the HOMO and LUMO levels respectively, and UHL
the strength of their mutual interaction. e acceptor is treated with a Pariser-Parr-Pople
Hamiltonian [, ]

Ha = −
∑
ijσ

tij
(
c†iσcjσ + h.c.

)
+
∑
i

Vni↑ni↓ +
∑
i ̸=j

λV
ninj√
λ2 + d2

ij

, (.)

and describes a single pz-orbital on each carbon atom. e matrix tij is assumed to describe
nearest-neighbor hopping, with slightly different values for bonds belonging to the same
and different pentagons. e form of the interaction is taken from the parametrization
of Ohno [], and takes into account screening from the s- and p-orbitals not included
explicitly in the description. We assume the molecules to be distant enough that only the
LUMO and the closest carbon atom on the C60 have significant overlap. en the donor-
acceptor interaction is given by

Hda = −tda
∑
σ

(
c†Lσc1σ + h.c.

)
+

∑
i

[UHi (nH − 2) + ULinL] (ni − 1) , (.)

with tda being the strength of the coupling and UHi and ULi the interaction of the donor
orbitals with the C60 levels. e form of the interaction is chosen to vanish in the charge
neutral ground state where nH = 2, nL = 0 and ni = 1. We include electron-phonon
interactions in the Ehrenfest approximation through the Hamiltonian

He−ph =
p2

2M
+

1
2
Mω2

phx
2 + gnLx, (.)
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Figure 5.10: Charge dynamics in NEGF (upper row) and TD-HF (lower row) for the C60 acceptor. In each row, the three time
snapshots depict the excess density in blue for Δn < 0 and in orange for Δn > 0. They respectively correspond
to the time of maximum photo-charging of the LUMO (t = 3.26 fs), the first time the LUMO reaches minimum
density (at t = 9.78 fs for NEGF and t = 6.52 fs in TD-HF) and its later occupation at t = 52.16 fs. The figures are
adapted from Paper .

where x and p are classical variables. In addition M is the nuclear mass, ωph the phonon
frequency and g the electron-phonon coupling. With this approach the equation of motion
for the density matrix has to be solved in conjunction with Newtons equations for the
classical variables.

To test the accuracy of the time-dependent Hartree-Fock (TD-HF) and NEGF approaches,
we benchmarked the calculations towards the numerically exact tDMRG method. Since
this method only works for one-dimensional systems, we mapped the C60 molecule onto
a linear chain using the Lanczos method []. Due to limitations in the tDMRG method
when treating non-local interactions, we restricted to the case of non-interacting C60 and
interactions only between the LUMO level and the first atom in the chain. e linear
chain resulting from the Lanczos method has the parameters shown in Fig. .a, while the
LUMO density is given in Fig. .b. We see that the dynamics coming from tDMRG and
NEGF are in very good agreement, while the TD-HF results are qualitatively different.
is difference can be attributed to the additional correlation effects included in tDMRG
and NEGF as compared to TD-HF.

In our simulations we were able to distinguish between two physical regimes, in which
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Figure 5.11: Evolution of the LUMO density for a system with HF energies on the donor and acceptor close to alignment (left),
and far from alignment (right). The gray curves give the results from NEGF and the green curves those of HF. The
solid lines are with electron-nuclear interaction, and the dashed lines without interaction. The figures are adapted
from Paper .

the electronic correlations play a different role. e first is where the mean-field energy
of the LUMO level is slightly out of resonance with the acceptor levels. In this regime,
the renormalization of the energy levels coming from an inclusion of interactions beyond
the mean-field level is enough to allow for charge transfer between the molecules. is is
illustrated in Fig. . where we use a resonant external field to excite an electron from the
HOMO to the LUMO level, and study the subsequent dynamics of the electron densities.
In Fig. . we show the deviation Δn in density from the ground state value, given by

Δn(r, t) =
∑
ij

[ρij(t)− ρij(0)]φ∗
i (r)φj(r), (.)

