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STEFAN I. ADALBJÖRNSSON, TED KRONVALL, SIMON BURGESS,
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Sparse Localization of Harmonic Audio Sources
Stefan I. Adalbjörnsson, Student member, IEEE, Ted Kronvall∗, Student member, IEEE, Simon Burgess,

Kalle Åström, Senior member, IEEE, Andreas Jakobsson, Senior member, IEEE

Abstract—In this paper, we propose a novel method for
estimating the locations of near- and/or far-field harmonic audio
sources impinging on an arbitrary, but calibrated, sensor array.
Using a joint pitch and location estimation formed in two
steps, we first estimate the fundamental frequencies and complex
amplitudes under a sinusoidal model assumption, whereafter
the location of each source is found by utilizing both the
difference in phase and the relative attenuation of the magnitude
estimates. As audio recordings often consist of multi-pitch signals
exhibiting some degree of reverberation, where both the number
of pitches and the source locations are unknown, we propose
to use sparse heuristics to avoid the necessity of detailed a
priori assumptions on the spectral and spatial model orders.
The method’s performance is evaluated using both simulated
and measured audio data, with the former showing that the
proposed method achieves near-optimal performance, whereas
the latter confirms the method’s feasibility when used with real
recordings.

Index Terms—Multi-pitch estimation, near- and far-field lo-
calization, TDOA, block sparsity, convex optimization, ADMM,
non-convex sparsity.

I. INTRODUCTION

SOUND localization has been a topic of interest in a wide
range of applications for centuries, and is well known

to be a difficult problem, especially in a reverberating room
environment (see, e.g., [2]–[9], and the references therein).
Typically, a source is located in relation to an array of sensors
by exploiting the time delay between sensors for when they
receive its emitted signal. In the literature, this is referred to
as either time of arrival (TOA) estimation, if the time of signal
emission is known, or otherwise time difference of arrival
(TDOA) estimation, where only the relative time delays are
used. Common techniques for delay estimation include dif-
ferent variations on cross-correlation or canonical correlation
analysis (CCA), which then allows the sources to be located
in a second step using tri- and multi-lateration (see, e.g., [10])
Such estimates may also be further improved by matching the
relative received signal gains to a model for signal attenuation.
If the source is far from the sensor array, i.e., in the far-field,
its range may not be determined due to the lack of curvature
of the impinging sound pressure wavefront, which is then
approximately planar, making the range estimation problem
ill-posed. The scope is then restricted to determining the

This work was supported in part by the Swedish Research Council, Carl
Trygger’s foundation, and the Royal Physiographic Society in Lund. This
work has been presented in part at the ICASSP 2014 conference [1].

∗Corresponding author. Centre for Mathematical Sciences, Lund University,
P.O. Box 118, SE-221 00 Lund, Sweden, emails: {sia, ted, simonb,
kalle, aj}@maths.lth.se, phone: +4646-222 00 00, fax:+4646-222
42 13.

All authors are affiliated with the Centre for Mathematical Sciences, Lund
University

Upon acceptance, all code and data will be made publicly available.

direction of arrival (DOA) of the source relative to the sensor
array for the 2-D case, or determining azimuth and elevation
angles for a 3-D scenario. Historically, such methods are not
restricted to sound, but are commonly used, in e.g., military
applications, with electromagnetic signals (see, e.g., [11]–
[13]). Perhaps, partly due to differences in application for near-
field and far-field techniques, these problems are often treated
separately. In this work, and for our purposes with audio
signals, the two problems may indifferently be treated together.
A common issue with correlation-based techniques is that of
reverberation. Although often described in a temporal sense as
a filter for each sensor through which the signal is convoluted
[14], it may also be analyzed using a spatial formulation. In
principle, reverberation occurs when the original source signal
is received together with a number of reflections of it, which
are both time delayed and dislocated in space with respect to
the original. Localization in reverberant environments is still
very much an open topic, although several correlation-based
approaches exist which shows some degree of robustness (see,
e.g., [4]). By assuming a temporal and spectral parametric
structure on the received signals, localization may be improved
by jointly forming estimates of location together with the
parameters of such structures. This is quite common for
audio signals such as voiced speech [14], and many forms of
harmonic audio sources, such as stringed, wind, and pitched
percussion instruments [15], which typically have lots of
structure. At a glance, the spectral distribution of energy for
such signals is typically broadband, but further analysis shows
that it is in fact dominantly multi-narrowband, and may be
well described using the harmonic model, i.e., as a sum of
harmonically related sinusoids [16]. Under this assumption,
a source’s difference in delay and attenuation when received
at the different sensors translates into phase shifted and
magnitude scaled versions of the original signal. Exploiting
this, joint estimation of the DOA and the pitch frequency has
been addressed, such as in [17]–[19], wherein the authors
consider the estimation of the DOA of a single harmonic
sound source using a uniform linear array (ULA) of receiver
sensor, typically assuming oracle knowledge of the number
of harmonic signals in the sound source. Here, we extend on
these works, albeit with some generalizations. We are allowing
for an unknown number of near- or far-field harmonic sources,
each having an unknown number of harmonics, to impinge on
an arbitrary, but calibrated, sensor array, in the presence of
some degree of reverberation. This feat is attempted through
the use of a sparse recovery framework, which avoids making
explicit assumptions on the number of harmonic signals, i.e.,
the number of pitches, as well as for the number of source
locations for each pitch. Instead, only an implicit constraint
which controls a lower threshold for acceptable source power
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is needed, which may typically be set using some simple
heuristics. Sparse recovery frameworks have in earlier works
been found to allow high quality estimates for sinusoidal
signals; typical examples include [20]–[23], wherein the sparse
signal reconstruction from noisy observations were accom-
plished with the by now well-known sparse least squares (LS)
technique. More recently, the technique has been extended
to the case of harmonically related audio signals [24], [25].
Using the techniques introduced there, we propose a two-
step procedure, first creating a dictionary of candidate pitches
to model the harmonic components of the sources, without
taking the locations of the sources into account, and then, in
a second step, a dictionary of possible locations, including
simultaneously near- and far-field locations, to model the
observed phase differences, as well as the relative attenuations,
of the magnitudes of each sinusoidal component. In terms of
computational complexity, the estimation problem in each of
the two steps is convex, which thus guarantees convergence,
and may be solved using a second order cone (SOC) program.
As this is typically quite costly, we introduce a computation-
ally efficient implementation based on the alternating direction
method of multipliers (ADMM), which makes the proposed
method very managable in an off-line estimation procedure.
The remainder of this paper is organized as follows: in the next
section, we present the assumed signal model and discuss the
imposed restrictions on the sensor array. Then, in section III,
we present the proposed pitch and localization estimator.
Section IV accounts for the ADMM-based implementation,
followed in section V with an evaluation of the presented
technique using both simulated and measured audio signals.
Finally, we conclude on our work in section VI.

