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Abstract
Rationale Schizophrenic-spectrum patients commonly dis-
play deficits in preattentive information processing as evi-
denced, for example, by disrupted prepulse inhibition (PPI),
a measure of sensorimotor gating. Similar disruptions in PPI
can be induced in rodents and primates by the psychotomi-
metic drug phencyclidine (PCP), a noncompetitive inhibitor
of the NMDA receptor. Mounting evidence suggests that the
hunger hormone ghrelin and its constitutively active receptor
influences neuronal circuits involved in the regulation of
mood and cognition.
Objectives In the present series of experiments, we investigat-
ed the effects of ghrelin and the growth hormone secretagogue
receptor (GHS-R1A) neutral antagonist, JMV 2959, on acous-
tic startle responses (ASR), PPI, and PCP-induced alterations
in PPI.
Results Intraperitoneal (i.p.) administration of ghrelin (0.033,
0.1, and 0.33 mg/kg) did not alter the ASR or PPI in rats.
Conversely, i.p. injection of JMV 2959 (1, 3, and 6 mg/kg),
dose dependently decreased the ASR and increased PPI.
Pretreatment with JMV 2959 at a dose with no effect on
ASR or PPI per se, completely blocked PCP-induced
(2 mg/kg) deficits in PPI while pretreatment with the highest

dose of ghrelin did not potentiate or alter PPI responses of a
sub-threshold dose of PCP (0.75 mg/kg).
Conclusion These findings indicate that the GHS-R1A is in-
volved in specific behavioral effects of PCP and may have
relevance for patients with schizophrenia.

Keywords Cognition . Dopamine . Glutamate . NMDA

Introduction

The growth hormone secretagogue receptor (GHS-R1A), ini-
tially an orphan receptor activated by growth hormone-
releasing peptides and nonpeptidyl ligands such as GHRP-6
and MK-0677, is expressed in discrete areas throughout the
central nervous system (Howard et al. 1996; Guan et al. 1997).
The receptor, which mediates several biological activities, in-
cluding secretion of GH and stimulation of appetite and serves
to maintain energy homeostasis, is constitutively active when
expressed in cell lines and is activated by its endogenous
gastric-derived ligand ghrelin (Howard et al. 1996; Kojima
et al. 1999; Holst et al. 2003). In recent years, there has been
an increasing interest in the modulatory effect of ghrelin and
the GHS-R1A on central dopamine and glutamate signaling
(Abizaid et al. 2006; Jerlhag et al. 2006, 2011a, b; Jiang et al.
2006; Kern et al. 2012; Goshadrou et al. 2013; Ghersi et al.
2014). Ghrelin and GHSR-1A ligands, thus, have been shown
to regulate feeding behavior, memory function, and cognition
via dopamine and/or glutamate signaling (Egecioglu et al.
2010; Jacoby and Currie 2011; Jerlhag et al. 2011a;
Goshadrou et al. 2013; Ghersi et al. 2014). Furthermore,
ghrelin augments while GHSR-R1A antagonist attenuate
cocaine- and amphetamine-induced locomotor stimulation
and accumbal dopamine release (Wellman et al. 2008;
Jerlhag et al. 2010) as well as the rewarding properties of
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alcohol (Jerlhag et al. 2009) consistent with effects on dopa-
mine signaling.

Patients with psychiatric disease, in particular
schizophrenia-spectrum patients, are commonly unable to fil-
ter incoming sensory stimuli, which led to the hypothesis that
these patients are afflicted by impairments in information pro-
cessing (Braff et al. 1978; Freedman et al. 1987; Braff 1993).
Deficits in preattentive information processing/gating mecha-
nisms, as measured for example by prepulse inhibition (PPI)
of the acoustic startle reflex, are found in patients with psy-
chiatric disease (Braff et al. 1978). Alterations in PPI re-
sponses has also been demonstrated following the administra-
tion of various psychotomimetic drugs affecting central dopa-
minergic and glutamatergic signaling, such as amphetamine in
humans and rodents (Mansbach et al. 1988; Hutchison and
Swift 1999) or the N-methyl-D-aspartate (NMDA)-receptor
antagonists phencyclidine (PCP) in monkeys and rodents
(Bakshi et al. 1994; Javitt and Lindsley 2001). In contrast to
the effects of PCP on PPI responses in rodents and monkeys,
other NMDA receptor antagonists, such as ketamine and
memantine, increase PPI responses when tested in humans
(Duncan et al. 2001; Swerdlow et al. 2009). In humans, PCP
mimics the symptomology of schizophrenia in the sense that it
encompasses both negative and positive symptoms as well as
cognit ive dysfunctions (Allen and Young 1978).
Phencyclidine also causes behavioral abnormalities in exper-
imental animals that are similar to those observed in patients
with schizophrenia (Moghaddam and Adams 1998). PCP-
induced deficit in sensorimotor gating has been shown to be
antagonized by both atypical antipsychotics such as clozapine
(Bakshi et al. 1994) and recently also by the new dopamine
stabilizer aripirazole (Fejgin et al. 2007), underlining the in-
teraction between dopaminergic and glutamatergic signaling
in schizophrenia.