as computed with NEGF and TD-HF. In this expression φi is the pz-orbital of the carbon
atom labeled by i. For the dynamics including correlations, we see an initial depletion of
density on the carbon atoms closest to the LUMO, followed by an increase in density due
to charge transfer. After the initial pumping the density oscillates back and forth around a
net value of nL ≈ 0.4, giving a quasi-stable state with a net charge transfer around 60 .
e initial behavior of the mean-field HF treatment is very similar, while the long time
dynamics are quite different. After the initial charge transfer we observe that the LUMO
density as found in HF periodically returns to nL = 1, so the system never reaches a steady
state and there is no net charge transfer. A way to understand this difference is that in
the single-particle HF theory the state space seen by an electron on the LUMO is finite,
and due to the high symmetry of C60 in fact rather small. e electron therefore oscillates
coherently between the states in this finite space, and never thermalizes. In contrast, the
correlated NEGF theory explores the full space of many-body states, which is large enough
for the system to reach a quasi-steady state.

e other physical regime we explored is where the mean-field energy of the LUMO level
is far out of resonance with the acceptor levels. In this case, the correlation effects are not
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enough to induce charge transfer, and nuclear motion becomes essential. is is illustrated
in Fig. ., where we show both a case where nuclear motion is important and one where
it is not. As pointed out earlier, the main effect of the nuclear motion is to renormalize
the LUMO energy in time, so that it is periodically brought into contact with the acceptor
levels. An interesting feature in the regime where nuclear motion is important, is that the
charge transfer predicted by NEGF simulations is lower than that using TD-HF. us the
effects of correlation in this case is quite different. We can understand this from a quasi-
particle picture: Since in HF the quasi-particles have a a sharp energy, or equivalently an
infinite life-time, when the HF LUMO level aligns with an unoccupied acceptor level due
to phononic motion the charge-transfer is extremely efficient. In the NEGF treatment
the quasi-particle weight is broadened over a range of energies, and charge-transfer occurs
whenever spectral densities of the donor and acceptor overlap. As this overlap is always
smaller than unity, only a fraction of the electron charge can be transferred.
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Chapter 

Conclusions and outlook

In this thesis we have discussed a number of physical processes of relevance for ultrafast and
non-linear spectroscopy. In this chapter we summarize the main results of the papers, and
discuss some possible extensions and applications for future work.

In Papers  and  we discussed the importance of electron-electron and electron-nuclear
interactions for the process of desorption, and showed how a lattice treatment of electrons
can be combined with a real-space description of nuclei in order to describe wavepacket
splitting. We found that the desorption probability can be controlled by using a two-pulse
protocol to manipulate the plasmonic response of the system. e exact numerical solution
for a finite system was then compared to an approximate solution for an infinite system
based on NEGF and Ehrenfest dynamics. e comparison was used both to assess the finite
size effects in the exact solution and to benchmark the performance of the approximate
solution. We found a good agreement between the electronic dynamics, while the semi-
classical approximation was unable to describe splitting of the nuclear wavepacket, and
therefore qualitatively failed to describe the nuclear dynamics in the regime of intermediate
desorption yield. We also discussed in Paper  how to construct a current DFT for the
combined electron-nuclear system, and extracted the exact Kohn-Sham potentials for the
system during desorption. ese potential have a highly non-adiabatic structure, with cusps
developing for times in the vicinity of the wavepacket splitting, indicating that a description
based on TDDFT in the adiabatic approximation might be challenging.

In Paper  we calculated the multi-photon absorption rates from InAs nanowires in the
zincblende and wurtzite phase. Our results agree well with experiment and exhibit a strong
dependence on the light polarization for the wurtzite phase. To perform these calculations
we combined electronic structure calculations based on DFT and quasi-particle GW with
an interpolation scheme based on Wannier functions. is allowed us to limit the size of
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the k-point grid for the expensive GW calculations, while still obtaining good precision for
the transition matrix elements. In Paper  we studied charge-separation in a prototypical
donor-acceptor system using NEGF with the GKBA. Being one of the first applications
of the GKBA to large scale molecules, we benchmarked the results towards tDMRG and
found a favorable agreement. We then investigated the effect of electronic correlations on
the charge-separation process: We found that under certain conditions charge-separation
can be driven solely by electronic correlations, while in other circumstances an electron-
nuclear coupling is necessary to facilitate the process.

