
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On Model Libraries for Thermo-hydraulic Applications

Eborn, Jonas

2001

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Eborn, J. (2001). On Model Libraries for Thermo-hydraulic Applications. [Doctoral Thesis (compilation),
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/260ff604-e7f6-4786-b24e-b4120f555353

On Model Libraries for
Thermo-hydraulic Applications

Jonas Eborn

Automatic Control

On Model Libraries for
Thermo-hydraulic Applications

On Model Libraries for
Thermo-hydraulic Applications

Jonas Eborn

Department of Automatic Control
Lund Institute of Technology

Lund, March 2001

Tillägnas min familj

Pernilla, Elise & Per

Dedicated to my family

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT–1061–SE

c&2001 by Jonas Eborn. All rights reserved.
Printed in Sweden by Bloms i Lund Tryckeri AB.
Lund 2001

Contents

List of Symbols . 7
Acknowledgements . 9

1. Introduction . 11
1.1 Motivation . 11
1.2 Contributions of the thesis 14

2. General Aspects on Modelling 17
2.1 Introduction . 17
2.2 Modelling paradigms . 17
2.3 Object-oriented modelling 24

3. Building Model Libraries . 27
3.1 Developing new model libraries 27
3.2 Purpose and goals . 28
3.3 Structuring and decomposition 28
3.4 Interfaces and compatibility 33
3.5 Examples and test cases 38
3.6 Concluding remarks . 39

4. Modelling Examples . 40
4.1 Drum-boiler model . 40
4.2 Boiler-pipe model . 45

5. Model Validation . 46
5.1 Introduction . 46
5.2 Model structure validation via parameter optimization . 47
5.3 Model validation methods 48
5.4 Method of model distortion 49

6. Conclusions . 52
6.1 Future Work . 53

7. References . 56

I. Object-Oriented Modelling of Thermal Power Plants . . 63

5

Contents

II. Development of a Modelica Base Library for Modeling
of Thermo-hydraulic Systems 77

III. Flow Instabilities in Boiling Two Phase Flow 97

Appendix to Flow Instabilities in Boiling Two Phase Flow 117

IV. Parameter Optimization of a Non-linear Boiler Model . 125

6

List of Symbols

List of Symbols

Symbol In 4, IV Unit Description/Quantity

α r 1 Steam mass fraction

α v 1 Steam volume fraction

∆Tlm K Logarithmic mean temperature diff.

∆z m Discretization length

δ l mm Water level

κ 1 Ratio of specific heats

ν m3/kg Volumity

ξ m Position

ρ kg/m3 Density

σ – Output variance

τ s Time constant

A m2 Area

ar 1 Steam mass fraction

Cp J/kgK Specific heat capacity

E J Total energy

F N Force

n m/s2 Gravitational constant, 9.81

h J/kg Specific enthalpy

hc J/kg Evaporation enthalpy

I kgm/s Momentum

G kg/sm Momentum flux

k 1 Overall friction coefficient

k N/m Spring constant

l, L m Length

M – Model structure

m, M kg Mass

ṁ kg/s Mass flow rate

ṁx kg/s Component mass flow rate

n rpm Rotational speed

n 1 Discretization number

p Pa Pressure

7

Contents

Symbol In 4, IV Unit Description/Quantity

P J/sm Heat flow per unit length

R m2K/W Heat resistance

q kg/s Mass flow

q Q J/s Heat flow

qc J/s Convective heat flow

T K Temperature

T N/m2 Stress tensor

u J/kg Specific internal energy

U J Total internal energy

V m3 Volume

w m/s Flow velocity

x m position

x 1 mass flow ratio in Paper III

xr 1 Mass fraction

8

Acknowledgements

Acknowledgements

First of all I would like to thank my supervisor Professor Emeritus1 Karl
Johan Åström for building a department with such a creative atmosphere.
It has been a great pleasure and privilege to work with you. I also wish
to thank my two other supervisors Dr Sven Erik Mattsson (95–98) and
Professor Anders Rantzer (98–01) for always having faith in me. I am
very grateful for the work they and other senior staff at the department
do to acquire funding for many graduate students.

This thesis is based on collaborations with many people, who besides
being colleagues also became wonderful friends. Thanks to Bernt Nilsson
who got me started on K2 and gave me a lot of insight. Many thanks
to Hubertus Tummescheit, who got me restarted after I finished my li-
centiate thesis and provided a lot of domain knowledge for the design of
ThermoFlow. I also wish to thank James Sørlie and Falko Jens Wagner
whom I have had the pleasure of working with.

Special thanks go to the people at Dynasim AB, who kept us updated
with new Dymola versions and helped solving the endless line of software
problems that was triggered by the library design. Many thanks also to
those who proofread parts of my thesis, Anders Robertsson and Jakob
Munch Jensen among others.

I also want to thank all the people at the department who all have
a part in making it such a wonderful place: Leif and Anders for keeping
the computer system in shape; Eva, Bittan and Agneta for keeping our
spirits up and feet down on the ground; Anton, Ari, Sven and Andrey for
their extra-curricular activities such as poker, malt whisky, Skrylle and
sauna.

This project has jointly been supported by Sydkraft AB under the
project name ”Modelling and Control of Energy Systems” and by the Na-
tional Board for Industrial and Technical Development (NUTEK) pro-
gramme ”Complex Systems”, Dnr 96-10653. Their financial support is
gratefully acknowledged. I also wish to extend my gratitude to people
at Sycon AB (formerly Sydkraft Konsult) who have collaborated with us
in the project, especially to Jan Tuszyński and Jörgen Svensson.

Finally, I want to thank my family and friends for making me the
person I am today. Per, Elise and Pernilla, you are all the greatest thing
that has happened to me. I love you for bringing me so much joy.

Jonas

1As of January 2000.

9

Contents

A note on language

The papers in this thesis were written in cooperation with several coau-
thors. Because of this there is both American and British spelling used
in the different papers, e. g., the word modelling becomes with American
spelling modeling. I am aware of this and I hope that it does not bother
the reader too much.

Note also that in the introductory chapters I have referenced figures
in the papers using the notation II.4 although the figure in Paper II is
only labelled Figure 4.

10

1

Introduction

Abstract

This introductory chapter gives some motivation for the work in
this thesis and explains how this piece fits into the jigsaw puzzle of
automatic control.

1.1 Motivation

Today control appears in almost every technical system in all possible
engineering domains. Some kind of model of the real world system is
always needed to design and implement a control system. Modelling thus
provides a bridge between the real world and the automatic control world,

...

-
-
-
-
-
-

-

-

-

Real World Control World

energy
manufacture
transport
communication
aerospace
medicine

analysis

simulation

control design

Operation

Commission

Implementation

Modelling

Model tools
& libraries

Figure 1.1 Modelling bridges the gap between the real world and control.

11

Chapter 1. Introduction

see Figure 1.1. Typically, a mathematical model is needed in all different
aspects of the work done in automatic control; analysis, control design
and simulation.

Why modelling?

A good model provides knowledge of a system. A model of the process can
give increased understanding, and with that comes also better possibilities
to increase quality, safety and economy. This has been very well expressed
by an executive at one of the largest companies in the process industry:

Modeling and simulation technologies are keys to achieve
manufacturing excellence and to assess risk in unit operations.
As we make our plant more flexible to respond to business op-
portunities, efficient modeling and simulation techniques will
become commonly used tools.

Ralph P. Schlenker, Exxon Chemical

There is a need for tools that can provide insight into complex systems.
Technical systems are becoming increasingly more complex mainly for two
reasons:

Integration of systems introduces tight couplings where previously parts
could be designed and operated independently. Integration comes
from recirculation of materials to reduce energy consumption and
pollution. It also comes from reduction or removal of buffers to re-
duce production times and increase the flexibility of the plant, as
stated in the quote above.

Heterogeneity in systems forces a mixture of several engineering dis-
ciplines to be considered simultaneously. Heterogeneity is of course
a consequence of integration, for example in mechatronic systems
where mechanics, electronics and control algorithms interact closely,
but it is also an additional difficulty, adding complexity. Different
traditions of how to treat systems give rise to, for example, mix-
tures of continuous time and discrete time systems.

Mathematical modelling is a fundamental tool to tackle complex sys-
tems. The main use of models of complex systems is today in simulation.
Simulation is important since it provides the possibility to study the be-
haviour of a model and draw conclusions concerning the real world system.
Simulation has been the main tool to verify the demands that should be
achieved by a control system, e. g.,

• Environmental demands

• Safety demands

12

1.1 Motivation

• Economical demands

• Quality/performance demands

The focus that for a long time has been on simulation is now changing
towards analysis. Tools that from models of complex systems can extract
simpler models useful for analysis is still lacking though. This is, however,
outside the scope of this thesis, but some comments on such tools are given
in Chapter 6.

Models are also starting to appear as explicit components in control
systems. Typical examples are in observers for variables that are not mea-
sured directly and in model predictive controllers, see Maciejowski (2000).

Different fields – different traditions

In different areas of engineering there have been very different traditions
in what kind of models and how modelling has been used. Some examples
are:

Automatic Control – Block diagram modelling, either with transfer func-
tions or with state-space models.

Circuit Simulation – Signal flow modelling, large nets with many similar
components.

Chemical Processes – Static design calculations, using flow-sheeting to
build process diagrams.

Mechanical Engineering – CAD tools for multi-body systems, with much
emphasis on the visual appearance.

Power Systems – Special purpose tools, either for static design calcu-
lations of heat balances, or for power grid simulations, usually dy-
namic.

The main topic of this thesis, physical modelling, can form a basis in
any of the modelling methods mentioned above. In automatic control for
example, physical modelling coexists with system identification methods,
which is another way to find models. In the chemical process industry
physical modelling is the most natural approach, but there the focus has
traditionally been on static mass and energy balances and not on dynamic
properties which are most important for control purposes.

Why model libraries?

The scope of this thesis is mainly on how to build and use model libraries
for thermal power systems. Providing model libraries is an excellent way
to package modelling knowledge that can help others with similar prob-
lems. Good model libraries are often the primary reason for the use of

13

Chapter 1. Introduction

special purpose simulation software, like Spice and Saber for electrical
circuits, Adams for mechanical systems and EMTP for power systems. All
of these programs provide extensive model libraries that can be used to
simulate systems within their particular domain. The drawback of these
special purpose tools is that the models are closed, they can not be altered
or even inspected by the user. Since they only contain models from one
domain it is also difficult or impossible to use them for complex, heteroge-
nous systems.

Ideally, there should be good model libraries available that are both
open and extensible. By building model libraries for special domains in a
general modelling language you provide both the domain knowledge that
special purpose software has and the extensibility and possibilities for
multi-domain modelling that general modelling software has. This is the
goal of the Modelica effort, see Elmqvist et al. (1999). ModelicaTM is an
open standard for a general modelling language. The specification of the
language is freely available and there are also free base libraries with
models in different domains, see Modelica Design Group (2000). The goal
of this thesis is to expand the Modelica effort into the thermo-hydraulic
domain.

1.2 Contributions of the thesis

The main contributions of the thesis are:

• some principles for developing model libraries in equation-based
modelling languages. These principles are discussed in Chapter 3
and illustrated in Paper II.

• the development of the two model libraries K2 and ThermoFlow for
thermo-hydraulic applications.

• the application of K2 to the modelling of a thermal power plant.
This is shortly presented in Paper I. More details are available in
Eborn (1998b); Eborn and Nilsson (1996).

• demonstration of how ThermoFlow model components are used in
an application with evaporation in a pipe.

The thesis contains three articles and one conference paper. Below,
the content of the papers is briefly summarized. References to related
publications are also given. All of the papers have been written with co-
workers, so some notes on who did what are included.

14

1.2 Contributions of the thesis

Paper I

Nilsson, B. and J. Eborn (1998): “Object-oriented modelling of thermal
power plants.” Mathematical and Computer Modelling of Dynamical
Systems, 4:3, pp. 207–218. c&Swets & Zeitlinger, Netherlands. Used
with permission.

Contributions
The paper presents the modelling principles behind the K2 model library.
There is also a section on a K2 application, simulation of a thermal power
plant.

A shorter version of this article was presented by Bernt Nilsson at the
EuroSim conference in Vienna, Nilsson and Eborn (1995). Bernt Nilsson
did a lot of the rewriting into an article, but most of the work on the
library and the power plant application was done by me.

Paper II

Eborn, J., H. Tummescheit and F.J. Wagner (2000): “Development of a
Modelica base library for modeling of thermo-hydraulic systems.” To
be submitted for journal publication.

Contributions
The paper describes ThermoFlow, a Modelica base library for thermo-
hydraulic systems. The basic equations for the central classes of the li-
brary, the control volume model, are given, as well as short descriptions
of some component model and examples of how the library can be used.

The development of the base library was done in close collaboration
with Hubertus Tummescheit and Falko Jens Wagner, although I and Hu-
bertus started the work already in 1998, before Falko joined us in 1999.
The first version of the article is also the fruit of joint work, the basis
for the article is the paper (presented twice) Eborn et al. (2000) and
Tummescheit et al. (2000). I have extended the paper for journal publi-
cation.

Paper III

Eborn, J., H. Tummescheit and K.J. Åström (2000): “Flow instabilities in
boiling two phase flow.” To be submitted for journal publication.

Contributions

The paper gives a physical analysis for pressure drop of an evaporating
liquid flowing in a pipe. The analysis leads to a low-order model that can

15

Chapter 1. Introduction

describe pressure-drop oscillations. In simulations, the simple model is
compared to more complex models, based on ThermoFlow components.

The work on this paper was done together with Karl Johan Åström.
He had the idea for the analysis and some calculations. I finished the
analysis and have done the simulations. Hubertus contributed with some
good ideas for the mixed model presented in the article. A shorter version
of the article has also been published in Eborn and Åström (2000).

Paper IV

Eborn, J. and J. Sørlie (1997): “Parameter optimization of a non-linear
boiler model.” In Sydow, Ed., 15th IMACS World Congress, vol. 5,
pp. 725–730. W&T Verlag, Berlin, Germany.

Contributions
This case-study shows an application of the modeling tool OMOLA and the
parameter optimization tool IDKIT. The tools are used to do structural
validation of the Bell-Åström drum-boiler model, which is also described
in Chapter 4.

The case-study presented in this paper was done in close cooperation
with James Sørlie. It uses a model definition interface developed during
the same time, Sørlie (1997). The writing of the paper was done jointly,
but I presented it at the IMACS congress in Berlin. Some further results of
the project are given in Sørlie and Eborn (1997); Sørlie and Eborn (1998).
There is also a brief discussion in Chapter 5.

16

2

General Aspects on
Modelling

Abstract

In this chapter the fundamental concepts of physical modelling are
introduced and some examples are given to demonstrate the differ-
ences between formulations. Comparisons of object-oriented modelling
with other methods like block-diagram approaches are also made.

2.1 Introduction

This thesis deals with object-oriented modelling of physical systems. I was
introduced to this field of research through my Master’s thesis which was
concerned with modelling of an industrial pneumatic control valve, see
Eborn (1994); Eborn and Olsson (1995). In this chapter some of the gen-
eral aspects on using different modelling paradigms will be given, since
this is not covered in any of the published papers. The question addressed
here is, what are the fundamental differences between traditional mod-
elling approaches and equation-based modelling?

2.2 Modelling paradigms

Traditionally in control and in computer simulation, modelling has been
made in a procedural, block-oriented manner. This tradition comes more
from concern with computational aspects than from user concerns. The
modeller has to perform the tedious work of transforming a physical de-

17

Chapter 2. General Aspects on Modelling

scription in terms of balance- and constitutive equations into an explicit
ordinary differential equation system (ODE)

ẋ = f (t, x) (2.1)

This form of mathematical model is almost a computational program. It is
in fact a procedure for calculating derivatives of the states. There is a lot of
well-proven numerical software that can be used to solve these differential
equations. Many powerful commercial simulation packages exist which
use this type of models, with libraries of predefined computational blocks.
What these programs offer is to provide an interface to the numerical
algorithms and a graphical way of programming a computational model,
but they do not give any help to construct the model.

Object-oriented modelling on the other hand tries to describe each
part of a system as an object with a certain behaviour. This modelling
paradigm is equation- or constraint-based1. Each object is described by
fundamental physical relations, laws of nature, and not by a procedural
function relating inputs to outputs. With this way of modelling the user
is more concerned with the interface to the model objects and the model
equations than with the computational order. This paradigm relies on the
symbolic methods that modern computing offers since the model equations
before simulation need to be manipulated into a differential and algebraic
equation system (DAE)

n(t, x, ẋ, v) = 0 (2.2)
The difference is that this manipulation is done by the computer and not

by the user. For a description of some of the symbolic methods used, see
Mattsson (1995). The difference between the procedural and constraint
formulations can be illustrated as in Figure 2.1. With the procedural for-
mulation the user gives a function for the direction to move in the state-
space. Constraint modelling on the other hand just gives a relation that
defines possible behaviours for the system.

EXAMPLE 1
As an example consider the modelling of a pneumatic spring-return actu-
ator, common in the process industry. It consists of a pneumatic chamber
with a diaphragm connected to a spring. The diaphragm position, x, is
controlled with the mass flow, ṁ, entering the chamber. A drawing and
schematic of the system together with the constitutive relations are given

1This is in agreement with the terminology in computer science, where procedural and
constraint programming are classes of programming languages, see e. g., Abelson and Suss-
man (1985). On pages 285–294 there is a nice example of a system for constraint propaga-
tion.

18

2.2 Modelling paradigms

x1

x2 ẋ

x

ẋ(t)

procedural constraint
ODE, ẋ = f (x) DAE, n(x, ẋ) = 0

Figure 2.1 Different mathematical formulations of a model. An equation-based
model defines constraints for possible behaviours in the state-space and not an
explicit time-trajectory like a procedural model.

below. The ideal-gas law as it is used here assumes isothermal operation.

Constitutive relations:
Chamber :

dm
dt

= ṁ

V = Ax + V0

pV = m ⋅ const

F = pA

Spring :

F = kx

ṁ

p, V , m

k

x

chamber
diaphragm

spring
stem

To simulate this system in some block-diagram software, a possible
representation could look like the diagram in Figure 2.2. Compare this
with the object diagram in Figure 2.3. In the object diagram the con-
nections imply relations between terminal variables, not computational
causality as in the block diagram. Some of the physical structure of the
system is lost in the block diagram. Also note that since the force, F,
from the diaphragm depends directly on the position, x, there is an al-
gebraic loop, i. e., a nonlinear algebraic equation system in the variables
{V , p, F, x}. This loop is inherent in the system description, but often not
handled very well by block-diagram software, although there are some
special constructs to explicitly deal with algebraic loops, see Figure 2.8.

A possible extension of this model would be to account for the mass of

19

Chapter 2. General Aspects on Modelling

ṁ

dm
dt := ṁ
V := Ax + V0

p := m
V

⋅const

F := pA

x := F
k

F x

x

Figure 2.2 Block diagram of the
pneumatic diaphragm.

p,ṁ

x,F

Figure 2.3 Object diagram of the
pneumatic diaphragm.

the diaphragm and the attached stem. A force balance gives

ms
d2x
dt2 = Fchamber − Fspring

This changes the block diagram into the one showed in Figure 2.4. Note
that the description of the spring changes from x := F

k to F := kx. The
causality of the spring equation is reversed. This means that a model
library with components applicable to this example would need to contain
two different spring models, depending on the computational causality.
Including mass in an object-oriented model would simply mean adding a
mass object between the chamber and the spring in Figure 2.3. This would
not in any way affect the descriptions of the spring or the chamber.

A key point in the previous example concerns causality. This is a tricky
subject which can be treated philosophically, as done in Critique of Pure
Reason by Kant (1781), or more pragmatically. A thorough description of
causality in the context of physical modelling is found in Strömberg (1994).

The concept of causality used here is computational causality, which
gives the order of calculations to compute unknown variables from known
ones. The point of Example 1 is that causality is a property of the system,
depending on the choice of inputs for a particular experiment. The spring
relation F = kx has no causality in itself. The computational causality is

ṁ

dm
dt := ṁ

V := Ax + V0

p := m
V

⋅ const

F1 := pA

d2x
dt2 := F

ms

F2 := kx

FF1

F2

x

x

Figure 2.4 Changed block diagram of the pneumatic diaphragm, mass included.

20

2.2 Modelling paradigms

imposed on the spring by the choice of input (ṁ) and how the rest of the
system is modelled (including mass or not). The fundamental drawback
of procedural modelling is that it forces a causal description of every com-
ponent of a system. Component models can then only be reused in exactly
the same situation in the model of another system or experiment. Causal
descriptions thus prevent modularity.

Block diagram modelling

Procedural models is the formulation used in almost all commercial block-
diagram software. Building models of systems using input-output blocks
has been the most common method in many engineering domains, espe-
cially in automatic control where the in-out formulation comes naturally
from seeing a system as having manipulated inputs that affect the mea-
sured outputs.

Also for thermal power plants block-diagram models have been used
a lot. The book Ordys et al. (1994) describes modelling and simulation
of a general structure thermal power plant. The approach taken there is
state-space modelling; breaking down the system in modules and for each
of these modules determining inputs, outputs and states. This is possible
through detailed analysis of each subsystem together with a global anal-
ysis of information flows. They also make some simplifying assumptions
that decouples the modules, e. g., assuming constant pressure-drop across
a valve which decouples it from the pressure downstream. This kind of as-
sumption might be appropriate in a specific application, but it makes the
model of the valve application specific and thus not reusable in a model

SUPERH.
AND

ATTEMP.
FURNACE

ECONOM. REHEAT.

DRUM

RISER

Figure 2.5 Block diagram of a boiler configuration, adopted from Ordys
et al. (1994).

21

Chapter 2. General Aspects on Modelling

Figure 2.6 Block-diagram of upper part of the flow network in Example 2.

of another system.
Block diagrams for large systems tend to become very complex. As an

example of this the block diagram of the boiler module in the Skegton unit
described in Ordys et al. (1994) is shown in Figure 2.5. There are a lot
of interconnections and dependencies between the blocks in the module.
Each of these blocks are in turn described by block-diagrams or Fortran
code.

EXAMPLE 2
As an illustration of the disadvantages of block-diagram modelling we look
at a model for a cooling system, basically a network of tubes in which a
hydraulic liquid flows. A block-diagram model of the marked part of the
flow network in Figure 2.7 is shown in Figure 2.6. Note that the block
diagram is considerably more elaborate than the system it represents, The
problem with a procedural model of a flow network is that you need to
pass information both in the forward and backward direction, giving rise

P2

P1

Q2

Q1

P1

P2

Q1

Q2

P1

P2

Q1

P2 P1

Q2Q1

Q2

Figure 2.7 Flow network from Example 2 and four variants of a line model.

22

2.2 Modelling paradigms

Figure 2.8 Simulink model of pneumatic actuator using constraint block.

to the complicated feedback connections between the line models. Another
drawback is that the procedural formulation requires four variants of
basically the same line model, depending on which of the two pressures,
P, and two flows, Q, should be computed from the others. Two of the
four variants are used in Figure 2.6, other variants in the rest of the
network model. The need for several model variants is a major drawback,
since changes to the line model means individually updating each of the
variants. Manually changing several variants like that is a very error-
prone procedure.

