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Introduction

One of the long-standing aims in robotics research is the development of
algorithms for autonomous navigation. A popular class of such algorithms
are the ones concerned with so called imultaneous ocalisation andap-
ping (SLAM), in which a mobile platform, equipped with an array of suit-
able sensors (laser scanners, cameras, odometers, sonar, …), explores and
maps the surrounding environment while keeping track of its own location
with respect to the map. If the navigation relies mainly on integrating local
motion estimates from cameras, as is the case in this work, a more specific
term that is used is isual dometry (VO).

In this thesis, we will consider how to estimate the local robot motion
based only on information from a single camera. e problem of how to
represent efficiently the map is not addressed, and we thus only deal with
one part of the SLAM problem. e thesis contains the papers

A Planar Motion and Hand-Eye Calibration Using Inter-Image Homo-
graphies from a Planar Scene (Wadenbäck and Heyden, 2013),

B Ego-Motion Recovery and Robust Tilt Estimation for Planar Motion
Using Several Homographies (Wadenbäck and Heyden, 2014b),

C Trajectory Estimation Using Relative Distances Extracted from Inter-
Image Homographies (Wadenbäck and Heyden, 2014a).

Paper A introduces a method for estimating the pose and motion of
a camera which undergoes planar motion. is method is based on an
explicit parametrisation of the inter-image homographies and an iterative
scheme for determining the pose and motion of the camera. Experiments
on both real and synthetic data are used to evaluate the method.

Paper B extends the method in Paper A by using more than one ho-
mography in the estimation of the camera pose, and thereby improves the
accuracy and greatly reduces the number of breakdown cases. e evalu-
ation in this paper is done only on synthetic data.
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INTRODUCTION.

e motion estimation approach in Paper A and Paper B relies on the
pose to be estimated first, and if this estimate is inaccurate, the motion es-
timation suffers. Because of this, we wanted to derive a motion estimation
method which is independent of the pose estimation. Paper C tries to ad-
dress this issue by devising a method for estimating the travelled distance
between two camera positions. We show how the travelled distance may
be expressed in terms of the condition number of the inter-image homo-
graphy. Some sensitivity analysis is conducted on synthetic data for this
method.

1 Simultaneous Localisation and Mapping
Autonomous navigation for robots is an important concept which has at-
tracted increasing interest over the years. e applications of mobile robots
are numerous, and include (to name just a few) flexible assembly lines, ro-
botic vacuum cleaners, logistics applications, search and rescue operations,
and planetary exploration. A common framework that has proven success-
ful for enabling autonomous navigation is imultaneous ocalisation and
apping (SLAM), in which the robot makes use of various sensors to map
the surrounding environment and at the same time position itself within
this map. e map created in the process should mark notable objects and
landmarks in a way which allows for reliable re-identification. e type of
map that can be created is highly dependent on the kinds of sensors em-
ployed and on the environment being mapped, and can range from sparsely
placed points to dense and detailed textured 3D models.

Much of the early work on SLAM was focused on sensors such as laser
range finders and wheel encoders (odometers), but with improvements in
digital cameras and computational power, more and more SLAM systems
rely (at least partly) on cameras for navigation. Among the well-known
implementations of camera-based SLAM is the pioneering work by Harris
and Pike (1988), in which filtering and estimation techniques were used
to estimate the camera position over a short image sequence. More recent
successful approaches include the vSLAM system (Karlsson et al., 2005)
and the MonoSLAM system (Davison et al., 2007), which both represent

2



2. PARAMETER ESTIMATION

probabilistic viewpoints based on xtended alman ilters (EKF).
If the robot motion is somehow constrained, this may be taken into ac-

count in order to decrease the uncertainty in the estimated position. For the
application in this thesis, the camera motion is constrained to a plane par-
allel with a planar floor. In that respect, our work resembles other SLAM
systems such as Liang and Pears (2002) and Hajjdiab and Laganière (2004),
which also navigate using images of the floor.

2 Parameter Estimation
An ever-occurring problem in mathematics and its applications is the prob-
lem of estimating a set of parameters detailing some mathematical model.
e field of estimation is immense, and we will only scratch the surface of
estimation in this short overview.

In our formulation, we assume that y ∈ R depends on x ∈ Rn as

y = f (x;β), (1)

where f comes from some predetermined1 class of functions specified by
the unknown (but constant) parameter vector β ∈ Rp. e problem is to
find, given some data {(xj, yj)}Nj=1, a parameter vector β which agrees well
with the model (1) and the provided data.

Occasionally it is possible to find a parameter vector β for which yj =
f (xj;β) for all j = 1, . . . ,N, but in most practical cases one has to tolerate
some discrepancies ej = yj− f (xj;β). In such cases, it is often useful to try
to minimise (with regards toβ) some kind of cost function2, which produces
a scalar measure of the size of the errors ej.

1In general, the class which f comes from is not predetermined, and the selection of it
is one of the most important steps in the whole modelling process, but in this discussion
we shall assume that this has already been done for us. It should be mentioned in passing
that this class should be chosen flexible enough to be able to capture the behaviour we try
to model, yet simple enough to enable the estimation of β.

2Another common method, which we will not consider here, is the so called ax-
imum ikelihood (ML) estimation method. Instead of minimising a cost function, one
tries to find parameters which maximise the likelihood of the obtained observations.

3



INTRODUCTION.

ere are many cost functions to choose from, but one of the most
popular ones is the sum of squared errors,

ELS(β) =
1
2

N∑
j=1

( yj − f (xj;β))2 =
1
2

N∑
j=1

e 2
j , (2)

which gives rise to a so called least squares (LS) problem.
One of the reasons for the popularity of the least squares approach

is that if the function f is differentiable (considered as a function of β),
then ELS also becomes differentiable. is makes it tractable for numer-
ical optimisation methods such as the Gauß-Newton algorithm and the
Levenberg-Marquardt method. For the details of these algorithms, see
Hartley and Zisserman (2004, App. 6). Note, however, that (2) will be
non-convex for most choices of f, and for non-convex cost functions there
is no guarantee that the optimisation ends up at the global optimum.

2.1 Robust Estimation using RANSAC
With the cost function (2), samples with large errors are assigned a very
large penalty, and the optimisation thus prefers to decrease a large error at
the expense of increasing many of the smaller errors. For various reasons
(incorrect data association, bad equipment, human error, …) it may hap-
pen that some (or even most) of the measurements (xj, yj) fit the model
extremely poorly, no matter what parameters are chosen. As just noted,
this means that those bad samples give rise to large error terms, which in
turn means that they have an unduly large influence on the estimated β. A
better estimate of β might be obtained if one ignored those bad samples.

One way to address this issue was presented by Fischler and Bolles
(1981). ey proposed a framework termed RAdom SAmple onsensus
(RANSAC), in which the data is partitioned into so called inliers, which
agree with the model, and outliers, which do not agree with the model.

eir idea was to repeatedly fit the model to a small random subset
of the data and count the number of apparent inliers for this choice of
parameters. After repeating this a suitable number of times, one takes the
partition with the most number of inliers found so far and fits the model

4



3. THE PINHOLE CAMERA MODEL

Input: Model y = f (x;β), data {(xj, yj)}Nj=1, threshold δ
Output: β fitted to the largest set of inliers

1: for j = 1, . . . ,K do
2: Select a small (minimal) random subset of the data
3: Estimate β from the selected subset
4: Count the number of samples for which |y− f (x;β)| < δ
5: end for
6: Estimate β from the largest found set of inliers

Algorithm 1: The RANSAC framework is useful when estimating model

parameters from noisy or corrupted data.

to the set of inliers for this partition. Intuitively, if a subset of the data is
chosen which only contains true inliers, the other true inliers should also
appear to be inliers. If, on the other hand, some of the selected samples are
not true inliers, then only a small number of samples will by chance appear
to be inliers. Algorithm 1 shows the general procedure.