II. SIGNAL MODEL

In this work, we restrict our attention to the localization
of complex-valued1 harmonically related audio signals, con-
sisting of K̃ distinct sources, xk(t), for k = 1, . . . , K̃. Each
source is thus assumed to consist of Lk harmonically related
sinusoids, such that it may be detailed as (see also [16])

xk(t) =

Lk∑
`=1

ak,`e
jωk`t (1)

where ωk = 2πfk/fs is the normalized fundamental fre-
quency, with sampling frequency fs, and with ak,l denoting
the complex amplitude of the `:th harmonic.

A. Multi-sensor characteristics in near-field environments

When a source signal impinges on a sensor array, it is
both delayed and attenuated, such that at sensor m it may
be expressed as

xk,m(t) ,
dk,1
dk,m

xk(t− τk,m) (2)

1Clearly, the measured audio sources will be real-valued, but to simplify
notation and in order to reduce complexity, we will here initially compute the
discrete-time analytic signal versions of the measured signals, whereafter all
processing is done on these signals (see also [16], [26]).
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Fig. 1. Illustration of a two sensor scenario, with spherical wavefronts
propagating from the source. The dashed line shows the scaled TDOA of
the second sensor with respect to the first sensor, i.e., τ2.

where dk,m denotes the sensor-source distance, i.e.,

dk,m = ‖sk − rm‖2 (3)

with sk and rm denoting the location coordinates of the
k:th source and the m:th sensor, respectively, and ‖·‖2 the
Euclidean norm. Thus, (2) accounts for the approximative
attenuation of the signal when propogating in space, according
to the free-space path loss model. Furthermore, τk,m denotes
the propagation delay, i.e., the TDOA, relative to a selected
reference sensor, say m = 1, so that

τk,m = c−1 (dk,m − dk,1) (4)

for m = 1, . . . ,M , where τk,1 , 0, with c denoting the
propagation velocity. An illustration of this is shown in Figure
1, for the case of a single source and two sensors. When
recording audio, we often obtain multi-pitch signals of the
type

x(t) =
K̃∑
k=1

xk(t) (5)

which may be either a single source in the physical envi-
ronment emitting multiple pitch signals, such as an instru-
ment playing a chord, or multiple sources in the physical
environment each emitting a single pitch, such as multiple
speakers talking at the same time from different locations.
We may also receive a combination of these two types.
Without loss of generality, we will hereafter term a source
as a spatio-temporal object which has a unique combination
of fundamental frequency and location. Two sources may thus
have the same fundamental frequency or the same location in
space, although not both. This has rather large implications
when considering reverberation, where we, apart from the
original source, also receive a large number of reflections
of it, each reflection having highly similar spectral content,
albeit differently attenuated and delayed, i.e., having different
magnitudes and phases. All reflections will thus be modeled
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as separate sources, which implies that under such a model
assumption K̃ generally becomes very large. If not seen as
separate sources, however, the localization of the original
source will become biased by the interference caused from
its reflections. To see this, consider for example a sinusoid
with frequency ω, magnitude a1, and phase ϕ1, measured in
superimposition with its S−1 reverberating reflections, having
magnitudes a2, . . . , aS , and phases ϕ2, . . . , ϕS . For the mth
sensor, the measured (noise-free) signal becomes

xm(t) =

S∑
s=1

ase
−j(ωt+ϕs) , be−j(ω0t+ψ) (6)

i.e., a single sinusoid with magnitude b ∈ R+ and phase
ψ ∈ [−π, π), generally being different from the original
source. Thus, if trying to estimate the TDOA using phase
estimates without taking all reflections into account, for in-
stance by using a correlation-based measure, then only the
biased phase, ψ, would be obtained. However, separation of all
reflections for all fundamental frequencies is a quite difficult
problem, and in this work, we propose to split the estimation
procedure into two subproblems. In the first, we find the
present fundamental frequencies, and then for each of these
we separate the original source(s) from its reflections. To that
end, consider K ≤ K̃ as the number of unique fundamentals.
The noisy signal measured at sensor m may thus be expressed
as

ym(t) =

K∑
k=1

Lk∑
`=1

bk,`,me
jωk`t + em(t) (7)

where the TDOA and attenuation of all Sk reflections of the
k:th pitch, for overtone ` and sensor m, is gathered in the
complex amplitude of the signal, bk,`,m using (2) in the same
manner as in (6), i.e.,

bk,`,m =

Sk∑
s=1

ak,`,s
dk,1,s
dk,m,s

e−jωk`τk,m,s (8)

where ak,`,s, dk,m,s, and τk,m,s denote the amplitude, the dis-
tance to the mth sensor, and the TDOA for the sth reflection,
respectively. Thus, as K̃ =

∑K
k=1 Sk, the estimation procedure

first finds the K active fundamentals, whereafter for each
one, the original source is separated from its reflections. This
approach offers great simplification in contrast to decoupling
all K̃ sources simultaneously. To simplify presentation, and
without loss of generality, we will here restrict our attention
to the case when all sources and signals are restricted to a 2-D
plane, i.e., s ∈ R2 and r ∈ R2.