One approach that can help the user working with causal modelling is to
provide sorting of the equations. One of the first implementations of this
was SIMNON, developed by Elmqvist (1972) at the Department of Auto-
matic Control in Lund. This approach still requires that causal equations
are specified, so you do need different models of a spring like in Exam-
ple 1, but it can provide help with the causality between the blocks. A
modern example of a software that uses this technique is EASY5.R& They
claim, with some justification, that this is a major advantage over their
competitors like Simulink R& and SystemBuild.R&

It is true that sorting of equations makes it easier to build reusable
model blocks, but still you cannot have a true model library unless you
allow constraint models. In Simulink (from version 2.0) there is a special
block called Algebraic Constraint. Using this you can build a constraint
model of the system in Example 1, see Figure 2.8. The block called Force
balance represents the constraint that the two forces from the chamber
and the spring should balance. This is closer to equation-based modelling,
since you can now always use the same form of the spring model, F := kx.
If the mass of the stem should be included, the constraint block is replaced
by the transfer function, GxF (s) = 1/(ms2). This block thus allows con-
straint modelling in simple examples, but it is still far from being as

EASY5 is a trademark of The Boeing Company, Simulink is a trademark of The Math-
Works, Inc. and SystemBuild is a trademark of Integrated Systems, Inc.

23

Chapter 2. General Aspects on Modelling

powerful as true equation-based modelling. It would be very tedious (and
possibly inefficient) to try to model each flow in Example 2 with an alge-
braic constraint block.

This way of including constraint blocks with an explicit iteration vari-
able is very reminiscent of the tearing technique used in Dymola.R& With
this technique the user chooses a suitable variable, called tearing vari-
able, to break up an algebraic loop. The method is described in Elmqvist
and Otter (1994). In Dymola version 4.0 automatic tearing is used, see
Mattsson et al. (1999), which means that the tool automatically chooses
an appropriate tearing variable, which simplifies modelling for the user.

Bond-graph mode lling

An older but interesting paradigm that has its basis in physical analogies
between different energy domains, like electrical and mechanical, was
introduced by Paynter (1961). It is called bond-graph modelling and the
name comes from that it is a graphical description of systems using bonds
between elements. Each bond describes the power flow, which is the pro-
duct of two conjugate variables, e. g., current and voltage in the electrical
domain and velocity and force in the mechanical domain. Physical analo-
gies show that capacitors and compliances (springs) can be described by
a common C-element storing flow (current/velocity), and that inductors
and inertias (masses) can be described by an I-element storing effort (volt-
age/force). An excellent book on modelling which gives a well-balanced
description of bond graphs is Cellier (1991).

Bond graphs are very useful for simpler systems in the domains where
there are natural power variables since graphical analysis methods exist
that provide a lot of information of the system. For example, there are
methods to automatically derive the computational causality of a bond
graph and transform it to ODE form. However, bond graphs do not work
that well in all domains, for example in thermodynamics you need to
describe the energy interaction in up to three layers, creating a multi-
layer bond graph, since you must simultaneously consider mass, energy
and momentum flows.

2.3 Object-oriented modelling

The modelling paradigm considered in this thesis is object-oriented mod-
elling. It may also be called constraint modelling, non-causal or truly
equation-based modelling as opposed to the procedural, block-oriented
manner described previously. This is a slight confusion of two different

Dymola is a trademark of Dynasim AB.

24

2.3 Object-oriented modelling

concepts, since object-oriented refers to the structuring of the models,
whereas constraint refers to the underlying description of the behaviour
of the models. Nevertheless, both names are used in the thesis. Partly
to emphasize the two different aspects, but also since the modelling lan-
guages that support constraint modelling usually also are object-oriented.

Object-oriented is a word that is sometimes misused, either for graph-
ical tools referring to model blocks as objects, or because the software
is written in some object-oriented programming language like C++. The
“true” meaning of object-oriented modelling should be that the modelling
language has some of the properties that object-oriented programming
and design has, see Rumbaugh (1991); Booch (1991). Properties like
the class concept, inheritance, abstraction and specialization. In object-
oriented modelling each model is treated as an object, described by a class,
which can be seen as a blue-print of the model. The class has attributes
which can be locally defined or inherited from a superclass. Attributes
can be either simple variables and equations or other objects. Through
inheritance a common structure of a group of objects can be defined in a
superclass, while different internal descriptions are kept in the subclasses.
The subclasses are said to be specializations of the superclass.

Abstraction is a powerful tool to support complex system modelling. It
implies the possibility to use a model without detailed knowledge of its
internal structure or description. Necessary information to use a model
object should be kept in its interface, which includes parameters and ter-
minal variables. The interface contains all parts of the model that can
be accessed from the outside. The internal behaviour description can be
hidden, or encapsulated, and should not be accessed by other objects.

A more detailed explanation of the concepts of object-oriented mod-
elling and of the modelling language OMOLA can be found in Anders-
son (1994). A description of the modelling language ModelicaTM can be
found in Elmqvist et al. (1999). Modelica is an open language specifica-
tion given by the Modelica Design Group (2000).

Some of the advantages of using constraint modelling were mentioned
in Section 2.2. There are also many advantages of using object-oriented
structuring, these are more discussed in Section 3.3. However, there are
also some drawbacks that should be mentioned. While constraint mod-
elling relieves the user of doing manual manipulations of equations, this
also means putting requirements on the simulation software used. The
software must be able to perform the symbolic manipulations necessary
to find the computational causality of the system equations. Sometimes al-
gebraic constraints between dynamic equations gives a numerically more
difficult problem, with higher DAE index. The software must then also be
able to reduce the DAE index, see Mattsson et al. (2000). In some cases it
may also be more numerically efficient to write the equations on explicit

25

Chapter 2. General Aspects on Modelling

state space form, for example in combination with external functions for
medium properties. External functions have a given causality. It may then
be more efficient to have the inputs to the functions as states, since this
avoids numerical iterations.

26

3

Building Model Libraries

Abstract

In this chapter some guidelines on how to build model libraries are
given, from structuring guidelines to examples of model components.
To give a completely general view on this subject is very difficult and
possibly also harder to read and understand. The approach here is
to draw some general conclusions from examples and from the expe-
rience gained during the development of the model libraries K2 and
ThermoFlow.

3.1 Developing new model libraries

There are a great deal of things to consider during the development of a
new model library. Some of the more important issues are explained in
the following sections. Among these are

• Purpose of the library

• Structure of models

• Compatibility with other models

• Numerical efficiency

• Examples and test models

Although this thesis can not claim to give a complete treatment on how
to develop new model libraries, the most important issues will be covered.
The points made here are general to equation-based and object-oriented
modelling tools, but they are exemplified with the development of the
model libraries K2 and ThermoFlow. These were developed using two dif-
ferent modelling languages, OMOLA, see Andersson (1994), and Modelica,

27

Chapter 3. Building Model Libraries

see Modelica Design Group (2000). Thus the chapter also contains some
comments on differences between the modelling languages.

3.2 Purpose and goals

The first decision to be made in any modelling activity is to decide on the
purpose of the model. This is also true for the design of a model library.
What should be covered and what should be excluded from the library?
Who are the intended users? These decisions affect the design from the
very beginning. Expanding the scope of the model library can be very
difficult, e. g., once the model interfaces have been specified.

The model library K2 was from the beginning limited in scope to ther-
mal power plants. The purpose of this library was to be able to model
and simulate the control of a specific power plant, described in Paper I.
This lead to the decision not to include momentum dynamics, since the
frequency of those dynamics are outside the frequency range of a power
plant controller. Flows in the plant were also restricted to one direction,
since only normal operation of the plant was to be simulated.

ThermoFlow on the other hand has been built with the purpose to
be applicable to general process applications where the thermo-hydraulic
behaviour is the main concern. It is also intended to be extensible to appli-
cations that were not specifically in mind during the design. This means
that the library has to be built in a flexible way and accommodate many
different choices. For example to include different kinds of interfaces, for
static or dynamic flows of either single- or multi-component fluids. The
interfaces must also be able to handle reversing flows, since this is im-
portant in many applications, e. g., on-off control of refrigeration systems
or start-up and shut-down procedures in industrial processes.

3.3 Structuring and decomposition

Object-oriented structuring is a powerful tool, that should be used with
caution. The structuring should be based on the decomposition of a system
into individual objects, and then the further decomposition of the objects
themselves. A thorough discussion of object-oriented structuring, reuse
and decomposition is given in Nilsson (1993). The treatment here is much
shorter, but also explains the use of some of the concepts that were only
suggested in the previous work of Bernt Nilsson.

The term decomposition is often used for breaking a system into parts.
However, there are two different kinds of decomposition. The most com-

28

3.3 Structuring and decomposition

Figure 3.1 Object decomposition.
The decomposed object owns (dashed
arrows) two other objects.

Figure 3.2 Subject decomposition.
The decomposed object inherits (full
arrows) from three partial classes.

mon one, structural1, or object decomposition, shown in Figure 3.1, is
not exclusive to object-oriented modelling. Components in any graphical
modelling tool, e. g., Simulink, can be referred to as objects2. The other
kind, subject decomposition, deals with the inheritance structure, see Fig-
ure 3.2. The arrows in Figures 3.1–3.2 show which class an object is
derived from. The arrow points at a superclass which is inherited (full
arrow) or is part of an aggregation (dashed arrow). The different kinds
of decomposition are further explained below.

Object decomposition

Object decomposition is the subdivision of a system into its parts, e. g.,
a power plant into boiler, turbine and condenser, or in a more abstract
way, the splitting of a heat exchanger into the machine and the liquid
medium flowing in it, so-called medium-machine decomposition, see Nils-
son (1993). Object decomposition is the more concrete way of sub-dividing
systems and objects and should preferably be used for structuring of li-
braries with ready-to-use component models. In ThermoFlow for example,
this subdivision is used in the sub-library Components.

Subject decomposition

In object-oriented languages, common properties of a group of objects are
collected in a superclass, which the objects can inherit from and special-
ize. If the language has possibilities for multiple inheritance, as for exam-
ple in Modelica, the common properties can be decomposed into different

1Structural decomposition is the term used in Nilsson (1993), referring to the component
structure of a model.

2Sometimes graphical component-based modelling tools are due to this called object-
based, but the use of the term object is here limited to true object-oriented languages, as
defined in Chapter 2.

29

Chapter 3. Building Model Libraries

partial classes, as illustrated in Example 1. In Nilsson (1993)multiple in-
heritance was proposed as an alternative to solving the medium-machine
decomposition problem mentioned above. A possible problem with mul-
tiple inheritance stated there is that the partial classes need to refer to
variables in each other. In ThermoFlow this is solved by having a common
variable set, which all the partial classes inherit and use. Thus the names
of all variables are explicit in the partial classes, and there is no problem
with any naming convention. This is illustrated by an example.

EXAMPLE 1
Subject decomposition of a con-
trol volume model in Ther-
moFlow is illustrated in the
figure. ControlVolume is split
up into the Balance model
containing the mass and en-
ergy balance equations, the
ThermalModel with differential
equations for state variables
and the Medium model, that
holds all property calculations.
All these three parts inherit
different versions of the vari-
able set ThermoBaseVars which
holds all the basic thermo-
dynamic variables. The actual
choice of state variables is
made in the StateVars model,
since the medium model and
thermal model depend on this
choice.

Thermo Thermo
BaseVars Props

Single
Lumped StateVars

Balances Thermal
Model Medium

Control
Volume

Full arrows indicate inheritance, the
dashed arrow indicates that StateVars has
a ThermoProps attribute.

The subject decomposition should be made in such a way that the partial
classes are in some sense “orthogonal”, or independent. The partial classes
ThermalModel and Medium in the previous example both depend on which
states are used, e. g., {p, h} or {ρ, T}. However, ThermalModel does not
depend directly on what liquid the medium describes, thus the medium
model is replaceable. In the same way ThermalModel only needs the sums
of the inflows from Balances, but it does not care if these sums come from
one, two or more inflows, which depends on what balance model is used.

The distinction between object and subject decomposition is based on
the method used for composition, aggregation or multiple inheritance.
Booch (1991) gives a spectrum of reasons for abstraction, where the first

30

3.3 Structuring and decomposition

Model

Thermo-
DynAC

SectionGC UnitGC SubunitGC CompGC

Flow-
UnitIC

Heat-
UnitIC

Flow-
ResistIC

Heat-
ResistIC

Compart-
mentIC MediumIC

HexSyst Water-
ValveFM

Water-
PumpFM

Heat-
ExchFM

WaterFlow
ResistFM

Heat-
ResistFM

Water-
CompFM WaterMM

Section: HexSystem Unit: HeatExchanger SubUnit: WaterCompartment

application

granularity

interface

model

class

class

dp= f (p, h)
dh = n(p, h)

Figure 3.3 Class tree showing the inheritance structure of the K2 library.

two are entity and action abstraction. This resembles the distinction made
here, since object decomposition is based on physical entities, while subject
decomposition focuses on the action/function of the partial classes.

Structuring

Like decomposition, structure is also a term with many meanings; library
structure, component structure and inheritance structure for example.
Structuring of a library and its models should serve several purposes,
firstly to make the models in the library easy to find and easy to use,
secondly, to increase the reuse of code and thus the maintainability of
the models in the library. In an extreme idealized case each individual
equation would only appear in one place in the library. Necessary changes
then only have to be made in one place. Such extreme cases may not be
practical, but clever use of structuring significantly decreases the number
of occurrences of a single equation.

Structuring of K2

Because of the differences between OMOLA and Modelica the structuring
of the libraries K2 and ThermoFlow is different. The structure of the K2
library is explained in Eborn and Nilsson (1996); Eborn (1998b). It follows
the structuring guidelines given in Nilsson (1993)which recommends the
hierarchical levels plant – plant section – unit – subunit for the object

31

Chapter 3. Building Model Libraries

Figure 3.4 Upper levels in the K2 class tree. Leaves in the tree correspond to
sub-libraries.

decomposition. An example system is shown in Figure 3.3. Since single
inheritance is used in OMOLA the inheritance structure builds up a class
tree which is also shown in Figure 3.3. The inheritance structure was
also used to divide the K2 library into sub-libraries, which in the sim-
ulation environment OMSIM all appeared in a flat structure. The upper
three levels of the K2 class tree is shown in Figure 3.4, the lowest level
corresponds to the sub-libraries in K2.

The availability of the concepts of packages and multiple inheritance
implies that library structuring in Modelica can be radically different from
OMOLA. Since Modelica packages (corresponding to sub-libraries) can be
nested, they can also have a structure. The structure is used to make the
library more accessible and to hide some of the base class packages, since
these contain partial classes that the normal user is not interested in.
Multiple inheritance makes it possible to use subject decomposition. The
structure from this decomposition has been used in ThermoFlow for the
structuring of the package BaseClasses. Multiple inheritance also has a
drawback. The class tree becomes difficult to visualize and understand
since it will become a rather complicated network.

Structuring of ThermoFlow

Structuring of the packages in ThermoFlow is done according to the two
principles discussed previously. The user part of the library, the package
Components, is structured using object decomposition. The user thus eas-
ily finds unit models of different applications in the library. The overall
structure of ThermoFlow is shown in Figure II.4 on page 86. The ba-
sic part of the library, the BaseClasses package, is structured according
to the subject decomposition of a control volume, as shown in Exam-
ple 1. The thermodynamic control volume is the single most important

32

3.4 Interfaces and compatibility

model of the ThermoFlow library. The equations are given in Paper II.
The package structure of BaseClasses is shown in Figure 3.5. The par-
tial classes that build up a control volume model are in the packages
Balances, StateTransformations and MediumModels. A complete model
of a discretized control volume also holds a flow description, which is in
the FlowModels package. The packages that concern the model interfaces
are split up in four more sub-packages. This is because the interfaces are
different depending on the choice of static or dynamic flow description and
whether the medium is a single- or multi-component medium. Hence the
package names SingleStatic etc.

3.4 Interfaces and compatibility

Interfaces, connectors, cuts, terminals, etc., are some of the names for
the connecting elements between objects in different modelling languages.
The choice of interfaces is, maybe, the most important structuring decision
when building a model library, and definitely the most important when it
comes to achieving compatibility with other model libraries. This is the
reason for emphasizing standardized interfaces so much in the design
of the Modelica base library. Design of interfaces is also important for
the behaviours that can be handled by the models in a library, since there
should be no other information exchange between objects in a model. This
is discussed further in the next section.

BaseClasses

Balances FlowModels MediumModels

SingleStatic

SingleDynamic

MultiStatic

MultiDynamic

SingleStatic

SingleDynamic

MultiStatic

MultiDynamic

Common

SteamIF97

Water

IdealGas

CO2

R134

CommonRecords

CommonFunctions

StateTransformations

Figure 3.5 Package structure of base classes in the ThermoFlow library.

33

Chapter 3. Building Model Libraries

Reversing flows

Extra information is required in the connectors if the models are supposed
to handle reversing flows. In principle all transported properties, e. g., en-
thalpy and composition, should be taken from the upstream direction.
This can be handled in different ways. The simplest alternative, which
possibly may be inefficient, is that the properties are included twice, up-
stream and downstream. The component can then choose which one to
use depending on the flow direction. Another, elegant, solution that has
been proposed is to have mutually exclusive if-then statements in dif-
ferent objects, see Ramos González (1994). Then you only need to have
the transported properties once in the connector, but they are taken from
different sources when the flow direction changes. This does, however,
require a special implementation, as is shown in Example 2.

EXAMPLE 2

Model equations:

Volume 1:

p1 = Vol1.p
h1 = if mdot>0 then Vol1.h;
dU = -mdot*h1;

Flow model:

mdot = A*sqrt(p1-p2);
h1 = h2;

Volume 2:

p2 = Vol2.p
h2 = if mdot<0 then Vol2.h;
dU = mdot*h2;

.
p1 p2

h1 h2p, h p, hm

Volume 1 Volume 2Flow

The example equations give h2=h1=Vol1.h when the mass flow is pos-
itive. This gives an energy flow from Volume 1 to Volume 2. Conversely,
h2=h1=Vol2.h when the mass flow is negative. The simulation software
must however realize that the two incomplete if-statements should be
combined into

h1 = h2 = if mdot>0 then Vol1.h else Vol2.h;

which causes the need for a special implementation.

34

3.4 Interfaces and compatibility

Reversing flows in ThermoFlow

The K2-library did not handle reversing flows. In ThermoFlow it is hand-
led by including extra flow information in the connectors that depend
on the direction of the flow; convective heat flow qc in single-component
connectors and also component mass flows ṁx in multi-component connec-
tors. The information needed for the mass and energy balances is then
contained in variables depending on the flow direction. The resulting equa-
tions from this choice are shown in Example 3.

EXAMPLE 3
Ideal three-ports have zero volume and thus represent stationary balance
equations. In the fixed flow-direction case this is a very simple model.
When any of the flows can change direction a tricky if-then structure
is required to determine the enthalpy of the outflow. With the choice of
interface variables used in ThermoFlow, the balance equations can be
retained in their original form as zero-sum equations and the pressure
and enthalpy in the three-port become algebraic states, determined by
the simulation software. The equations are illustrated below.

Model equations:

Threeport volume:

0 = sum(mdot);
0 = sum(q_conv);

Flow models:

mdot = A*sqrt(p_i-p);
q_conv = if mdot > 0
then mdot*h_i
else mdot*h;

p1 p2

p3

h1 h2

h3

ṁ1ṁ1 ṁ2ṁ2

ṁ3

ṁ3

qc1qc1 qc2qc2

qc3

qc3

p, h

p

p p

h

h h ṁ

ṁ

ṁ

qc

qcqc ṁ={ṁ1 ṁ2 ṁ3}
qc={qc1 qc2 qc3}

ThreeportFlow1 Flow2

Flow3

The resulting equation for the enthalpy in the three-port is

h =
∑

{i:ṁi>0}
qc,i/

 ∑
{i:ṁi>0}

ṁi

 (3.1)

The equations for pressure or composition (in the multi-component flow
case) are similar, but they are more involved and therefore not displayed
here. The singular case, when

∑
ṁi = 0, is not severe, since it only occurs

when all flows are identically zero. If necessary, simulation software like

35

Chapter 3. Building Model Libraries

Dymola can use continuity to deal with indeterminate expressions. Using
such software the limit of h in (3.1)will be calculated correctly even when
both numerator and denominator are zero.

The solution to have convective heat flow in a flow connector was mainly
chosen to allow multiple flows in one node, i. e., using the flow semantics
of Modelica. By connecting many flow models to one volume connector all
the mass flows and convective heat flows will be summed via the zero-sum
equation generated by the connection.

Considering only one-dimensional flow, flow semantics could be a fea-
sible construction for the momentum in the dynamic flow case. The mo-
mentum is, however, a quantity associated with a direction and it should
be represented by a vector variable. The goals of the ThermoFlow library
is only to consider one-dimensional flow, but the practical use of one-
dimensional momentum balances is limited to straight pipes. For exam-
ple in a split of a flow into two branches, the angle between the branches
should be 0○ for the momentum to be preserved. Since this is not a rea-
sonable model assumption, the momentum balance must be treated in
special models which do not use the flow semantics of Modelica.

Heat flow interfaces

Heat flow interfaces seem rather straightforward, because there is a po-
tential variable, temperature T , that drives the flow variable, heat flow
rate q. This is true, but there is a problem because the heat flow resis-
tance is split up in boundary layer and wall resistances. In K2 all effects
were lumped in resistance objects within a wall model. Since the calcula-
tion of the boundary layer resistance requires some properties from the
adjoining volumes, extra information about the liquid medium must then
be passed in the heat flow connection.

The inclusion of the boundary layer description in the wall model is
not natural. In ThermoFlow the boundary layer can instead be included
in the adjoining volume. This makes the wall model a pure wall, that can
be modelled as static or dynamic by including thermal storage effects.
The wall resistance can also be neglected by leaving out the wall model
entirely. The decomposition of the heat flow equations into different ob-
jects also makes it possible to build many different model combinations,
e. g., neglecting one or both of the boundary layer resistances or the wall
resistance. This flexibility could lead to problems in certain cases, but it
does not, as is shown in Example 4.

EXAMPLE 4
The trickiest case of heat flow modelling through a wall is when all heat
flows are modelled with static models and both wall and boundary-layer

36

3.4 Interfaces and compatibility

resistances are included. The model introduces five unknowns, one tem-
perature on each side of the wall and three heat flows, which should be
solved for by three heat flow equations and the static condition that all
flows are equal. A simple example of the structure of the equations is
given below.