To use RANSAC, it is necessary to somehow determine the threshold
δ deciding if a sample is an inlier, as well as the number of iterations K to
run. To select δ requires some knowledge of how large errors one should
expect, and the number of iterations K depends on the size of the selected
subset as well as the fraction of true inliers in the data.

3 e Pinhole Camera Model
In this section we shall briefly describe the classic pinhole perspective cam-
era model. A much more detailed discussion and derivation may be found
in Hartley and Zisserman (2004, Ch. 6). For notes on how to compensate
for lens distortions, which we will skip here and henceforth simply assume
to have been done, see Hartley and Zisserman (2004, Sec. 7.4).

Intuition about the geometrical situation may be drawn from the ideal-
ised physical model of image formation shown in Figure 1. Introduce an
orthonormal coordinate system in which the focal point (called the cam-
era centre) of the camera is at the origin, and in which the image sensor

5



INTRODUCTION.

..

z = −f

.

z = f

.

( f X/Z, f Y/Z, f )

.

(X,Y,Z )

.

x

.

y

.
z

Figure 1: An idealised model of the image formation process. Light is

emitted from the object and passes through the focal point, giving rise

to an inverted image on the image plane z = −f.

lies in the plane z = −f. Suppose an object in front of the camera emits
light, which passes through the focal point an falls onto the sensor, creating
an inverted (horizontally as well as vertically flipped) image of the object.
To mathematically undo the inverting is equivalent to moving the image
sensor to the front of the camera, at z = f (which we shall call the im-
age plane). e line which is perpendicular to the image plane and passes
through the camera centre (here the z-axis) is termed the optical axis, and
its intersection with the image plane is called the principal point.

By considering similar triangles, it is seen that the scene point (X,Y,Z )
is projected onto the image plane at ( f X/Z, f Y/Z, f ). Here it is clear that
we may omit the third coordinate, and thus the camera induces a mapping
from scene points (X,Y,Z ) to image points, which may be written as

(X,Y,Z ) 7−→ ( f X/Z, f Y/Z ). (3)

By using homogeneous coordinates, where every scene point (X,Y,Z ) is rep-
resented by the four-dimensional ray (WX,WY,WZ,W ), and every image
point (x, y) is represented by the three-dimensional ray (wx,wy,w), the

6



3. THE PINHOLE CAMERA MODEL

camera mapping (3) may conveniently be expressed using matrices asf Xf Y
Z

 =

 f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 . (4)

In some cases, it is more natural to work with pixel coordinates instead
of the abstract image coordinates obtained by the mapping (3). Changing
to pixel coordinates means scaling the x-coordinate with a factor dx and the
y-coordinate with a factor dy (typically dx ≈ dy since pixels often are almost
square), and moving the origin to one of the corners (usually the upper left
corner). Defining fx = dx f and fy = dy f, the mapping to pixels is given by{

x = fx X/Z+ cx
y = fyY/Z+ cy

, (5)

where (cx, cy) are the pixel coordinates of the principal point. e camera
mapping to pixel coordinates becomes3xZyZ

Z

 =

fx 0 cx 0
0 fy cy 0
0 0 1 0



X
Y
Z
1

 . (6)

We often want to work with a global coordinate system which is not
necessarily aligned with the camera coordinate frame. Supposing the cam-
era has coordinates t = (tx, ty, tz) in this global coordinate frame and is
rotated by the rotation matrix R, the mapping from global coordinates to
pixels will be given by

λ

xy
1

 = KR [I | −t]


X
Y
Z
1

 . (7)

3Sometimes it is also necessary to introduce a skew parameter, accounting for non-
rectangular pixels. We do not model this here.

7



INTRODUCTION.

Here the camera calibration matrix K contains the intrinsic parameters of
the camera (the principal point (cx, cy) and the focal lengths fx and fy),

K =

fx 0 cx
0 fy cy
0 0 1

 . (8)

e matrix
P = KR [I | −t] (9)

is often called the camera projection matrix.

4 Homographies
e concept of a homography is a central theme throughout this thesis. For
our purposes,4 a homography may be defined as a bijective linear trans-
formation on homogeneous coordinates (in the plane). is means that
every homography may be represented by a non-singular 3× 3-matrix H,
which is determined up to scale. To have a unique representation, one may
require that ∥H ∥ = 1 (for some matrix norm).

One important property of the pinhole camera model is that if the
scene points all lie in a plane5 (as they do in the application described in
this thesis), the coordinate transformation from one image to another will
be given by a homography. With exception for certain degenerate cases,
the homography is uniquely determined if one knows how it transforms
four points.

e papers included in this thesis all describe algorithms which use
homographies as input. It is briefly mentioned in the papers that these
homographies can be obtained from the images, but the procedure is not
explained. Here we will try to convey the idea behind the basic method of
homography estimation.

4Homographies may be defined for arbitrary projective spaces. Projective spaces is a fas-
cinating subject which unfortunately is outside the scope of this thesis, but the interested
reader should definitely look up Busemann and Kelly (1953).

5is plane may not contain the camera centre.

8



4. HOMOGRAPHIES

4.1 Homography Estimation
In this section we will assume that we have a number of point correspond-
ences xj ↔ x̂j, where xj = (xj, yj, 1) and x̂j = (x̂j, ŷj, 1) are homogeneous
coordinates measured in each of the images. Such point correspondences
may be found either by manually marking corresponding points in each
image, or by automatically associating feature points found by methods
such as SIFT (Lowe, 2004) or other similar approaches.

If the correspondences are found automatically, there are potentially
many false associations, and it will then be necessary to use a robust frame-
work such as RANSAC (see Section 2.1). It is common to use the irect
inear ransformation (DLT) together with RANSAC, and then at a final
stage use the obtained homography as an initial solution to minimise the
geometric error (Section 4.1.2) for the obtained set of inliers. e reason
for doing it in two steps is that the minimisation of the geometric error is
a very complicated problem which cannot be solved without a good initial
solution.

4.1.1 Direct Linear Transformation (DLT)

e Direct Linear Transformation works by setting up and solving a linear
system of equations for the elements ofH. e aim is to find a 3×3-matrix
H such that

ŵjx̂j = Hxj, j = 1, . . . ,N, (10)

for some arbitrary scalars ŵj, or equivalently,

x̂j ×Hxj = 0, j = 1, . . . ,N. (11)

If we let hTk denote row k in H, then (11) may be written as

0 = x̂j ×Hxj =

 ŷjh
T
3 xj − hT2 xj

hT1 xj − x̂hT3 xj
x̂hT2 xj − ŷhT1 xj

 =

ŷj xTj h3 − xTj h2

xTj h1 − x̂xTj h3

x̂xTj h2 − ŷxTj h1

 , (12)

9



INTRODUCTION.

which may be turned into a system of linear equations with three equations
and nine unknowns, 0 −xTj ŷj x

T
j

xTj 0 −x̂xTj
−ŷxTj x̂xTj 0


︸ ︷︷ ︸

=Mj

h1
h2
h3

 = 0. (13)

By stacking the Mj into a 3N × 9-matrix6 M, the homography H may be
found as the null space ofM. e null space ofMmay be found numerically
using the ingular alue ecomposition (SVD).