Given the dopamine modulatory effects of ghrelin/GHSR-
1A signaling combined with the neuroanatomical overlap
found between the central expression of the GHSR-1A and
areas recognized to be involved in sensorimotor gating (Guan
et al. 1997; Swerdlow et al. 2001), prompted us to investigate
the involvement of GHS-R1A and ghrelin signaling on
NMDA receptor-mediated deficits in prepulse inhibition, a
model of schizophrenia, in rodents.

Materials and methods

Animals

Two-hundred-gram male Sprague–Dawley rats (B & K
Universal AB, Sollentuna, Sweden) were used in the study.
Upon arrival, the animals were housed in groups of four and
allowed to acclimatize for 1 week before the start of the ex-
periment. They were maintained under a 12/12-h light/dark

cycle (lights on at 0600 hours), constant humidity (50 %),
and temperature (20±1 °C) and had free access to standard
food pellet (Lactamin, Vadstena, Sweden) and tap water. The
study was approved by the local Ethics Committee at the
University of Gothenburg, Sweden.

Drugs, doses, and administration

All drugs used were dissolved in a physiological saline
solution (0.9 % NaCl) in the morning on the day of the
experiment and administered in a volume of 2 ml/kg via
intra peritoneal (i.p.) injections. Acyl ghrelin (Tocris,
Bristol, UK) was given in a dose range (0.033, 0.1, and
0.33 mg/kg) that previously has been shown to affect
feeding responses, central c-Fos expression, and behavior
(Hewson and Dickson 2000; Wren et al. 2000; Davis et al.
2007). The doses of the selective GHSR-1A neutral an-
tagonist, JMV 2959 (a gift from AeternaZentaris GmBH,
Frankfurt, Germany), used for the JMV 2959 dose re-
sponse were 1, 3, and 6 mg/kg. The 3 and 6 mg/kg doses
have previously been shown to inhibit ghrelin and fasting-
induced feeding and affect various behavioral responses
(Salome et al. 2009). Phencyclidine hydrochloride (PCP,
Sigma, St. Louis, MO, USA) was given at a dose of
2 mg/kg, which is known to produce robust disruptions
of PPI (Geyer et al. 2001). The sub-threshold dose of PCP
used was 0.75 mg/kg which has no or very weak effects
on PPI (Geyer et al. 2001). For the interaction studies
between PCP and JMV 2959 or ghrelin, a dose of
2 mg/kg of JMV 2959 and 0.33 mg/kg of ghrelin was
used.

Prepulse inhibition apparatus

Acoustic startle was recorded using aMOPS 3 startle response
recording system (Metod och Product Svenska AB, Sweden).
The animals were placed in small Plexiglas® cages (10×5.5×
6 cm) that were suspended at the top in a piston. The move-
ments of the animal in the cage were registered by a piezo-
electric accelerometer connected to the piston, and the signal
generated was digitized by a microcomputer that also con-
trolled the delivery of acoustic stimuli. Startle amplitude was
defined as the maximum signal amplitude occurring 8–30 ms
after the startle-eliciting stimulus, hence taking response laten-
cy into account. Four cages were used simultaneously and
each cage was housed in a dimly lit and sound-attenuated
cabinet (52×42×38 cm). The cages were calibrated for equal
sensitivity prior to testing and each animal was always tested
in the same cage at subsequent tests in order to minimize
intertrial variation. The acoustic stimuli consisted of white
noise, which was delivered by two high-frequency loud-
speakers built into the ceiling of the cabinet.
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Prepulse inhibition paradigm

Each test session was initiated with an 8-min adaptation peri-
od containing only white background noise at 62 dB followed
by series of five startle pulse-alone trials and five prepulse-
alone trials. These initial pulse-alone trials served only to ac-
commodate the animals to the sudden change in stimulus con-
ditions and were omitted from the data analysis and the
prepulse-alone trials were analyzed to ensure that they did
not evoke any startle responses on their own. The animals
were then subjected to a pseudo-randomized combination of
three prepulse-alone trials for each prepulse intensity, 45
pulse-alone trials and 15 prepulse-pulse trials for each of the
three prepulse intensities. Trials were separated by 5- to 15-s
intervals and the test sessions lasted approximately 24 min
including the adaptation period. The startle pulse was set to
105 dB and prepulse intensities to 9, 12, and 15 dB above
background. Duration of acoustic stimuli was set to 20 ms
for both prepulses and startle pulses and the interstimulus
interval was set to 40 ms.