Model equations:

Wall resistance:

q = (Ta - Tb)/Rw;
q = q1;
q = -q2;

Boundary-layer
resistances:

q1 = (T1 - Ta)/R1;
q2 = (T2 - Tb)/R2;

T1 T2Ta Tb

RwR1 R2

qq2 q1

Volume 1 Volume 2Wall

In this system the temperatures in the adjoining volumes, T1 and T2,
are assumed to be given (states). The other five unknowns should be
solved for. In this simple example the result is a system of linear equations
in Ta and Tb. This system always has a solution for finite values of R1

and R2. [
1/R1 1/R2

−1/Rw 1/R2 + 1/Rw

] [
Ta

Tb

]
=
[

T1/R1 + T2/R2

T2/R2

]
In other cases, for example when the logarithmic mean temperature dif-
ference3 is used, a system of nonlinear equations has to be solved.

An even simpler case is when the wall resistance, Rw is neglected. The
wall model then reduces to the equation Ta = Tb and an explicit solution
is

Ta = Tb = T1R2 + T2R1

R1 + R2

One combination of heat flow models that leads to potential problems
is when all resistances are neglected. This is a rather degenerate case,
leaving the temperatures in the adjoining volumes equal. Constraining
the temperatures in two volumes results in a DAE problem with index 2,

3The logarithmic mean temperature, ∆Tlm , is used to obtain a correct static behaviour
in lumped models of heat transfer. It uses the static analytic solution of the heat transfer
equation, which gives an exponential temperature profile.

37

Chapter 3. Building Model Libraries

much like the system with connected compartments discussed in Paper I.
Even this degenerate case may in some situations be solved symbolically,
for example with ideal gas models, when T is a state variable in the
adjoining volumes.

3.5 Examples and test cases

The importance of good test examples should not be underestimated. Al-
most all design activities are iterative in nature, and running test exam-
ples is the “proof of the pudding” for a model library. Realistic examples
are essential for thorough testing of a model library. Good tests will reveal
inconsistencies and errors both in the library structure and in the actual
models. It can, however, be a difficult task to find examples that test all
aspects of a library. This is especially true for a model library like Ther-
moFlow which is supposed to be general in nature and useful in many
different application domains.

The use of test examples in K2 and ThermoFlow can be seen as two
extremes on how to use test examples. With K2 the goal from the begin-
ning was to simulate a specific plant, the biogas thermal power plant in
Värnamo, see Eborn and Nilsson (1996) and Paper I. This plant was used
as a test example throughout the design. This meant that almost all com-
ponents in the library was built for this purpose, although many of them
could be reused in later projects to model other plants, see Klevhag (1996);
Stojnic (1997); Löfgren and Svensson (1997); Eborn (1998).

On the other hand, the goal of ThermoFlow was from the beginning
to build a base library applicable for many different thermo-hydraulic
problems and domains. During the earlier stages of the library design,
smaller examples like a model of pressure waves in a pipe, simple plate
heat exchangers and a model of a combustion engine were used for test-
ing the library. Later, more complex examples, like the boiler pipe model
in Paper III and a fuel cell model provided ample testing. These tests
of the design at different stages, often lead to redesign of some of the
basic structures. Although the basic ideas of the models in ThermoFlow
have remained the same throughout the design, the structure of the base
classes has undergone three major reconstructions.

Feedback from good alpha-testers is also valuable. Parts of the library
have been used for modelling of refrigeration systems, see Bauer (1999);
Pfafferott and Schmitz (2000). An early version of the library was also
used for a model of a paper dryer section, see Pontremoli (2000).

38

3.6 Concluding remarks

3.6 Concluding remarks

The two different approaches taken to build K2 and ThermoFlow show
very clearly how the goal of a library is reflected in the design. A simple,
application-oriented library sacrifices structure and generality, while the
design of a basic library with wide applicability needs a lot of work and
constant reconsideration. You should not fall in love with your first design,
but also be careful not to change too easily. It is easy too overlook conse-
quences of changes and reverting to a previous version can be very tedious.
Using a good version control system like CVS, at CVShome.org (2000),
is very useful for a single developer and essential in a multi-developer
project.

39

4

Modelling Examples

Abstract

Two examples that illustrate the advantages of equation-based
modelling are discussed in this chapter. The examples are used to
compare object-oriented modelling with traditional methods.

4.1 Drum-boiler model

In a thermal power plant cycle, water is first evaporated to steam, which
is then super-heated, expanded through a turbine and then condensed
back to water. The evaporation is done in a boiler, which can be of two
different types; a drum-boiler or a once-through boiler. The difference is
that the drum-boiler has a drum that separates the liquid water from
the steam, while once-through boilers produce steam directly in continu-
ous flow through a pipe. This section discusses a model of a drum-boiler.
Section 4.2 has a short discussion on the boiler pipe model in Paper III,
which could be used for simulation of a once-through boiler.

Modelling and control of thermal power plants is a classical control
problem, treated in Chien et al. (1958); Eklund (1971); Lindahl (1976);
Kwatny and Berg (1993). One of the key difficulties is the control of the
water level in the drum-boiler. Water level dynamics are non-minimum
phase, because of the so-called shrink and swell effect, and vary very much
with the load. At low loads the non-minimum phase behaviour is much
more pronounced, which severely limits the performance of the level con-
trol. This means that the control design must be either very conservative
or use gain-scheduling to account for the varying dynamics. Design of the
water level control for a nuclear power plant was posed as a benchmark
problem in Bendotti and Falinower (1999). The successful solutions to

40

4.1 Drum-boiler model

II III

IV

I

Tfqf qs

qdcqr,xr

Q

δ l

p

Figure 4.1 Schematic of a drum-boiler with main variables and control volumes.

the benchmark problem all used gain-scheduling, see Ward and Middle-
ton (1999); Eborn et al. (1999a).

With the deregulation of the power market there are also increased
requirements on the control performance of thermal power plants. The
increased performance requirements are difficult to meet without more
detailed knowledge of processes like the drum-boiler. There is a long tradi-
tion in Lund of developing low order nonlinear models of the drum-boiler,
concluded in Bell and Åström (2000). The basic equations for this model
are both simple and transparent, but many manual operations need to be
made to reduce the model to a format that is convenient for simulations.
By using Modelica and Dymola the model can be entered in its basic form
and all manipulations are done automatically. It is thus a nice example
of the power of this modelling technique.

Pressure dynamics, second-order model

A simple model of the drum-boiler, that captures the pressure dynamics
very well is a second order model based on the global mass and energy
balances. The same notation as in Bell and Åström (2000) is used here:
V denotes volume, ρ density, h specific enthalpy, T temperature and q
mass flow rate. Subscripts are s, w, f and m for steam, water, feedwater1

1Feedwater denotes properties of the inflow to the drum-boiler.

41

Chapter 4. Modelling Examples

and metal, respectively. The subscript t is used to mark a total quantity,
i. e., taken over the global system.

The global mass and energy balances is taken over the control volume
marked I in Figure 4.1. This gives

dMt

dt
= d

dt
[ρs Vst+ ρw Vwt] = qf − qs (4.1)

dEt

dt
= d

dt
[ρshsVst+ ρwhwVwt− pVt+mtCpTm] = Q + qf hf − qshs

where Q is the heat flow rate into the system and Cp is the heat capacity
of the metal. The term −pVt comes from replacing specific internal energy
u with h = u− p/ρ. It is usually negligible compared to the other terms.

By also including the relation between the volumes

Vt = Vst+ Vwt (4.2)

(4.1) can be rewritten into a state equation in pressure and water vol-
ume, which is done in Bell and Åström (2000). Although the rewriting
of equations is fairly straightforward for a simple model like this it soon
becomes tedious work for larger models.

In Modelica the model can instead be given in its basic form, as a
differential-algebraic equation system, and then the simulation software
determines the state-space realization. This means that the second-order
model is given as in (4.1–4.2) directly. The Modelica code for this model
is given below.

model DrumBoiler2ndOrder "Basic balance equation model"
extends BoilerShell(p(start=8.5e6,fixed= true),

redeclare model SaturationMedium=SaturationMM);
parameter SIunits.Volume Vt=88 "Total volume";
parameter SIunits.Mass mt=300e3 "Total metal mass";
parameter SIunits.SpecificHeatCapacity Cp=550 "Metal Cp";
SIunits.Mass Mt(fixed= false ,start=1e3) "Total mass";
SIunits.Energy Et(fixed= false ,start=1e6) "Total energy";
SIunits.Volume Vst "Total steam volume";
SIunits.Volume Vwt(start=57.5,fixed= true) "Total water vol";
SIunits.Temperature T = pro.T + Modelica.Constants.T_zero;

equation
Mt = pro.dv*Vst+pro.dl*Vwt;
der (Mt) = a.mdot + b.mdot; // Global mass balance
Et = pro.dv*pro.hv*Vst+pro.dl*pro.hl*Vwt-p*Vt+mt*Cp*T;
der (Et) = Q.q[1]+a.q_conv+b.q_conv; // Global energy balance
Vt = Vst + Vwt; // Volume constraint

end DrumBoiler2ndOrder;

42

4.1 Drum-boiler model

This model inherits from two other classes, BoilerShell, which spec-
ifies the mass and heat flow interfaces, and SaturationMM, which gives
saturated medium properties as a record pro = {T, dv, dl, hv, hl}.
The interfaces, a and b, contain mass flow rate mdot and convective heat
flow, defined as q_conv=mdot*h= qh. The interface variables are the ones
used in the ThermoFlow library and thus notation is not exactly the same
as in (4.1). The reference direction for the variables in the interfaces are
positive inflow, which means that b.mdot and b.q_conv usually are neg-
ative.

When Dymola is used to simulate this model, the software finds that
it needs to differentiate the expressions for Mt and Et to transform the
system of equations into explicit form. This is possible if the medium
properties are given as simple expressions, for example polynomials. It
is also possible to supply the derivative function if the properties are
given by external functions or non-differentiable expressions. With these
derivatives Dymola generates explicit code with p and Mt as states.

Drum-level dynamics, fourth-order model

Although the model in the previous section describes the pressure dynam-
ics very accurately; it is not very useful since the difficult control problem
is the level control. The balance equations for the control volumes (CV)
marked I I − IV in Figure 4.1 can be used to include an accurate de-
scription of the water-level dynamics. In Bell and Åström (2000) the level
dynamics are included via a static momentum balance for CV III, mass
and energy balances for CV II and a mass balance for steam in CV IV.
The quantities in these control volumes are marked with subscripts dc
for down-comer, r for riser and sd for steam under the drum water level.
The balance equations can be written as

0 = (ρw − ρs)α vVrn − k
2

q2
dc

ρw Adc
(4.3)

dMr

dt
= d

dt
[ρsα vVr + ρw(1−α v)Vr] = qdc − qr (4.4)

dEr

dt
= d

dt
[ρshsα vVr + ρwhw(1−α v)Vr − pVr+mrCpT]

= Q + qdchw− qr(α rhc + hw) (4.5)
dMsd

dt
= d

dt
[ρs Vsd] = qrα r − qsd − qcd (4.6)

By combining the mass and energy balance for the riser, this finally gives
a fourth-order model. The combination of the two balance equations for
CV II was done by hand manipulations which not only are tedious, but
also error-prone.

43

Chapter 4. Modelling Examples

By simply adding the balance equations (4.3–4.6) to the model in Sec-
tion 4.1 a model with 5 dynamic balance equations is obtained. However,
there are only 4 states, since the assumption that there is only one pres-
sure in the system imposes a constraint on the balance equations. This
way the same model as in Bell and Åström (2000) is obtained, but without
the hand manipulations. The Modelica code for this model is given below,
note that all the equations from the second-order model are also inherited
into this model.

model DrumBoiler4thOrder
// from Åström-Bell, Drum-boiler dynamics, Automatica.
// four-state, five diff-equation model, fully implicit
extends DrumBoiler2ndOrder;
parameter SIunits.Volume Vr=37 "Volume of risers";
parameter SIunits.Volume Vdc=11 "Volume of downcomers";
parameter SIunits.Mass mr=160e3 "Riser metal mass";
parameter SIunits.Mass md=100e3 "Drum metal mass";
parameter SIunits.Area Adc=0.355 "Downcomer flow area";
parameter SIunits.Area Ad=20 "Drum wet area";
parameter Real k=25 "friction coefficient";
parameter Real beta=0.3 "empirical qsd coefficient";
parameter Real Vsd0=6 "Bubble volume coefficient";
parameter Real Tsd=5 "Bubble volume time constant";
constant Real g=Modelica.Constants.g_n;
SIunits.Mass Mr(fixed= false ,start=1e3) "Riser mass";
SIunits.Mass Msd(fixed= false ,start=10) "Steam bubble mass";
SIunits.Energy Er(fixed= false ,start=1e6) "Energy in riser";
SIunits.Volume Vwd "Drum water volume";
SIunits.Volume Vsdb(start=5,fixed= true) "Bubble volume";
SIunits.MassFlowRate qdc "Downcomer flow";
SIunits.MassFlowRate qr "Riser flow";
SIunits.MassFlowRate qcd "Condensation flow";
SIunits.MassFlowRate qsd "Steam bubble flow";
SIunits.Length dl "Drum level";
Real am "steam volume ratio";
Real xr(start=0.051,fixed= true) "steam mass ratio";
SIunits.SpecificEnthalpy hc "Condensation enthalpy";

equation
Mr = pro.dv*am*Vr + pro.dl*(1 - am)*Vr;
// Riser mass balance
der (Mr) = qdc - qr;
Er = pro.dv*pro.hv*am*Vr + pro.dl*pro.hl*(1 - am)*Vr

- p*Vr+mr*Cp*T;
// Riser energy balance
der (Er) = Q.q[1] + qdc*pro.hl - (xr*hc + pro.hl)*qr;
am = pro.dl/(pro.dl - pro.dv)*(1 - pro.dv/xr

44

4.2 Boiler-pipe model

/(pro.dl - pro.dv)*ln(1+xr*(pro.dl - pro.dv)/pro.dv));
hc = pro.hv - pro.hl;
// Static momentum balance
pro.dl*Adc*(pro.dl-pro.dv)*g*am*Vr = k*qdc^2/2;
Msd = pro.dv*Vsdb;
// Bubble mass balance
der (Msd) = xr*qr - qsd - qcd;
qcd = (pro.hl*a.mdot-a.q_conv)/hc - der (p)*((Vwd + Vsdb) -

(Msd*pro.dhvdp+pro.dl*Vwd*pro.dhldp + md*Cp*pro.dTp))/hc;
qsd = pro.dv*(Vsdb - Vsd0)/Tsd + xr*qdc + xr*beta*(qdc-qr);
Vwd = Vwt - Vdc - (1-am)*Vr;
dl = (Vwd + Vsdb)/Ad;

end DrumBoiler4thOrder;

This model needs the medium property derivatives not only for the ma-
nipulations, but they are also used in the expression for the condensation
enthalpy, qcd.

When this model is simulated in Dymola the symbolic manipulation
reduces the five differential equations to four state equations in the vari-
ables {p, Mt, Mr, Msd}.

4.2 Boiler-pipe model

The equations of the boiler-pipe model will not be repeated here, since
they are all given in Paper III. The Modelica code of the models is also
given in Appendix IIIa. However, the boiler-pipe model, and also the pre-
vious drum-boiler example, is a good example of how different levels of
complexity can be used in models for different purposes.

The difference between the different boiler-pipe models in Paper III is
that more dynamics are added to include more complex phenomena. The
simple model, M1, is just a static model of the pressure drop, which means
that the pressure drop must always follow the given function, ∆p = f (ṁ).
The one-flow model, M2, adds the discretized energy dynamics in the
pipe, which introduces a lag in the density variations. This lag affects the
pressure drop and gives limit cycles of different amplitude, see Figure III.9
on page 113. By also adding the discretized mass dynamics in the fully
discretized model M3, another phenomenon is introduced, pressure waves.
This phenomenon is not interesting for the purpose of the model, to study
the pressure-drop oscillations. Thus it can be concluded that model M3 is
too complex for the purpose of the study. This compromise between desired
behaviour and complexity in the model is necessary to recognize. There
is no single best model, a model is always built for a specific purpose and
for every purpose there is a different model.

45

5

Model Validation

Abstract

This chapter gives some comments to the work on model validation
done together with James Sørlie, see Paper IV. It also contains a short
literature review of model validation methods, mainly for physical
models.

5.1 Introduction

Models of systems are almost always built with the purpose to draw con-
clusions about the real system from simulations or from an analysis of
the model. Consequently issues of model validity are very important. The
model must accurately describe the essential characteristics of the system.
When you use a physical model, drawn from first principles, this means
both a need to have accurate knowledge of the system parameters as well
as having a correct model structure, accounting for important physical
phenomena in the real system.

Although model validation is a well investigated area within the field
of system identification, it has often been dealt with in a heuristic fash-
ion for physical models. An excellent example of classical validation of
a physical model is presented in Leva et al. (1999). In that article, a
model of a drum-boiler is validated and ’tuned’ by comparing experimen-
tal step-response data to simulations. There are several reasons for this
trial-and-error way of doing validation. The main reason is that physical
models usually are nonlinear. Since the mathematics and stochastics for
nonlinear systems are not as well developed as for linear systems, the
task of model validation for physical models is a difficult one. Also, pa-
rameters in a physical model are always, to some extent, uncertain. This

46

5.2 Model structure validation via parameter optimization

means that there is always some element of parameter tuning involved
in the validation.

5.2 Model structure validation via parameter optimization

Ideas for an approach to model structure validation is described in Pa-
per IV. The task of finding accurate model parameters as well as val-
idating the model structure is addressed by doing nonlinear parameter
optimization of different model structures. The approach mainly consists
of comparing different model structures, or hypotheses, on different sets
of measured data. The choice of the best model structure is based on
Akaike’s Information Criterion (AIC). Further studies, done after the sub-
mission of Paper IV, has been presented in Sørlie and Eborn (1997); Sørlie
and Eborn (1998). The continued case-study compared a fifth-order model
structure, M5, to the third- and fourth-order models in Paper IV. In M5

the delayed steam flow from the risers is added as a new state, but this

0 500 1000 1500 2000 2500 3000 3500
-200

-100

0

100

200

300
Drum level, δ l [mm]

0 500 1000 1500 2000 2500 3000 3500

104

108

112

116
Drum pressure, P [kg/cm2]

Figure 5.1 Comparison of measured data(—) to simulations of model with
nominal(– –) and estimated parameters(- - -).

47

Chapter 5. Model Validation

model was rejected since it did not give significantly better results than
M4. However, with only minor changes in the M4 model structure the
almost perfect fit1 shown in Figure 5.1 was obtained. The changes mainly
concerned initialization of the states. The coefficients of the state equa-
tions were also changed slightly due to the inclusion of internal energy
instead of enthalpy. It is interesting to note that there are only small dif-
ferences between the two curves with nominal and optimized parameter
values in Figure 5.1. The main difference seen by the naked eye is the
reduction of the drift in the simulated output. This improvement comes
from optimization of the conversion factors from measured inputs. The
good fit obtained for this and other data sets shows that the model struc-
ture M4 accurately describes the system. It can also be concluded that the
model is useful for control design, since it captures all the fast dynamics
even with nominal parameter values.

5.3 Model validation methods

The process of validating a model is sometimes called external validation,
see Murray-Smith (1998). This is to stress the difference compared with
(internal) verification, which only concerns the consistency of the numer-
ical implementation of a mathematical model. Model validation seeks to
find evidence of the level of agreement between the model and the real
system. When working with model validation it is important to recog-
nize that it is not possible to conclusively validate a model. According to
Popper (1935) a theory can only be falsified, i. e., proven wrong, by ex-
perimental tests. By passing any number of tests, a model is only as yet
unfalsified. The purpose of the model is also an important aspect that
affects the model validation process. The accuracy requirements are of-
ten much higher on a model used for process design purposes, than on a
model for control design. Recent activities within the research area mod-
elling and validation for control design emphasize the accuracy in the
frequency range important for control. This can for example be obtained
by selection and prefiltering of the measurement data used for the vali-
dation, see Ljung and Guo (1997).

Model validation can be approached using a number of different meth-
ods, e. g.,

• Model validation in the context of system identification

• Robust model validation
1Note that there are three lines in the figure. The estimated parameters line (- - -) is

hardly visible behind the measurements.

48

5.4 Method of model distortion

• The model distortion method, described in the next section.

Classical model validation methods are used together with system identi-
fication, usually using linear difference equation models, see Ljung (1987).
The classical validation methods are based on statistical tests of the model
residuals, i. e., the difference between the measurements and the predicted
model output, see e. g., Ljung and Hjalmarsson (1995).

The robust model validation methods have emerged within the frame-
work of robust control of uncertain systems, see Smith et al. (1997). There
are a number of methods, either emphasizing frequency-domain proper-
ties or time-domain. They have the property in common that the model
errors are not described by stochastic processes, but rather by worst-case
bounds. By optimization procedures, minimal bounds on the model un-
certainty and disturbances are obtained. The bounds are used for the
rejection or acceptance of the model. The uncertainty bounds can also be
used for robust control design. The models used within this framework
are also principally linear, but there are also examples of validation of
(simple) nonlinear models using robustness methods, e. g., Dullerud and
Smith (1997).

The method of model distortion, on the other hand, directly addresses
the problem of nonlinear model validation. It is also based on parameter
optimization like the approach described in Paper IV. Therefore the model
distortion method is described with some more detail in the next section.

5.4 Method of model distortion

The model distortion method is based on distorting model parameters
to make the model output fit the measurements exactly, see Butterfield
and Thomas (1986a); Butterfield and Thomas (1986b). The size of the
distortions will then say something on the quality of the model; the better
the model structure is, the smaller are the required distortions to fit the
model to the data. It is not only based on parameter optimization, since
the model distortions are time-varying.

The distortion method starts with parameter optimization that min-
imize some model error criterion, e. g., mean-square error. The optimal
parameters, b, give the nominal model

ẋ = f(x, u, b), y = Cx

where x are the states, u the inputs and the outputs, y, are a subset
of the states. The parameters in the model are then distorted by time-
varying parameter distortions, δ b(tj), to make the model output fit the

49

Chapter 5. Model Validation

measurements exactly,

χ̇ = f(χ (tj), u(tj), b+ δ b(tj)), z(tj) = Cχ (tj) (5.1)

where z are the measurements and χ are the distorted states.
Butterfield (1990) gives two different criteria for the acceptance or

rejection of a model, based on the acceptable variance, δ b2
k, for each model

parameter, bk. These acceptable variances are a-priori information, taken
from known tolerances or approximations in the modelling. A time domain
criterion is based on solving (5.1) for the distortions δ b and comparing
their variance with the acceptable variance.

Var(δ bk)
δ b2

k
≤ 1

If this criterion is met for all parameters bk then the model is accepted. Ex-
plicit expressions for the model distortions for linear discrete-time models
are given in Cameron (1992); Cameron et al. (1998).