4.1.2 Geometric Error

An objection which may rightly be raised against the DLT estimate de-
scribed in Section 4.1.1 is that it does not directly relate to actual distances
as measured in the images, but rather to some abstract algebraic measure
of fitness of the model.

One way to refine the homography estimate obtained via DLT is to de-
termine a homography H as well as a number of geometric corrections to the
points, and minimise these geometric corrections. More precisely, we want
to find corrections (∆xj,∆yj) and (∆x̂j,∆ŷj) along with a homography H
which maps (xj+∆xj, yj+∆yj) exactly to (x̂j+∆x̂j, ŷj+∆ŷj), minimising

E =
N∑
j=1

∆x 2
j +∆y 2

j +∆x̂ 2
j +∆ŷ 2

j . (14)

e minimisation of (14) is not a convex problem, and the number
of variables is typically quite large. Approaching this problem without a
reasonable initial solution, such as one found using the DLT approach, is
not practicable.

6e rows in Mj are linearly dependent, and it is actually sufficient to only use two
rows from each Mj. is reduces the size of M to 2N× 9, and gives a performance gain.

10



5. CLOSING AND FUTURE WORK

5 Closing and Future Work
e SLAM problem consists of a mapping component as well as a compon-
ent for estimating location and motion, and it has been demonstrated that
both parts are important for achieving accurate navigation over longer dis-
tances. e papers in this thesis focus on the motion estimation part, and
the approach taken is to estimate motion parameters from homographies,
which in turn have to be estimated from images of the floor. While this
approach works well locally, it exhibits notable error accumulation over
longer distances.

In the future, one natural way to improve performance over longer dis-
tances would be to also consider the map building. is could be formu-
lated as a large estimation problem where parameters describing the map
(such as the landmark positions) are estimated along with the motion para-
meters. is offers many interesting challenges, such as how best to repres-
ent the map and how to handle the growing parameter space.

Another interesting direction for future investigations would be to in-
corporate other sensors into the motion estimation. e research area con-
cerned with combining sensor data in order to improve estimation accuracy
is called ensor usion, and this has become a very active area of research
as of late.
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Planar Motion and Hand-Eye Calibration Using
Inter-Image Homographies from a Planar Scene

M W  A H
entre forathematical ciences, und niversity

Abstract: In this paper we consider a mobile platform performing par-
tial hand-eye calibration and Simultaneous Localisation and Mapping
(SLAM) using images of the floor along with the assumptions of planar
motion and constant internal camera parameters. e method used is
based on a direct parametrisation of the camera motion, combined with
an iterative scheme for determining the motion parameters from inter-
image homographies. Experiments are carried out on both real and
synthetic data. For the real data, the estimates obtained are compared
to measurements by an industrial robot, which serve as ground truth.
e results demonstrate that our method produces consistent estimates
of the camera position and orientation. We also make some remarks
about patterns of motion for which the method fails.

1 Introduction
e development of algorithms for Simultaneous Localisation and Map-
ping (SLAM) has been a major focus in robotics research the past few dec-
ades. Such algorithms aim at enabling a mobile platform to explore and
map its surroundings, while at the same time maintaining accurate know-
ledge of its position. Many types of sensors may be used to this end, and
are often combined to supplement each other.

For the mapping part of SLAM, a reconstruction (broadly interpreted)
must be created from the scene. For some work on SLAM using visual
sensors, see for example Davison (2003), Karlsson et al. (2005) and Koch
et al. (2010). Scene reconstruction from images is a well studied problem
in computer vision, and is still a very active research area. Since the intro-
duction of the fundamental matrix in Faugeras (1992) and Hartley (1992),
epipolar geometry has been the foundation of many successful approaches
to visual reconstruction.
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However, a planar or near-planar scene is well known to be a degenerate
or ill-conditioned case for reconstruction based on the fundamental matrix
and similar approaches. Since planar scenes and objects are very common
in man-made or indoor environments, a navigation system intended to
operate in such environments must take care to avoid degeneracy. Planar
homographies, on the other hand, are particularly well suited to planar
scenes, but are unable to describe general 3D structure. is insight has
been utilised for visual navigation in Liang and Pears (2002) and Hajjdiab
and Laganière (2004), among others.

In this paper we shall consider a single camera, with square pixels and
zero skew, moving at a constant height above the floor. We will further
assume that the internal parameters of the camera are constant, and that
the camera orientation is fixed except for a rotation about the normal to
the floor plane. Using inter-image homographies not only avoids the de-
generacy issue mentioned above, but in addition allows us to use an explicit
parametrisation of this particular kind of camera motion.

In the case where the inter-image homographies describe a Euclidean
(or, in general, an affine) transformation, the motion parameters are easily
recovered using the QR decomposition. is happens when the image
plane is parallel to the floor. In the presence of a tilt, however, it is not as
straightforward to extract the motion information from the homographies.
e main contribution of this paper is a method to compute both the tilt
and the motion information from a single homography.

Another reason for estimating the tilt is that only rectified images may
be stitched consistently into a mosaic. A visual navigation system based on
a sparse feature based map of the floor plane also needs rectified images to
construct the map. It is in general not trivial to mount a camera with very
high precision, so avoiding the need for this would be useful.

Determining the tilt can also be seen as a partial hand-eye calibration.
e original formulation of the hand-eye calibration problem was to re-
cover the relative orientation between a robot arm and a camera mounted
on the arm. Tsai and Lenz showed that with known 3D feature points,
known motion of the robot arm, and known transformations A and B,
the unknown relative orientation X can be determined from the equation
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AX = XB (Tsai and Lenz, 1989). e problem was later reformulated us-
ing quaternions to parametrise rotations and 3×4 camera matrices instead
of classical transformation matrices (Horaud and Dornaika, 1995).

2 Camera Parametrisation
We assume that the camera is mounted rigidly onto a mobile platform, and
directed towards the floor. is means that the position and orientation of
the camera can be parametrised by a translation vector t = (tx, ty, tz) and
a rotation in the floor plane of an angle φ. e tilt is described by the
constant angles ψ and θ. Both the translation and the three angles will be
estimated. e camera is assumed to move in the plane z = 0, and the
ground plane is taken to be at z = 1. is is not a restriction, since it only
reflects our choice of the world coordinate system and global scale fixation
(corresponding to the unknown focal length).

We will consider two consecutive images, A and B, with associated cam-
era matrices

PA = Rψθ[I | 0],
PB = RψθRφ[I | −t].

(1)

Here Rψθ is a rotation of θ around the y-axis followed by a rotation of ψ
around the x-axis, and Rφ is a rotation of φ around the z-axis (the floor
normal).

Using (1), one can easily verify that the homography H from A to B is

H = λRψθRφTRT
ψθ, (2)

for any non-zero λ ∈ R and with

T =

1 0 −tx
0 1 −ty
0 0 1

 . (3)

3 Tilt Estimation
e presence of a tilt gives rise to perspective effects. ese distort the
geometry perceived by the camera, and prevent easy extraction of motion
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information. If the tilt angles ψ and θ can be determined, one can rectify
the image and then use the QR decomposition to retrieve the translation t
and the free rotation φ.