In Paper  we looked at Auger decay from a model atom, and computed the decay dynamics
both in real-time and in frequency. is allowed us to also introduce an external laser
field driving the atomic system during the decay, and to induce the quantum Zeno effect.
By varying the intensity of the external field, we showed that the original lifetime of the
Auger decay could be increased by about 100  in Li and about 60  in hollow Li+. We
presented evidence that the QZE is stronger in systems with longer lifetimes and larger
transition energies, and that in such systems the QZE can be induced at moderate field
intensities and light-matter coupling. Finally in Paper  we discussed the process of second
harmonic generation in two-level systems. Although parity forbidden in a perturbative
treatment, we showed that a numerically exact solution of a two-level system coupled to
quantum radiation gives a second harmonic signal. is was analyzed in terms of the parity
of the coupled electron-photon states, which mix electronic states of different parity. We
also identified distinct structures in the fluorescence spectrum of the two-level system that
distinguish a semi-classical from a full quantum treatment.

ere are several interesting extensions of this work that could be considered. It would be
of interest to consider multi-photon absorption also from other semi-conductor systems.
For this purpose it would be relevant to combine the computational elements used for our
calculations into a larger framework where such simulations could be automatized. is
would amount to constructing a simple interface between the electronic structure code
(in our context ), the Wannier interpolation post-processing tools (in our context
 and ), and the code calculating the multi-photon rates. Such a package
could be of large interest for experiment. To explicitly account for the field enhancement
due to nanostructure morphology, these calculations could also be combined with the so-
lution of Maxwell’s equations in the specific geometry. Finally, it is not unreasonable to
believe that for many systems surface and interface effects could be of relevance, and there-
fore an extension of the method to take such effects into account could provide further
insight into the multi-photon process.

Another possibility is to take advantage of the numerical speed-up provided by using the
NEGF method together with the GKBA, and study more realistic adsorbate-surface sys-
tems. Based on the results of Papers  and , it seems reasonable that a perturbative treat-
ment of electron-electron interactions on the level of second Born is enough to capture the
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dominant aspects of electron correlations in such systems. To address desorption dynam-
ics in an approximate fashion, it would be necessary to treat in an approximate manner
the splitting of the nuclear wavepacket. For wavefunction based methods there are sev-
eral routes available for this purpose, such as surface hopping algorithms and semi-classical
treatments based on an exact factorization of the electron-nuclear wavefunction. To find a
similar approach within Green’s function theory would be both an interesting and impor-
tant development. On the electronic side a GKBA treatment would allow to take explicitly
into account the two-dimensional character of the surface. is would give the opportunity
to address the effects on electronic and nuclear dynamics of different adsorbate positions
relative to the surface (on top, bridge and centered). It would also open the possibility
to study Auger decay from adsorbates, and assess the surface’s effect on lifetimes and line-
shapes.

A related possibility is to study more realistic donor-acceptor systems, where both molecules
are explicitly treated in some tight-binding approximation. is would allow to target more
specific systems, and identify molecules where electron correlations play a substantial role.
As an additional ingredient, the NEGF treatment also allows to attach the donor-acceptor
system to external baths, and so to effectively model the chemical environment. is could
potentially have a large effect on the charge-separation behavior, both due to a reduction
of image charge effects and due to additional decoherence.

e predictions of a quantum Zeno effect in atomic Auger decay would be very interesting
to test in experiment. Even though the systems we have considered so far are not ideal
candidates for such an experiment, the increase in lifetime both in Li and Li+ should be
clearly measurable. ere are however systems where the Auger lifetime is on the order
of nano- or even microseconds, which would allow for an experiment to be performed
at much lower intensity than suggested in the paper. Similarly the quantum signatures in
fluorescence signals from second harmonic generation would be interesting to investigate in
experiments. is would require a strong light-matter coupling, that can be achieved either
by using intense radiation such as a free electron laser, or by considering a semi-conducting
effective two-level system.

In a more general sense, the theoretical modeling of ultrafast processes poses a number of
interesting challenges for the future. To address non-adiabatic dynamics in systems of real-
istic size, a promising way forward seems to be to combine elements of different theories in
order to make use of their different strengths. One such example is the hybrid DFT-NEGF
introduced in [], that combines the non-local and memory dependent perturbative self-
energy of NEGF with the local non-perturbative exchange-correlation potential of DFT. A
similar route could be considered by combining a perturbative non-local self-energy with
a local non-perturbative self-energy from dynamical mean-field theory. A different way to
combine methods is to partition a system in such a way that various parts are described by
different levels of approximations. As an example, an adsorbate-surface could most likely
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be described by treating the region close to the adsorbate using a higher order approxima-
tion while the region further away is treated in a more simplified manner. is would allow
for numerically efficient simulations while retaining a detailed description of the most im-
portant parts of the system. Finally we note that hybrid methods could be valuable also for
the study of magnetic systems, since magnetism arises from a competition of the Pauli prin-
ciple and strong correlations. To study such systems with the Green’s function method is
both within reach and of interest to a large number of experiments. Among other things, it
would allow for a microscopic simulations of spin dynamics and time-dependent magnetic
response.
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Appendix A