The second criterion is based on
J(β k)

β k

J∗

2J∗

bk

∆bk

Figure 5.2 Mean-square error,
J, as a function of the parameter
value, β .

a simplified frequency-domain analy-
sis. In this criterion the results from
the nominal parameter optimization
are used instead of the explicit model
distortions. The shape of the mean-
square error as a function of each
model parameter, J(β k), is taken as a
measure of the required model distor-
tions. The principal shape of the error
function is illustrated in Figure 5.2. It
can often be locally approximated by a
quadratic form. The chord length, ∆bk,
at J = 2J∗(bk) is taken as a measure
of the model distortions required to fit
the model to the measurements. The
frequency-domain criterion then sums
the influence of all the model parameters,

p∑
k=1

δ b2
k

∆b2
k
≥ 1

where p is the number of parameters. This criterion is claimed to be
somewhat pessimistic and the chord length can be shortened by a factor α .
This factor is given by Butterfield and Thomas (1986a) as approximately

50

5.4 Method of model distortion

0.8, while Cameron et al. (1998) give a statistical derivation based on the
F-distribution to calculate α for different significance levels as a function
of the number of parameters and available data points.

The use of parameter optimization in the model distortion method re-
sembles the way it was used in Paper IV. However, the distortion method
gives a quantitative measure on model quality for physical models. It also
takes into account a-priori information. The purpose of the model is given
by the data used for the validation, which should reflect the kind of be-
haviour that the model should be able to reproduce. There are of course
also draw-backs, for example that the method requires a model on explicit
ODE form and that the analysis assumes that the measured outputs are
also states in the model. These are not severe and could possibly be re-
laxed.

A model validation method based on parameter optimization should
preferably be included in a modelling and simulation environment, since
the model specification and the numerical integration of the model equa-
tions are integral parts of the method. The report Sørlie (1997) presents
an interface between the modelling tool OMSIM and the optimization tool
IDKIT. The case-study presented in Paper IV shows the benefits of such
an integration. IDKIT is also the basis in a model calibration and valida-
tion tool called MoCaVa, see Bohlin (1998). There is also ongoing work to
implement MoCaVa in Matlab.

51

6

Conclusions

Modelling and simulation of dynamical systems is a difficult area for sev-
eral reasons. It is not taught in a consistent way to engineering students,
since it is an area of expertise which typically is scattered in the engi-
neering faculty. Modelling and simulation also requires skills in many
different subjects:

1. good knowledge of the application domain

2. understanding of the mathematical model

3. programming skills, on different levels depending on the tool used

4. numerical analysis, to correctly interpret results

Model libraries can provide support that helps inexperienced users attack
complex problems. The support lies mainly within items 1. and 3. above,
but also to some extent in the last since a correct model library can help
avoiding numerical difficulties. Deeper understanding of mathematical
models is mainly obtained by experience.

Modelling languages and simulation software tools on the other hand
provide support for the two last items. The structure and syntax of the
modelling language are important for ease-of-use and the quality of the
models in a model library.

The main conclusion of this thesis is that modelling of complex systems
should be supported by well-structured model libraries. Model libraries
should be built using equation-based modelling. This is mainly because it
relieves the user from the burden of manipulating equations/blocks into
a computationally convenient form. But also because it reduces the num-
ber of model variants in the library. It is also shown how object-oriented
modelling makes library maintenance easier. The task of symbolic ma-

52

6.1 Future Work

nipulation is left to the simulation software, which of course needs to be
more sophisticated.

The conclusions in the thesis are drawn from the development of two
different model libraries. First, the simpler, more application-oriented li-
brary K2 written in OMOLA. K2 is intended for modelling of thermal power
plants. Second, the more advanced library ThermoFlow, which covers gen-
eral thermo-hydraulics and thus more application domains. ThermoFlow
is written in Modelica and is a part of the Modelica base library package.

The thesis contains modelling examples of evaporation processes, both
in drum-boilers and evaporation of continuous flow in a pipe. There is also
a discussion on model validation methods for physical models.

6.1 Future Work

Continued library development

The definition of the thermo-hydraulic Modelica base library, ThermoFlow,
is not the end of the story. The library covers all basic parts in thermo-
hydraulic modelling, e. g., thermodynamic control volumes, momentum
dynamics, bidirectional and two-phase flows. However, to build system
models from these basic models, the user needs to know some thermody-
namics. In many applications, there is a need for tailor-made component
models, suited for the non-expert user. The base library gives rich oppor-
tunities to build such application libraries. However, design of application
libraries is usually not research. This work should be left for model con-
sulting companies, such as Sycon AB or Solvina, that can license applica-
tion libraries to their customers. Models suited for specific purposes are
usually not free of charge.

Uncertainty descriptions

Descriptions of parametric uncertainty is an area in linear systems the-
ory that has grown rapidly during the last fifteen years, although the
concept of uncertainty has existed much longer than that. For example
Gille et al. (1959) proposed to capture the region of validity of a linear
model with the notion of the linearity lemon, see Figure 6.1. This lemon
shape could just as well be used to illustrate uncertainty.

One key idea of robust control theory is to capture uncertainty as ad-
ditional blocks, see Figure 6.2. Uncertainty descriptions are often derived
from comparing a more detailed, possibly nonlinear, system model to a
simpler one that you want to work with in control design. To have tools
that could extract a simple model for design from a complex physical

53

Chapter 6. Conclusions

A
m

pl
it

u
de

,
A

Frequency, w

Saturation

Threshold

Figure 6.1 The linearity lemon, adopted from p.199 in Gille et al. (1959), describes
the region of validity for linear transfer functions. The region is restricted from
above by saturation phenomena, from below by threshold nonlinearities and at high
frequencies by neglected dynamics.

model and also supply bounds for parametric uncertainty would be very
powerful. Some tools like OMSIM and Dymola can automatically derive a
linearized model from a nonlinear model. In Lantz and Rantzer (1998)
OMSIM is used to export a linear model of a power network with para-
metric uncertainty. The model is exported on a form that can be used for
analysis in the Matlab R& µ-toolbox, see also Andersson (1999).

Another interesting possibility to get a bound on the amount of un-
certainty in a model could be to estimate it from the model validation
procedure. There are a large number of papers investigating this possi-
bility, e. g., Rangan and Poolla (1998).

Model Analysis and Simplification

The focus in modelling has for a long time been on simulation. Today this
is changing towards analysis and design. It would be useful to have tools
that could extract simplified models from complex models, e. g., static rela-
tions, linearized models or low-order models with descriptions of paramet-
ric uncertainty. While doing manual model simplification you use know-

y u

v w

M

∆

Figure 6.2 Uncertain system on uncertainty feedback form.

54

6.1 Future Work

ledge that certain dynamics are on a different timescale and thus can be
neglected, or that variables and terms in equations are of a smaller or-
der of magnitude and can be removed from the model. Current work at
the department explores how this kind of information can be extracted
automatically from a model, e. g., Öhman (1998) gives results on model
simplification using linearized models along a given trajectory. For this
kind of model analysis it is useful to have both symbolic and numeric
tools. Symbolic manipulation can give information about the structure of
a problem. Analysis of the incidence matrix of an equation system shows
where there are strong or weak couplings between different parts of the
system, sometimes this information is not enough and then numeric val-
ues can be used.

55

7

References

Abelson, H. and G. J. Sussman (1985): Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, MA.

Andersson, L. (1999): On Simplification of Models with Uncertainty. PhD
thesis ISRN LUTFD2/TFRT--1054--SE, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

Andersson, M. (1994): Object-Oriented Modeling and Simulation of Hy-
brid Systems. PhD thesis ISRN LUTFD2/TFRT--1043--SE, Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

Bauer, O. (1999): “Modelling of two-phase flows with Modelica.” Master
thesis ISRN LUTFD2/TFRT--5629--SE. Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

Bell, R. D. and K. J. Åström (2000): “Drum-boiler dynamics.” Automatica,
36:3, pp. 363–378.

Bendotti, P. and C.-M. Falinower (1999): “EDF benchmark for robust
control techniques – evaluation of proposed solutions.” In Preprints
14th World Congress of IFAC, vol. G, pp. 455–460. Beijing, P.R. China.

Bohlin, T. (1998): “Process model calibrator and validator.” In Preprints
of Reglermöte ’98, pp. 58–62. Lund Institute of Technology, Sweden.

Booch, G. (1991): Object Oriented Design with Applications. Ben-
jamin/Cummings, Redwood City, California.

Butterfield, M. H. (1990): “A method of quantitative validation based
on model distortion.” Trans. Inst. Measurement and Control, 12:4,
pp. 167–173.

56

Butterfield, M. H. and P. J. Thomas (1986a): “Methods of quantitative
validation for dynamic simulation models. I. Theory.” Trans. Inst.
Measurement and Control, 8:4, pp. 182–200.

Butterfield, M. H. and P. J. Thomas (1986b): “Methods of quantitative
validation for dynamic simulation models. II. Examples.” Trans. Inst.
Measurement and Control, 8:4, pp. 201–219.

Cameron, R., R. L. Marcos and C. de Prada (1998): “Model validation of
discrete transfer functions using the distortion method.” Mathematical
and Computer Modelling of Dynamical Systems, 4:1, pp. 58–72.

Cameron, R. G. (1992): “Model validation by the distortion method: linear
state space systems.” IEE Proceedings-D, 139:3, pp. 296–300.

Cellier, F. (1991): Continuous System Modeling. Springer-Verlag, New
York, NY.

Chien, K. L., E. I. Ergin, C. Ling and A. Lee (1958): “Dynamic analysis
of a boiler.” Transactions of ASME, 80, pp. 1809–1819.

CVShome.org (2000): “Concurrent versions system.” www.cvshome.org.

Dullerud, G. E. and R. S. Smith (1997): “Invalidation techniques for as-
sessing linear perturbation models of nonlinear systems.” In Proceed-
ings of the American Control Conference, vol. 3, pp. 2078–2082.

Eborn, J. (1994): “Modelling and simulation of an industrial control
loop with friction.” Master thesis ISRN LUTFD2/TFRT--5501--SE.
Department of Automatic Control, Lund Institute of Technology, Lund,
Sweden.

Eborn, J. (1998a): “Experiences from using a model database for process
modelling.” In Preprints of Reglermöte ’98, pp. 68–72. Lund Institute
of Technology, Sweden.

Eborn, J. (1998b): Modelling and Simulation of Thermal Power Plants.
Lic Tech thesis ISRN LUTFD2/TFRT--3219--SE, Department of Au-
tomatic Control, Lund Institute of Technology, Lund, Sweden.

Eborn, J. and K. J. Åström (2000): “Modeling of a boiler pipe with two-
phase flow instabilities.” In Modelica 2000 Workshop Proceedings,
pp. 79–88. Modelica Association, Lund, Sweden.

Eborn, J. and B. Nilsson (1996): “Simulation of a thermal power plant
using an object-oriented model database.” In IFAC’96, Preprints 13th
World Congress of IFAC, vol. O, pp. 121–126. San Francisco, California.

57

Chapter 7. References

Eborn, J. and H. Olsson (1995): “Modelling and simulation of an industrial
control loop with friction.” In Proceedings of the 4th IEEE Conference
on Control Applications, pp. 316–322. Albany, New York.

Eborn, J., H. Panagopoulos and K. J. Åström (1999): “Robust PID control
of steam generator water level.” In Preprints 14th World Congress of
IFAC, vol. G, pp. 461–464. Beijing, P.R. China.

Eborn, J., H. Tummescheit and F. Wagner (2000): “Development of a
Modelica base library for modeling of thermo-hydraulic systems.” In
Proceedings of the 41st SIMS Simulation Conference, SIMS’2000,
pp. 253–266. SIMS, Copenhagen, Denmark.

Eklund, K. (1971): Linear Drum Boiler-Turbine Models. PhD thesis TFRT-
1001, Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

Elmqvist, H. (1972): “SIMNON – Ett interaktivt simuleringsprogram för
olinjära system,” (An interactive simulation program for nonlinear
systems). Technical Report TFRT-5113. Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

Elmqvist, H., S. E. Mattsson and M. Otter (1999): “Modelica - a Language
for Physical System Modeling, Visualization and Interaction.” In
Proceedings of Symposium on Computer-Aided Control System Design,
CACSD’99. IEEE, Hawaii. Plenary paper.

Elmqvist, H. and M. Otter (1994): “Methods for tearing systems of equa-
tions in object-oriented modeling.” In ESM’94 European Simulation
Multiconference. Barcelona, Spain.

Gille, J.-C., P. Decaulne and M. Pelegrin (1959): Feedback control systems.
McGraw-Hill, New York, NY.

Kant, I. (1781): Kritik der reinen Vernunft.

Klevhag, J. (1996): “Accuracy verification of continuous juice blending
process using simulation.” Master thesis ISRN LUTFD2/TFRT--5554-
-SE. Department of Automatic Control, Lund Institute of Technology,
Lund, Sweden.

Kwatny, H. G. and J. Berg (1993): “Drum level regulation at all loads.”
In Preprints IFAC 12th World Congress, vol. 3, pp. 405–408. Sydney,
Australia.

Lantz, M. and A. Rantzer (1998): “Robustness analysis of large
differential-algebraic systems with parametric uncertainty.” In Pro-
ceedings of MTNS98. Padova, Italy.

58

Leva, A., C. Maffezzoni and G. Benelli (1999): “Validation of drum-
boiler models through complete dynamic tests.” Control Engineering
Practice, 7:1, pp. 11–26.

Lindahl, S. (1976): Design and Simulation of a Coordinated Drum
Boiler-Turbine Controller. Lic Tech thesis TFRT-3143, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

Ljung, L. (1987): System Identification—Theory for the User. Prentice
Hall, Englewood Cliffs, New Jersey.

Ljung, L. and L. Guo (1997): “Classical model validation for control design
purposes.” Mathematical Modelling of Systems, 3:1, pp. 27–42.

Ljung, L. and H. Hjalmarsson (1995): “System identification through
the eyes of model validation.” In Proceedings of the Third European
Control Conference, ECC’95, vol. 2, pp. 949–954. Rome, Italy.

Löfgren, O. and P. Svensson (1997): “Modelling and control of a plate heat
exchanger in steam applications.” Master thesis ISRN LUTFD2/TFRT-
-5584--SE. Department of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden.

Maciejowski, J. M. (2000): Predictive Control with Constraints. Addison-
Wesley, Wokingham, England.

Mattsson, S. E. (1995): “Simulation of object-oriented continuous time
models.” Mathematics and Computers in Simulation, 39, pp. 513–518.

Mattsson, S. E., H. Olsson and H. Elmqvist (2000): “Dynamic selection of
states in dymola.” In Modelica 2000 Workshop Proceedings, pp. 61–67.
Modelica Association, Lund, Sweden.

Mattsson, S. E., M. Otter and H. Elmqvist (1999): “Modelica hybrid
modeling and efficient simulation.” In 38th IEEE Conference on
Decision and Control, CDC’99. Phoenix, Arizona.

Modelica Design Group (2000): “The Modelica Language Specification.”
Version 1.4, http://www.modelica.org/.

Murray-Smith, D. J. (1998): “Methods for the external validation of
continuous system simulation models: a review.” Mathematical and
Computer Modelling of Dynamical Systems, 4:1, pp. 5–31.

Nilsson, B. (1993): Object-Oriented Modeling of Chemical Processes. PhD
thesis ISRN LUTFD2/TFRT--1041--SE, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

59

Chapter 7. References

Nilsson, B. and J. Eborn (1995): “An object-oriented model database
for thermal power plants.” In Breitenecker and Husinsky, Eds.,
Eurosim ’95 Simulation Congress, pp. 747–752. Elsevier.

Öhman, M. (1998): Trajectory-Based Model Reduction of Nonlinear Sys-
tems. Lic Tech thesis ISRN LUTFD2/TFRT--3223--SE, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

Ordys, A., R. Katebi, M. Johnson and M. Grimble (1994): Modelling and
Simulation of Power Generation Plants. Springer-Verlag, London, UK.

Paynter, H. (1961): Analysis and Design of Engineering Systems. MIT
Press, Cambridge, MA.

Pfafferott, T. and G. Schmitz (2000): “Numeric simulation of an integrated
CO2 cooling system.” In Modelica 2000 Workshop Proceedings, pp. 89–
92. Modelica Association, Lund, Sweden.

Pontremoli, A. (2000): “Modeling and control of a paper dryer section
using modelica.” Master thesis ISRN LUTFD2/TFRT--5653--SE. De-
partment of Automatic Control, Lund Institute of Technology, Lund,
Sweden.

Popper, K. R. (1935): Logik der Forschung. Julius Springer, Vienna,
Austria.

Ramos González, J. J. (1994): “Object-oriented modelling of flows in pro-
cess systems.” Report ISRN LUTFD2/TFRT--7521--SE. Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

Rangan, S. and K. Poolla (1998): “Model validation for structured
uncertainty models.” In Proceedings of the 1998 American Control
Conference, vol. 1, pp. 629–633. Philadelphia, Pennsylvania.

Rumbaugh, J. (1991): Object-oriented modeling and design. Prentice-Hall
International, Englewood Cliffs, New Jersey.

Smith, R. S., G. E. Dullerud, S. Rangan and K. Poolla (1997): “Model val-
idation for dynamically uncertain systems.” Mathematical Modelling
of Systems, 3:1, pp. 43–58.

Sørlie, J. (1997): “On an interface between OmSim and IdKit.” Report
ISRN LUTFD2/TFRT--7562--SE. Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

Sørlie, J. and J. Eborn (1997): “A grey-box identification case study:
The Åström–Bell drum-boiler model.” Technical Report ISRN
LUTFD2/TFRT--7563--SE. Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

60

Sørlie, J. and J. Eborn (1998): “Parameter optimization results for
a family of thermo-physical drum boiler models.” In Preprints of
Reglermöte ’98, pp. 131–136. Lund Institute of Technology, Sweden.

Stojnic, P. (1997): “Modeling of steam generation in a sulphuric acid
plant.” Technical Report ISRN LUTFD2/TFRT--5577--SE. Depart-
ment of Automatic Control, Lund Institute of Technology, Lund, Swe-
den.

Strömberg, J.-E. (1994): A mode switching modelling philosophy. PhD
thesis 353, Dept. of Electrical Engineering, Linköping University,
Linköping, Sweden.

Tummescheit, H., J. Eborn and F. Wagner (2000): “Development of a
Modelica base library for modeling of thermo-hydraulic systems.” In
Modelica 2000 Workshop Proceedings, pp. 41–51. Modelica Association,
Lund, Sweden.

Ward, J. and R. Middleton (1999): “Sequential approach to control systems
synthesis with constraints.” In Preprints 14th World Congress of IFAC,
vol. G, pp. 483–488. Beijing, P.R. China.

61

Chapter 7. References

62

Paper I

Object-Oriented Modelling of
Thermal Power Plants

Bernt Nilsson and Jonas Eborn

Abstract

This paper presents a set of model libraries, called K2, for mod-
elling of thermal power plants. The models are based on first prin-
ciples and describe mainly the dynamic mass and energy properties
of the modelled system. The K2 models are described in the object-
oriented modelling language OMOLA and the libraries are organized in
an OMOLA model database. The libraries are grouped into three differ-
ent sets, namely unit libraries, subunit libraries and model component
libraries. The unit models are used to build up plant system models,
which are application dependent. The units are composed of subunits.
The subunits describe different physical phenomena and a set of sub-
units build up the behaviour of the unit model. Model components are
used to facilitate the development of new units and subunits. OMOLA

models can be simulated in the OMSIM simulation environment and
the K2 model database has been used in a case study of the dynamics
in an HRSG plant.

Keywords: Computer aided engineering, modelling, object-oriented
modelling, power plant, process models.

The full paper can not be reproduced here for copyright reasons. It is available
(by subscription) from

Mathematical and Computer Modelling of Dynamical Systems, 4:3, pp. 207–218.
c&Swets & Zeitlinger, Netherlands.

63

http://www.szp.swets.nl

Paper II

Development of a Modelica Base
Library for Modeling of

Thermo-hydraulic Systems

Jonas Eborn, Hubertus Tummescheit
and Falko Jens Wagner

Abstract
This paper presents current results of an ongoing project to de-

velop a Modelica base library for thermo-hydraulic systems. There are
many different aspects to the development of such a library, from the
basic physics of fluids and heat to the structuring of model classes in
the library and the actual implementation in the Modelica language.
The structuring should define interfaces and partial classes that fa-
cilitate reuse to make the library general and easy to use. Different
choices of media, use of different state variables as well as different
levels of complexity in modeling is anticipated in the library structure.

The basic entity in the library is the model of a control volume. It is
formed by multiple inheritance from three parts; the partial thermal
model, the partial hydraulic model and the medium property model.
Flexibility is obtained by parameterizing this control volume. It can be
either lumped or discretized in n sections along the flow direction. The
three parts are also parameterized with class parameters. This means
for example that you can easily exchange the medium properties in a
control volume.

The aim of the project is to develop a model library that contains all
basic components needed for thermo-hydraulic systems. Besides con-
trol volumes and medium models this also means models for simple
machinery, e. g., pumps, valves and heat exchangers. Code examples
are given in the paper.

Extended version of

Eborn, J., H. Tummescheit, and F.J. Wagner (2000): “Development of a Modelica
base library for modeling of thermo-hydraulic systems.” In Proceedings
of the 41st SIMS Simulation Conference, SIMS’2000, pp. 253–266. SIMS,
Copenhagen, Denmark.

77

Paper II. Development of a Modelica Base Library

1. Introduction

With the modeling language ModelicaTM, Elmqvist et al. (1999); Model-
ica Design Group (2000), it is possible to create model libraries for differ-
ent application areas. In the Modelica base library distribution there are
libraries for multi-body systems, electrical systems and block diagrams.
A base library for modeling and simulation of thermo-hydraulic systems
is also necessary to further expand the range of applications for Mod-
elica. A thermo-hydraulic base library should cover the basic physics of
flows of fluids and heat. It also needs to cover models for properties of
fluids like water and refrigerants. The library would then be useful in
several application areas, e. g., power generation plants, district heating
and refrigeration systems.

The general goal of the library is to provide a framework and basic
building blocks for modeling thermo-hydraulic systems in Modelica. For
obvious reasons it is impossible to provide components for every appli-
cation, so one of the main goals is extensibility. For the same reason,
much more emphasis will be put on the basic parts of the library, such
as medium models and essential control volumes, than on an exhaustive
application library. The focus of the library is on models of homogeneous
one- and two-phase flows, non-homogeneous and multi-phase flows are
not taken into account yet. It is necessary to support bidirectional flow,
because flow directions can change during simulation or are not known
initially in networks.

To make the library general and extensible, the design must accom-
modate for example different choices of media, single/multi-component
flow and one- or two-phase flows. For numerical efficiency, it may also be
interesting to use different pairs of state variables, e. g., {p, h}, {p, T} or
{ρ , T}. This is anticipated in the library structure. The basic entity in
the library, the control volume, is built up by multiple inheritance from
three parts. The partial thermal model contains dynamic state equations
derived from conservation laws of mass and energy. The partial hydraulic
model contains the mass flow equation that is formed from either a static
or a dynamic momentum balance. The third part in the control volume is
the medium model that calls the appropriate medium property functions.

The models in the library are designed for system level simulation,
not for detailed simulation of flows, which are usually done in CFD pack-
ages. The models are thus discretized in one dimension or even lumped
parameter approximations.