To estimate ψ and θ, we derive equations that contain these angles but
which do not contain t and φ. ese equations will then be solved using
an iterative scheme.

3.1 Eliminating φ
Separating the tilt angles ψ and θ from the motion parameters t and φ in
(2), we get

RT
ψθHRψθ = λRφT. (4)

Here, one notes that Rφ can be eliminated by multiplying with the trans-
pose from the left on both sides. is results in the relation

RT
ψθMRψθ = λ2TTT, (5)

with (symmetric)

M =

m11 m12 m13
m12 m22 m23
m13 m23 m33

 = HTH. (6)

Since both sides of (5) are symmetric matrices, one obtains six unique
equations. Let L = RT

ψθMRψθ andR = λ2TTT be the left and right hand
sides of (5), respectively. EvaluatingR, one obtains

R = λ2

 1 0 −tx
0 1 −ty
−tx −ty 1 + t 2

x + t 2
y

 . (7)

3.2 Iterative Scheme
As described in Section 2, Rψθ = RψRθ is a rotation of θ around the y-axis
followed by a rotation of ψ around the x-axis. Direct multiplication of the
rotation matrices allows us to evaluate L (though this margin is too narrow
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Input: An inter-image homography H
Output: An approximation R of Rψθ

1: M̂← HTH
2: θ0 ← 0
3: for j = 1, . . . ,N do
4: M̂← RT

θj−1
M̂Rθj−1

5: Solve for ψj

6: M̂← RT
ψj
M̂Rψj

7: Solve for θj
8: end for
9: R← Rθ0Rψ1Rθ1Rψ2Rθ2 · · ·RψNRθN

Algorithm 2: Iteratively approximate Rψθ. The steps on line 5 and line 7

are detailed in Sections 3.2.1 and 3.2.2. Since the current approximation

is absorbed into M̂, we may assume that the fixed angle is zero when

solving for the free one.

to contain the result), and one finds that L is a fourth degree expression in
cψ = cosψ, sψ = sinψ, cθ = cos θ and sθ = sin θ.

Noting thatR11,R12 andR22 are independent of t, the equations for
ψ and θ become {

L11 − L22 = 0
L12 = 0

. (8)

But instead of trying to solve (8) for both ψ and θ at the same time, we
will iteratively alternate between solving for one angle, with the other held
fixed. is reduces the problem of solving a fourth degree trigonometric
equation, so that we instead iterate and solve a second degree equation in
each iteration.

Before explaining in detail how these equations are solved, we first out-
line in Algorithm 2 the iterative scheme which produces an approximation
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to Rψθ. Since

Rψθ = RψRθ =

 cθ 0 sθ
sψsθ cψ −sψcθ
−cψsθ sψ cψcθ

 (9)

it is trivial to find ψ and θ from this approximation.

3.2.1 Solving for ψ

Since cψ and sψ cannot both be zero, (8) is equivalent to
L11 − L22 = 0

cψL12 = 0
sψL12 = 0

. (10)

By letting M̂ = RT
θMRθ this can be written in matrix form asm̂11 − m̂22 −2m̂23 m̂11 − m̂33
m̂12 m̂13 0
0 m̂12 m̂13

 c 2
ψ

cψsψ
s 2ψ

 = 0. (11)

is means that (c2ψ, cψsψ, s2ψ) lies in the null space of the coefficient matrix
in (11). Unless m̂12 = m̂13 = 0, the rank of the coefficient matrix in (11)
is clearly at least two. For this reason, we should expect a one dimensional
null space. Due to measurement noise this will not be the case, so instead
we use the singular vector v = (v1, v2, v3) corresponding to the smallest
singular value as our null vector.

Provided the singular vector v one obtains ψ as

ψ =
1
2

arcsin
2v2

v1 + v3
. (12)

3.2.2 Solving for θ

Now θ can be found in much a similar way as ψ. Physical considerations
imply that, at least for moderately sized angles, RψRθ has approximately the
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same effect on the camera as RθRψ. Examination of the matrices confirms
this for small angles.

erefore, if M̂ = RT
ψMRψ, then

L11 − L22 = 0
cθL12 = 0
sθL12 = 0

, (13)

can be written in matrix form asm̂11 − m̂22 −2m̂13 m̂33 − m̂22
m̂12 −m̂23 0
0 m̂12 −m̂23

 c 2
θ

cθsθ
s 2θ

 = 0. (14)

We find, in the same way as in Section 3.2.1 that the null vector v can
be used to find

θ =
1
2

arcsin
2v2

v1 + v3
. (15)

4 Experiments
In order to test how well the tilt estimation works in practice, fifty homo-
graphies of the form (2) were generated with random values for ψ, θ, φ
and t. e true angles and their corresponding estimates can be seen in
Figure 1.

4.1 Path Reconstruction
A simple path estimation has also been tried on both synthetic and real data
using the QR decomposition to determine translation and planar rotation,
after estimating the tilt as described in Section 3. In the simulation, noise
of a magnitude corresponding to a few pixels have been added to the points
used to estimate the homographies. Results for this experiment are shown
in Figure 2 and Figure 3.

We have also carried out experiments with real data. A camera moun-
ted onto an industrial robot has been used to take images, from which
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Figure 1: True and estimated values for ψ, θ and φ for fifty randomly

generated homographies. As can be seen, the estimation works well in

most instances.
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Figure 2: We see that the estimated values of ψ and θ are, on average,

close to the true values. Since ψ and θ are constant, temporal filtering

could be used to get better estimates over time.

homographies were computed. e resulting reconstruction can be seen
in Figure 4. For comparison, we have additionally estimated the non con-
stant angle φ using a method based on conjugate rotations, see Liang and
Pears (2002) for details. is method computes φ from the eigenvalues of
the homography without estimating the tilt. Figure 5 shows this estimate
compared to our estimate and the true value (as measured by the robot).
Both methods perform well, however some statistical measures shown in
Table 1 suggest that tilt estimation followed by QR decomposition has a
slightly favourable performance.
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Figure 3: The simulated and the estimated paths. Procrustes analysis

has been carried out to align the path curves for easy comparison.

−100 0 100 200 300 400
x (mm)

−500

−450

−400

−350

−300

y (
m

m
)

Estimated robot path
True robot path

Figure 4: True and estimated paths for the robot experiment. At the

lower part of the plot some erroneous estimates are made, which results

in the estimated path being deflected away.
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Figure 5: The upper plot shows the difference in orientation between

consecutive images, and the lower plot shows the angular error. The

plots show that our estimates of φ and the eigenvalue-based estimates

of φ are both close to the truth (robot measurements).
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Table 1: Mean, median and variance of the magnitude of the angular

error. For the eigenvalue-based method, the thirteenth measurement is

considered an outlier and has been omitted. Despite this, the proposed

method is clearly seen to give more accurate estimates.

Mean Median Variance
Proposed (QR) 0.2759 0.2467 0.0161
Eigenvalue 0.3947 0.4092 0.0403

4.2 Ill-Conditioned Motion
Empirical evidence suggests that the instances where the tilt estimation fails
are the ones where the translation t is close to either a pure x-translation
or a pure y-translation. Randomly generating homographies with this pat-
tern of motion provides further evidence for this. It can further be seen
that a pure x-translation gives rise to a poor estimate of ψ, while a pure
y-translation results in a poor estimate of θ. Results for this experiment are
presented in Figure 6 and Figure 7. eoretical understanding of this will
be necessary if the instability is to be addressed.

