Isolation and characterization of two European strains of Ehrlichia phagocytophila of equine origin

Bjöersdorff, Anneli; Bagert, Bodil; Massung, Robert F.; Gusa, Asiya; Eliasson, Ingvar

Published in:
Clinical and Diagnostic Laboratory Immunology

DOI:

2002

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Granulocytic Ehrlichia causes febrile diseases in many different animals and in humans. The first human cases were described for the United States in 1994, but clinical cases are now accumulating from many countries, mainly in temperate regions (3, 24, 29; A. van Dobbenburgh, A. P. van Dam, and E. Fikrig, Letter, N. Engl. J. Med. 340:1214–1216, 1999). In Scandinavia, clinical granulocytic ehrlichiosis (GE) has been reported for humans, cattle, sheep, horses, dogs, and cats (5, 7, 14, 26). The infectious agents are strictly intracellular life in the wildlife reservoir and the infected host, as well as prolonged survival in the principal vector, hard-bodied ticks of the genus Ixodes. Until the successful isolation of granulocytic ehrlichias in HL-60 cells, the possibilities of studying these bacteria were limited to indirect and molecular biological methods (16). Today, reports of successful isolation of granulocytic Ehrlichia from humans and animals are available from the United States but not from other parts of the world. The aim of this study was to isolate, to maintain in culture, and genetically characterize European strains of granulocytotrophic Ehrlichia phagocytophila. Moreover, earlier reports on the isolation of granulocytic Ehrlichia spp. were based only on isolation from fresh blood. In this paper, we report the isolation of European E. phagocytophila of equine origin from stored frozen whole blood.

MATERIALS AND METHODS

Patients. Two horses (a 4-month-old Swedish trotting horse and a 21-year-old pony from southwest Sweden) entered the Halland Animal Hospital, Slöinge, Phone: 46-480-81441. Fax: 46-480-81738. E-mail: anneli.bjoersdorff@ltkalmar.se.

Received 20 March 2001/Returned for modification 7 June 2001/Accepted 24 October 2001

Blood smears showed cytoplasmic inclusions in approximately 25 to 30% of the neutrophils in both cases, supporting the clinical diagnosis of GE. Both horses were treated with intravenous oxytetracycline (7 mg/kg of body weight daily for 7 days) and recovered clinically within 24 h.

Culture of ehrlichias in HL-60 cells. Promyelocytic HL-60 leukemia cells (ATCC CCL240) were maintained in antibiotic-free RPMI 1640 medium, supplemented with 2 mM L-glutamine and 20% fetal bovine serum. The HL-60 cells were incubated at 37°C in an atmosphere of 5% CO2 (16). An aliquot of 0.5 ml of the sedimented leukocyte-rich fraction of equine EDTA-blood (kept at −20°C for 7 months) was inoculated into 25-cm2 flasks with HL-60 cells at a density of 2×106 cells/ml. The infected cells were then monitored daily by microscopy and examination of Giemsa-stained cytosin-prepared cell spreads. The cultures were kept at a density of 2×107 to 4×107 cells/ml by feeding them with medium two to three times a week. Infection of the cells was quantified by the presence of morulae and by indirect immunofluorescence assay using a bovine anti-Ehrlichia immunoglobulin G-positive serum and a fluorescein isothiocyanate-conjugated goat anti-bovine immunoglobulin G antibody (product no. 209-0888, Jackson ImmunoResearch Laboratories), diluted 1:100 in phosphate-buffered saline, as secondary antibody. Noninfected HL-60 cells were used as negative controls.

PCR amplification and sequence analysis. DNA was extracted from infected and noninfected cells with the QIAamp Tissue Kit protocol (Qiagen GmbH, Hilden, Germany). Nested PCR protocols targeting the 16S rRNA gene, the ank gene, and the groESL gene were followed as described previously, but with minor changes (21, 22, 27). The primers used to amplify the 16S RNA gene were 16SF1 (5′-AGAGT TTGATCCTGGCTC) and GE10 (5′-TTCGTTAAGGAGATCTAATCTCC) for the primary reaction and EC12A (5′-TGATCCTGGC TCAGAACGAAG) and EHR790 (5′-CTTAACCGGTAGCTACAAAC AG) for the nested reaction. In the groESL assay, HS43 (5′-ATAGCTAGGAGCATAGTGC) and HS45 (5′-ACTTCACGTCTCATAAGC) were used for the primary reaction, and GEH51 (5′-AGCTTACGTCTCCAGCT) and EHS6 (5′-AACAATACAGTTCCACAG) for the nested reaction. In the ank gene assay, AQ2F3 (5′-GAAGAAATTTCAAACCTCTGAG) and AQ2R2 (5′-CAGCGAGTGAGTAAAGTG) were used for the primary reaction, and AQ2F2 (5′- TTGAGCGTTGAAGCATAAC) and AQ2R1 (5′-ACCTTGTGCTTCTGAGGAG) were used for the nested reaction. Each of the primers was subsequently used for direct sequencing of the appropriate purified PCR product. Two additional primers were needed to sequence the 781-bp region amplified by the 16S rRNA PCR, EB4 (5′-GTATTACCGCGCTGCTGCGCAC) and EHR521 (5′-TGTAGGCGGTTCGTAAGTAAAAG). Sequencing reaction products were separated and analyzed using an automated sequencer (ABI 377; Applied Biosystems) and fluorescent-labeled dideoxynucleotide technology. Sequences were edited and analyzed with the Staden software.