It has to be emphasized that, especially in the area of fluid flow, differ-
ent assumptions about the importance of terms in the general equations
can lead to models which are very different mathematically. The library
offers only a limited selection of assumptions, which nonetheless should

78

2. Basic ideas

cover a broad range of applications.
Some basic ideas for the thermo-hydraulic base library have previously

been presented in Tummescheit and Eborn (1998); Eborn et al. (1999b);
Tummescheit (2000); Tummescheit (2000b). Object-oriented component
based modeling has been presented in Wagner and Poulsen (1999); Wag-
ner et al. (1998).

2. Basic ideas

The basic design principles of the library are:

• one unified library both for lumped and distributed parameter mod-
els,

• both bi- and unidirectional flows are supported,
• separation of the medium submodels, which can be selected through

class parameters,
• assumptions (e. g., gravity influence yes or no) can be selected by

the user from the user interface.

The first guideline puts a constraint on the discretization method used
in the distributed parameter models: only the so-called “staggered grid”
method, see Figure 1, reduces to a useful model in the lumped parameter
case. In this method, Harlow and Welch (1965), all fluxes are calculated on
the border of a control volume and the intensive quantities are calculated
in the center of a control volume. The method is a special case of the finite
volume method, Patankar (1980), which is common for systems modeling
with one-dimensional discretizations.

The ability to handle reversing flows requires extra information in the
connectors between models. Transported properties, e. g., enthalpy and
composition, would need to be included twice, upstream and downstream.

pipi-1 pi+1

hihi-1 hi+1
ṁi ṁi+1
qc,i qc,i+1

inlet outlet

mass and energy

momentum

Figure 1 Staggered grid discretization. The control volumes for mass/energy and
momentum are translated relative to each other.

79

Paper II. Development of a Modelica Base Library

This has instead been solved by including convective heat flow and com-
ponent mass flows in the connectors. Thus the information needed for the
balance equations (see Section 3) is contained in variables depending on
the flow direction, i. e., mass flow and convective heat flow. In contrast the
transported properties in the connector are always taken from the closest
control volume.

The connector for single medium flow without dynamic momentum
balance then contains the variables:

{p, h, ṁ, qc,ρ , T , s,κ} (1)

where the quantities are pressure, specific enthalpy, mass flow, convective
heat flow, density, temperature, specific entropy and ratio of specific heats,
respectively.

The different kinds of lumped and distributed models are shown in
Figure 2. With this choice the user has the possibility to change the com-
plexity of a system model. The staggered grid is reflected in the split-
ting into different lumped model types, volume models and flow models.
Different appearance of the connectors ensure the alternating structure,
inherent in the staggered grid method. Always connecting different con-
nectors guarantees that the simulation problem is well specified and that
there are no unnecessary algebraic loops.

Volume model Flow model

Lumped model types

Compound and discretized models

Figure 2 Lumped, compound and discretized model objects. Filled and outlined
connectors are different to ensure an alternating connection structure.

80

3. Control volume equations

3. Control volume equations

The basic thermodynamic equations governing a fluid system are partial
differential equations. In our discretized setting these are integrated over
a fixed control volume to obtain ordinary differential equations.

For a complete model description of a control volume, four parts are
combined:

• balance equations (mass, energy and momentum),
• constitutive equations (pressure drop, heat flow),
• medium properties,
• transformations of state variables.

Each of these parts are explained in the following sections. The three
balance equations give three of the variables in (1), the remaining are ob-
tained from medium property routines. Below we give the basic form of the
balance equations. Usually the balance equations in mass and energy are
not used directly, but transformed into some pair from {{p,ρ}, {h, T , s, u}}
for numerical efficiency reasons. This transformation is explained in the
last section below.

Balance equations

With the staggered grid approximation described in Section 2 the balance
equations are split up. The volume model holds the equations for total
mass and internal energy. If there are n flow connections to other volumes
and l heat transfer areas these are written as (positive flow into the
volume):

d
dt

(
M

U

)
=
(∑n

i ṁi∑n
i qc,i +

∑l
j qtransfer, j

)
(2)

Between the volumes there must be a flow model, which holds the
momentum balance. There are two types of flow models implemented in
the library:

• Stationary pressure drop model
• Dynamic momentum balance for pipes with constant cross-sectional

area.

Static flow models are much used in system simulation where the
thermal behavior is the main concern. The dynamic momentum balance is
useful for pressure wave propagation studies in a system which is mainly
modeled with distributed models. Keep in mind that it is possible to add

81

Paper II. Development of a Modelica Base Library

ṁ1

p1

w1

qc,1

ṁ2

p2

w2

qc,2

qtransfer

M , U , V

Fwall

Figure 3 Schematic of a pipe section, used as a thermodynamic control volume.
The arrows indicate reference direction for the flow quantities mass flow ṁ, velocity
w and heat flow q.

other types of flow models to the existing structure, e. g., a momentum
balance for variable cross-sectional area along the flow channel.

The dynamic momentum balance is derived from Newton’s second law,
applied to a pipe section with volume V and constant cross-section area
A,

d
dt

∫
V

ρ w dV = −
∫

A1,2

ρ w(wn) dA−
∫

A1,2

pn dA+
∫

Aw

Tn dA+
∫

V
ρ g dV

where vector quantities are marked with boldface symbols and T is the
stress tensor. The left hand side is the time derivative of the momentum
in the volume V . The first term on the right hand side is the momentum
flux over the end surfaces, the second term are pressure forces acting on
the end surfaces, the third term are shear stress acting on the pipe wall
and the last term is gravitational forces. In the axial direction, ez, we
have n1ez = −1, n2ez = 1 and w = wez. By integrating over the control
volume and using ṁ = Aρ w, we obtain a differential equation for mass
flow rate,

I =
∫

V
ρ w dV =

∫
∆z

∫
A

ρ w dAdz = ṁ∆z

Gi =
∫

Ai

ρ w2 dA = ṁ2
i /Aρ i

∆z
dṁ
dt

= dI
dt

= G1 − G2 + (p1− p2)A− Fwall − Fgrav (3)

where G is the momentum flux. The wall friction force, Fwall, is given by
some constitutive equation and the gravitational force, Fgrav, depends on
the angle against the plane.

82

3. Control volume equations

Constitutive equations

The constitutive equations are empirical relations for heat flow, pressure
drop and characteristics of machinery. They are typically formulated as
characteristic equations for individual components, often algebraic equa-
tions but they could also be formulated as differential equations. For ex-
ample in a pump, there exist many different relationships between mass
flow rate, pressure increase, angular speed and consumed power. The fluid
flow literature also holds many different expressions for the relationship
between flow and pressure drop depending on the flow regime, pipe pa-
rameters, etc.

These constitutive equations should be replaceable, in order to have a
general model for a component that can be used in different situations by
exchanging the model for the characteristics, see Section 4 for an example.

Medium property routines

For simulation of thermo-hydraulic systems, it is necessary to have accu-
rate models for the thermodynamic properties of the fluid that is flowing
in the system. For the purpose of dynamic system simulation, the follow-
ing criteria have to be met:

• Accuracy
• Speed
• Robustness

In some areas there exist recommended formulations (IAPWS/IF97 for
water, Wagner and Kruse (1998)) or de facto standards (NIST-REFPROP
routines for refrigerants, McLinden et al. (1998)) that have to be taken
into account. External function call interfaces in Modelica make it possible
to use these standards directly. Available routines and most medium prop-
erty models in the literature (see, e. g., Reid et al. (1987)) are designed
with stationary calculations in mind, therefore they have to be extended
to include some needed extra derivatives for dynamic calculations.

In dynamic simulations the speed of the medium property functions is
very important for the performance of the simulations. Whenever possible
the medium properties should be non-iterative, which is the case when
they are explicit in the dynamic states. This is easy to achieve for the
steam tables, where the industrial standard formulation, IAPWS-IF97,
has explicit routines for a variety of input variables (pressure and tem-
perature, enthalpy or entropy). The complete industrial steam tables are
implemented in the library.

For other properties, e.g. refrigerant R134a, such inverse formulations
are not available. However, it is still possible to save a huge amount of
computation time by precomputing the phase boundaries off-line and use

83

Paper II. Development of a Modelica Base Library

an auxiliary equation for it. These vapor-liquid equilibrium calculations
(VLE) for cubic and other medium models have to be performed itera-
tively and numerically, either by using Maxwell’s criterium or calculating
that Gibbs’ free enthalpy is equal for both phases. The numerical calcula-
tions are too inefficient to be performed at each time step during dynamic
simulation. In order to calculate medium properties inside the two-phase
region, it is for non-transient states sufficient to know the properties on
the phase boundaries and interpolate with the vapor mass fraction x. An
efficient implementation of medium properties for pure components re-
quires that VLE are calculated before the simulation and that VLE data
is approximated either with a suitable function or with smooth spline in-
terpolation. For the above listed media, high accuracy approximations are
either available in the standard formulation (e. g., partially for water and
CO2) or provided in the base library.

The phase boundaries require special attention: the derivatives of most
properties are discontinuous across the phase transition and therefore this
has to be implemented as a discrete change which restarts the integration
routine if a control volume changes its phase. This is a robustness require-
ment for most normal cases, but it can lead to unexpected “sliding mode”
behavior, if e. g., heat transfer coefficients also change discontinuously at
the phase boundary.

Currently we have implemented high-accuracy medium models for the
whole fluid region for water, carbon dioxide and R134a. More refrigerant
properties will be available soon. It is relatively easy to add new medium
models to the existing ones and it is even simpler to exchange the medium
model in existing models against another one.

To summarize, the medium properties that are provided with this li-
brary:

• are adapted for use with dynamic simulations.
• use non-iterative, auxiliary equations for the calculation of VLE.
• are highly accurate for water, CO2 and R134a.
• include ideal gas properties for a wide variety of gases.

State variable transformations

There is an interdependence between the choice of the medium model and
the selection of state variables. Many details of the medium model depend
on the choice of the state equations. Most medium models are available
for all of the choices of state variables in the library, but the numerical
efficiency can be very different. The common choice {p, h} is very efficient
for water in the two-phase region where the IF97 medium model is explicit
in these states, while it is slower at super-critical pressures, since the
medium model is explicit in {ρ , T} and thus iterations are needed.

84

3. Control volume equations

The balance equations for mass and internal energy (2) can be rewrit-
ten into differential equations for ρ and u. A differentiation of M = ρ V
and U = uM for a constant volume yields:

V
dρ
dt

= dM
dt

M
du
dt

= dU
dt

− u
dM
dt

(4)

These primary equations are then transformed into secondary forms to
give differential equations in the states suitable with the medium model.
For example, if pressure and enthalpy are chosen as states,

d
dt

(
ρ
u

)
=

Vρ
Vp

∣∣∣∣
h

Vρ
Vh

∣∣∣∣
p

Vu
Vp

∣∣∣∣
h

Vu
Vh

∣∣∣∣
p

︸ ︷︷ ︸

Jacobian, J

d
dt

(
p

h

)
(5)

To obtain differential equations for pressure and enthalpy (5) must be
solved for the derivative of (p, h)

d
dt

(
p

h

)
= J−1 d

dt

(
ρ
u

)
(6)

The partial derivatives of ρ are calculated in the medium model, while
the partial derivatives of u can be reduced to those of ρ . From u = h−p/ρ
we obtain

Vu
Vh

∣∣∣∣
p
= 1+ p

ρ 2

Vρ
Vh

∣∣∣∣
p

Vu
Vp

∣∣∣∣
h
= − 1

ρ +
p

ρ 2

Vρ
Vp

∣∣∣∣
h

This gives the inverse Jacobian as

J−1 = a2

ρ

ρ + p

ρ
Vρ
Vh

∣∣∣∣
p
−ρ Vρ

Vh

∣∣∣∣
p

1− p
ρ
Vρ
Vp

∣∣∣∣
h

ρ Vρ
Vp

∣∣∣∣
h

where a is the velocity of sound. By combining (6) and (4), multiplying

with M = ρ V and noting that h = u+ p/ρ we obtain

85

Paper II. Development of a Modelica Base Library

Figure 4 Package structure of the ThermoFlow library

V

ρ
a2

dp
dt

=
(

ρ + h
Vρ
Vh

∣∣∣∣
p

)
dM
dt

− Vρ
Vh

∣∣∣∣
p

dU
dt

V
ρ
a2

dh
dt

=
(

1− h
Vρ
Vp

∣∣∣∣
h

)
dM
dt

+ Vρ
Vp

∣∣∣∣
h

dU
dt

which are the differential equations for p, h used in ThermoFlow. Sim-
ilar expressions have also been derived for other pairs of state variables,
for example {p, T}, {p, s} or {ρ , T}.

Library structure

The main idea of the ThermoFlow library is to provide an extensible basis
for a robust thermo-hydraulic component library. The structure of the
library is divided into four parts, see Figure 4.

Interfaces define the types of connectors used in the library. The flow
connectors are of four different types; either single or multi-component
flow medium, with a static or dynamic flow description. This package
should be on the top level, since it is important for the interoper-
ability between different Modelica base libraries.

Base classes are the central part of models, the basic physical equations
for a control volume: balance equations, state transformations and
medium models.

Partial components contain common expressions for component mod-
els, this allows code sharing and simplifies maintenance.

Components are the user part of the library, models that can be used to
build a system for simulation.

86

4. Object-oriented modeling

4. Object-oriented modeling

Modelica is an object-oriented modeling language, designed for modeling
physical systems. Many of the object-oriented features defined by Abadi
and Cardelli (1996) are found in the Modelica language:

• (Multiple) Inheritance
• Class parameterization
• Generalization

The concept of inheritance lets one object inherit methods and proper-
ties (i. e., the behavior) from other objects. This allows code sharing and
calls for applying generalization.

Class parameterization gives the possibility of building generic classes
that can be used for specialization later. With this, a parameter can be
passed to a class during instantiation, giving the class the desired behav-
ior, see the examples below.

In a way, the concept of object-orientation, in relation to component
based modeling, inspires the user to generalize the system. This can lead
to a better understanding of the system to be modeled. Through gener-
alization, the user is forced to decompose the system into parts. Each
part can then be modeled and implemented in meaningful classes. These
classes tend to represent the essential parts of the system, and aggrega-
tion (through multiple inheritance) collects these parts again to form a
complete model of the system.

Object-oriented constructs in Modelica

In the following subsections we will give examples of how the object-
oriented features described above are handled in Modelica.

Aggregation through multiple inheritance is used to build up basic
models. A control volume formulation of a pipe can be decomposed in the
following individual parts:

• Balance equations
• Flow model
• A shell model, which defines the connectors

These parts are modeled individually in the following classes:

partial model Balances
... some equations;

end Balances;

87

Paper II. Development of a Modelica Base Library

partial model FlowModel
... some equations;

end FlowModel;

partial model TwoPort
FlowConnector a,b;

end TwoPort;

and aggregation of these base classes leads to a general description of a
control volume, e. g., a pipe

model Pipe
extends TwoPort;
extends Balances;
extends FlowModel;

end Pipe;

By the Modelica keyword extends the new model Pipe inherits all at-
tributes of the base classes. Common parts of the base classes are only
inherited once.

Class parameterization is used to add replaceable objects to a class.
This object can then be replaced by passing a specific class as a parameter
during instantiation.

As an example we take the FlowModel from above. Any flow model
needs some type of pressure loss model. In order to make the class Flow-
Model as general as possible, we only specify a generic flow model during
base class implementation.

partial model FlowModel
replaceable class

Ploss = GenericPressureLossModel;
extends Ploss;

end FlowModel;

The GenericPressureLossModel does not have to contain any equa-
tions, but for practical reasons (and as a base class for inheritance in
specialized pressure loss models) it contains the variables that are com-
mon to all pressure loss models.

In specialized classes, the generic pressure loss model is then replaced
by a more meaningful model, which also contains equations for calculating
the actual pressure loss.

model SpecialPipe
extends TwoPort;
extends Balances;
extends FlowModel(redeclare

Ploss = SpecialPressureLossModel);
end SpecialPipe;

88

4. Object-oriented modeling

Generalization is the key element in object-orientation. It is closely
related to the notion of classes. A class describes some general behavior
of objects that have some properties in common. Exactly these common
properties call for a general description - a class. The purpose is obviously
code sharing, but an often quite appreciated side effect of this is a better
understanding of the problem being modeled.

Generalization is in this library used to specify behavior of compo-
nents, which for some reason is common to all components of that par-
ticular type. For flow equipment a general feature is the convective heat
transport, which can be expressed as

partial model FlowModelBase
extends FlowVariables;
extends TwoPort;

equation
a.q_conv = if a_upstr

then mdot*a.h
else mdot*b.h;

end FlowModelBase;

where the specification of the flow direction, a_upstr , and the mass
flow, mdot , is postponed until later.

Since the calculation of the mass flow depends on the type of flow
equipment used, this additional information has to be provided in a spe-
cialized class. For example a flow resistance with a linear expression for
pressure losses

model LinearValve
extends FlowModelBase;

equation
a_upstr = a.p > b.p;
mdot = mdot0/dp0*(a.p-b.p);

end LinearValve;

where the mass flow depends on the parameters mdot0, dp0 and the
pressure difference over the valve.

Summary

Some examples have shown how important object-oriented constructs of
the Modelica language are implemented in ThermoFlow. The constructs
are used throughout the library structure (see Section 3) to facilitate wide
spread use of generalization and code sharing and make the library more
flexible.

89

Paper II. Development of a Modelica Base Library

5. Component models

As mentioned earlier, the aim of this project was not extensive component
modeling, but to create a base structure for future development of compo-
nent models. For demonstration purposes a few component models have
been implemented. This section presents some of them.

Pumps

For modeling a pump, e. g., feed water pump, it is necessary to have a
relationship between the volume flow rate, the pressure increase and the
speed of the pump. This is called the pump characteristic or pump profile.
One example of an expression for this relationship is

∆pn = R1nn + 2R2nnVn − R3 hVnhVn (7)

where, pn, nn and Vn are normalized variables for pressure p, speed of the
pump n and volume flow rate V . The design point is (pn, nn, Vn) = (1, 1, 1)
and represents the pump in normal operation.

In terms of the ThermoFlow library structure, the pump can be mod-
eled by using a lumped control volume and a lumped flow model according
to Figure 2. The lumped flow model then represents the pump character-
istic (7), whereas the lumped control volume before the pump is used
according to the library structure. This control volume represents the vol-
ume of the pump, which should not be neglected.

Heat exchangers

A heat exchanger is modeled using base components from the library.
Basically, it consists of two pipes connected by a heat conducting wall.
Figure 5 shows the principle of modeling a heat exchanger and a sample
system.

Heat exchangers can either be lumped or distributed. In the distributed
case the heat transfer model uses a simple temperature difference be-
tween the individual elements of the distributed pipes. The lumped case
is either based on this simple model or uses the logarithmic mean tem-
perature. Furthermore, tube and shell heat exchangers are implemented
using a circular wall geometry with an inner and an outer pipe.

Turbines

Analogous to pumps, a turbine is modeled as a lumped control volume
with a following lumped flow model. The flow model introduces the turbine
characteristic or turbine profile. Currently two models are implemented
in the base library. One model is according to Stodola, see Stodola (1927).

90

5. Component models

�
�
�
�
�
�
�
��

P
P
P
P
P
P
P
PP

Figure 5 Example system using a heat exchanger consisting of two pipes, a wall
and 4 connectors

The Stodola model is an idealized turbine with an infinite number of
stages. The other model is due to Linnecken, see Traupel (1977). The
Linnecken model considers the maximum mass flow rate through the tur-
bine stage and can be parameterized according to the type of the turbine
and the number of stages.

Reservoirs

Some thermo-hydraulic systems are closed systems, e. g., power plants
or refrigeration systems. But for general modeling purposes, sources and
sinks are required. These are used to add "boundary" conditions to other
components or systems of components. Typical sources are temperature,
pressure or heat sources. They can either be fixed or depend on some
input signal. The sample system in Figure 5 contains 2 controlled sources
and 2 sinks.

For flow sources, the model consists of a control volume, giving ther-
modynamic properties to the supplied flow, and a flow model at the outlet
of the source. The control volume is a so called "infinite reservoir", i. e.,
the thermodynamic conditions do not vary over time as mass and energy
leaves or enters the control volume. The flow model is used to make the
sources more realistic (and numerically less stiff), e. g., by modeling a
pressure drop over the outlet. A flow sink is just a fixed pressure control
volume, and the assumption about the infinite reservoir holds as well.

Heat sources can give either a fixed temperature or a fixed heat flow.
They can also be controlled by an external signal.

91

Paper II. Development of a Modelica Base Library

Figure 6 Resulting temperatures from simulating the system in Figure 5

Figure 7 Example system

6. Examples

A system with a parallel flow plate heat exchanger (see Figure 5) is simu-
lated with a temperature increase on the hot side, followed by a pressure
increase on the cold side with according mass flow rate increase. The
result is shown in Figure 6.

What can be seen from the results is that an increase in the tempera-
ture on the hot side also increases the temperature on the cold side. Since
this is a parallel flow heat exchanger, the temperature difference between
the hot and the cold side also increases. The following flow increase on the
cold side causes the temperature difference between the hot and the cold
side to increase, and the temperature on the hot side drops accordingly
due to the increase in the heat flow to the cold side.

Using the components implemented in the library, it is possible to build
also more complex systems, e. g., power plants, see Figure 7.

92

7. Conclusion

7. Conclusion

In the design of the base library, the concepts of object-oriented modeling
have been used to make the library flexible and easy to use. The gener-
alization splits a complex problem into subproblems, which are modeled
individually (e. g., balance equations, momentum equations, heat trans-
fer) and aggregated to build component models. This separation simplifies
library maintenance and makes building many model variants easier.

The Modelica language offers standard object-oriented features, such
as composition and inheritance as well as more advanced features like
class parameterization. Using these, the basic constraints from thermo-
hydraulic modeling are inherent in the library models, but they can still
be made flexible and extensible through specialization and class param-
eterization. The decomposition of models sometimes makes it difficult to
get an overview over inherited parts of a model. However, the advantages
with a more maintainable structure and reusable classes outweigh this
disadvantage.

Some further conclusions:

• Ease of use: Taking the user perspective early in the library design
process is important for the final result.

• Nomenclature of research field: Use of known symbols is very
important for the usefulness of the library.

• No overkill: There is a risk of over-structuring using object-oriented
methods.

We have also seen, that it is possible to model complex systems with
the components implemented in the library. The modeling and simulation
tool DymolaTM has been used in the design of the library. Dymola has a
graphical user interface that allows drag and drop model editing, making
the modeling process easier.

Please note, because of the structure of the library, only verification
of the base models is possible. Real model validation is only possible in
a system context, which has been done for a few examples. Also, the
library is meant as a basis for further development. Models of basic control
volumes and flow models are complete, but there is a need for many more
components for different application areas.

Further information

For the interested reader, further information about the ThermoFlow
project can be obtained at www.control.lth.se/˜hubertus/ThermoFlow or
by contacting the authors.

93

Paper II. Development of a Modelica Base Library

References

Abadi, M. and L. Cardelli (1996): A Theory of Objects. Springer, New York, Berlin.