5 Conclusion
Tilt estimation is a prerequisite for constructing consistent floor maps using
images from a tilted camera. In this paper we have presented an iterative
scheme for determining the tilt from a single homography. Experiments
with a simple path reconstruction have been conducted, which show that
if the tilt is rectified then the correct Euclidean motion can be found us-
ing the QR decomposition. Experiments using synthetic data show that
the estimated tilt angles are close to the true tilt angles in most instances,
however some especially troublesome motions have been found.
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Figure 6: When t is a pure x-translation, ψ seems to be unreliably es-

timated.
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Ego-Motion Recovery and Robust Tilt Estimation
for Planar Motion Using Several Homographies

M W  A H
entre forathematical ciences, und niversity

Abstract: In this paper we suggest an improvement to a recent al-
gorithm for estimating the pose and ego-motion of a camera which is
constrained to planar motion at a constant height above the floor, with
a constant tilt. Such motion is common in robotics applications where
a camera is mounted onto a mobile platform and directed towards the
floor. Due to the planar nature of the scene, images taken with such
a camera will be related by a planar homography, which may be used
to extract the ego-motion and camera pose. Earlier algorithms for this
particular kind of motion were not concerned with determining the tilt
of the camera, focusing instead on recovering only the motion. Estim-
ating the tilt is a necessary step in order to create a rectified map for
a SLAM system. Our contribution extends the aforementioned recent
method, and we demonstrate that our enhanced algorithm gives more
accurate estimates of the motion parameters.

1 Introduction
One of the long-standing aims in robotics research is the development of
algorithms for autonomous navigation. A popular class of such algorithms
are the ones concerned with so called imultaneous ocalisation andap-
ping (SLAM), in which a mobile platform, equipped with an array of suit-
able sensors (laser scanners, cameras, odometers, sonar, …), explores and
maps the surrounding environment while keeping track of its own loc-
ation with respect to the map. e map created in the process should
mark notable objects and landmarks in a way which allows for reliable re-
identification. e type of map that can be created is highly dependent on
the kinds of sensors employed and on the environment being mapped, and
can range from sparsely placed points to dense and detailed textured 3D
models.
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Using cameras to build the map is becoming increasingly attractive, as
they are cheap compared to many of the other sensors, and since the tra-
ditional obstacle of high computational cost becomes less inhibiting with
time as computational power increases. Another advantage of using cam-
eras is that it allows for utilisation of the increasingly sophisticated methods
and great experience that the computer vision community has produced
during the past few decades. Indeed, scene reconstruction from images is a
classical and continually studied problem in computer vision, and various
methods have been proposed for both general cases and specialised applic-
ations.

Many of the successful general reconstruction techniques are based on
epipolar geometry, and in particular the fundamental matrix, which was
introduced independently in Faugeras (1992) and Hartley (1992). Such
methods make the implicit assumption that the data are not positioned in
one of the so called critical configurations, and in many practical cases such
degeneracies are indeed very unlikely to occur. However, one of the less
unlikely critical configurations occurs when the data points are coplanar —
indeed, the application to navigation that we describe in this paper requires
the data points to lie in a plane. Since planar structures are very common
in man-made environments, this is an area in which specialised algorithms
which can avoid degeneracy can have great advantages.

While invariant local features, for instance SIFT (Lowe, 2004) and
other similar features, are standard in tructure fromotion (SfM), their
use in camera based SLAM has been less prevalent. One of the main reas-
ons for this is probably, as observed in Davison et al. (2007), that though
such features allow for accurate and robust re-identification, their compu-
tational cost has traditionally been obstructive for real time applications.
Although this is essentially still a valid point, particularly on embedded
systems or with high resolution images, computational power continues to
improve. In our view, feature based approaches are inevitably becoming
feasible for real-time operation.
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2 Related Work
A robot mapping application not only requires an incremental reconstruct-
ion, as data becomes available sequentially, but in contrast to Structure
from Motion approaches such as the popular Bundler system described in
Snavely et al. (2008), the order in which views are added is more or less pre-
determined. ough the views are added to the reconstruction in a fixed
order, some SLAM approaches allow the robot path itself to be planned so
that the images can be taken from locations which make the reconstruction
better (Haner and Heyden, 2011), but we will in this paper consider the
path to already be decided. Some very early work which respects the re-
striction on the order of views is Harris and Pike (1988), in which a Kalman
filter was used to estimate camera position based on inter-image point cor-
respondences throughout a short image sequence. Probabilistic viewpoints
based on extended Kalman filters (EKF) remain popular in later systems
such as the vSLAM system (Karlsson et al., 2005) and the MonoSLAM
system (Davison et al., 2007).

e systems mentioned above allow general 3D camera motion, but
this is not always necessary or even desired. A camera that has been moun-
ted onto a mobile platform will typically perform two-dimensional motion
since it remains at a fixed height above the ground, and with this knowledge
one can eliminate some of the uncertainty which 3D motion allows. Our
work continues in the spirit of Liang and Pears (2002) and Hajjdiab and
Laganière (2004) and others, in that we intend to navigate using images
of the floor. Since the scene is planar, the images will be related by planar
homographies.

Liang and Pears find the robot rotation angle φ by noting that the ei-
genvalues of the inter-image homography are (up to scale) 1 and e±iφ, and
they derive an expression for the translation from the eigenvectors. One
drawback of this method is that it does not determine the tilt. Determ-
ining the tilt allows a rectified map to be created, and is therefore highly
desirable.

A more recent method described in Wadenbäck and Heyden (2013)
starts with estimating the tilt Rψθ, and then performs a QR decomposition
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(a) Original image. (b) Rectified image.

Figure 1: A typical image taken by a camera under the conditions de-

scribed in this paper is shown in Figure B.1(a). A rectified version, as if

seen straight from above, can be seen in Figure B.1(b). In order to rectify

such images, it is necessary to be able to estimate the camera tilt.

of RT
ψθHRψθ to determine φ and the translation (tx, ty).
We show in this paper how to extend this estimation algorithm to use

more than one homography for estimating the tilt. is improves robust-
ness to noise and erroneous measurements.

3 Problem Geometry
We shall consider the navigation of a mobile platform equipped with a
single camera that has been mounted rigidly onto the platform and directed
towards the floor. is setup means that the camera will move at constant
height in a plane parallel to the floor, and have a constant angle to the plane
normal (tilt). Figure 1 shows a typical image from one of our datasets,
taken under the conditions described here. Figure 2 shows an illustration
of the geometrical situation. We will further assume zero skew and square
pixels, and that the camera parameters remain constant during the motion
(no zooming or refocusing). It will be convenient to work with a global
coordinate system in which the camera moves in the plane z = 0 and the
ground plane is represented by the plane z = 1.

As already noted, two images will be related by a planar homography.
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Figure 2: The camera moves freely in the plane z = 0, and can rotate

about the normal of the plane, but the angle to the plane normal (tilt) is

held constant.