Experimental design

All animals used in the experiments were initially subjected to
a pretest in the startle apparatus without drug treatment to
ensure that they expressed basal startle activity and PPI.
Animals with deviant acoustic startle response (ASR) or PPI
in the pretest were excluded from the experiments. Prior to all
sessions, the animals were put in the test room in the morning
at least 1 h prior to the test in order to habituate them to the test
environment.

Experiment 1: JMV 2959 dose response

The animals (n=15) were randomly assigned to an initial
treatment dose or vehicle and subsequently received all the
different doses tested in a counter balanced design. Each test
was separated by a 3- to 4-day-long washout period. The rats
were given the injection of JMV 2959 (or vehicle) 17 min
prior to being placed in the startle cages (i.e., 25 min prior to
the first pulse).

Experiment 2: JMV 2959 in combination with PCP

In order to examine the putative interaction between JMV
2959 and PCP, rats (n=23) were pretreated with JMV 2959
(2 mg/kg) or vehicle 10 min prior to the injection of PCP
(2 mg/kg) or vehicle. Seven minutes following the last injec-
tion, the animals were placed in the startle cages for the adap-
tation period and subsequent PPI testing. Each animal re-
ceived all of the four treatment combinations (sal/sal,
JMV2959/sal, sal/PCP, and JMV2959/PCP) in a counter-

balanced design. Each test was separated by a 3- to 4-day-
long washout period.

Experiment 3: ghrelin dose response

The ghrelin dose response test was performed in the same way
as experiment 1 except the animals (n=24) received ghrelin
injections.

Experiment 4: ghrelin in combination with low-dose PCP

Animals (n=12 in each group) were assigned to one of the
following four treatment combinations: sal/sal, ghrelin/sal,
sal/PCP, and ghrelin/PCP. The animals were first pretreated
with ghrelin (0.33 mg/kg) or vehicle (25 min prior to first
pulse) and 10 min later injected with either PCP (0.75 mg/kg)
or vehicle. Seven minutes following the last injection, the
animals were placed in the startle cages for adaption and sub-
sequent PPI testing.

Data and statistical analysis

The mean response amplitude for pulse-alone trials (P) was
calculated for each test. This measure was used in the statisti-
cal analysis to assess drug-induced changes in acoustic startle
response (ASR). The mean response amplitude for prepulse-
pulse trials (PP) was also calculated and used to express the
prepulse inhibition (PPI) according to the following formula:

PPI %ð Þ ¼ 100− PP=Pð Þ*100½ �

Experiments 1 and 2 were analyzed by a two-way repeated
measures ANOVAwith treatment dose and prepulse intensity
as within-subject factors. A three-way mixed model ANOVA
with pretreatment and treatment as between-subject factors
and prepulse intensity as within-subject factor was applied
when analyzing data from experiment 3 while experiment 4
was analyzed using a three-way repeated measures ANOVA
with pretreatment, treatment, and prepulse intensity as within-
subject factors. There was a significant main effect of prepulse
intensity in each experiment (data not shown); however, as no
prepulse intensity × pretreatment × treatment interaction was
obtained (i.e., the effect of prepulse intensity did not vary
significantly between testing conditions), PPI data collapsed
across prepulse intensities and presented as an average %PPI
throughout. The acoustic startle response and intertrial activity
(ITA) were analyzed using a two-way repeated measures or
mixed model ANOVA with pretreatment and treatment as
within- or between-subject factors depending on the experi-
ment type. A Bonferroni post hoc analysis was done to com-
pare individual treatment combinations or doses.
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Results

Using prepulse noise level (9, 12, or 15 dB above back-
ground level) and the different treatment combinations or
doses as within-subject factors revealed no statistically
significant interaction between treatments and noise level
for the dose response studies and the JMV 2959/PCP in-
teraction study (ghrelin dose response; F(6,138)=1.05, ns;
JMV 2959 dose response: F(6,84) = 2.37, ns; JMV
2959/PCP: F(2,44)=1.40, ns)). Furthermore, the interac-
tion study investigating the possible influence of ghrelin
treatment on sub-threshold PCP revealed no statistically
significant interactions between noise level and treatment
(ghrelin/PCP; F(2,76)=2.9, ns). Consequently, changes in
prepulse level were considered not to significantly alter
the effect of treatment on PPI and hence noise levels were
collapsed across intensities and the resultant variable was
used in the statistical analysis.