Eborn, J. (1998): “Experiences from using a model database for process modelling.”
In Preprints of Reglermöte ’98, pp. 68–72. Lund Institute of Technology,
Sweden.

Eborn, J. and B. Nilsson (1996): “Simulation of a thermal power plant using an
object-oriented model database.” In IFAC’96, Preprints 13th World Congress
of IFAC, vol. O, pp. 121–126. San Francisco, California.

Eborn, J. and H. Olsson (1995): “Modelling and simulation of an industrial control
loop with friction.” In Proceedings of the 4th IEEE Conference on Control
Applications, pp. 316–322. Albany, New York.

Eborn, J., H. Panagopoulos, and K. J. Åström (1999a): “Robust PID control of
steam generator water level.” In Preprints 14th World Congress of IFAC,
vol. G, pp. 461–464. Beijing, P.R. China.

Eborn, J., H. Tummescheit, and K. J. Åström (1999b): “Physical system modeling
with Modelica.” In 14th World Congress of IFAC, vol. N. IFAC.

Elmqvist, H., S. E. Mattsson, and M. Otter (1999): “Modelica - a Language for
Physical System Modeling, Visualization and Interaction.” In Proceedings of
Symposium on Computer-Aided Control System Design, CACSD’99. IEEE,
Hawaii. Plenary paper.

Elmqvist, H. and M. Otter (1994): “Methods for tearing systems of equations in
object-oriented modeling.” In ESM’94 European Simulation Multiconference.
Barcelona, Spain.

Harlow, F. H. and J. E. Welch (1965): “Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface.” Phys. Fluids, 8, pp. 2182
– 2189.

Mattsson, S. E. (1995): “Simulation of object-oriented continuous time models.”
Mathematics and Computers in Simulation, 39, pp. 513–518.

Mattsson, S. E. and M. Andersson (1992): “The ideas behind Omola.” In
Proceedings of the 1992 IEEE Symposium on Computer-Aided Control System
Design, CACSD ’92. Napa, California.

Mattsson, S. E., M. Otter, and H. Elmqvist (1999): “Modelica hybrid modeling
and efficient simulation.” In 38th IEEE Conference on Decision and Control,
CDC’99. Phoenix, Arizona.

McLinden, M. O., S. A. Klein, E. W. Lemmon, and A. P. Peskin (1998): NIST
Thermodynamic and Transport Properties of Refrigerants and Refrigerant
Mixtures—REFPROP. U. S. Department of Commerce, version 6.0 edition.

Modelica Design Group (2000): “The Modelica Language Specification.” Version
1.4, http://www.modelica.org/.

94

References

Nilsson, B. (1994): “Guidelines for process model libraries using an object-
oriented approach.” In Proceedings of the European Simulation Multicon-
ference, ESM’94, pp. 349–353. SCS, The Society for Computer Simulation,
Barcelona, Spain.

Nilsson, B. (1996): “Experiences of Developing Process Model Libraries in Omola.”
In Davis et al., Eds., International Conference on Intelligent Systems in
Process Engineering, ISPE’95, vol. 92 of AIChE Symposium Series no. 312,
pp. 388–392. CACHE and AIChE.

Nilsson, B. and J. Eborn (1995): “An object-oriented model database for thermal
power plants.” In Breitenecker and Husinsky, Eds., Eurosim ’95 Simulation
Congress, pp. 747–752. Elsevier.

Patankar, S. V. (1980): Numerical Heat Transfer and Fluid Flow. Hemisphere
Publishing Corporation, Taylor & Francis Group, New York.

Pfafferott, T. and G. Schmitz (2000): “Numeric simulation of an integrated CO2

cooling system.” In Modelica 2000 Workshop Proceedings, pp. 89–92. Modelica
Association, Lund.

Reid, R. C., J. M. Prausnitz, and B. E. Poling (1987): The Properties of Gases and
Liquids. Mc Graw Hill, Boston, Massachusetts.

Sørlie, J. and J. Eborn (1998): “Parameter optimization results for a family of
thermo-physical drum boiler models.” In Preprints of Reglermöte ’98, pp. 131–
136. Lund Institute of Technology, Sweden.

Stodola, A. (1927): Steam and Gas Turbines, sixth edition. McGraw-Hill, New
York.

Traupel, W. (1977): Thermische Turbomaschinen, third edition. Springer Verlag,
Berlin, Germany.

Tummescheit, H. (2000a): “Object-oriented modeling of physical systems, part 11.”
Automatisierungstechnik, 48:2. In german.

Tummescheit, H. (2000b): “Object-oriented modeling of physical systems, part 12.”
Automatisierungstechnik, 48:4. In german.

Tummescheit, H. and J. Eborn (1998): “Design of a thermo-hydraulic model
library in Modelica.” In Zobel and Moeller, Eds., Proc. of the 12th European
Simulation Multiconference, ESM’98, pp. 132–136. SCS, Manchester, UK.

Wagner, F. J. and M. Z. Poulsen (1999): “C++ toolbox for object oriented modeling
and dynamic simulation of physical systems.” SIMS Conference, Linköping,
Sweden.

Wagner, F. J., M. Z. Poulsen, P. G. Thomsen, and N. Houbak (1998): “Object
oriented toolbox for modeling and simulation of dynamical systems.” SIAM
Workshop.

Wagner, W. and A. Kruse (1998): Properties of water and steam. Springer, Berlin.

95

Paper III

Flow Instabilities in Boiling Two
Phase Flow

Jonas Eborn, Hubertus Tummescheit
and Karl Johan Åström

Abstract

Tubes with boiling are common elements of many processes. They
appear in steam generators and refrigerators and many other sys-
tems. The behavior of such systems is complicated because many
physical phenomena are involved. It has for example been observed
that different types of instabilities can occur. In this paper we will
discuss modeling of tubes with boiling. As an application we will dis-
cuss an instability phenomenon due to pressure oscillations that has
been observed experimentally in many different situations. We will
first derive a simple analytical model which is able to capture the
oscillations qualitatively. The simple model also gives insight into the
mechanisms that generate the oscillations. A more detailed model is
then built using a recently developed model base library in Model-
ica. A comparison between the simple and the detailed model is also
presented.

Extended version of

Eborn, J. and K. J. Åström (2000): “Modeling of a boiler pipe with two-phase flow
instabilities.” In Modelica 2000 Workshop Proceedings, pp. 79–88. Modelica
Association, Lund, Sweden.

97

Paper III. Flow Instabilities in Boiling Two Phase Flow

1. Introduction

Evaporation of fluids flowing through a tube is common in many pro-
cesses. It is a key element in steam generators, refrigerators and many
other systems. The physical phenomena during evaporation is quite com-
plicated. Both the dynamics and the material properties of the fluid are
highly non-linear and key quantities like the dry-out point or the amount
of superheat are difficult to measure. Many factors contribute to making
these processes hard to control. It has for example been observed that dif-
ferent types of flow instabilities/oscillations can occur, see Aldridge and
Fowler (1996); Kakaç and Liu (1991); Yadigaroglu (1981).

In this paper we will discuss modeling of tubes with boiling. As an
application we will discuss an instability phenomenon due to pressure
oscillations that has been observed experimentally in different situations,
e. g., in Liu et al. (1995). Modeling of such systems is usually done by
"brute-force", using CFD code with high discretization. In this paper we
take a different approach.

Within the framework of a European collaboration a new modeling
language, called Modelica, has been developed. Modelica is based upon
the experiences of the members of the Modelica Design Group and is
aiming at becoming a standard for equation-based continuous-time and
hybrid modeling. As a part of the effort some Modelica base libraries for
applications within different domains have been developed, among these a
thermo-hydraulic base library, see Tummescheit et al. (2000). This library
is used here to build a discretized model of a boiling tube.

First a simple, low-order analytical model is derived from first princi-
ples. The simple model is able to capture the oscillations that have been
observed experimentally. It can also give insight into the mechanisms that
generate the oscillations. Then a more complex model is built using the
thermo-hydraulic base library in Modelica. Simulations of the complex
model shows that it gives results comparable to the simplified model and
also close to experimental data. But the complex model also has a richer
behavior. Comparisons between models of different complexity and based
on different assumptions are presented.

2. A Simple Physical Model

Liquid streaming through a heated tube is heated gradually to boiling
temperature, after this point there is a two-phase mixture of liquid and
vapor. If sufficient heat is supplied all liquid will evaporate and after the
dry-out point there is only vapor which may become super-heated. This
is illustrated schematically in Figure 1 which shows the mass fraction of

98

2. A Simple Physical Model

0

1

0 Q1 Q1 + Q2 position

vapor mass
fraction

Figure 1 Distribution of vapor mass fraction along a heated tube.

vapor along the tube. The heating zone is from 0 to Q1, the boiling zone
from Q1 up to Q1+Q2 and after this point there is no liquid left in the tube.
If the flow rate is too high the liquid does not spend enough time in the
tube for all liquid to evaporate and there will only be two zones. If the
flow rate is even higher boiling may not even start.

Two phase flows are quite complicated. Here we will use a simplified,
homogeneous model. Let P be the heat flow per unit length supplied to
the tube, let ṁ be the mass flow rate, let hin be the enthalpy of the liquid
at the entrance of the tube, hl the liquid enthalpy at boiling temperature
and hc = hv−hl the difference between the enthalpy of the vapor and the
liquid. Moreover let L be the length of the tube and Q1 and Q2 be the length
of the heating and boiling zones. If we assume stationary conditions, a
global energy balance gives 1

ṁ(hl − hin) = PQ1
ṁhc = PQ2

(1)

Complete boiling occurs if the mass flow rate is sufficiently low, i. e., ṁ <
ṁc, where ṁc is defined as the critical flow rate. This occurs exactly when
Q1 + Q2 = L, which gives us the critical flow rate

ṁc = PL
hv − hin

(2)

Let v be the velocity, ρ the density of the liquid-vapor mixture, and
ṁ the mass flow rate. Assuming that we have a common ṁ through the

1To be formally correct, the energy balance should use internal energy, u, instead of h.
In the liquid part, (hl − hin), the error is negligible, about 0.1%. However, on the vapor
side the error can be around 5%. For more accurate calculations, we should instead use
hc = hv−hl−pvνv to correct for the pressure volume work in the evaporation. As a simplifying
assumption we have chosen to neglect this.

99

Paper III. Flow Instabilities in Boiling Two Phase Flow

entire tube, i. e., no pressure waves, the frictional pressure drop can be
expressed as

∆p = k
2

ρv2 = k
2A2

ṁ2

ρ (3)

where the bar denotes average values over the entire tube. To determine
the pressure drop we thus have to calculate the average 1/ρ. We will
consider three separate cases.

Complete Boiling: In this case all phases are present. In Bell and
Åström (2000) it was shown that in steady state the mass ratio of the
vapor in a heated tube is piecewise linear. If we assume that this profile
is a good approximation also in the transient stage we can assume that
the volumity, ν = 1/ρ, is an affine function in the boiling zone, i.e.

ν = ξ
Q2νv + Q2 − ξ

Q2 ν l

where 0 ≤ ξ ≤ Q2 and the origin is at the start of boiling. The average
volumity is then

1
ρ
= ν = 1

L

(∫ Q1

0
ν ldξ +

∫ Q2

0

(
ν l + ξ νv − ν l

Q2
)
dξ + (L − Q1 − Q2)νv

)
= Q1

L
1
ρl
+ Q2

2L

(1
ρv
+ 1

ρl

)
+ L − Q1 − Q2

L
1
ρv

(4)

It follows from Equation (1) and Equation (2) that

Q1
L
= hl − hin

hv − hin

ṁ
ṁc

Q2
L
= hv − hl

hv − hin

ṁ
ṁc

Introducing x = m/mc into (4) we find that

ρl

ρ = (1− x) ρl

ρv
+ x

hl − hin

hv − hin
+ x

2
hv − hl

hv− hin

ρl + ρv

ρv

Partial Boiling: In this case there is only a heating zone and a boiling
zone. The flow at the exit of the tube consists of a mixture of both vapor
and liquid. We have Q1 < L = Q1+Q2 and the average volumity is given by

1
ρ
= ν = 1

L

(∫ Q1

0
ν ldξ +

∫ Q2

0

(
ν l + arξ

νv − ν l

Q2
)
dξ
)

= Q1
L

1
ρl
+ Q2

2Lρl

(
2+ ar

(ρl

ρv
− 1
)) (5)

100

2. A Simple Physical Model

where ar is the mass fraction of vapor at the tube outlet. Neglecting the
energy increase in the pure vapor phase a global energy balance gives

ṁar(hv− hl) = PQ2 = P(L − Q1) = ṁc(hv− hin) − ṁ(hl − hin)
Combining this with Equation (2) we find

ar = ṁc(hv − hin) − ṁ(hl − hin)
ṁ(hv − hl)

Q2
L
= ṁ

ṁc

hv − hl

hv − hin
ar = 1− ṁ

ṁc

hl − hin

hv − hin

Inserting this into (5) we get

ρl

ρ
= x

hl − hin

hv− hin
+ 1

2

(
1− x

hl − hin

hv− hin

)(
2+ hv − hin − x(hl − hin)

x(hv − hl)
ρl − ρv

ρv

)
No Boiling: In the case when there is no boiling we have

ρl

ρ = ρl

ρl
= 1

Summary: For the three different cases we find that the pressure drop
is given by

∆p = kṁ2

2A2ρ =
kṁ2

c

2A2ρl
f
(ṁ

ṁc

)
(6)

where the function f = x2ρl/ρ is given by

f (x) =

x2a3 + x3(a1 + a2

2
(a3 + 1) − a3

)
for 0 ≤ x < 1

x2
(

xa1 + 1− a1x
2

(
2+ 1− a1x

a2x
(a3 − 1))) for 1 ≤ x < 1

a1

x2 for x ≥ 1
a1 (7)

where the coefficients ai are given by

a1 = hl − hin

hv − hin
a2 = hv − hl

hv− hin
a3 = ρl

ρv
(8)

Figure 2 shows the normalized pressure drop as a function of nor-
malized mass flow rate. Notice that the curve has a negative slope if the
density ratio ρQ/ρv is sufficiently large. When this occurs the function f
also has nontrivial extrema. The plot also shows the normalized pressure
drop for pure liquid and pure vapor (ρQ/ρv = 100). For low mass flow rate
the pressure drop for the mixture is close to the curve for pure vapor and
for high mass flow rates the pressure drop approaches the curve for pure
liquid.

101

Paper III. Flow Instabilities in Boiling Two Phase Flow

0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

50
100
60
28.5
liq/vap

N
or

m
al

iz
ed

pr
es

su
re

dr
op

,
f(

x)

Normalized mass flow rate, x

Figure 2 The normalized pressure drop as a function of normalized mass flow rate
for different density ratios, ρl/ρv. Dotted lines are the limiting cases, pure liquid
and pure vapor flow. Enthalpy values are taken from Table 1.

No subcooling

The function f simplifies considerably if the liquid entering the tube is
close to boiling temperature, i. e., with very little sub-cooling. Then a1 = 0
and a2 = 1, and by substituting a3 in (7) the function f becomes

f (x) =

x2 ρl

ρv
− x3

2

(ρl

ρv
− 1
)

for 0 ≤ x < 1

x2 + x
2

(ρl

ρv
− 1
)

for 1 ≤ x
(9)

Notice that the shape of the function f now only depends on the ratio of
the densities of the liquid and the vapor phase, ρl/ρv. Differentiation of
Equation(9) gives

f ′(x) =

2x

ρl

ρv
− 3x2

2

(ρl

ρv
− 1
)

for 0 ≤ x < 1

2x + 1
2

(ρl

ρv
− 1
)

for 1 ≤ x
(10)

Since the coefficients are positive (ρl/ρv ≥ 1) the derivative expressions

102

3. Analysis of Oscillations

are always positive. Thus, the pressure drop is a strictly increasing func-
tion and there can be no pressure drop oscillations without subcooling.

Conditions for local extrema

As can be seen in Figure 2 the pressure drop function (7) can have nega-
tive slope for certain values of ρl/ρv. The local maximum and minimum
will, for reasonable values of ai, always occur in the partial boiling region,
1 ≤ x < 1/a1. By differentiating the expression for f in this region and
setting it equal to zero we obtain after some simplification

f ′(x) = 3x2
(a2

1(a3 − 1)
2a2

)
+ 2x

(
1− a1(a3 − 1)

a2

)
+ a3 − 1

2a2
= 0 (11)

< 3(xa1)2 + 4(xa1)
(a2

a1(a3 − 1) − 1
)
+ 1 = 0 (12)

Solving this equation we find that the local extrema occur at

x1,2 = 2
3a1

(
1− a2

a1(a3 − 1)
)
± 1

a1

√
4
9

(
1− a2

a1(a3 − 1)
)2
− 1

3
(13)

Examining the second derivative shows that it is negative for small x and
that it becomes positive for x-values larger than x0 � 2/(3a1), indicating a
maximum for the smaller x in (13) followed by a minimum. The condition
for having two separate extrema is

1 ≤ 4
3

(
1− a2

a1(a3 − 1)
)2

which by solving for the density ratio can be written as

ρl

ρv
= a3 ≥ ac

3 = 1+ a2

a1
(4+ 2

√
3) (14)

The solution to this inequality shows that if the density ratio, ρl/ρv, is suf-
ficiently large the conditions for local extrema are fulfilled and pressure-
drop oscillations can occur. The critical density ratio (14) depends on a1, a2

and thus on the amount of sub-cooling. The conditions in Figure 2 are
given in Table 1, which gives the critical density ratio ρl/ρv = 28.5.

Summarizing we find that if ρl/ρv fulfills condition (14) then the func-
tion f has two extrema given by (13) and the pressure drop function f
has negative slope between the extrema. The extrema will coincide if
ρl/ρv = ac

3. The distance between the extrema x2 − x1 increases with
increasing density ratio ρl/ρv.

103

Paper III. Flow Instabilities in Boiling Two Phase Flow

Heater Tube

Exit Restriction

Surge Tank

p0

p

ṁ0 ṁ

Figure 3 Schematic of a boiling channel.

3. Analysis of Oscillations

Having obtained a model for the pressure drop we will now investigate
some interesting dynamical phenomena. Figure 3 shows a schematic dia-
gram of a boiling channel with a surge tank. This corresponds to the exper-
imental configuration used in several experiments, see Liu et al. (1995).

Let ṁ0 and ṁ denote the mass flow rate in and out of the surge tank
respectively. Let p be the pressure in the surge tank and p0 the external
pressure. The system can be described by mass and momentum balances.
The variables p and ṁ are chosen as states variables.

A momentum balance for the heater tube gives

dṁ
dt

= A
L
(p− p0 − ∆p) = A

L

(
p− p0 − kṁ2

c

2A2ρl
f (ṁ

ṁc
)) (15)

where A is the cross-section of the tube and L is the length of the tube.
A mass balance for the surge tank gives the differential equation for

liquid volume, V , as

ρl
dV
dt

= ṁ0 − ṁ (16)
Let Vt be the total volume of the surge tank and let V0 be the volume of
gas in the surge tank in the normal state, when the pressure is p0. The
pressure in the tank is given by the ideal gas law

p(Vt− V) = p0V0

104

3. Analysis of Oscillations

To obtain a differential equation for p this expression is differentiated,
hence

dp
dt
(Vt− V) = p

dV
dt

Solving for the derivative of p and eliminating Vt − V we get

dp
dt
= p

Vt− V
dV
dt

= p2

ρl p0V0
(ṁ0 − ṁ)

The system is thus described by the second order differential equation
system

dṁ
dt

= A
L

(
p− p0 − kṁ2

c

2A2ρl
f (ṁ

ṁc
)
)

dp
dt
= p2

ρl p0V0
(ṁ0 − ṁ)

(17)

Equilibria

The system Equation (17) has an equilibrium which is given by

ṁ = ṁ0

p = p0 + kṁ2
c

2A2ρl
f (ṁ0

ṁc
) (18)

Normalization

Introduce the time constants

Tma = ρl V0

ṁ0
and Tmo = ṁ0 L

Ap0

which are associated with the mass balance of the surge tank and the
momentum balance of the heating tube respectively. Notice that ρl V0 is
the mass of the liquid in the volume V0 and ṁ0 is the mass flow rate.
Similarly, note that ṁ0 L is the momentum of the fluid in the tube and
Ap0 is the force acting on the fluid.

Furthermore, introducing the scaled time τ defined by

τ =
√

1
TmaTmo

t =
√

Ap0

ρl V0L
t

the equation system (17) becomes

dx
dτ = α (y− 1− β f (γ x))
dy
dτ =

1
α (1− x)y2

(19)

105

Paper III. Flow Instabilities in Boiling Two Phase Flow

where

α =
√

ρl V0Ap0

Lṁ2
0

=
√

Tma

Tmo
, β = kṁ2

c

2A2ρl p0
= ∆pc

p0
, γ = ṁ0

ṁc

and ∆pc is the stationary pressure drop when ṁ = ṁ0 = ṁc.
If the normalized model (19) is used the system is thus characterized

by four parameters only:

• The ratio of the densities ρl/ρv.

• The ratio of the time constants associated with the mass balance
(Tma) and the momentum balance (Tma).

• The ratio ∆pc/p0

• The ratio ṁ0/ṁc

Linearization

The equilibrium values of the normalized variables are

x = 1

y = y0 = 1+ β f (γ)

If we choose u = ∆m0/m0 as an input and linearize the system around
the equilibrium we find

d
dt

 x

y

 = −α βγ f ′(γ) α
−y2

0/α 0

 x

y

+ 0

y2
0/α

u (20)

Since the coefficients α , β and γ are positive it follows that the equilibrium
is stable if f ′(γ) is positive and that it is unstable if f ′(γ) is negative.

Simulation

The simple model (17) can easily be coded in Modelica to examine the be-
havior of the model. The pressure drop function, f , is given as a Modelica
function with four arguments, as seen in the code example below:

model evap "Evaporating tube w. density-varying pressure drop"
parameter SIunits.Power P(start=800);

...
SIunits.Pressure dp;
SIunits.Pressure p(start=3e5);
SIunits.MassFlow m(start=0.024);

106

4. More Complex Modelica Models

0 0.005 0.01

3

3.5

4

ṁ [kg/s]

p
[10

5
P

a]

Figure 4 Simulated limit cycle of pressure drop oscillations, — pressure drop
characteristic, – – pressure in the surge tank.

equation
dp = k*mc*mc/(2*A*A*rl)*f(x=m/mc, a3=rl/rv, a1=a1, a2=a2);
der (p) = p*p*(m0 - m)/p0/V0/rl;
der (m) = A/L*(p - pe - dp);

end evap;

Parameters for the simple model, taken from Liu et al. (1995), are
given in Table 1. With these parameters the model gives a limit cycle in
pressure and mass flow which agrees well with the measurements in Liu
et al. (1995). A phase plot of the limit cycle is shown in Figure 4. The
pressure drop characteristic is drawn with a full line and the pressure in
the surge tank is dashed. The period of the oscillation depends critically
on the volume of the surge tank, V0, which is not stated in the paper Liu
et al. (1995).