We model the camera motion by a translation t = (tx, ty, 0) and a rota-
tion Rφ an angle φ about the normal of the floor plane (the z-axis). Using
homogeneous coordinates in the plane, the motion of the camera is repres-
ented by the transformation RφT, with

T =

1 0 −tx
0 1 −ty
0 0 1

 . (1)

If the camera is tilted, the camera coordinate system and the world co-
ordinate system are related by a rotation Rψθ = RψRθ. is means that the
inter-image homographies will be of the form

H = λRψθRφTRT
ψθ, (2)

where λ ̸= 0 is an unknown scale parameter.
Estimating these homographies from the images can be done using

point correspondences and a robust method such as RANSAC (Fischler
and Bolles, 1981). is is not the focus of our work, and we will hence-
forth assume that well-estimated homographies are available, without con-
cerning ourselves with how they were obtained.
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4 Parameter Recovery
Suppose we have a number of homographies of the form in (2), that is,

Hj = λjRψθRφjTjRT
ψθ, j = 1, . . .N, (3)

and want to recover the motion parameters. As observed in Wadenbäck
and Heyden (2013), the products

Mj =

m j
11 m j

12 m j
13

m j
12 m j

22 m j
23

m j
13 m j

23 m j
33

 = HT
j Hj (4)

are all independent of φ.
An iterative scheme is also presented which alternates between solving

for ψ and θ, keeping the other one fixed. eir paper demonstrates that
this can be accomplished by finding the null space of the matrix

Ψj =

m̂ j
11 − m̂ j

22 −2m̂ j
23 m̂ j

11 − m̂ j
33

m̂ j
12 m̂ j

13 0
0 m̂ j

12 m̂ j
13

 (5)

in the ψ case (where M̂j = RT
θMjRθ), and of the matrix

Θj =

m̂ j
11 − m̂ j

22 −2m̂ j
13 m̂ j

33 − m̂ j
22

m̂ j
12 −m̂ j

23 0
0 m̂ j

12 −m̂ j
23

 (6)

in the θ case (with M̂j = RT
ψMjRψ). It can clearly be seen that these matrices

have at least rank two, except in the case where the bottom two rows are
identically zero, so a one dimensional null space is expected. Due to meas-
urement errors the null space will in practice be trivial, and a one dimen-
sional approximation is computed as the singular vector v = (v1, v2, v3)
corresponding to the smallest singular value. In the ψ case, any vector v in
the null space should be a scalar multiple of (c 2

ψ, cψsψ, s 2ψ), which gives

ψ =
1
2

arcsin
2v2

v1 + v3
, (7)
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while in the same way, the the solution in the θ case is a scalar multiple of
(c 2
θ , cθsθ, s 2θ ), and

θ =
1
2

arcsin
2v2

v1 + v3
. (8)

is paper presents the insight that if the tilt Rψθ remains constant, then
the matrices Ψj all should have the same null space. Instead of considering
each Ψj separately, we can therefore solve

Ψv =

Ψ1
...

ΨN


 c 2

ψ

cψsψ
s 2ψ

 = 0. (9)

In the same way, we may combine the equations for θ into

Θv =

Θ1
...

ΘN


 c 2

θ

cθsθ
s 2θ

 = 0. (10)

e angles are computed from the solution v in the same way as above using
(7) and (8).

5 Experiments
For the purpose of comparing the original algorithm outlined in Waden-
bäck and Heyden (2013) with our enhanced version, we have randomly
generated a large number of homographies of the form in (3). Gaußian
noise with a standard deviation of 0.5° was added to each of the angles,
intended to simulate measurement noise. Figure 3 shows the estimation
results obtained using only one homography at a time, and Figure 4 shows
the results using our proposed method with five homographies used at each
step. e same number of iterations were used for the two methods. Note
that the scale on the axes is the same in both figures, for the benefit of
easier comparison. It is readily seen that the proposed method drastically
decreases the number of cases where the algorithm fails to converge.
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Figure 3: Estimates from one homography at a time using the unmod-

ified method. In the top three plots, the red bullets are the estimated

angles. In the bottom plot, the red bullets and green diamonds show the

error in tx and ty, respectively. The blue circles represent ground truth.
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Figure 4: Estimates from five homographies at a time using our proposed

method. In the top three plots, the red bullets are the estimated angles.

In the bottom plot, the red bullets and green diamonds show the error

in tx and ty, respectively. The blue circles represent ground truth.
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Figure 5: The x- and y components of the translation that was used to

generate the homographies, normalised by the length of the translation

in that step. Some of the translations used are apparently close to pure

x-translations or pure y-translations, which were reported to be problem-

atic for the original algorithm.

It should be pointed out that while the results from the unmodified
method can be much improved using filtering techniques, the same is true
for our enhanced method.

e unmodified algorithm was reported to have difficulties when the
translation was close to a pure x-translation or a pure y-translation. In the
case of an x-translation, θ would be poorly estimated, and conversely for
a y-translation. Figure 5 shows the x- and y components of the transla-
tion used to generate the homographies, normalised by the length of the
translation in that step. Certainly, some of the translations are close to
pure x-translations or y-translations, and some of them do indeed coin-
cide with bad estimates in Figure 3. e proposed method, on the other
hand, handles these translations without significant difficulties, as Figure 4
confirms.
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6 Conclusion
In this paper we have extended the estimation method in Wadenbäck and
Heyden (2013) to use more than one homography to estimate the tilt.
is enhancement produces a robuster and more accurate estimate, which
demonstrably allows the other motion parameters to be recovered with
higher precision. e problems with ill-conditioned motion patterns that
were reported in for the original algorithm have also been remedied by us-
ing more than one homography at a time.
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Trajectory Estimation Using Relative Distances
Extracted from Inter-Image Homographies

M W  A H
entre forathematical ciences, und niversity

Abstract: e main idea of this paper is to use distances between camera
positions to recover the trajectory of a mobile robot. We consider a mo-
bile platform equipped with a single fixed camera using images of the
floor and their associated inter-image homographies to find these dis-
tances. We show that under the assumptions that the camera is rigidly
mounted with a constant tilt and travelling at a constant height above
the floor, the distance between two camera positions may be expressed
in terms of the condition number of the inter-image homography. Ex-
periments are conducted on synthetic data to verify that the derived
distance formula gives distances close to the true ones and is not too
sensitive to noise. We also describe how the robot trajectory may be
represented as a graph with edge lengths determined by the distances
computed using the formula above, and present one possible method
to construct this graph given some of these distances. e experiments
show promising results.

1 Introduction
Autonomous navigation is a central theme in mobile robotics applications,
and the development of methods for imultaneous ocalisation andap-
ping (SLAM) has long been a major area of research. e scenario for such
algorithms is that a mobile robot makes use of a number of suitable sensors
(laser range finders, cameras, odometers, sonar, …) to autonomously map
and explore its surroundings. e type of map that can be created is highly
dependent on the kinds of sensors employed and on the environment being
mapped, but typically the aim is to mark notable objects and landmarks in
a way that allows for reliable re-identification. is paper will not consider
the mapping part, but will only focus on recovering the robot trajectory.

In recent years there has been an increased interest in methods for
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SLAM which primarily rely on cameras for navigation, to a large extent
thanks to the rapid increase in computational power during this period.
e computationally intense image processing involved in making use of
the images has indeed been a major inhibiting factor for their use in real-
time systems, and still makes it difficult to use high resolution images in
such applications. However, since the price of a decent camera is much
lower than that of some other sensors which have traditionally been used
for SLAM, cameras naturally find a larger user base, and development goes
on despite the computational obstacles.