B. Avoiding spatial aliasing in arbitrary array geometries

In the literature, keeping below half wavelength sensor spac-
ing is generally preferred to avoid spatial aliasing, although
some methods of circumventing this have been published,
see e.g. [27]. In this work, we assume a calibrated, although
arbitrary, sensor array, without requiring it to satisfy the
pairwise half wavelength spacing. We will therefore briefly ex-
amine the spatial aliasing effect in the near-field environment,
which is the phase difference ambiguity between sensors,
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Fig. 2. TDOA hyperbolas representing all feasible locations of a single source
received by three sensors. As ‖r2 − r1‖ > λ/2, spatial aliasing yields
another hyperbola of feasible locations. And yet, in this case, there exists
only one intersection between the hyperbolas and so the estimate may still be
obtained unambiguously.

resulting when the solution may map to several feasible source
locations. To that end, consider a reverberation-free, delayed,
and attenuated complex amplitude from a single sinusoidal
signal, b. Naturally,

bm =
d1
dm

ae−jωτm =
d1
dm

ae−j(ωτm+k2π) (9)

and thus the mapping between phase and TDOA is ambiguous
for any k ∈ Z. Considering a given TDOA, and by combining
(3) and (4), one will note that any source s located on a half-
space of an hyperbolic curve, i.e.,

τmc = ‖s− rm‖2 − ‖s− r1‖2 (10)

is a feasible location. To obtain a unique solution, we add
additional sensors, and we may thus form new sensor pairs
yielding new hyperbolas, where the feasible solution set will
be restricted by the intersection of these curves. Ambiguity
may arise when, for each sensor pair, there exist another
TDOA (and thus another k) which fulfills (9), giving rise
to an additional hyperbolic curve of feasible points, also
intersecting the hyperbolas for other sensor pairs. To identify
such ambiguous cases, we first show that a feasible TDOA is
restricted to an interval. Using the triangle inequality,

|τmc| =
∣∣∣‖s− rm‖2 − ‖s− r1‖2

∣∣∣ ≤ ‖rm − r1‖2 (11)

it is directly implied that the TDOA must satisfy

τmc ∈
[
−‖rm − r1‖2 , ‖rm − r1‖2

]
(12)

i.e., is restricted by the sensor-sensor distance. And so, using
(9), an estimate of arg b ∈ [−π, π] will map to any TDOA

τmc =
λ arg b

2π
+ λk ∈

[
−‖rm − r1‖2 , ‖rm − r1‖2

]
(13)

where k ∈ Z, and λ = 2πc/ω is the wavelength of the
signal. Therefore, if the sensors are spaced by less than
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λ/2, the feasible τm is unique, and there is no ambiguity
in the resulting estimates. If instead some sensors are spaced
further apart than λ/2, then, for all such sensor pairs, there
will be more than one feasible TDOA, thereby yielding as
many hyperbolas indicating feasible source locations, with
a minimum distance of λ/2 apart. Our main argument to
relax the halv wavelength spacing limit is that, when using
sufficiently many sensors, the feasible source locations are
restricted to the intersection of many hyperbolas, which will,
with a high probability, yield a unique solution. Consider an
example illustrated in Figure 2, where a single source emits
a 1000 Hz signal, which is recorded by three sensors. As
shown in the figure, between sensors one and three, which
are less than λ/2 apart, the source gives a single TDOA
and a corresponding hyperbola, where the source may be
located. Between sensors one and two, which are spaced by
more than λ/2 apart, a second TDOA is feasible, λ/c apart
from the true one, also fulfilling (13). However, as shown
in the figure, the combined hyperbolas coincide in only a
single feasible location, thus still allowing for an unambiguous
estimate of the source location. Furthermore, for pitch signals,
each overtone will yield a separate set of hyperbolas, which
all must intersect to the same location, which further helps
to avoid ambiguity. Modeling the attenuation between sensors
also helps to avoid ambiguity. Examining the magnitude of
the the complex amplitude in (9), we find that

|bm| =
d1
dm
|a| (14)

for each pair, consisting of the first and the m:th microphone,
which limits s to lie on a circle. Using the same arguments as
above, a feasible source location in terms of attenuation is thus
the intersection of circles for all microphone pairs, and will
further contribute to avoid spatial aliasing. Even if, despite of
intersecting the feasible solutions for all harmonics in terms
of both delay and attenuation, ambiguities still remain, then as
more sensors are added to the array the set of possible loca-
tions quickly becomes small, and a unique solution generally
exists, even if not guaranteed. We thus deem that the imposed
restriction on the array’s geometry is mild.

III. JOINT PITCH AND LOCATION ESTIMATION

We proceed to detail the proposed two-step procedure to
form reliable estimates of both the pitches and locations of
the sources impinging on the array, without assuming detailed
model knowledge of either the number of sources, K, the
number of overtones for each source, Lk, the number of
reflections experienced due to a possibly reverberant environ-
ment, Sk, or requiring knowledge about whether sources are
far- or near-field. In the first step, the magnitudes, phases,
fundamental frequencies, and model orders of the present
pitches are estimated, and subsequently, in the second step,
the phase estimates are used to find the locations of these
sources. Let

Φ =

{
{bk,`,m} `=1,...,Lk

m=1,...,M
, ωk, Lk

}
k=1,...,K

(15)

denote the set of unknown parameters to be determined in the
first step. Minimizing the squared model residual in (7), an
estimate of Φ may thus be formed as

Φ̂ = argmin
Φ

N∑
t=1

M∑
m=1

∣∣∣∣∣ym(t)−
K∑
k=1

Lk∑
`=1

bk,`,me
jωk`t

∣∣∣∣∣
2

(16)

Clearly, given the dimensionality of the problem, and the
required model order estimation steps in order to determine
K and Lk, this is a non-trivial problem, and needs to be
modified to allow for an efficient solution, as is detailed below.
Moving over to the second step, the found magnitude and
phase estimates, b̂k,l,m, are exploited to form estimates of the
source locations. To that end, let

Ψk =
{
{ak,`,s}`=1,...,Lk

, ss

}
s=1,...,Sk

(17)

be the amplitudes and coordinates for a present fundamental
frequency k. The locations may be determined by minimizing
the squared model residual in (8), i.e.,

Ψ̂k = argmin
Ψk

L̂k∑
`=1

M∑
m=1

∣∣∣∣∣b̂k,`,m −
Sk∑
s=1

ak,`,sd
−1
k,m,se

−jωk`τk,m,s

∣∣∣∣∣
2

(18)

where τk,m,s and dk,m,s are functions of the location ss, as
defined in (3) and (4). As before, this minimization is also
non-trivial, requiring an estimate of Sk, and also needs to be
modified to allow for a reasonably efficient solution. In the
following, we will elaborate on the proposed modifications of
the above minimizations. In order to do so, we first extend
the sparse pitch estimation algorithm presented in [24], [25]
to allow for multiple measurement vectors. In the second
minimization, we then introduce a similar sparsity pattern to
solve the localization problem. We begin by examining the
extended pitch estimation algorithm.