Matrix structure in exact
diagonalization

We now give a brief description of the structure of the Hamiltonian matrix, as used in our
numerical implementation. Given the many-body basis discussed in the section ., we
want to order the states in such a way as to keep the non-zero matrix elements of H as close
as possible to the diagonal. In general the matrix H will have a block form (see Fig. A.),
and since the electronic matrix He is typically more dense than He−b and He−n, we want to
limit the size of the blocks corresponding to He. is is achieved by the following ordering
procedure, where we start by fixing the bosonic states to their lowest values nki = 0 and
n = 1:

. Run through all electronic states. is gives the first Ne basis states |l⟩.

. Update ki = ki+1 and repeat step , until ki = Nki . is gives the first Ne
∏i

j=1 Nkj
basis states |l⟩.

. Update i = i + 1 and repeat steps  and , until i = K. is gives the first NeNb
basis states |l⟩.

. Update n = n+ 1 and repeat steps ,  and , until n = Nn.

An example of the Hamiltonian matrix for a single boson mode (K = 1) with diagonal
electron-boson coupling gijk = gδij is given in Fig. A.. Here the size of the shaded blocks is
Ne, corresponding to the size of He. Due to the form of the electron-boson coupling, this
particular ordering of the basis gives Hij = 0 for |i − j| > 2Ne. Also in the general case,
the non-zero elements of H will be confined to lie along the diagonal.
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Figure A.1: The Hamiltonian matrix H = He + He−b for a single boson mode with diagonal coupling gijk = gδij and a cutoff

Nk1 = N.
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Appendix B

TDDFT for lattice electrons and
nuclei

Consider a system of n interacting electrons on a lattice coupled to N interacting nuclei,
described by the collective coordinates r = {r1, . . . , rn} and R = {R1, . . . ,RN} where
ri = (ri, σi) and Ri = (Ri, ζi) includes both position and spin. For a Hubbard type
system the Hamiltonian is written

H =
∑
i,σ

Uni,σni,−σ +
∑
ij,σ

(
Text
ij (t)c

†
i,σcj,σ + h.c.

)
+

∑
i

[
P2

i
2m

+ Vext
n (Ri, t)

]
(B.)

+
∑
ij

V(Ri,Rj) +
∑
ij,σ

Hint
ij (R)

(
c†i,σcj,σ + h.c.

)
,

where the electrons can move on a lattice with M sites x = {x1, . . . ,xM} under the action
of the operators ci and R = (R1, . . . ,RN). e state of the system is uniquely determined
from the Schrödinger equation once we specify the two external fields Text

ij and Vext
n as well

as the initial state |ψ0⟩. Using the lattice basis for the electrons and the position basis for
the nuclei the Schrödinger equation is explicitly given by

i
∂

∂t
ψ(r,R, t) =

∑
ij

Uδri,rjδσi,−σj +
∑
i

(
− 1

2m
∇2

Ri + Vext
n (Ri, t)

)
(B.)

+
∑
ij

V(Ri,Rj)

ψ(r,R, t) +∑
ij

[
Hint

ij (R) + Text
ij (t)

]
ψ({ri → rj},R, t),

where the sum in the last line is over all possible configurations of the electrons originally
at r = (r1, . . . , rn) that can be reached by moving a single electron. Given the wavefunc-
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tion at time t we generalize the complex electronic current of [] and define the nuclear
probability density [] by

Qσ
ij (t) = Text

ij (t)ρ
σ
ij (t) + ρ̃σij (t) (B.a)

Γ(X, t) =
∑
r

∫ N∏
i=2

dRi |ψ(r,X,R2, . . . ,RN, t)|2, (B.b)

where the sum over ri and integral over Ri are assumed to include a sum over the spins
σi and ζi respectively. e variable X is used to denote the single nuclear coordinate not
integrated over. e element ρσij (t) of the density matrix for the link between sites xi and
xj and the quantity ρ̃σij (t) are defined by