Treatment with the ghrelin antagonist, JMV 2959 dose de-
pendently decreased the startle response (F(3.42)=4.4,
p<0.01) and increased %PPI (F(3.42)=3.9, p<0.05) in the
prepulse inhibition paradigm. The alteration in the startle re-
sponse was mainly due to a 27% decrease in the startle seen in
the highest dose of JMV 2959 (6 mg/kg) compared to vehicle
(p<0.05, Bonferroni post hoc test) (Fig. 1a). Even though the
ANOVA revealed a dose-dependent increase in the %PPI re-
sponse, no differences between individual JMV 2959 treat-
ment doses or vehicle could be found (Fig. 1b). No overall
difference in intertrial activity was found in the ANOVA (F (3,
42)=0.44, ns) (Fig. 1c).

In order to investigate the possible interaction between
GHSR-1A signaling and PCP-induced disruptions in PPI, an-
imals were pretreated with a dose of JMV 2959 (2 mg/kg) in
the dose range with no effect per se on startle response or PPI,
prior to PCP treatment. A significant interaction between JMV
2959 and PCP treatment was found in the ANOVA (F(1,22)=
26.3, p<0.001). JMV2959/sal treatment had no effect on
%PPI (p>0.05) while sal/PCP treatment induced a 57 % de-
crease in %PPI (p<0.001, Bonferroni post hoc test, Fig. 2b).
Pretreatment with JMV 2959 completely reversed the effect of
PCP (Fig. 2b). The ANOVA revealed no effects on startle
response (F(1,22)=1.3, ns; Fig. 2a) or intertrial activity (F(1,
22)=1.5, ns; Fig. 2c) by PCP treatment or pretreatment with
JMV.

An ANOVA analysis of the ghrelin dose response did
not reveal any overall alterations in startle (F(3,69)=1.74,
ns), PPI response (F(3,69)=0.46, ns), or intertrial activity
(F(3,69)=0.78, ns. Fig. 3a–c). Furthermore, the highest
dose of ghrelin used (0.33 mg/kg) did not potentiate or
alter the effect of a sub-threshold dose of PCP on any of
the measured outcomes (startle (F(1,38)=0.73, ns), PPI%
(F(1,38)=0.32, ns), intertrial activity (F(1,38)=1.66, ns)
(data not shown).

Discussion

Herein, we show that modulation of the GHS-R1A alter
acoustic startle responses (ASR) as well as prepulse inhibition

Fig. 1 Effects of increasing doses of the ghrelin antagonist JMV 2959
(1–6 mg/kg, i.p.) on acoustic startle (a), prepulse inhibition of acoustic
startle (b), and intertrial activity (c). JMV 2959 was injected 25 min
before the first pulse. The data are presented as mean values±SEM.
*p<0.05 compared to saline treatment (statistically significant ANOVA
followed by Bonferroni post hoc test)
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(PPI) of the ASR. Specifically, JMV2959, a highly selective
GHSR-1A antagonist, dose dependently decreased ASR and
increased %PPI. In addition, JMV 2959 completely blocked
the effects of PCP-induced deficits in PPI at a dose that by
itself did not significantly affect either ASR or PPI. On the
contrary, peripheral treatment with ghrelin did not have any

effect on ASR or PPI and did not potentiate PCP-induced
effects on PPI.

Recent findings has shown that modulation of the GHS-
R1A signaling alters dopamine release and dopamine turnover

Fig. 2 Interaction between JMV 2959 (2 mg/kg, i.p.) and PCP (2 mg/kg,
i.p.) on acoustic startle (a), prepulse inhibition of acoustic startle (b), and
intertrial activity (c). JMV 2959 was injected 25 min and PCP injected
15 min before the first pulse. The rats were tested every 3–4 days in a
randomized order until they had received all treatments. The data are
presented as mean values±SEM. ***p<0.001 (statistically significant
ANOVA followed by Bonferroni post hoc test)

Fig 3 Effects of increasing doses of the ghrelin (0.033, 0.1, and
0.33 mg/kg, i.p.) on acoustic startle (a), prepulse inhibition of acoustic
startle (b), and intertrial activity (c). Ghrelin was injected 25 min before
the first pulse. The data are presented as mean values±SEM