A. Step 1: Sparse pitch estimation

Define the measurement matrix

Y =
[

y(1) . . . y(N)
]T

(19)

where

y(t) =
[
y0(t) . . . yM−1(t)

]T
(20)

denotes a sensor snapshot for each time point t = 1, . . . , N ,
with (·)T being the transpose. The measurements may then be
concisely expressed as

Y =

K∑
k=1

WkBk + E (21)

where E denotes the combined noise term constructed similar
to Y, and

Wk =
[

w1
k . . . wLk

k

]
(22)

wk =
[
ejωk . . . ejωkN

]T
(23)

Bk =
[

bk,1 . . . bk,Lk
]T

(24)

bk,` =
[
bk,`,1 . . . bk,`,M

]T
(25)
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Reminiscent to the sparse estimation framework proposed in
[20], we form an extended dictionary of feasible fundamental
frequencies, ω1, . . . , ωP , where P � K, being chosen so
large that K of these will coincide reasonably well with the
true pitches in the signal. In the same manner, the number
of harmonics of each pitch is extended to an arbitrary upper
level, say Lmax, for all dictionary elements. The signal model
may thus be expressed as

Y =

P∑
p=1

WpBk + E = WB+ E (26)

where the block dictionary matrices are formed by stacking
the matrices such that

W =
[

W1 . . . WP

]
(27)

B =
[

BT
1 . . . BT

P

]T
(28)

Note from (26) that if the element (`, r) of the matrix Bk is
non-zero, the frequency `ωk is present in the signal at sensor r.
Furthermore, since we assume all sensors to receive essentially
the same signal, although time-delayed, one may assume that
for a harmonic signal, the rows off a non-zero Bk will either
be non-zero, implying that the harmonic ` is present in the
pitch, or zero, if the harmonic is missing. An appropriate
criterion, that promotes a combination of model to data fit
and the sparsity pattern just described, may thus be formed as

minimize
B

{
1

2
‖Y −WB‖2F + λ

P∑
p=1

Lp∑
`=1

‖bp,`‖2

+

P∑
p=1

γp ‖Bp‖F

}
(29)

where two different kinds of group sparsities are imposed, and
with ‖·‖F denoting the Frobenius norm. This can be seen to
be a generalization of the sparse group lasso to the multiple
measurement case (see also [25], [28]). Here, the double sum
of 2-norms in the second entry of the minimization should
enforce sparsity in the solution in the rows of B, and ideally
only have as many non-zero rows as there are sinusoids in
the signal. The third entry makes the solution (matrix) block
sparse over the candidate pitches, penalizing the number of
pitches with non-zero magnitude in the signal, ideally making
them as many as there are pitches in the signal, i.e., K. Given
an optimal point, B̂, the number of pitches is thus estimated as
the number of non-zero matrices B̂k, and, for each pitch, the
number of harmonics, Lk, is estimated as the number of non-
zero rows. The user parameters λ, γp ∈ R+ weighs the fit of
the solution to its vector and matrix sparsity, respectively. It is
well known (see, e.g., [29]) that the amplitudes in the sparse
estimate will be increasingly biased towards zero as sparse
regularizers are increased. As we here intend to use both the
estimated phases and the magnitudes, we propose to refine
the amplitude estimates using a reweighting scheme similar to
the one presented in [30]. This is accomplished by iteratively

solving (29), such that at iteration j + 1, one updates

γ(j+1)
p =

γ
(0)
p∥∥∥B̂(j)

p

∥∥∥
F
+ ε

(30)

where B̂
(j)
p is block p of the optimal point for iteration j, and

all γ(0)p are set to be equal in the first iteration. As a result, the
block matrices, B̂

(j)
p , which have a small Frobenius norm at

iteration j will be penalized harder in the next step, whereas
the ones that have a larger Frobenius norm will be penalized
less, and as a result reducing the bias. The resulting algorithm
can be seen as a sequence of iterative convex programs to
approximate the concave log(

∑P
p=1 γ

(0)
p ‖Bp‖F + ε) penalty

function [31], where ε is chosen as a small number to avoid
numerical difficulties. The introduction of the reweighting
yields sparser estimates due to the introduction of the log
penalty [30], [32], and the resulting technique may be viewed
as an alternative to using an information criterion (as was done
in [25], to avoid spurious peaks caused by the signal model
and data miss-match).

It is worth noting that as we are here focusing on localiza-
tion, we have selected to use a somewhat simplistic audio
model that ignores several important features in harmonic
audio signals, such as issues of inharmonicities, pitch halvings
and doublings, and of the commonly occurring forms of am-
plitude modulation exhibited by most audio sources (see also
[16]). Clearly, the used model could be refined reminiscent
to models such as the one used in [25], [33], introducing a
total variation penalty to each column of B, and/or using
an uncertainty volume to allow for inharmonicity. However,
for localization purposes, these issues are of less concern,
as halvings/doublings and/or amplitude modulations will not
affect the below localization procedure more than marginally.
Inharmonicity is more pressing, but we have in our numerical
studies found that given the size of the calibration errors, the
inharmonicity is not affecting the solution significantly, and in
the interest of reducing the complexity, we have here opted to
exclude this aspect from the estimator.