We report the isolation and partial genetic characterization of two equine strains of granulocytic Ehrlichia of the genogroup Ehrlichia phagocytophila. Frozen whole-blood samples from two Swedish horses with laboratory-verified granulocytic ehrlichiosis were inoculated into HL-60 cell cultures. Granulocytic Ehrlichia was isolated and propagated from both horses. DNA extracts from the respective strains were amplified by PCR using primers directed towards the 16S rRNA gene, the groESL heat shock operon gene, and the ank gene. The amplified gene fragments were sequenced and compared to known sequences in the GenBank database. With respect to the 16S rRNA gene, the groESL gene, and the ank gene, the DNA sequences of the two equine Ehrlichia isolates were identical to sequences found in isolates from clinical cases of granulocytic ehrlichiosis in humans and domestic animals in Sweden. However, compared to amplified DNA from an American Ehrlichia strain of the E. phagocytophila genogroup, differences were found in the groESL gene and ank gene sequences.
signs of ehrlichiosis and responded well to treatment. Thus, the
diagnosed in horses and dogs. They showed typical clinical
resided in an area in southern Sweden where GE is commonly
in 1990 (6). The two infected horses in the present study
were identical for the two isolates and identical to the se-
cquences of the corresponding gene fragments from Swedish
were analyzed with Giemsa-stained cytospin preparations (Fig.
ank
and the
gene, and
781-bp fragments of the 16S rRNA gene of the
equine
isolates were completely identical to
the most common sequence variant of 16S ribosomal DNA
obtained in clinical cases of GE in humans, cattle, horses, dogs,
and cats in Scandinavia and other parts of Europe, as well as in
human and canine cases in the United States (4, 7, 15, 17–19,
4).
In order to investigate the genetic and antigenic relationship
between closely related bacterial species, the comparison of
more-variable genes, e.g., genes of structural proteins, may be
of value, since the 16S rRNA gene is too conserved to be able
to resolve strain differences at this level. One possible gene to
study is the
gene, coding for a 160-kDa cytoplasmic protein
antigen (8, 25). Analyses of this gene from several granulocytic
Ehrlichia strains from geographically different areas resulted in
the division of
into three distinct clades: northeastern United States, upper midwestern United States,
and Europe (21). The
gene sequences of our two equine
isolates were identical to previously described
gene sequences in Swedish and Slovenian
isolates from humans and animals but showed only 94 to 96% identity
with
gene sequences of North American
isolates. The
sequences obtained from our equine
isolates were identical to each other and to a previously characterized Swedish
isolate from an infected human but differed from all other
Ehrlichia
sequences present in GenBank by at least two nucleo-
tides (27).
The principal wildlife reservoir of
is believed to be small mammals, mainly rodents, and deer (1). The
fact that both the reservoir and vector species differ between
North America and Europe and that coevolution of the bac-
teria, the vector, and the host must to a large extent be inde-
pendent processes on the two continents means that significant
differences in strain characteristics can be expected, both ge-
etically and in terms of phenotypic traits, such as antigenic
profile, host preferences, and virulence. Antigenic pleomor-
phism has been reported earlier for various isolates of
(2, 20, 30). Our results show differences be-

FIG. 1. Photomicrograph of E. phagocytophila-infected HL-60 cells
stained with Giemsa stain. Magnification, approximately ×900.
between the North American and European variants of *E. phagocytophila* and suggest that the ank gene provides useful information complementary to that from the 16S rRNA gene that can be used to divide *E. phagocytophila* into clades corresponding to geographic distribution (9). This is interesting, as some of the differences found may lead to better geographically adapted diagnostic tools and to understanding of differences in bacterial virulence and host preferences (2, 20, 23, 28, 30). Thus, these results warrant further comparisons of *E. phagocytophila* strains of different geographic origins in terms of genetic relationships, expression of antigens, ecology, and epidemiology.

ACKNOWLEDGMENTS

This study was supported by grants from the Intervet Veterinary Research Foundation (981116), the Health Research Council of Southeast Sweden (F98-118), and the Swedish National Board for Laboratory Animals (CFN, Dnr 00-41).

We thank Gunvor Johansson at the Halland Animal Hospital for technical expert assistance in collecting samples and J. Stephen Dumler for helpful advice.

REFERENCES