4. More Complex Modelica Models

Modeling in Modelica can be easy. With the available libraries, simply se-
lect and connect modules in a graphical editor. Modelica libraries are open
which means that the models can be modified. Here we have used the Mod-
elica base library for thermo-hydraulic models, ThermoFlow, described in

107

Paper III. Flow Instabilities in Boiling Two Phase Flow

Name Value Unit Quantity

P 800 W heat input

L 0.605 m length

d 7.5 mm diameter

ρv 22.5 kg/m3 vapor density

ρl 1359 kg/m3 liquid density

hv 426 kJ/kg vapor enthalpy

hl 264 kJ/kg liquid enthalpy

hin 220 kJ/kg inflow enthalpy

pe 105 Pa exit pressure

p0 105 Pa normal pressure

V0 0.7 l normal volume

ṁ0 7.31 g/s mass flow rate

k 104 – friction factor

Table 1 Parameter values for the simplified model. Property data (h, ρ) are mean
values for R11 from REFPROP, see McLinden et al. (1998). The friction pressure
drop also includes exit and entry losses, which makes the friction factor, k, quite
large.

Tummescheit et al. (2000); Tummescheit (2000). The basic components
in this library are lumped and discretized control volumes containing the
balance equations for mass, energy and momentum.

To verify the simplified model we compare it with a more complex, dis-
cretized model. Using the standard components in ThermoFlow, a system
model shown in Figure 5 is created with a surge tank and a discretized
pipe. A nice feature of Modelica and the ThermoFlow library is that the
degree of discretization can be expressed by a parameter, n, which gives
the number of sections. In the results shown here we have used n = 10,
which gave reasonable results.

A complex model can exhibit a much more complicated behavior than
the simplified one. One reason for this is that a discretized model also
captures other physical phenomena, like the density-wave oscillations,
see Yadigaroglu (1981).

Different modeling assumptions

The fact that it is easy to build models of different complexity in Modelica
can be used to develop models based on different assumptions. This can
help getting insight into the behavior of the system.

108

4. More Complex Modelica Models

The simplest model has only two states, one pressure and one mass
flow. A fully discretized model will have 3n+ 1 states, since we discretize
3 balance equations in n sections and include one state in the surge tank.
It would also be interesting to test another assumption; to discretize dif-
ferent balance equations differently.

A key issue in physical modeling is to determine how accurate different
storage quantities should be represented. With the choice of states used
in ThermoFlow, pressure represents mass storage and storage of thermal
energy is represented by enthalpy. It is only convenience that suggests
having the same resolution for the storage of mass and energy. In the
following section a model using two different resolutions is developed.

We have then three different model structures for comparison, using
different assumptions:

M1: The simplified model, with only 2 states.

M2: The one-flow model, with discretized energy balance and lumped
mass balance, developed in the following section.

M3: A fully discretized model, with 3n+ 1 states.

One flow, multi-temperature model

We wish to obtain a model similar to the simplified model, but using a
discretized energy balance to obtain the pressure drop in the tube from the
real density variation in the tube, and not the simplified function derived
in Section 2. To do this we use a lumped mass (pressure) balance and
a discretized thermal (enthalpy) balance. In this way there is only one

Surge tank

Heat
source

Boiler
pipe

Figure 5 Model diagram of the system.

109

Paper III. Flow Instabilities in Boiling Two Phase Flow

flow through the pipe instead of n flows between the discretized volumes.
Thus we can only obtain the type of pressure-drop oscillations seen with
the simplified model. This model is not available as a component in the
library, but can be obtained by changing some of the basic components.
Figure 6 shows a schematic of the pipe model, the different base classes
that together form the model and how they are discretized in the one-
flow model. Below we also give the code of the central parts of the pipe
model; BalanceTwoPort, ThermalModel, MediumModel and FlowModel.
The essential code with the changes to the classes in ThermoFlow is listed
here.

For the model to be correct, it is important to keep track of the mean
thermal state, hmean, used in the ThermalModel below. It is also impor-
tant to distribute the flow difference between inlet and outlet over the
discretized energy balances, which can be seen in the BalanceTwoPort.
Otherwise flow changes are concentrated in one section of the pipe, influ-
encing the thermal state in that section too much.

partial model BalanceTwoPortSingleSpecial
...

equation
...
edot[1] = a.q_conv;
for i in 2:n loop // Interpolated mass flow used in edot

edot[i] = if mdot[1]-dM[1]*(i-1) > 0
then (mdot[1]-dM[1]*(i-1))*h[i-1]
else (mdot[1]-dM[1]*(i-1))*h[i];

end for ;
edot[n+1] = if mdot[2]>0 then mdot[2]*h[n] else mdot[2]*b.h;
dM = (mdot[1] - mdot[2])*ones(n)/n;
for i in 1:n loop

MediumModel

ThermalModel FlowModel

Balances

Figure 6 Basic classes in a pipe model with different discretization for mass and
energy balances.

110

4. More Complex Modelica Models

dU[i]) = edot[i] - edot[i+1] - p[1]* der (V[i]) + Q_s[i];
end for ;

end BalanceTwoPortSingleSpecial;

partial model ThermalModelSpecial
replaceable model Medium = StateVariablesSpecial;
extends Medium;

equation
...
for i in 1:n loop // thermal state equations

km[i]* der (h[i]) = kh[1, i]*dM[i] + kh[2, i]*dU[i];
end for ;
km_mean*der (p[1]) = kp[1]*sum(dM) + kp[2]*sum(dU);
// Mean value of enthalpies, used for mean thermal state
h_mean = h[1:n]*d[1:n]/sum(d[1:n]);

end ThermalModelSpecial;

The medium model used here is almost the standard one; only the
extra calculation of the mean thermal state has to be included. This is
done in the last element of the properties record, pro[n+1]. The flow model
is also very close to an ordinary lumped flow model, the only difference is
the summation of the pressure losses.

model WaterSteamSpecial
extends StateVariablesSpecial;
Integer phase[n + 1];

equation
// Region check with events, only covers regions 1, 2 and 4
for i in 1:n loop

phase[i] = if ((h[i] < SteamIF97.hlofp(p[1])) or
(h[i] > SteamIF97.hvofp(p[1]))) then 1 else 2;

pro[i] = Water.water_ph(p[1],h[i],phase[i]);
end for ;
phase[n+1] = if ((h_mean < SteamIF97.hlofp(p[1])) or

(h_mean > SteamIF97.hvofp(p[1]))) then 1 else 2;
pro[n+1] = Water.water_ph(p[1],h_mean,phase[n+1]);

end WaterSteamSpecial;

model FlowModelTwoPortSingleSpecialDyn
...

equation
G_norm[2] = if mdot[2] > 0

then mdot[2]*mdot[2]/d_mean/A
else -mdot[2]*mdot[2]/ddown/A;

dG = G_norm[1]-G_norm[2] + dGdown;
// This is the momentum balance equation
L* der (mdot[2]) = dG + (p[1] - pdown)*A

111

Paper III. Flow Instabilities in Boiling Two Phase Flow

0 10 20 30 40 50
1.6

1.7

1.8

1.9

t [s]

p
[10

5
P

a]

Figure 7 Pressure drop oscillations with simplified (—) and complex model (– –).
Note that the medium here is water, this plot should not be compared with Figure 4.

p
[P

a]

t [s]

Figure 8 High-frequency oscillations with fully discretized model. Parameters are
slightly different compared to the previous case.

- sum(Ploss)/n*L*Dhyd*Pi;
end FlowModelTwoPortSingleSpecialDyn;

Simulating model M2 gives results similar to the simplified model M1,
see Figure 7. This verifies that the derivation of the pressure loss in the
simplified model is correct. The simulation results are also qualitatively
very close to the experimental results in Liu et al. (1995).

112

5. Comparisons

0 0.1 0.2 0.3
1.6

1.7

1.8

1.9

ṁ [kg/s]

p
[10

5
P

a]

Figure 9 Simulation results of the complex model, characteristic obtained from
the simplified model. Two limit cycles for different mean flows, ṁ = 0.15 kg/s (– –)
and 0.2 kg/s (- - -).

Fully discretized model

Model M3 uses the standard model of a discretized pipe with n mass
balances (and flows). Using M3 to study the problem with pressure oscil-
lations gives results slightly different due to discretization effects. Each
time one section of the pipe goes from liquid to two-phase it generates
a small pressure shock wave in the system. When there are pressure
oscillations the phase of the sections is constantly changing and thus
high-frequency shock waves are generated, superimposed on the slower
pressure oscillations, see Figure 8. The number of high-frequency peaks
is partly due to the number of discrete sections in the model. These peaks
could also emanate from high-frequency density-wave oscillations, Yadi-
garoglu (1981). But since they are driven by the discretization artifacts
we cannot tell. One way around this problem would be to use a so-called
moving boundary model, Heusser (1996), but this has not been done here.

5. Comparisons

The pressure drop oscillations observed using the simplified model M1 are
similar in period and amplitude to the oscillations obtained with the one-
flow model M2. Note that the shape of the pressure drop curve, and thus
the properties of the oscillations, depend very much on the average media
properties used, ρl , ρv , hl, hv and hin. In the complex models the properties
change with the pressure and mass flow into the system, which causes
differences in limit cycle period and amplitude. In Figure 9 the simplified

113

Paper III. Flow Instabilities in Boiling Two Phase Flow

pressure drop characteristic is plotted together with limit cycles obtained
with model M2. The amplitude and damping of the oscillations vary with
the mean flow. This is caused by the energy dynamics which produce a
lag in the density changes, unlike the immediate response of the pressure
drop function in the simplified model. Model M1 uses constant, average
properties and thus gives the same limit cycle amplitude for all mass flows
within the unstable region.

6. Conclusions

A simplified model of a boiler tube has been derived, assuming equilib-
rium conditions and a linear quality profile also during transients. The
model gives a closed expression for the pressure drop which depends on
mass flow through the tube and the density ratio of vapor and liquid. The
simplified model gives insight into how a known instability phenomenon,
pressure-drop oscillations, arises. The simplified model also gives results
close to measurements in Liu et al. (1995).

The simplified model has also been compared to two different dis-
cretized models developed in Modelica. A one-flow model with lumped
mass balance and discretized energy balance and a fully discretized model.
The one-flow model is shown to give more realistic oscillations than the
simplified model. The fully discretized model, however, gives high fre-
quency oscillations due to discretization effects and is not reliable for
studies of pressure-drop oscillations.

The two discretized models was built using a thermo-hydraulic base
library in Modelica, ThermoFlow. The example shows how models for
studying a complicated phenomenon can be built from model library com-
ponents, and how the library components can be adapted. The results
also illustrate how the flexibility of Modelica makes it possible to explore
a wide range of models, with less effort.

References

Aldridge, C. J. and A. C. Fowler (1996): “Stability and instability in evaporating
two-phase flows.” Surveys on Mathematics for Industry, 6, pp. 75–107.

Bell, R. D. and K. J. Åström (2000): “Drum-boiler dynamics.” Automatica, 36:3,
pp. 363–378.

Heusser, P. A. (1996): Modelling and Simulation of Boiling Channels with a
General Front Tracking Approach. SCS.

114

References

Kakaç, S. and H. T. Liu (1991): “Two-phase flow dynamic instabilities in boiling
systems.” In Chen et al., Eds., Proc. 2nd Int. Symp. on Multi-Phase Flow and
Heat Transfer, vol. 1, pp. 403–444.

Liu, H. T., H. Koçak, and S. Kakaç (1995): “Dynamical analysis of pressure-drop
type oscillations with a planar model.” Int.J. Multiphase Flow, 21:5, pp. 851–
859.

Tummescheit, H. (2000): “Object-oriented modeling of physical systems, part 11.”
Automatisierungstechnik, 48:2. In german.

Tummescheit, H., J. Eborn, and F. Wagner (2000): “Development of a Modelica
base library for modeling of thermo-hydraulic systems.” In Modelica 2000
Workshop Proceedings. Modelica Association, Lund.

Yadigaroglu, G. (1981): “Two-phase flow instabilities and propagation phenom-
ena.” In Delhaye et al., Eds., Thermal-hydraulics of Two-phase Systems for
Industrial Design and Nuclear Engineering, chapter 17. Hemisphere McGraw-
Hill, New York.

115

Paper III. Flow Instabilities in Boiling Two Phase Flow

116

Appendix IIIa

Appendix to

Flow Instabilities in Boiling
Two Phase Flow

Here the Modelica code for the models in Paper III is listed. All graphical
annotations have been taken out. First we give the complete code for the
simplified model, including the definition of the pressure drop function
(7). The next section lists the code that was adapted to run the one-flow
model. This means that the code for the PipeModel is complete, except
for the steam-table functions, and also some of the simpler components
in the system model that has been left out. The actual system model is at
the end of the appendix. The code for the fully discretized model M3 is in
major parts the same as for model M2 and has not been included here.

Modelica code for the simplified model, M1

package Pdrop

function f
input Real x;
input Real a3=100;
input Real a1=0.000001;
input Real a2=1.0;
output Real dp;

algorithm
if x < 1 then

dp := x*x*(a3 + x*(a1 + a2*(a3 + 1)/2 - a3));
else

if x < 1/a1 then
dp := x*x*(x*a1 + (1 - a1*x)*(2 + (1 - a1*x)*(a3 - 1)/x/a2)/2);

else
dp := x*x;

end if ;
end if ;

end f;

117

Appendix IIIa. Flow Instabilities in Boiling Two Phase Flow

model evap "Evaporating tube with density-varying pressure drop"
parameter SIunits.Power P(start=800);
parameter SIunits.Length L(start=0.605);
parameter SIunits.Area A=Modelica.Constants.pi*0.00375^2;
parameter SIunits.Density rv(start=22.5);
parameter SIunits.Density rl(start=1359);
parameter SIunits.SpecificEnthalpy hv(start=426e3);
parameter SIunits.SpecificEnthalpy hl(start=264e3);
parameter SIunits.SpecificEnthalpy hin(start=220e3);
parameter SIunits.Pressure p0(start=1e5);
parameter SIunits.Pressure pe(start=1e5);
parameter SIunits.Volume V0(start=0.0005);
parameter SIunits.MassFlowRate m0(start=0.00731);
parameter SIunits.MassFlowRate mc=P*L/(hv - hin);
parameter Real k(start=10000);
parameter Real a1=(hl - hin)/(hv - hin);
parameter Real a2=(hv - hl)/(hv - hin);
SIunits.Pressure dp;
SIunits.Pressure p(start=3e5);
SIunits.MassFlowRate m(start=0.024);

equation
dp = k*mc*mc/(2*A*A*rl)*f(x=m/mc, a3=rl/rv, a1=a1, a2=a2);
der (p) = p*p*(m0 - m)/p0/V0/rl;
der (m) = A/L*(p - pe - dp);

end evap;

end Pdrop;

Modelica code for the one-flow model, M2

package SIunits = Modelica.SIunits;
package CommonRec = Modelica.ThermoFlow.BaseClasses.CommonRecords;
package Interfaces = Modelica.ThermoFlow.Interfaces;
package Balances =

Modelica.ThermoFlow.BaseClasses.Balances.SingleDynamic;
package Water = Modelica.ThermoFlow.BaseClasses.MediumModels.Water;
package SteamIF97 =

Modelica.ThermoFlow.BaseClasses.MediumModels.SteamIF97;

package SpecialPipe
constant Real Pi = Modelica.Constants.pi;

record ThermoBaseVarsSpec
parameter Integer n(min=1) = 1 "discretization number";
SIunits.Pressure p[1];
SIunits.Temperature T[n], T_mean;
SIunits.Density d[n], d_mean;
SIunits.SpecificEnthalpy h[n], h_mean;
SIunits.Mass M[n](start=ones(n),fixed= false) "Total mass";
SIunits.Energy U[n](start=ones(n),fixed= false) "Inner energy";

118

SIunits.Volume V[n] "Volume";
SIunits.MassFlowRate dM[n] "Change in total mass";
SIunits.Power dU[n] "Change in inner energy";

end ThermoBaseVarsSpec;

record ThermoProperties
"Thermodynamic base property data for all state models"
SIunits.Temp_K T "temperature";
SIunits.Density d "density";
SIunits.Pressure p "pressure";
SIunits.SpecificEnthalpy h "enthalpy";
SIunits.SpecificEnergy u "inner energy";
SIunits.SpecificEntropy s "entropy";
SIunits.SpecificHeatCapacity cp "heat capacity at const p";
SIunits.SpecificHeatCapacity cv "heat capacity at const v";
SIunits.SpecificHeatCapacity R "gas constant";
SIunits.RatioOfSpecificHeatCapacities kappa "ratio of cp/cv";
SIunits.DerDensityByEnthalpy ddhp;
SIunits.DerDensityByPressure ddph;
SIunits.DerDensityByTemperature ddTp;
SIunits.DerDensityByPressure ddpT;
SIunits.DerEnergyByPressure dupT;
SIunits.DerEnergyByDensity dudT;
Real duTp "derivative of inner energy by temp at const p";
SIunits.Velocity a "speed of sound";

end ThermoProperties;

partial model StateVariables_p1hn
extends ThermoBaseVarsSpec(p(fixed= true), h(fixed= true));
ThermoProperties_ph pro[n+1];

equation
for i in 1:n loop

d[i] = pro[i].d;
T[i] = pro[i].T;

end for ;
d_mean = pro[n + 1].d;
T_mean = pro[n + 1].T;

end StateVariables_p1hn;

record BalanceSetSingleSpecial
extends ThermoBaseVarsSpec;
SIunits.Power Q_s[n] "Heat source term";
SIunits.MassFlowRate mdot[2];
SIunits.Power edot[n + 1];
SIunits.MomentumFlux G_norm[2];
SIunits.MomentumFlux dG;

end BalanceSetSingleSpecial;

partial model BalanceTwoPortSingleSpecial
extends Interfaces.SingleDynamic.TwoPortAB;
extends BalanceSetSingleSpecial;

119

Appendix IIIa. Flow Instabilities in Boiling Two Phase Flow

extends CommonRec.PressureLossDistributed;
Interfaces.HeatTransfer.HeatFlowD q(n=n);
extends CommonRec.ConnectingVariablesSingleDynamic;

equation
// Connecting variables needed in flow model:
ddown = b.d;
pdown = b.p;
dGdown = b.dG;
// Pass state information upstream:
p[1] = a.p;
d[1] = a.d;
h[1] = a.h;
T[1] = a.T;
pro[1].s = a.s;
pro[1].kappa = a.kappa;
Q_s = q.q;
T[1:n] = q.T;
// Flow information,
// note different sign convention inside distr. for G_n and mdot
G_norm[1] = a.G_norm;
G_norm[2] = -b.G_norm;
G_norm[1] - G_norm[2] = a.dG;
mdot[1] = a.mdot;
mdot[2] = -b.mdot;
edot[1] = a.q_conv;
edot[n + 1] = -b.q_conv;
for i in 2:n loop

edot[i] = if mdot[1]-dM[1]*(i-1) > 0
then (mdot[1]-dM[1]*(i-1))*h[i-1]
else (mdot[1]-dM[1]*(i-1))*h[i];

end for ;
edot[n+1] = if mdot[2]>0 then mdot[2]*h[n] else mdot[2]*b.h;
dM = (mdot[1] - mdot[2])*ones(n)/n;
for i in 1:n loop

dU[i] = edot[i] - edot[i + 1] - p[1]* der (V[i]) + Q_s[i];
end for ;

end BalanceTwoPortSingleSpecial;

partial model ThermalModelSpecial
replaceable model Medium = StateVariables_p1hn ;
extends Medium;

protected
Real km[n],km_mean;
Real kp[3];
Real kh[3, n];

equation
for i in 1:n loop

km[i] = V[i]*(pro[i].ddph*d[i] + pro[i].ddhp);
kh[1, i] = 1 - h[i]*pro[i].ddph;
kh[2, i] = pro[i].ddph;
kh[3, i] = pro[i].ddph*p[1] - d[i];

120

// state equations
km[i]* der (h[i]) =

kh[1, i]*dM[i] + kh[2, i]*dU[i] + kh[3, i]* der (V[i]);
end for ;
km_mean = sum(V)*(pro[n + 1].ddph*d_mean + pro[n + 1].ddhp);
kp[1] = d_mean + h_mean*pro[n + 1].ddhp;
kp[2] = -pro[n + 1].ddhp;
kp[3] = -d_mean*d_mean - pro[n + 1].ddhp*p[1];
km_mean*der (p[1]) =

kp[1]*sum(dM) + kp[2]*sum(dU) + kp[3]*sum(der (V));
M[i] = d[i]*V[i];
U[i] = pro[i].u*M[i];
// Mean value of enthalpies, gives mean thermal state,
// use sum(d) for total mass to avoid algebr. loop
h_mean = h[1:n]*d[1:n]/sum(d[1:n]);

end ThermalModelSpecial;

model FlowModelTwoPortSingleSpecialDyn
"Lumped FM for use with distributed thermal model"
extends CommonRec.ConnectingVariablesSingleDynamic;
extends CommonRec.BaseGeometryVars(alpha=0);
extends BalanceSetSingleSpecial;
replaceable model PLoss = CommonRec.PressureLossDistributed;
extends PLoss;

equation
// This equation is general:
dz = L/n;
G_norm[2] = if mdot[2] > 0

then mdot[2]*mdot[2]/d_mean/A else -mdot[2]*mdot[2]/ddown/A;
dG = G_norm[1]-G_norm[2] + dGdown;
// This is the momentum balance equation
L* der (mdot[2]) = dG + (p[1] - pdown)*A - sum(Ploss)/n*L*Dhyd*Pi;

end FlowModelTwoPortSingleSpecialDyn;

model WaterSteamSpecial
extends StateVariables_p1hn;
parameter Integer mode=0;
Integer phase[n + 1];

equation
// Region check with events, only covers regions 1, 2 and 4
for i in 1:n loop

phase[i] = if (mode == 4) then 2 else (if (mode>0) then 1 else
(if ((h[i] < SteamIF97.hlofp(p[1]))

or (h[i] > SteamIF97.hvofp(p[1]))) then 1 else 2));
pro[i] = Water.water_ph(p[1],h[i],phase[i],mode);

end for ;
phase[n+1] = if (mode == 4) then 2 else (if (mode>0) then 1 else

(if ((h_mean < SteamIF97.hlofp(p[1]))
or (h_mean > SteamIF97.hvofp(p[1]))) then 1 else 2));

pro[n+1] = Water.water_ph(p[1],h_mean,phase[n+1],mode);
end WaterSteamSpecial;

121

Appendix IIIa. Flow Instabilities in Boiling Two Phase Flow

model ControlVolumeTwoPortSingleSpecial "Two port volume"
extends BalanceTwoPortSingleSpecial;
extends ThermalModelSpecial;
parameter SIunits.Volume V0(start=1) "Constant volume";
parameter SIunits.Length L0(start=1.0) "Tube length";
parameter SIunits.Length Dhyd0(start=1.0) "Hydraulic diameter";
parameter SIunits.Area A0(start=1.0) "Flow area";
extends FlowModelTwoPortSingleSpecialDyn