As for the selection of the tuning parameters, one may use,
for example, cross validation techniques, although it may be
noted that, in high SNR cases, one can often get good results
by simply inspecting the periodogram and by then setting the
tuning parameters appropriately (see also [25] for a further
discussion on this issue). Furthermore, we note that in the
case of different noise variances at each sensor in the array, the
Frobenius norm in the first entry of the minimization criterion
may be replaced with a weighed Frobenius norm. Finally, we
note that non-Gaussian noise distributions can also be used as
long as the negative log-likelihood is convex.

B. Step 2: Sparse localization

According to the signal model (7), B̂ will inherently contain
the TDOA and attenuation for all reflections of any fundamen-
tal frequency present in the signal, which enables a range of
post-processing steps to, for instance, estimate position, track,
and/or calibrate the sensors. Here, we limit our attention to
estimating the source positions. Let B̂ denote the solution
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obtained from minimizing (29), and consider a scenario where
the sources are well separated in their pitch frequencies, and,
initially, suffering from negligible reverberation, implying that
S1 = . . . = SP = 1. Then, the minimization in (18) may
be seen as a generalization of the time-varying amplitude
modulation problem examined in [34] (see also [13]) to the
case of several realizations of the same signal, sampled at
irregular time points, and with a different initial phase for
each realization. Reminiscent to the solution presented in [13,
p. 186], one may thus find the source locations, for far-field
signals, for every pitch p with non-zero amplitudes in Bp, as

ŝp = argmax
sp

Lp∑
`=1

∣∣∣∣∣
M∑
m=1

b̂2p,`,me
−j2ωp`τp,`,m

∣∣∣∣∣
2

(31)

where the TDOAs τp,`,m are found as a function of the
source location sp, using (4). This minimization may be
well approximated by 1-D searches over range and DOA
(or over range, azimuth, and elevation in the 3-D case).
Considering also reverberating room environments, wherein
each of the pitches may appear as originating from many
different locations, the minimization needs to be extended to
allow for varying number of reflections, Sk. To allow for such
reflections, we proceed to model every non-zero amplitude
block from the pitch estimation step as

Bk =

Sk∑
s=1

diag (ak,s)Uk,s + Ek (32)

with diag(x) denoting a diagonal matrix with the vector x
along its diagonal, Ek the combined noise term constructed in
the same manner as Bk, and

Uk,s =
[

u1
k,s . . . uL̂kk,s

]
(33)

uk,s =
[

ejωkτk,1,s

1 . . . ejωkτk,M,s

dk,M,s/dk,m,s

]T
(34)

ak,s =
[

ak,1,s . . . ak,L̂k,s
]T

(35)

where τk,m,s and dk,m,s are related to the source location
as given by (3) and (4), respecively. Analogously to the
above procedure for the pitch estimation, we then extend the
dictionary of feasible source locations for the kth source,
s1, . . . , sSk , onto a grid of Q � Sk candidate locations sq ,
for q = 1, . . . , Q, with Q chosen large enough to allow some
of the introduced dictionary elements to coincide, or closely
so, with the true source locations in the signal. Clearly, this
may force Q to be very large. Striving to keep the size of
the dictionary as small as possible, we consider grid points
in polar coordinates, with equal resolution for all considered
DOAs, and linearly spaced grid points over the distance in
each DOA. Thus, we get a denser grid in the close proximity
to the sensor array, where the resolution capacity is highest,
and then a less and less dense grid for sources further away
from the array. Finally, to also allow for far-field sources, one
may include one dictionary element for each direction at an
infinite range, for which, naturally, the attenuation effect may
be disregarded, i.e., dk,m,s , 1 for all sensors. Thus, we may
estimate the source locations for the k:th pitch using a sparse

modelling framework as

minimize
ak,1,...,ak,Q

{
1

2

∥∥∥∥∥Bk −
Q∑
q=1

diag ak,qUk,q

∥∥∥∥∥
2

F

+

Q∑
q=1

κq ‖ak,q‖2 + ρ

Q∑
q=1

‖ak,q‖1

}
(36)

where, again, two types of sparsity is imposed on the solution.
The 2-norm penalty term imposes sparsity to the blocks ak,q ,
i.e., penalizing the number of source locations present in the
signal. Furthermore, the 1-norm term penalizes the number
of harmonics, to allow for cases when some sources may
have missing harmonics. Thus, here the number of sources
is estimated as the number of nonzero blocks in an optimal
point and any zero elements within a block corresponding to
a missing harmonic. Here, κq, ρ ∈ R+ are tuning parameters,
controlling the amount of sparsity and the weight between
sparsity in pitches and in harmonics, respectively, whereas the
factor ρ is only used if two sources share the same fundamental
frequency but differ in which harmonics are present. Finally,
κq may be updated in the same manner as described in section
III.A. As shown in the following section, the optimization
problem in (29) and (36) are equivalent, so these tuning
parameters may be set in a similar fashion.

IV. ADMM IMPLEMENTATION

It is worth noting that both the minimization in (29) and (36)
are convex, as the tuning parameters are non-negative and all
the functions are convex. Their solutions may thus be found us-
ing standard convex minimization techniques, e.g., using CVX
[35], [36], SeDuMi [37], or SDPT3 [38]. Regrettably, such
solvers will scale poorly both with increasing data length, the
use of a finer grid for the fundamental frequencies, and with
the number of sensors. Furthermore, such implementations
are unable to utilize the full structure of the minimization,
and may, as a result, be computationally cumbersome in
practical situations. To alleviate this, we proceed to formulate
a novel ADMM re-formulation of the minimizations, offering
efficient and fast implementations of both minimizations. For
completeness and to introduce our notation, we briefly review
the main steps involved in an ADMM (we refer the reader to
[39], [40] for further details on the ADMM). Considering the
convex optimization problem

minimize
z

f(z) + g(z) (37)

where z ∈ Rp is the optimization variable, with f(·) and g(·)
being convex functions. Introducing the auxiliary variable, u
(37) may equivalently be expressed as

minimize
z,u

f(z) + g(u) subject to z− u = 0 (38)

since at any feasible point z = u. Under the assumption that
there is no duality gap, which is true for the here considered
minimizations, one may solve the optimization problem via
the dual function defined as the infimum of the augmented
Lagrangian, with respect to x and z, i.e., (see also [39])