ρσij (t) =
∑

r2,...,rn

∫
dRψ∗(xiσ, r2, . . . , rn,R, t)ψ(xjσ, r2, . . . , rn,R, t) (B.a)

ρ̃σij (t) =
∑

r2,...,rn

∫
dRHint

ij (R)ψ∗(xiσ, r2, . . . , rn,R, t)ψ(xjσ, r2, . . . , rn,R, t). (B.b)

e solution of the Schrödinger equation provides the wavefunction at each t ≥ t0 and
so gives a unique a mapping {ψ0,Text

ij ,Vext
n } → {ψ,Qij,Γ(X)}, where Qij and Γ(X)

are respectively the spin averaged electronic current and nuclear density. To define a cur-
rent density functional theory (CDFT) for this system we want to prove the existence and
uniqueness of the inverse mapping, which is done below.

To simplify notation in the following we assume R = {Xζ,R2, . . . ,RN}. Taking the
derivative of the nuclear probability density with respect to time, and using the Schrödinger
equation, we find

∂Γ(X)

∂t
=

∑
rζ

∫ N∏
i=2

dRi
[
ψ∗(r,R)

∂ψ(r,R)
∂t

+
∂ψ∗(r,R)

∂t
ψ(r,R)

]
(B.)

=
∑
rζ

∫ N∏
i=2

dRi
∑
j

[
i

2m
ψ∗(r,R)∇2

Rjψ(r,R)−
i

2m
∇2

Rjψ
∗(r,R)ψ(r,R)

]

=
∑
rζ

∫ N∏
i=2

dRi
[

i
2m

ψ∗(r,R)∇2
Xψ(r,R)−

i
2m

∇2
Xψ

∗(r,R)ψ(r,R)
]

=
∑
rζ

∫ N∏
i=2

dRi
1

2m
∇X [iψ∗(r,R)∇Xψ(r,R)− i∇Xψ

∗(r,R)ψ(r,R)]

= − 1
2m

∇X

∑
rζ

∫ N∏
i=2

dRi Im [ψ∗(r,R)∇Xψ(r,R)] .
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From the first to the second row we have used the Schrödinger equation and the fact that
all terms in the Hamiltonian cancel when the two terms are added, except for the kinetic
energy. From the second to third row we have integrated by parts to get zero for all variables
except X. We now take the second time derivative of Γ which gives

∂2Γ(X)

∂t2
= − 1

2m
∇X

∑
rζ

∫ N∏
i=2

dRi Im
[
ψ∗(r,R)∇X

∂ψ(r,R)
∂t

+
∂ψ∗(r,R)

∂t
∇Xψ(r,R)

]

=− 1
2m

∇X

∑
rζ

∫ N∏
i=2

dRi Im
[

i
2m

∑
j

(
ψ∗(r,R)∇X∇2

Rjψ(r,R)−∇2
Rjψ

∗(r,R)∇Xψ(r,R)
)

− i∇XVext
n |ψ(r,R)|2 − i

∑
jk

∇XV(Rj,Rk)|ψ(r,R)|2

− i
∑
jk

∇XHint
jk (R)ψ∗(r,R)ψ({rj → rk},R)

]

=− 1
2m

∇X

∑
rζ

∫ N∏
i=2

dRi Im
[

i
2m

∇X

(
∇Xψ

∗(r,R)∇Xψ(r,R)− ψ∗(r,R)∇2
Xψ(r,R)

)
− i

∑
jk

∇XV(Rj,Rk)|ψ(r,R)|2 − i
∑
jk

∇XHint
jk (R)ψ∗(r,R)ψ({rj → rk},R)

]
+

1
2m

∇X (Γ(X)∇XVext
n (X))

=
1

2m
∇X [F(X) +H(X)] +

1
2m

∇X [Γ(X)∇XVext
n (X)] (B.)