A common scenario in mobile robotics is that of a camera that has
been rigidly mounted onto some kind of mobile platform. If the robot
is expected to operate in environments where there are people, it may be
a good idea to direct the camera towards the floor, since this means that
movable or deformable objects will not occlude or be mistaken for the sta-
tionary scene. Under such circumstances, since the scene is planar, images
taken at different locations will be related by a planar homography. If the
camera motion is planar, which is the case if the suspension of the platform
is negligible, this allows for an explicit parametrisation of the homography,
as explained in Section 2.2.

Our hope is to use information about the distances between the camera
centres to improve the trajectory recovery of a SLAM system incorporat-
ing a number of sensors besides vision. Incorporating measurements from
other sensors could of course, if done with care and thought, improve the
accuracy above the level achieved in this paper. We intend to do so at a
later stage, but in this paper, we will investigate what can be achieved using
only information about the distances.

e proposed method relies on reliably and accurately estimated ho-
mographies between the camera poses. Practical methods for finding a
homography between two partially overlapping images is given a thorough
and in-depth treatment in Hartley and Zisserman (2004), and the details
of this is outside the scope of this work.

e organisation of the paper is as follows. Section 1.1 gives a brief
overview of related literature, and Section 2 describes the camera set-up and
the geometry of the problem. In Section 3 we devise a method for comput-
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ing the distances. A method using the inter-camera distances to represent
the trajectory as a graph is outlined in Section 4. Experiments investigat-
ing the the accuracy of distance formula are described in Section 5.1, and
preliminary results for a path estimation problem are shown in Section 5.2.
Section 6 concludes the findings and experiments in this paper.

1.1 Related Work
Many successful approaches to the SLAM problem are based on probabil-
istic viewpoints, where the extended Kalman filters (EKF) remain popular
in recent systems such as the vSLAM system by Karlsson et al. (2005) and
the MonoSLAM system by Davison et al. (2007). e creation of a map
is part of the SLAM problem, and it is often deemed essential to have a
good map in order to allow for accurate trajectory recovery. e present
paper shows that the trajectory can in fact be accurately estimated without
considering the mapping problem.

e problem of determining the locations of a number of points given
all inter-point distances was studied in the thirties by Young and House-
holder (1938), and they gave a method for finding the locations. eir
paper studies the problem in n-dimensional space, but a method for find-
ing a lower-dimensional approximation is mentioned. eir method needs
all inter-point distances to be known, which may not always be the case.

is problem of finding the locations from distances has a number of
inherent ambiguities, since rotations, translations, and reflections do not
influence the distances. However, the point locations need not be uniquely
determined, even after factoring out these ambiguities. ese ambiguities
are of interest in the study of rigidity of graphs, for example the works by
Asimow and Roth (1978, 1979). In addition to the general situation, there
has been work done on various special cases, such as for bipartite graphs
(Bolker and Roth, 1980).
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Figure 1: The camera moves freely in the plane z = 0 at a constant

height above the floor. Rotations about the normal of the plane are

allowed, but the angle to the plane normal (tilt) is held constant.

2 Problem Geometry

2.1 Camera Parametrisation
In this paper we consider a standard pinhole perspective camera with square
pixels and zero skew, which has been rigidly mounted onto a mobile robot
and directed towards the floor. We will further assume that no zooming
or refocusing occurs during the motion. e geometrical situation un-
der consideration is illustrated in Figure 1. is situation or similar ones
are not uncommon in mobile robotics applications, and have been con-
sidered in Liang and Pears (2002), Hajjdiab and Laganière (2004), Taddei
et al. (2012) and Wadenbäck and Heyden (2013), among others. Since the
camera will remain at a fixed height above the floor, it will be convenient
to work with a global coordinate system in which the camera moves in the
plane z = 0 and the ground plane is represented by the plane z = z0.

In order to describe the direction of the camera, we use three rotations
Rψ, Rθ and Rφ. e rotation Rφ is a rotation the angle φ about the z-axis,
while Rψ and Rθ correspondingly describe rotations about the x- and y-
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axes, respectively. e camera tilt is Rψθ = RψRθ and will be identical for
all images, while φ and the camera centre t = (tx, ty, 0) may vary between
images.

Under these conditions, the camera projection matrix associated with
an image taken at position t will be

P = RψθRφ[I | −t]. (1)

For simplicity of presentation, we will in the remainder of this paper
assume that z0 = 1. e choice of z0 only determines the global scale
factor, so this is not a restriction, and it is straightforward to consider other
choices of z0.

2.2 e Inter-Image Homography
We will now consider two images taken at different locations under the geo-
metrical premises described in Section 2.1. e global coordinate system
may be chosen in such a way that one of the cameras is in the origin and
aligned with the coordinate system, in which case the camera projection
matrices associated with the two images become

P1 = Rψθ[I | 0],
P2 = RψθRφ[I | −t].

(2)

A point in the floor plane, X =
[
x y 1 1

]T, will be projected into
the first image as

x1 = P1X = Rψθ

xy
1

 (3)

and into the second image as

x2 = P2X = RψθRφ

x− tx
y− ty

1

 = RψθRφT

xy
1

 , (4)
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where

T =

1 0 −tx
0 1 −ty
0 0 1

 . (5)

From (3) and (4) it follows that the homography between the two images
is (a scalar multiple of )

H = RψθRφTRT
ψθ. (6)

For two partially overlapping images of a planar scene, the homography
H can be robustly and accurately estimated (for the details, see for example
Hartley and Zisserman (2004)), but the problem of finding the parameters
on the right hand side seems to be a decidedly less well studied problem.
While this paper uses the existence of the decomposition (6), we make no
effort to explicitly determine the individual parameters.

3 Finding the Travelled Distance
Since Rψθ and Rφ are both orthonormal matrices, H and T must have the
same condition number, which we shall denote by κ. is observation
suggests that there might be a formula relating κ to the travelled distance
between the two images.

For the purpose of finding this relation, we compute κ via the eigen-
values of TTT. e characteristic polynomial of TTT is

(σ − 1)
(
σ2 − (2 + t 2

x + t 2
y )σ + 1

)
, (7)

and we see immediately that one singular value ofT equals one, and that the
product of the other two also equals one. We thus have the three singular
values σ1 ≥ 1, σ2 = 1 and σ3 =

1
σ1
≤ 1, so that

κ =
σ1

σ3
= σ2

1. (8)
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If we denote the distance travelled between the images by d =
√

t 2
x + t 2

y ,
then κ becomes

κ =

(
1 +

d 2

2
+

d
2
√

4 + d 2

)2

, (9)

and solving (9) for d yields the simple expression

d =

√
κ− 1
4
√
κ

. (10)

is relation between the travelled distance and the condition number of
the homography is investigated experimentally in Section 5.1 in terms of
accuracy and sensitivity to noise. We now turn to the problem of determ-
ining the trajectory if a number of distances are given.

4 Finding the Trajectory

Let us assume that we have a series of images taken at locations pj = (xj, yj)
for j = 1, . . . ,N, and that there is sufficient overlap so that it is possible
to compute the homography to at least the three previous points for j =
4, . . . ,N. is means that it is possible to compute some of the distances
dj,k = ∥pj − pk∥. See Figure 2.