Lµ(z,u,d) = f(z) + g(u) + dT (z− u) +
µ

2
||z− u||22
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Algorithm 1 The ADMM algorithm
1: Initiate z = z0,u = u0, and k = 0
2: repeat
3: zk+1 = argmin

z
f(z) + µ

2 ||z− uk − dk||22
4: uk+1 = argmin

u
g(u) + µ

2 ||zk+1 − u− dk||22
5: dk+1 = dk − (zk+1 − uk+1)
6: k ← k + 1
7: until convergence

The ADMM does this by iteratively maximizing the dual
function such that at step k+1, one minimizes the Lagrangian
for one of the variables, while holding the other fixed at its
most recent value, i.e.,

zk+1 = argmin
z
Lµ (z,uk,dk) (39)

uk+1 = argmin
u
Lµ (zk+1,uk,dk) (40)

Finally, one updates the dual variable by taking a gradient
ascent step to maximize the dual function, resulting in

d̃k+1 = d̃k − µ
(
zk+1 − d̃k+1

)
(41)

where µ is the dual variable step size. The general ADMM
steps are summarized in Algorithm 1, using the scaled version
of the dual variable dk = d̃/µ, which is more convenient
for implementation. Thus, in cases when steps 3 and 4 of
Algorithm 1 may be carried out more efficiently than for
the original problem, the ADMM may be useful to form an
efficient implementation of the considered minimization.

It may be noted that the minimizations in (29) and (36) are
rather similar, both containing an affine function in a Frobenius
norm, as well as a sum of the norm of different subset of the
variable. In fact, by using the vec operation, i.e., vectorization,
both minimizations may be shown to be equivalent with the
problem

minimize
z

{
1

2
‖y −Az‖22 + γ

P∑
k=1

‖zk‖2

+ δ

P∑
k=1

Gk∑
g=1

‖zk,g‖2

}
(42)

where the complex variable z is given as

z =
[

zT1 . . . zTP
]T

(43)

zk =
[

zTk,1 . . . zTk,Gk
]T

(44)

where each zk and zk,g denote complex vectors with Gk and
O elements, respectively. For the minimization in (29), this
implies that

y = vec(Y) (45)
z = vec(B) (46)

A = I⊗W (47)

where ⊗ and I denote the Kronecker product and an M -
dimensional identity matrix, respectively, with Gk being equal
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r
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Sources

Sensors

Fig. 3. The two-source and eight-sensor layout in 2-D. The position of each
sensor, shown in the plot with carthesian coordinates as rm = [x, y], was
obtained in an a priori calibration step.

to the number of harmonics, Lk, and O equals the number of
sensors, M . Similarly, for the minimization in (36),

y = vec(Bp) (48)
z = ak (49)

A = Ṽk (50)

where

ak =
[

aTk,1 . . . aTk,Q
]T

(51)

Ṽk =
[

Ṽk,1 . . . Ṽk,Q

]
(52)

and Vk,q = Uk,q ⊗ I, with Ṽk,q being formed by removing
all columns from Vk,q that correspond to zeros in the vector
vec(diag(ak,q)), and Gk being equal to Lk and O equals 1.
Thus, we can formulate an ADMM solution for (42) that solves
both problem (29) and (36). To that end, defining

f(z) =
1

2
‖y −Az‖22 (53)

g(u) = γ

P∑
k=1

‖uk‖2 + δ

P∑
k=1

Qk∑
g=1

‖uk,g‖2 (54)

yields a quadratic problem in step 3 in Algorithm 1, with a
closed form solution given by

zk+1 =
(
µI + AHA

)−1 (
µ (uk − dk) + AHy

)
with (·)H denoting the Hermitian transpose, whereas in step 4,
by solving the sub-differential equations (see [25] for further
details), one obtains

uk+1 = So
(
Si (zk − dk, κ/µ) , δ/µ

)
(55)

where the shrinkage operators So and Si are defined using
the vector shrinkage operator S, defined for any vector v and
positive scalar ξ such that

S(v, ξ) = v (1− ξ/||v||2)+ (56)
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Fig. 4. The PWL and RMSE for a single-pitch signal as compared with the
optimal performance of an estimator reaching the CRB.

where (·)+ is the positive part of the scalar, and

S(z, ξ)o =
[
ST (z1, ξ) . . . ST (zP , ξ)

]T
(57)

S(z, ξ)i =
[
ST (z1,1, ξ) . . . ST (z1,G1 , ξ) . . .

ST (zP,1, ξ) . . . ST (zP,GP , ξ)
]T

(58)

The resulting algorithm is here termed the Harmonic Audio
LOcalization using block sparsity (HALO) estimator.

V. NUMERICAL COMPARISONS

We proceed to examine the performance of the proposed
estimator using both synthetic and measured audio signals,
initially examining the performance using simulated audio
signals. In the first examples, we limit ourselves to the case of
letting a far-field signal impinge on a ULA. Figure 4 shows
the percentage within limits (PWL), defined as the ratio of
pitch estimates within a limit of ±0.1 Hz from the true pitch,
and the root mean square error (RMSE) of the DOA, defined
as

RMSEθ =

√√√√ 1

nK

K∑
k=1

n∑
i=1

(
θ̂k,i − θk

)2
(59)

where n denotes the number of Monte Carlo (MC) simulation
estimates, and K the number of pitches in the signal, for
the resulting estimates. For comparison, we use the Cramér-
Rao lower bound (CRB), the NLS estimator, and the Sub
approach (see [17] for further details on these methods and
for the corresponding CRB). These results have been obtained
using n = 250 MC simulations of a single pitch signal,
with ω1 = 220 Hz and L1 = 7 harmonics, impinging from
θ1 = −30◦, where both the NLS and the Sub estimators
have been allowed perfect a priori knowledge of both the
number of sources and their number of harmonics, whereas the
proposed method needs no such knowledge. As is clear from
the figures, the HALO method offers a preferable performance
as compared to the Sub estimator, and only marginally worse
than the NLS estimator, in spite of both the latter being
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Fig. 5. The PWL and RMSE for a multi-pitch signal with two pitches, as
compared to the corresponding CRB.