Psychopharmacology (2015) 232:4285–4292 4289



in both subcortical and prefrontal areas of the brain and that
antagonism at the GHS-R1A can block dopamine release in
response to drugs of abuse. Our finding that JMV 2959 dose
dependently increase %PPI and decrease ASR in animals could
possibly be explained by the modulatory effects of ghrelin and
GHS-R1A signaling on dopamine transduction. Interestingly,
heterodimerization of GHS-R1Awith both D1 and D2 receptors
facilitates dopamine transduction in vitro (Jiang et al. 2006; Kern
et al. 2012). Furthermore, GHS-R1A is coexpressed with D2
receptors in hypothalamic neurons and with D1 receptors in
the hippocampus and striatum (Jiang et al. 2006; Kern et al.
2012), which would support the notion that the effects of JMV
2959 on ARS and PPI could be mediated via modulatory effects
on dopamine signaling. Similar to the effects of JMV 2959 to
increase %PPI and decrease ASR, previous studies have shown
that atypical antipsychotics that modulate dopamine receptor ac-
tivity such as aripirazole and clozapine as well as the D2 receptor
antagonists such as haloperidol dose dependently increase %PPI
and decrease ASR in the acoustic startle and prepulse inhibition
paradigm (Depoortere et al. 1997; Fejgin et al. 2007).

In our study, we were not able to find any effects of ghrelin
treatment on %PPI and ASR, which might suggest that the
GHS-R1A rather than ghrelin has an important role in regu-
lating ASR and PPI. Supportively, the GHS-R1A has been
shown to be constitutively active and the GHS-R1A/D2 het-
erodimer allosterically modify D2-mediated calcium mobili-
zation in the absence of the endogenous ligand ghrelin; effects
that were blocked by both D2 and GHS-R1A antagonism
(Holst et al. 2003; Kern et al. 2012). Furthermore, previous
findings on alcohol intake and alcohol-induced reward also
suggest GHS-R1A-mediated rather than circulating ghrelin-
mediated involvement in the regulation of dopamine transduc-
tion (Jerlhag et al. 2009, 2011a, b, 2014).

In the present study, we found that treatment with JMV 2959
completely blocked the effects of PCP on%PPI. Phencyclidine,
a noncompetitive antagonist of the N-methyl-D-aspartate
(NMDA) receptor, is known to induce a state that closely re-
semble schizophrenia in humans, including both positive and
negative symptoms as well as cognitive dysfunctions
(Yesavage and Freman 1978; Javitt and Zukin 1991), and has
previously been used to investigate behaviors associated with
schizophrenia in experimental subjects. In animals, PCP and
other noncompetitive antagonists of the NMDA receptor such
as MK-801 are widely used to model aspects of the human
disease, including sensorimotor-gating deficits (Geyer et al.
2001). Recent findings have shown that ghrelin treatment can
enhance NMDA receptor signaling through intracellular phos-
phorylation of the NR1 subunits of the NMDA receptor via the
cAMP/PKA pathway indicating that ghrelin, possibly through
the GHS-R1A, may interact with NMDA receptor signaling
(Isokawa 2013a, b). However, we did not see any potentiating
effects of ghrelin on sub-threshold PCP treatment in %PPI re-
sponses indicating that ghrelin is not involved in PCP-induced

deficits of sensorimotor gating. Supportively, no associations
between ghrelin levels and schizophrenia have been found in
humans (Tsai et al. 2011). The interaction between ghrelin (pu-
tatively via GHS-R1A signaling) and the NMDA receptor may
still, however, partially explain the beneficial effects of JMV
2959 on PCP-induced disruption of the PPI response. There is
strong evidence for an interaction between dopamine and glu-
tamate signaling in schizophrenia (Carlsson and Carlsson 1990;
Bakshi et al. 1994; Bakshi and Geyer 1995; Fejgin et al. 2007).
Thus, it has been put forth that a hyperdopaminergic condition
could be a result of cortical NMDA receptor hypofunction with
reduced inhibition of midbrain brain dopamine neuron firing as
a consequence that may precipitate positive symptoms (Kegeles
et al. 2000). The abolition of PCP-induced deficits in PPI by
JMV 2959 could thus, in addition to direct modulations at the
NMDA receptor, also be a result of a stabilizing effect of JMV
2959 on dopamine signaling. The present findings are based on
systemic administration and further investigation of the neuro-
anatomical regulation of gating mechanisms by GHSR1A sig-
naling using parenchymal brain injections of GHSR1A ligands
is needed. A deeper understanding of how GHS-R1A antago-
nists, such as JMV 2959, alter dopamine transduction and
GHS-R1A heterodimerazation with dopamine receptors will
also give a better understanding of the effects of central GHS-
R1A signaling in behaviors in general and in schizophrenia and
schizophrenia-related behaviors specifically.
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