Since our reconstruction can only be determined up to a an unknown
rotation, an unknown reflection and an unknown translation, we may
without loss of generality assume that p1 = (0, 0), y2 = 0 and that the
first non-zero y-coordinate is positive. is fixates the coordinate system
with respect to those ambiguities.

If we assume that the distances dj,k are measured with independent and
identically distributed zero-mean Gaußian errors, the ℓ2-optimal locations
of the pj are found by solving the minimisation problem (assuming y3 is
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Figure 2: The robot trajectory is represented by the solid lines, and the

dashed lines represent the other distances which have been measured.

the first non-zero y-coordinate)

minimise
∑
(j,k)∈S

(
∥pj − pk∥ − dj,k

)2

subject to p1 = (0, 0)
y2 = 0
y3 > 0

(11)

where the set S which the sum is taken over is the set of (j, k) for which
the distances dj,k have been measured. e optimisation problem (11) is
not convex, and there is a significant risk that we will not find the global
minimum, but only a local one. For this reason it is important to create
a good initial guess before optimising (11) using some local method, for
instance Gauß-Newton or Conjugate Gradient method (CG).

4.1 Constructing an Initial Guess
In order to construct an initial guess for p1, . . . , pN we initialise p1, p2 and
p3, and then successively find candidates for p4, . . . , pN. Let Cj,k be the
circle at pj with radius dj,k. A point pj is found from the three previous
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Figure 3: The points q and q′ are both candidates for an initial guess of

pj since both have the same distances to pj−2 and pj−1. Which candidate

to choose can be determined by comparing ∥pj−3−q∥ and ∥pj−3−q ′∥
to dj−3,j and taking the one for which the distance matches best.

points as one of the intersections of Cj−1,j and Cj−2,j if they intersect, or
as the mean of their respective closest points otherwise. Which of the in-
tersections to choose is determined by considering which best matches the
distance dj−3,j. Figure 3 illustrates the intersecting case, and the overall
algorithm can be seen in Figure 3.

5 Experiments

5.1 Accuracy of Distances
In this experiment we use synthetic data to investigate how well (10) cor-
responds to the true distance. For this purpose, we simulate a number of
cameras (resolution 2000 by 2000 pixels) of the the form (1) with identical
tilt, looking at a number of synthetically generated keypoints. For each pair
of cameras, the ground truth distance is computed, and a subset of the key-
points is chosen. After this subset is projected into the two views, and noise
is added, a homography is estimated for the pair. From this homography,
the distance is computed using (10).
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Input: Distances dj,k for all j, k such that |j− k| < 4
Output: An initial guess for p1, . . . , pN

1: p1 ← (0, 0)
2: p2 ← (d1,2, 0)
3: Let Cj,k denote the circle at pj with radius dj,k
4: Set p3 to the intersection of C2,3 and C1,3 with y3 ≥ 0
5: for j = 4, . . . ,N do
6: Find intersections q and q ′ of Cj−1,j and Cj−2,j
7: dq ← ∥q− pj−3∥, dq ′ ← ∥q ′ − pj−3∥
8: if |dq − dj−3,j| > |dq ′ − dj−3,j| then
9: pj ← q ′

10: else
11: pj ← q
12: end if
13: end for

Algorithm 3: Construction of an initial guess to the minimisation prob-

lem (11). The idea is to use the distances to the two most recent points to

get two candidates for the next point, and then selecting the candidate

which best matches the distance to the third most recent point.

Using the synthetic data described above, we have investigated the quo-
tient of the estimated distance and the ground truth distance. Figure 4
shows how the standard deviation of this quotient depends on the noise
level, and Figure 5 shows the particular distribution at a noise level of four
pixels in both the horizontal and vertical directions. All the noise levels we
have tried show distributions very similar to the one in Figure 5.

Even though it is clear from these results that the distance estimated
using (10) indeed is close to the true distance, it is interesting to note that
it on average tends to be slightly shorter. Table 1 appears to suggest that
the estimate will typically be about one percent shorter than the true dis-
tance. Furthermore, this one percent difference appears to be more or less
independent of the noise level, and is present even when no noise is added.
Further investigation will be required if this discrepancy is to be explained.
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Figure 4: This plot shows the standard deviation of the quotient of

the estimated distance and the ground truth distance at some different

noise levels. The noise level along the x-axis should be interpreted as the

standard deviation of a Gaußian noise added to each coordinate before

computing the homography.

5.2 Trajectory Estimation
is experiment evaluates the scheme for recovering the trajectory that
was outlined in Section 4. For this purpose, a sequence of cameras of the
form (1) were generated, and the homographies between each pair of cam-
eras were computed in the same way as in the previous section, and from
each homography the inter-camera distance was obtained using the dis-
tance formula (10).

An initial guess for the trajectory was then constructed as described in
Section 4.1, and this was used to initialise the optimisation in (11). Figure 6
shows the resulting trajectories for both the case when all distances were
used and the case when only the distances to the six most recent camera
positions was used. (e reason for not using the distances to all other
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Figure 5: This histogram shows the distribution of the quotient of the

estimated distance and the ground truth distance at a noise level of four

pixels.

Table 1: Mean, median and standard deviation of the quotient of the es-

timated distance and the ground truth distance at different noise levels.

The estimated distance appears to be on average one percent shorter

than the true distance.

Noise level Mean Median Std. dev.
0 pixels 0.9877 0.9894 0.0058
1 pixel 0.9907 0.9922 0.0083
2 pixels 0.9899 0.9908 0.0105
3 pixels 0.9904 0.9913 0.0130
4 pixels 0.9907 0.9900 0.0163
5 pixels 0.9864 0.9889 0.0200
6 pixels 0.9904 0.9891 0.0235
7 pixels 0.9922 0.9885 0.0256
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Figure 6: In this experiment we have simulated a path and estimated

the trajectory. A noise level of three pixels was used in this particular

example. The initial guess (green diamonds) was obtained using the

algorithm outlined in Figure 3. The optimisation problem (11) was then

solved using the initial guess as starting point. We see that the estimates

end up close to the ground truth (red bullets) both when all distances

are used and when only the six most recent are used.
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cameras is to simulate the fact that for real images only a few consecutive
images will overlap sufficiently to compute a homography.)

In Figure 6, the trajectory estimated using only some of the most re-
cent distances is indistinguishable from the trajectory estimated using all
distances, but using all distances will generally give more accurate results,
especially for longer trajectories or higher noise levels. As mentioned how-
ever, in practice only distances to a few recent positions will be available,
but this still produces good results.

6 Conclusion
is paper has shown how the distance between two cameras of the form
(1) may be expressed in terms of the condition number of the inter-image
homography. It has been demonstrated experimentally that this formula
gives practically useful values for the distance.

In addition, we have shown how these distances may be used to recover
the trajectory of a mobile platform, by representing the trajectory as a graph
with edge lengths given by these distances. Preliminary experiments on
synthetic data show that the method can recover the trajectory accurately.

As mentioned in Section 1.1, depending on which inter-camera dis-
tances are known and depending on their values, there may be further am-
biguities apart from rotations, translations, and reflections. For instance,
if the trajectory contains long straight parts, then it is expected that these
may cause “flips”. is is because the solution is not unique. If other sensor
data is available, this could perhaps be detected and remedied. Since it is
not inconceivable for robots to travel along almost straight lines at times,
this would be a natural direction to explore in the future.
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