allowed perfect model orders information. Here, the number
of sensors in the array was M = 5 and we used 20 ms
of data sampled at fs = 8820 Hz, i.e., N = 176 samples.
Furthermore, c = 343 m/s and d = c/fs ≈ 0.0389 m. We
proceed to consider the case of multi-pitch signals impinging
on the array. Measuring as in the single-pitch case, we now
form a multi-pitch signal with two pitches and fundamental
frequencies {150, 220} Hz containing {6, 7} harmonics,
coming from θ1 = −30◦. Figure 5 shows the RMSE and
PWL estimates, as obtained using 250 MC simulations, clearly
showing that the HALO estimator is able to reach close to
optimal performance also in this case. Here, no comparison is
made with the NLS and Sub estimators of [17] as these are re-
stricted to the single-pitch case. Throughout these evaluations,
we have used Lmax = 15. Also, as the resulting estimates
were found to be appropriately sparse when using only the
convex penalties, and no reweighing steps were used. We next
proceed to examine real measured signals. The measurements
were made in an anechoic chamber, approximately 4× 4× 3
meters in size, with the sensors and speakers located as shown
in Figures 3 and 10. Two speakers were placed at locations
(in polar coordinates) s1 = [θ1, R1] = [115.03◦, 1.15m]
and s2 = [θ2, R2] = [−74.53◦, 1.33m], with respect to the
central microphone, respectively. The positions of the sensors
were determined by placing them together with the sources,
using the acoustic method detailed in [41]. This is done by
calibrating the sensors with a single moving source, using
a correlation-based methodology. The positions were also
confirmed via a computer vision approach were the positions
were found by taking several photos and reconstructing the
environment. The maximum deviation in position between
these methods was less than 1 cm. As the spatial impulse
responses of the microphones were deemed to be reasonably
omni-directional, as well as roughly the same for all the
microphones, no further calibration of the sensor gains were
performed. The positions were then projected onto a 2-D plane
using principal component analysis. In order to illustrate
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Fig. 6. Time-domain data for the 7th sensor (lined), overlaid with the signal
model reconstruction (dotted).
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Fig. 7. Time-domain data for the 8th sensor (lined), overlaid with the signal
model reconstruction (dotted).

the HALO estimator’s ability to handle an environment with
the same pitch signal originating from different sources, as
a much simplified proof of concept for a reverberating room
environment, we examine a case with two sources playing the
same signal content. Both sources plays a (TIMIT) recording
of a female voice saying ’Why were you away a year, Roy?’,
timing the source’s playback so that the recording at each
microphone sounds slightly echoic. The eight microphones
all record at a sample rate of fs = 96 kHz. The data is
then divided into time frames of 10 ms, i.e., N = 960
samples, which allow each frame to be well modelled as being
stationary. Examining a part of the speech that is voiced,
arbitrarily selected as the frame starting 380 ms into the
recording, about when the voice is saying the voiced phonetic
sound ’a’ in ’why’, Figures 6 and 7 show the signal measured
at the 6th and 8th microphone, respectively, together with the
reconstructed signal obtained from the pitch estimation step
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Fig. 8. Time-domain data for the 8th sensor (lined), overlaid with the signal
model reconstruction (dotted).
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Fig. 9. Time-domain data for the 6th sensor (lined), overlaid with the signal
model reconstruction (dotted).

in HALO, obtained as

Ŷ = WB̂ (60)

using the resulting model orders and estimates. The esti-
mator indicate that the signal contains a single pitch at
ω̂/2π = 193.5 Hz, having L̂ = 12 overtones. As is clear
from the figures, the estimator is well able to model the
measured signal in spite of the presence of the reverberation.
Comparing the figures, one may also note the time shift
between the sensors, due to the additional time-delay for the
wavefront traveling between them, corresponding to a linear
combination of the two sources, each with their particular
TDOA and attenuation. It should also be noted that the signals
are not simply time-shifted versions of each other due to
the room environment and the attenuation of the signal when
propagating in space (which would thus create problems for an
estimator based on the cross-correlation between the sensors).
The same situation is illustrated in Figures 8 and 9 showing
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Fig. 10. A photo showing the experimental setup in the anechoic chamber.

the results when the signal source is replaced with that of a
part of a (SQAM) violin signal. Again, the estimator can be
seen to be able to well model the impinging signals, which
is estimated as being a single pitch with the fundamental
frequency ω̂/2π = 198.0 Hz, containing L̂ = 14 harmonics.
In order to examine the location estimation, we construct a
2-D grid of feasible locations, chosen such that the space
is discretized into 1008 points, consisting of 72 directions
between [−180◦, 180◦), spaced every 5◦, where each direction
allows for ranges R ∈ [0.7, 2] m, spaced 10 cm apart. The
resulting grid is shown in Figure 11, which is roughly covering
the entirety of the anechoic chamber. To also allow for far-field
sources, a range of R =∞ is also added to the grid for each
direction, which we have chosen to illustrate by the outer circle
in Figure 11. For these far-field grid points, the time-delays
are instead computed as (see also [11])

τm =
min

z
‖rm − `(z)‖2

c
(61)

for a location z on the line `(·), which is perpendicular to
the DOA and goes through r1. The figure also shows the
locations for the sensors and the sound sources, as well as
the estimated locations, as obtained by the second step of
the HALO estimator (the estimated locations were identical
for both audio recordings). The errors in position were 5
cm in range for each source, where a bias, overestimating
the range, accounts for almost all of the error. On the other
hand, as shown in the figure, the angles of the sources θ
were accurately estimated. The overestimation of the range
may to a large extent be explained by poor scaling when
calibrating the array. One may note that, for localization in
3-D, the size of the dictionary will increase significantly as
compared to the 2-D case used for numerical illustration in
this paper. For the case above, if also the elevation angle is to
be considered, having the same resolution as for the azimuth,
this would yield a dictionary of 72 576 atoms. Although much
larger, a sparse modeling systems of this size is by no mean
impractical to work with. Also, our investigations show that a

less dense location grid may be used, whereafter a zooming
step can be taken. Although limited, our findings indicate that
the algorithm may be used in a realistic scenarios. Clearly,
further investigations are needed on more practical aspects.
For future works, it is of interest to examine how the proposed
method performs in more diverse scenarios. For instance,
the method shows potential for use in a true reverberating
environment, where instead of only one reflection, there
is a multitude, giving rise to both clearly distinguishable
reflections, i.e., early reverberation, and less clear such,
i.e., late reverberations. Also, different combinations of
microphone arrays and source signals could be evaluated, to
try and find a limit for how many microphones are needed
to resolve one or several sources, arbitrarily placed in the
environment. Finally, the experiments shown above, as well
as the mentioned suggestions, can be generalized onto a 3-D
array geometry, thus adding a dimension in the localization
step.