(L=L0, Dhyd=Dhyd0, A=A0);
equation

V = V0*ones(n)/n;
end ControlVolumeTwoPortSingleSpecial;

model PipeFrictionSpecial
extends CommonRec.PressureLossDistributed;
parameter Real k(start=0.5) "Friction coefficient";
SIunits.MassFlowRate mdot[2];
SIunits.Density d[n];
SIunits.Area A;

equation
for i in 1:n loop

Ploss[i] = k*abs(mdot[2])*mdot[2]/(2*A*A*d[i]);
end for ;

end PipeFrictionSpecial;

model PipeSpecial "Special pipe model w 1 pressure and n temps."
parameter SIunits.Pressure p0=1.1e5;
parameter SIunits.SpecificEnthalpy h0=3.0e5;
parameter SIunits.MassFlowRate mdot0=0.1;
extends ControlVolumeTwoPortSingleSpecial(

redeclare model PLoss=PipeFrictionSpecial,
redeclare model Medium=WaterSteamSpecial,
V0=1.0, L0=1.0);

end PipeSpecial;
end SpecialPipe;

model SurgeTank
extends Balances.TwoPortLumpedAdiabatic;
extends Water.WaterSteamMedium_ph;
parameter SIunits.Pressure p0=1e5;
parameter SIunits.Volume V0=0.01;

equation
der (V[1]) = dM[1]/d[1];
// Approximately der(d)=0
p[1]*(2*V0 - V[1]) = p0*V0;
der (h[1]) = dU[1]/M[1];
W_t[1] = 0;

end SurgeTank;

model ConstantFlow

122

extends
Modelica.ThermoFlow.PartialComponents.Valves.FlowModelBaseSingle(

redeclare Interfaces.SingleDynamic.FlowB a,
redeclare Interfaces.SingleDynamic.FlowB b);

parameter SIunits.MassFlowRate mdot0=0.15;
parameter SIunits.Area A=0.1;

equation
a_upstream = true ;
mdot = mdot0;
a.G_norm = if a_upstream then a.mdot*a.mdot/a.d/A

else -a.mdot*a.mdot/b.d/A;
b.G_norm = -a.G_norm;

end ConstantFlow;

model BoilerPipe
Modelica.ThermoFlow.Components.Water.PipesAndVolumes.PipeGeometry geo;
SpecialPipe.PipeSpecial HeatPipe(n=10, h0=geo.h0, mdot0=geo.mdot0,

k=geo.k, V0=geo.V, L0=geo.L, Dhyd0=geo.D, A0=geo.A);
Modelica.ThermoFlow.Components.Water.Reservoirs.WaterResD_ph Sink;
Modelica.ThermoFlow.Components.Water.Reservoirs.WaterResD_ph ResIn;
Modelica.ThermoFlow.Components.HeatFlow.Sources.HeatD HeatD1(n=10);
ConstantFlow Flow1(A=geo.A);
SurgeTank Source;
Modelica.ThermoFlow.Components.SingleDynamic.Valves.LinearValve

Valve1(A=geo.A);
equation

connect(HeatD1.qa, HeatPipe.q);
connect(HeatPipe.b, Sink.a);
connect(Valve1.b, HeatPipe.a);
connect(Source.b, Valve1.a);
connect(Flow1.b, Source.a);
connect(ResIn.a, Flow1.a);

end BoilerPipe;

123

Paper IV

Parameter Optimization of a
Non-linear Boiler Model

Jonas Eborn and James Sørlie

Abstract

The object of this study is a steam generation process model devel-
oped by Åström and Bell. The paper reports improvements obtained
by tuning uncertain physical parameters as well as a verification of
the model structure. Employing measurement data and methods from
system identification, the paper demonstrates the complementary na-
ture of first-principle modeling and identification. Results show that
statistical methods, combined with a systematic search strategy, al-
low improvement of a larger number of parameters than is possible
through manual tuning.

Keywords: control systems, nonlinear modeling, optimization, pa-
rameter estimation, system identification.

Reproduced from

Eborn, J. and J. Sørlie (1997): “Parameter optimization of a non-linear boiler
model.” In Sydow, Ed., 15th IMACS World Congress, vol. 5, pp. 725–730. W&T
Verlag, Berlin, Germany.

125

Paper IV. Parameter Optimization of a Non-linear Boiler Model

1. Introduction

Models built upon first principles are useful for both analysis and design.
The physical relevance and insight they provide often reveal structural
properties of the actual process, something which black-box models can-
not do. With first-principle models there are frequently parameters which
are uncertain or even impossible to determine without detailed measure-
ments. Often, to achieve a good visual fit to measured data, trial-and-
error techniques are used to adjust parameters manually. In this paper,
we study the use of system identification applied to first-principle models;
cf. Bohlin (1991). Our aim is to demonstrate a systematic approach to the
task of parameter tuning.

As a case study, we use the third and fourth-order non-linear implicit
differential equation models developed by Åström and Bell (1988; 1993;
1996). The mathematical model has a relatively small number of physical
parameters and input conversion factors. Most of the physical parameters
are well determined from construction data. However, some parameters
are obtained by rough estimates, like metal masses and a friction factor
in the flow through the down-comers/risers circuit. The friction factor
has been manually adjusted to achieve good simulation results. It is of
interest to see what improvements can be obtained thru optimization of
these uncertain parameters.

Software tools that have been used for this study are the modeling en-
vironment OMSIM, see Andersson (1994), and the grey-box identification
tool-kit IDKIT, see Graebe (1990); Sørlie (1996). Motivating this paper
is our desire to demonstrate the complementary nature of modeling and
identification, as well as the need for software tools integrating modeling
and simulation with parameter optimization of general non-linear first-
principle models.

2. Model Definition

The details of the model’s derivation are given in Åström and Bell(1988;
1993; 1996); here, we briefly survey their results. Printing provisions pro-
hibit including all the modeling equations. They have been programmed in
OMOLA, see Andersson (1994); Sørlie and Eborn (1997), and are available
upon request from the authors.

An idealized physical model for the system is shown in Figure 1. Steam
vapor is vented from the drum with flow-rate qs. Feed-water enters the
drum in a sub-cooled liquid state with flow-rate qf w and temperature
Tf w. Steam vapor is generated by channeling the liquid phase from the
drum through a down-comers/risers circuit. The heat flow-rate Q into the

126

2. Model Definition

II III

IV

I

Tf wqf w qs

qdcqr,xr

Q

δ l
P

Figure 1 Ideal physical model of a steam generation process.

risers comes from the combustion of fuel. The flow-rate into the circuit qdc

is driven by the density gradient caused by the phase change in the risers.
At the risers outlet, the two-phase mixture is characterized by the mass
flow-rate qr and vapor mass-fraction xr .

The fundamental modeling simplification is that the two phases of wa-
ter inside the system are everywhere in a saturated thermodynamic state.
With this assumption, all thermodynamic properties can be characterized
by one independent variable. The drum pressure P is chosen to be this key
state variable since it is the most globally uniform variable in the system.
Another key assumption is an instantaneous and uniform thermal equi-
librium between water and metal everywhere. This simplifies including
thermal capacitance effects.

Indicated in Figure 1 are the boundaries of four thermodynamic control
volumes. Mass and energy balances for the global control volume (c.v. I)
yield two state equations. The state variables are pressure P and the
total volume of liquid water in the system Vwt. By combining the mass
and energy balances for c.v. II to eliminate the flow-rate qr , a third state
equation is derived with the vapor mass-fraction xr as state variable. By
considering fluid friction in c.v. III, a fluid momentum balance establishes
the flow-rate qdc. A combination of the mass and energy balances for c.v. IV
yields a fourth state equation with state variable Vsd, the volume of steam

127

Paper IV. Parameter Optimization of a Non-linear Boiler Model

vapor below the liquid surface. Assembled in matrix notation, the fourth-
order model structure (i. e., a set of implicit differential state equations)
is:

M4 :

e11 e12 0 0

e21 e22 0 0

0 e32 e33 0

e41 e42 e43 e44

V
V t Vwt

V
V t P
V
V t xr

V
V t Vsd

 =

qf w − qs

Q + hf wqf w − hsqs + ∆I

Q − hcxrqdc + ∆II

Vsd− V 0
sd

τ sd
+ (hf w − hw) qf w + ∆IV

ρshc

 (1)

The elements of the coefficient matrix e11, e12, e21, etc., are state de-
pendent. The complexity of these expressions prohibits including them
here; see Sørlie and Eborn (1997). On the right, ∆I, ∆II and ∆IV represent
under-modeling, i. e., unmodeled energy interactions (nominally taken to
be zero). The initial state conditions are parameterized [V 0

wt, P0 , x0
r , V 0

sd]T .
In addition to these, the model involves seven physical parameters: metal
masses md, mr, mdc, volumes Vd, Vr, Vdc, and a fluid friction coefficient
in the down-comers k. Known constants are the specific heats Cf w and Cp

for the feed-water and metal respectively.
For the purpose of level control, Bell and Åström (1996) proposed a

variational measurement model for the liquid level in the drum:
δ l = ((Vwd− V 0

wd

)+ (Vsd − V 0
sd

))/Ad. (2)
The level variation δ l is caused by variations in the volumes of liquid in
the drum Vwd

1 and the steam below the surface Vsd. This model introduces
one additional physical parameter: Ad, the drum’s cross-sectional area at
the nominal level. The aim of including variation in Vsd is to capture
the level dynamics known as the “shrink-and-swell” effect; cf. Bell and
Åström (1996).

To assess the necessity of including the fourth state equation in M4,
we shall investigate parameter optimization of both third and fourth-order
model structures. In the third-order structure M3, the state variable Vsd

in (2) is replaced with an instantaneous value. Engineering judgment
suggests several approximations for its value. The fourth-order structure

1Vwd(t) = Vwt(t) − Vdc − (1 −α r(t))Vr where α r is the total volume fraction of steam in
the risers, i. e., α r = Vsr/Vr; an approximation with form α r � fcn(P, xr) is given in Åström
and Bell (1988); Åström and Bell (1993).

128

2. Model Definition

Tf w

qf w

qs

qsc f

qf wc f

Q

{Qcf , Qrnn}
δ l

P

σ P

σδ l

Figure 2 Omola definition of the simulation interface to signals of the experimen-
tal data, and stochastic input and output-error models.

M4 involves a similar set of hypotheses for the bubble-residence time-
constant τ sd. The heuristics for the values which have been tested are:

Vsd =

b1 hyp. 0,

b1α rVr hyp. 1,

b1xrqr hyp. 2,

τ sd =

b1 ρs

qs
(Vd − Vwd) hyp. 0,

b1 ρs

xr qr

(
2V 0

sd− Vsd
)

hyp. 1.

In each model structure, b1 is a “grey-box” parameter to be optimized.
For parameter optimization, we use three datasets obtained from ex-

periments reported in Åström and Eklund (1972). Figure 2 shows the
simulation interface to the five measured inputs: two steam flows, feed-
water flow, feed-water temperature and fuel flow. An interface with real
data necessitates conversion factors; the simulation schematic shows sev-
eral. Most uncertain is the calibration of the heat input Q. Because the
chemical energy content of the fuel is known to vary, this gain has been
probabilistically modeled with a nominal value Qcf and a known, bounded
range Qrnn . More certain are the calibrations of the steam mass flow-rates
qsc f and feed-water mass flow-rate qf wc f . Assuming liquid flow measure-
ments are more precise than vapor flow measurements, we shall consider
the later2 a known constant. This leaves as additional parameters for

2Correction: The word “later” here refers to qf wc f and not vapor flow measurements.

129

Paper IV. Parameter Optimization of a Non-linear Boiler Model

optimization Qcf and qsc f .
In addition to the stochastic modeling of the gain Qcf , the simulation

interface includes simple stochastic input and output-error models. The
focus of this paper is parameter optimization in a deterministic setting;
accordingly, on the instantaneous output-error models will be investigated
here. In Sørlie and Eborn (1997), the input-error models are used to inves-
tigate the effects of under-modeling, i. e., ∆I etc. Summarizing the model
definition, we have third and fourth-order model structures M3 and M4

with parameterization [md, mr, mdc, Vd, Vr, Vdc, k, Ad, b1, Qcf , qsc f].

3. Parameter Optimization

Parameter estimation has been investigated with the third and fourth-
order model structures M3 and M4. The three datasets involve pertur-
bation on different inputs; steam flow, fuel flow and feed-water flow. The
IDKIT software, see Graebe (1990), utilizes a gradient search method to
minimize the likelihood function for the given observations. Along with
the parameter estimates, the software also calculates values of the Akaike
Information Criterion (AIC) and the loss function; these values are useful
for comparisons and hypothesis testing. The search method requires good
initial guesses for the parameters. Reasonable values were obtained from
Åström and Bell (1993; 1996). Notationally, we denote a nominally param-
eterized model M3(Θ0). Estimated models are named in a similar fashion;
e. g.,, M3(Θ̂1) is the model obtained from dataset 1 with the third-order
model structure.

Choosing free parameters: Augmentation and over-parameterization

The modeling goal of this study was to obtain a good deterministic model.
Nevertheless, an error description is very important for the optimization.
Purely deterministic models can not explain everything in the data. In
optimization, this leads to convergence problems. By first estimating mea-
surement error variances with nominal physical parameters and subse-
quently augmenting the free parameter space, a good deterministic model
is obtained. The estimated error variances give a measure of the model
uncertainty. The principle used when choosing free parameters (i. e., free
for search) is to start with the parameters that are least known or have
a large impact on outputs. In our case this means error variances, input
conversion factors and some initial values. Then, augmentation to include
hypothesis testing and optimization of physical parameters can be done.

When choosing what parameters to optimize, over-parameterization is
an important issue. This is very common in physical models based on first

130

3. Parameter Optimization

0 1000 2000 3000
-150

-100

-50

0

50

100

150
δ l [mm]

0 1000 2000 3000
108

109

110

111

112
P [kg/cm2]

—– Measured
- - - M4(Θ̂2) - - - M4(Θ̂3)
− − M4(Θ̂1)

Figure 3 Model obtained from dataset 1 validated against drum-level from dataset
2 and pressure from dataset 3. Compared also with the best model for each dataset.

principles. Energy storage in metal e. g., depends only on the product mCp;
thus these parameters can not be estimated independently. More subtle
over-parameterizations may be overlooked. In this study we set out to
estimate the friction factor, k. It was deemed impossible since k mainly
affects offset in the drum level, which makes it coupled to the initial value
x0

r .3 The coupling can be seen by examining the parameter sensitivities,
i. e., the Hessian of the likelihood function. This reveals cross-couplings
between such parameters. Evaluation of estimated models with different,
fixed values for k show that the model behavior is very insensitive to
changes in k. In fact, the AIC value is least for the nominal value k=0.005.

Estimates for third-order model structure

The main result from running optimization on the third-order model is
that the total mass, m = mr + md + mdc, is estimated to be 500 tons,
considerably more than the nominal value 300 tons. The difference is not
surprising though since the nominal value was obtained by rather rough
calculations. The estimate is consistent with the first two datasets, while
the third dataset gives estimates considerably higher, m > 1000 tons.
This result is less reliable though, since the excitation in this dataset is
very small and time variations in Qcf has a considerable impact on the
pressure, which is the output affected by m; see Figure 3.

Testing the different hypotheses concerning Vsd reveals that hypothe-
sis 2 is considerably better in conjunction with the first dataset, yielding
AIC=2920 compared to 2980 and 3080 for hypotheses 1 and 0 respectively.
This is not the case when applied to the other datasets. Optimization sup-
presses the influence of Vsd by reducing the factor b1; values of the Akaike

3Assuming the system was in near equilibrium during the experiments, the equilibrium
solution for the third state equation can be used to parameterize x0

r .

131

Paper IV. Parameter Optimization of a Non-linear Boiler Model

Dataset: 1. Steam flow 2. Fuel flow 3. Feed-water flow

m σ P σδ l AIC m σ P σδ l AIC m σ P σδ l AIC

Model [ton] [bar] [mm] [ton] [bar] [mm] [ton] [bar] [mm]
M3(Θ0) 300 0.9 50 3494 300 1.3 43 3634 300 0.63 74 3484

M3(Θ̂) 542 0.8 27 2920 501 1.2 30 3304 1080 0.3 20 2046

M4(Θ̂) 460 0.8 10 2217 392 1.2 20 3030 1054 0.3 10 1622

Cross-validation of M4(Θ̂1) 460 1.3 23 3174 460 0.5 10 1885

Table 1 Estimation results for different model structures and datasets.

criterion are almost exactly the same with different hypotheses. This sug-
gests that the simple hypotheses are insufficient and there are additional
dynamics concerning Vsd. These are introduced as a state in the fourth-
order model.

Estimates for fourth-order model structure

Results from the fourth-order model are consistent with the previous re-
sults in that the estimates of the total mass give similar results and the
additional dynamics give an appreciable contribution; drum level error
and AIC values decrease according to Table 1.

With the additional dynamics in the fourth-order structure there are
also possibilities to optimize other parameters. Besides total mass, also
drum and riser mass influence the behavior. These have been estimated on
the first dataset and were found to be: md=61 tons, mr=272 tons. These
figures are reasonable relative to each other and the total mass. Also the
grey-box factor scaling the bubble time constant τ sd was estimated to be
b1=1.9. To check the validity of the results this model was used on the
other datasets after estimation of only conversion factors and x0

r . It was
also compared to the best possible model for those datasets. Comparisons
can be seen in Table 1 and in Figure 3.

The validated model performs almost as good as the best ones for each
dataset. In the fuel-flow data there seems to be an overshoot phenomenon
in drum-level not caught by the model, this explains why the model opti-
mized on the first dataset gives a higher AIC value. In the third dataset
there is the problem with low excitation and time-varying Qcf mentioned
earlier.

132

4. Structure determination

4. Structure determination

The task of structure determination is supported by having modeling and
simulation tools integrated with optimization/identification tools. In this
study we have used OMSIM to create different model structures and hy-
potheses and test them in simulation to see their qualitative behavior.
The model equations are then exported to IDKIT for parameter optimiza-
tion and hypothesis testing. Statistical measures like the AIC give an
objective evaluation of the model structures. This together with the sub-
jective measure obtained in simulation provide the necessary information
whether to accept or reject a model structure.

In this case study two different model structures were compared; the
third and fourth-order models described in previous sections. The sta-
tistical measures given in Table 1 all show that the fourth-order model
describes drum-level much better and this is confirmed in the simula-
tions shown in Figure 4, see the differences in drum-level behavior at
t =1100 and 1700 seconds. The attempt at cross-validation of the fourth-
order model could be confusing just looking at the AIC values since in
dataset 3 the AIC=1622 for the best model is much lower than 1885. But
in simulations it can be seen that this mainly depends on deficiencies in
the experiment, e. g., time-varying conversion factors. Qualitatively, the
model from the first dataset M4(Θ̂1) behaves better than the statistically
‘best’ model; in Figure 3, the increased mass estimates in M4(Θ̂3) effec-
tively flatten the pressure variations and inadvertently suppress dynam-
ics present in M4(Θ̂1).

A close integration of modeling and identification tools also makes it
easier to test different model hypotheses. For the third-order model this
was reported in the previous section. In the fourth-order model there

0 1000 2000 3000
-150

-100

-50

0

50

100

150
δ l [mm]

0 1000 2000 3000
102

104

106

108

110

112

114
P [kg/cm2]

—– Measured
− − M3(Θ̂1)
- - - M4(Θ̂1)

Figure 4 Simulations of third and fourth-order models compared to data from
dataset 1.

133

Paper IV. Parameter Optimization of a Non-linear Boiler Model

Dataset: 1. Steam flow 2. Fuel flow 3. Feed-water flow

Hypoth. b1 σ P σδ l AIC b1 σ P σδ l AIC b1 σ P σδ l AIC

0 0.5 0.8 14 2476 0.22 1.2 27 3232 0.43 0.34 14 1859

1 1.9 0.8 10 2220 2.4 1.2 20 3030 1.9 0.34 10 1622

Table 2 Evaluation of hypotheses of the fourth-order model structure.

are two hypotheses concerning bubble residence time, τ sd. These have
been tested in favor of hypothesis 1; see Table 2. AIC values for all three
datasets are lower and the scaling factors b1 are all close to the same
value, which favors hypothesis 1.

5. Conclusions

This paper reports on parameter estimation on two different non-linear
model structures for a drum-boiler process. The results verify that the
fourth-order structure better describes the complicated drum-level dy-
namics. A large number of uncertain physical parameters have been es-
timated, a task which would have been impossible by commonly used
trial-and-error testing. This is especially true since uncertain input con-
version factors introduce drift in simulations. Using a search strategy to
first estimate conversion factors and error variances, and then iteratively
augment free parameter space, up to 10 parameters can be simultane-
ously optimized without difficulty. Statistical measures of the model fi-
delity, together with qualitative information obtained in simulation, give
the information needed to assess different model hypotheses.

We believe that the dual nature of modeling and identification demon-
strated here is very powerful and should be supported by well integrated
software tools. For linear model structures such tools exist. In the non-
linear case much remains to be done.

Acknowledgments

This work was supported by a research grant from Sydkraft AB.

References

Åström, K. J. and R. D. Bell (1988): “Simple drum-boiler models.” In IFAC
Int.Symposium on Power Systems, Modelling and Control Applications. Brus-
sels, Belgium.

134

References

Åström, K. J. and R. D. Bell (1993): “A nonlinear model for steam generation
processes.” In Preprints IFAC 12th World Congress. Sydney, Australia.

Andersson, M. (1994): Object-Oriented Modeling and Simulation of Hybrid
Systems. Ph.D. thesis TFRT–1043–SE, Dept. of Automatic Control, Lund Inst.
of Technology, Lund, Sweden.

Åström, K. and K. Eklund (1972): “A simplified non-linear model of a drum boiler-
turbine unit.” Int. J. Control, 16:1, pp. 145–169.

Bell, R. D. and K. J. Åström (1996): “A fourth order non-linear model for drum-
boiler dynamics.” In IFAC’96, Preprints 13th World Congress, vol. O, pp. 31–36.
San Francisco, CA.

Bohlin, T. (1991): Interactive System Identification: Prospects and Pitfalls.
Springer-Verlag, Berlin, Germany.

Graebe, S. F. (1990): Theory and Implementation of Gray Box Identification. Ph.D.
thesis TRITA–REG–9006, Royal Institute of Technology, Dept. of Automatic
Control, Stockholm, Sweden.

Sørlie, J. and J. Eborn (1997): “A grey-box identification case study: The Åström–
Bell drum-boiler model.” Technical Report ISRN LUTFD2/TFRT--7563--SE.
Dept. of Automatic Control, Lund Inst. of Technology, Lund, Sweden.

Sørlie, J. A. (1996): On Grey-Box Model Definition and Symbolic Derivation
of Extended Kalman Filters. Ph.D. thesis TRITA–REG–9601, S3–Automatic
Control, Royal Institute of Technology, Stockholm, Sweden.

135

Department of Automatic Control

ISSN 0280-5316
ISRN LUTFD2/TFRT--1061--SE