In the first row we have used the Schrödinger equation to replace the time derivatives,
and only included the terms that don’t cancel in the sum of the two terms. Next we have
integrated by parts all derivatives that are not with respect to X, and used the fact that only
the part of Vext

n depending on X survives and can be taken out of the integral. Lastly we
have collected all terms diagonal in the electronic coordinates in the function F and called
the remaining term H. ese are explicitly given by

F(X) =
∑
rζ

∫ N∏
i=2

dRi Im
(

i
2m

∇X

[
ψ∗(r,R)∇2

Xψ(r,R)−∇Xψ
∗(r,R)∇Xψ(r,R)

]
+ i|ψ(r,R)|2

∑
jk

∇XV(Rj,Rk)

)
(B.)

H(X) =
∑
rζ

∫ N∏
i=2

dRi Im

i
∑
jk

∇XHint
jk (R)ψ∗(r,R)ψ({rj → rk},R)

 (B.)
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As will be discussed in more detail below we can in the case where these functions are as-
sumed to be continuous in X solve Eq. B. for the external potential Vext

n , which defines
a functional Vext

n [ψ,Γ] of the instantaneous wavefunction and the nuclear probability den-
sity. Also the equation defining the complex electronic current can be inverted to give the
external field Text

ij as a functional of the current and the wavefunction, Text
ij [ψ,Qij]. Using

these functional expressions in the Schrödinger equation we obtain a non-linear equation
[] of the form

i
∂

∂t
ψ(r,R, t) = H[Q,Γ, ψ]ψ(r,R, t). (B.)

To show that this equation has a unique solution we follow the argument in [] and
split the Hamiltonian into two parts where the second carries all time dependence, H(t) =
H0+H1(t). With this separation we can use the method of integrating factor to reformulate
the non-linear Schrödinger equation as an integral equation of the general form

u(t) = w(t, t0)u(t0) +
∫ t

t0
dsw(t, s)Ks(u(s)), (B.)

where in our case the propagator isw(t, s) = e−iH0(t−s) and the kernelKs(u(s)) = H1(s)u(s).
e general theory of PDE guarantees the existence of a unique solution to this equation
as long as w(t, s) and Ks(u(s)) are continuous functions of time and Ks(u(s)) is locally Lip-
schitz in the argument u. ese conditions are obviously satisfied for w, and will hold for
K as long as the functional dependencies of the external fields Text

ij and Vext
n on Q and Γ are

well defined and continuous in time []. From the relation

Text
ij (t) =

Qij(t)− ρ̃ij(t)
ρij(t)

(B.)

we see that the condition |ρij(t)| ̸= 0 is sufficient for Text
ij [ψ,Qij]. To see if we need to

impose any further restrictions we invert Eq. B. for the field Vext
n and integrate from −∞

to X to obtain

Γ(X)∇XVext(X) =F(X) +H(X)− 2m
∫ X

−∞

∂2Γ(Z)

∂t2
dZ, (B.)

where we have used that Γ,F and H vanish at −∞. is equation has a continuous solution
as long as |Γ(X)| ̸= 0 and Γ̈(X) is continuous. We thus arrive at the following theorem:

eorem (Existence of TDCDFT for electron-nuclear system). Let Qij(t) be a complex
continuous function of time and Γ(X, t) be a continuous function with a continuous second
derivative with respect to time. Further let Ω be a subspace of the Hilbert space where |ρij(t)|
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and |Γ(X)| are strictly positive. Given an initial state ψ0 of the system such that Qij(t) and
Γ(X, t) can be found from Eq. B., there is an interval around t0 where the equation

i
∂

∂t
ψ(r,R, t) = H[Q,Γ, ψ]ψ(r,R, t).

has a unique solution ψ ∈ Ω, and so there exists a unique mapping {ψ0,Qij,Γ(X)} →
{ψ,Text

ij ,Vext
n }. If the solution is not global in time, it has reached the boundary of the region

Ω, meaning either |ρij(t)| or |Γ(X, t)| have become zero.

Proof. e existence of a local solution follows from the argument above the theorem. at
the breakdown of a solution is due to its approach of the boundary of Ω follows from the
general theorem saying that either this is the case or the solution has become unbounded.
Since the wavefunction is normalized at all times, it is always bounded, so only the first
option is left.

Since the argument above is independent of the structure of the electron-electron and
nuclear-nuclear interaction, it carries through also when both these are put to zero. If
it is possible to find a non-interacting state ψ0 that gives the correct ground state complex
electronic current and nuclear probability density, the theorem therefore guarantees at least
locally the existence of a time-dependent Kohn-Sham system.
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