Finally, we illustrate the algorithm’s performance using
MC simulations, using simulated sources, one near- and
one far-field source, detailed with ω = [200, 270] Hz,
L = [15, 14] harmonics, impinging from θ = [110◦,−70◦]
at R = [1.3,∞] m, respectively. The sensors are placed as a
uniform circular array, with 7 sensor placed evenly at a 0.5 m
radius, together with a sensor being placed in the center of
the array. First, we examine the position estimates using a
coarse spacing for the possible sources, spaced by 11 cm
in angle for all angles θ ∈ [−180◦, 180◦), and spaced by
10 cm in range, at R ∈ [0.7, 3] m. In each MC simulation,
the true location of each source was offset by a (uniformly
distributed) range offset of plus minus one half the grid
spacing. In all simulations, we ensured that neither of the
sources were placed on a dictionary grid point. Figure 12
shows the PWL for the angle and range estimates, where
the limit is chosen to be the same as the grid spacing, i.e.,
the ratio of estimates that are within ±10 cm in range, and
±5◦ in angle. As seen from the figure, the both the range
and the DOA of the sources are well determined, indicating
that even with the use of a coarse grid, one is able to obtain
reliable estimates. Proceeding to instead using a fine grid,
the coarse estimates may then be refined by zooming in the
grid over the found locations. Using a dictionary of the same
size as the coarse grid, although centered around the found
estimates, yields a resolution of ±5 mm in range and ±0.25◦
in angle. Figure 13 shows the resulting RMSE for the angle
and pitch estimates on the finer grid, as compared to the CRB
(given in the Appendix). As can be seen from the figure, the
RMSE (and the corresponding CRB) of the far-field source
is somewhat lower than the near-field source, although both
sources are well estimated, yielding a performance close to
being optimal. The slight offset from the CRB is deemed
to be largely due to a small bias in the final estimates,
resulting from the smoothness of the approximative cost
function resulting from the additive convex constraints. As
is clear from the above presentation, the HALO estimate
exploits the harmonic structure in the received audio signals
to position the sources, using the pitch estimates to form
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a sparse estimate over a wide range of feasible positions.
Obviously, most audio signals are not harmonic at all times,
and the estimator should thus be used in combination with a
tracking technique, possibly using a methodology reminiscent
to the one presented in [42], [43]. In such a tracking scheme,
the estimated pitch amplitudes should be used as an indicator
for the reliability of the obtained positioning, yielding
poor or maybe even erroneous positioning for unvoiced or
non-harmonic audio signals, whereas reasonably accurate
positions may be expected for more harmonic signals.

VI. CONCLUSIONS

In this paper, we have presented an efficient sparse mod-
eling approach for localizing harmonic audio sources using a
calibrated sensor array. Assuming that each of the harmonic
components in each pitch can only come from one source, the
localization estimate is based on the phase and attenuation
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Fig. 13. The RMSE for the angle and range estimates when using a finely
spaced grid, indicating the ratio of estimates that are within ±5 mm in range,
and ±0.25◦ in angle.

information for all of the harmonics jointly. The resulting
model phases and attenuation will then depend on the source
location. By using sparse modeling, the method inherently es-
timates both the number of sources, the number of harmonics
in each source, as well as the extent of a possibly occurring
reverberation. The effectiveness of the resulting algorithm is
shown using both simulated and measured audio sources.

VII. ACKNOWLEDGEMENTS

The authors wish to express their gratitude to the Signal
Processing Group at Electrical and Information Technology,
Lund University, for allowing use of their experimental facili-
ties, as well as to the authors of [17] for sharing their Matlab
implementations.

APPENDIX

In this appendix, we briefly summarize the Cramér-Rao
lower bound (CRB) for the examined localization problem.
As is well known, under the assumption of complex circu-
larly symmetric Gaussian distributed noise, the Slepian-Bangs
formula yields [13, p. 382]

[
P−1cr

]
ij
= trace

[
Γ−1Γ′iΓ

−1Γ′j
]
+ 2R

[
µ′Hi Γ−1µ′j

]
(62)

where R denotes the real part of a complex scalar, Γ the co-
variance matrix of the noise process, and µ is the deterministic
signal component, with Γ′i and µ′i denoting the derivative of
Γ and µ with respect to element i of the parameter vector,
respectively. For the case of uncorrelated noise with a known
variance σ2, this simplifies to[

P−1cr

]
ij
= 2R

[
µ′Hi µ

′
j

]
/σ2 (63)

Using the assumed signal model as measured at sensor m,
stacking the the observations as in (19), and then using
the vec operator on the resulting matrix results, one obtains
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the µ function needed for the CRB calculations. Here, the
parameters to be estimated are

∆ =
{
{ak,`, φk,`}`=1,...,Lk

, ωk, θs,k, Rs,k

}
s=1,...,S
k=1,...,K

(64)

Clearly, the resulting function may easily be derivated with
respect to the magnitude, frequency and phase parameters.
However, since the location parameter, θs,k and Rs,k, enter
into the expression in a complicated manner depending on
the sensor geometry, the corresponding derivatives are not
straight forward for an arbitrary array. For this reason, for
the considered array geometries, we here simply approximate
the resulting expressions using numerically differentiated ex-
pressions.
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